JPH0773881A - Zinc oxide alloy powder for alkaline zinc storage battery and manufacture thereof - Google Patents

Zinc oxide alloy powder for alkaline zinc storage battery and manufacture thereof

Info

Publication number
JPH0773881A
JPH0773881A JP6147006A JP14700694A JPH0773881A JP H0773881 A JPH0773881 A JP H0773881A JP 6147006 A JP6147006 A JP 6147006A JP 14700694 A JP14700694 A JP 14700694A JP H0773881 A JPH0773881 A JP H0773881A
Authority
JP
Japan
Prior art keywords
zinc
alloy powder
storage battery
alkaline
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6147006A
Other languages
Japanese (ja)
Inventor
Hiromi Hata
祥巳 畑
Morimasa Sumita
守正 住田
Hidesato Matsuoka
秀悟 松岡
Koichi Numata
幸一 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP6147006A priority Critical patent/JPH0773881A/en
Publication of JPH0773881A publication Critical patent/JPH0773881A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To manufacture zinc oxide alloy powder for an alkaline zinc storage battery which is difficult to generate dendrite short-circuiting or the like by oxidizing a surface layer of the zinc alloy powder by the use of a potassium hydroxide solution in the atmosphere. CONSTITUTION:Use of zinc oxide alloy powder for an alkaline zinc storage battery, at least a surface layer of which is oxidized, as a negative active material can remarkably improve a cycle characteristic of an alkaline zinc storage battery. It is preferable that zinc alloy powder should be composed of one or more kinds of metals selected from Cd, Pb, Sn, In, Ga, Tl, Ca, Bi and Al, zinc and inevitable impurity. At least the surface layer, or preferably about 5% or more, more preferably, about 30% or more of a metal element is oxidized in the atmosphere by the use of a potassium hydroxide solution, thus oxidizing the surface layer of the zinc alloy powder. The resultant zinc oxide alloy powder is combined with metal zinc powder and the above-described zinc alloy powder, thereby obtaining a negative electrode active material for the alkaline zinc storage battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルカリ亜鉛蓄電池用酸
化亜鉛合金粉末およびその製造方法、並びに該酸化亜鉛
合金粉末を負極活物質として用いたアルカリ亜鉛蓄電池
に関するものである。
TECHNICAL FIELD The present invention relates to a zinc oxide alloy powder for an alkaline zinc storage battery, a method for producing the same, and an alkaline zinc storage battery using the zinc oxide alloy powder as a negative electrode active material.

【0002】[0002]

【従来の技術】近年、電気自動車用電源等の種々の機器
において、電池の高エネルギー密度化、高性能化が図ら
れており、このような用途に用いられる電池としてアル
カリ亜鉛蓄電池がある。このアルカリ亜鉛蓄電池は、陽
極活物質にニッケル、銀等、負極活物質に亜鉛を用いる
ものである。
2. Description of the Related Art In recent years, in various devices such as power sources for electric vehicles, higher energy density and higher performance of batteries have been attempted, and alkaline zinc storage batteries are used as batteries for such applications. This alkaline zinc storage battery uses nickel, silver or the like as the positive electrode active material and zinc as the negative electrode active material.

【0003】このアルカリ亜鉛蓄電池の負極活物質とし
ての亜鉛は、単位重量当りのエネルギー密度が大きくし
かも安価であり、しかも無公害であるという利点を有す
る。
Zinc as the negative electrode active material of this alkaline zinc storage battery has the advantages that it has a large energy density per unit weight, is inexpensive, and is pollution-free.

【0004】しかるに、亜鉛を負極活物質とした場合、
次のような欠点があることが、特開平2−30062号
公報や特開平4−28160号公報に記載されている。
However, when zinc is used as the negative electrode active material,
The following drawbacks are described in Japanese Patent Laid-Open Nos. 2-30062 and 4-28160.

【0005】すなわち、亜鉛からなる負極活物質が放電
過程あるいは充電過程において溶解析出または電析し、
シェイブチェンジやデンドライトショートの問題を引き
起こす。
That is, a negative electrode active material made of zinc is dissolved and deposited or electrodeposited in a discharging process or a charging process,
Causes problems with shave changes and dendrite shorts.

【0006】充電過程では、亜鉛酸イオンから析出され
る亜鉛金属結晶はデンドライト結晶になり易い。このた
め充放電を繰り返すことによる電池容量の低下、すなわ
ちサイクル特性が悪い。
During the charging process, zinc metal crystals deposited from zincate ions tend to become dendrite crystals. For this reason, the battery capacity decreases due to repeated charging and discharging, that is, cycle characteristics are poor.

【0007】このため、アルカリ亜鉛蓄電池の実用化の
ためにはシェイブチェンジおよびデンドライトショート
を減少させる必要があり、このためには電流分布の均一
化が必要であり、亜鉛極板の導電性向上がより一層に望
まれるとされている。
Therefore, in order to put the alkaline zinc storage battery into practical use, it is necessary to reduce the shave change and dendrite short circuit. For this purpose, it is necessary to make the current distribution uniform and to improve the conductivity of the zinc electrode plate. It is said that it will be further desired.

【0008】このような課題を解決するために種々の提
案がなされている。例えば、酸化亜鉛を金属亜鉛で被覆
したものを用いたり(特開平2−30062号公報)、
亜鉛合金を活物質として用いた例(特開平4−2816
0号公報)、種々の酸化物を添加した例(特公昭51−
32365号公報)がある。しかし、これらの提案にお
いても、依然として高エネルギー密度で、しかも長寿命
のアルカリ亜鉛蓄電池用負極活物質としては不充分であ
る。
Various proposals have been made to solve such problems. For example, zinc oxide coated with metallic zinc may be used (Japanese Patent Laid-Open No. 2-30062).
Example using zinc alloy as active material (Japanese Patent Laid-Open No. 4-2816)
No. 0), examples of adding various oxides (Japanese Patent Publication No. 51-
32365). However, these proposals are still insufficient as a negative electrode active material for alkaline zinc storage batteries having a high energy density and a long life.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記従来の
課題に鑑みなされたものであり、デンドライトショート
等を生じることが少ない、少なくとも表面層が酸化され
た酸化亜鉛合金粉末およびその製造方法、並びに該合金
粉末を負極活物質として用いることによりサイクル特性
が大幅に改善されたアルカリ亜鉛蓄電池を提供すること
を目的とするものである。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and is a zinc oxide alloy powder in which at least a surface layer is oxidized and which is less likely to cause dendrite shorts, and a method for producing the same. Another object of the present invention is to provide an alkaline zinc storage battery having significantly improved cycle characteristics by using the alloy powder as a negative electrode active material.

【0010】[0010]

【課題を解決するための手段】本発明の上記目的は、次
に示す酸化亜鉛合金粉末を用いることによって達成され
る。
The above object of the present invention can be achieved by using the zinc oxide alloy powder shown below.

【0011】すなわち、本発明は、少なくとも表面層が
酸化されていることを特徴とするアルカリ亜鉛蓄電池用
酸化亜鉛合金粉末にある。
That is, the present invention resides in a zinc oxide alloy powder for alkaline zinc storage batteries, characterized in that at least the surface layer is oxidized.

【0012】ここでいう少なくとも表面層が酸化された
酸化亜鉛合金粉末とは、亜鉛合金粉末の少なくとも表面
層が酸化された状態のものであり、好ましくは金属元素
(亜鉛および添加元素)の5重量%以上酸化されたもの
であり、さらに好ましくは30重量%以上酸化されたも
のである。
The zinc oxide alloy powder in which at least the surface layer is oxidized is a state in which at least the surface layer of the zinc alloy powder is oxidized, and preferably 5 weight% of the metal element (zinc and additive element). % Or more, more preferably 30% by weight or more.

【0013】また、この亜鉛合金粉末は、Cd、Pb、
Sn、In、Ga、Tl、Ca、Bi、Alから選ばれ
る少なくとも1種の元素と亜鉛および不可避不純物から
なることが望ましい。これらCd、Pb等の添加元素の
含有割合は、酸化亜鉛合金粉末中、金属元素換算で、
0.1〜30重量%であることが好ましく、さらに好ま
しくは1〜10重量%である。
Further, this zinc alloy powder contains Cd, Pb,
It is preferable that at least one element selected from Sn, In, Ga, Tl, Ca, Bi, and Al, zinc, and inevitable impurities are contained. The content ratios of these additional elements such as Cd and Pb are calculated in terms of metal elements in the zinc oxide alloy powder,
It is preferably 0.1 to 30% by weight, and more preferably 1 to 10% by weight.

【0014】本発明の少なくとも表面層が酸化された亜
鉛合金粉末の好ましい製造方法としては、亜鉛合金粉末
を大気中で水酸化カリウム水溶液を用いて表面層を酸化
させることである。
A preferred method for producing a zinc alloy powder having at least the surface layer thereof oxidized according to the present invention is to oxidize the surface layer of the zinc alloy powder using an aqueous potassium hydroxide solution in the atmosphere.

【0015】この方法による亜鉛合金粉末の表面酸化
は、発熱を伴った急激な酸化反応が進行する。そこで、
反応時に、亜鉛合金粉末と接触する大気中の酸素量を制
限することにより、亜鉛合金粉末の表面層の酸化度を容
易に制御できる。
In the surface oxidation of the zinc alloy powder by this method, a rapid oxidation reaction accompanied by heat generation proceeds. Therefore,
By limiting the amount of oxygen in the atmosphere that comes into contact with the zinc alloy powder during the reaction, the degree of oxidation of the surface layer of the zinc alloy powder can be easily controlled.

【0016】この製造方法の詳細を示すフローチャート
を図1に示す。この図1においては、フタ付きガラス容
器の開閉によって亜鉛合金粉末と接触する大気中の酸素
量を制限している。
A flow chart showing the details of this manufacturing method is shown in FIG. In FIG. 1, the amount of oxygen in the atmosphere in contact with the zinc alloy powder is limited by opening and closing the glass container with a lid.

【0017】本発明では、この酸化亜鉛合金粉末をアル
カリ亜鉛蓄電池の負極活物質の少なくとも一部として用
いる。
In the present invention, this zinc oxide alloy powder is used as at least a part of the negative electrode active material of the alkaline zinc storage battery.

【0018】このような負極活物質は、好ましくは下記
の組み合わせ: (1)金属亜鉛粉末、 (2)Cd、Pb、Sn、In、Ga、Tl、Ca、B
i、Alから選ばれる少なくとも1種の元素と亜鉛およ
び不可避不純物からなる亜鉛合金粉末、 (3)少なくとも表面層が酸化されてなり、Cd、P
b、Sn、In、Ga、Tl、Ca、Bi、Alから選
ばれる少なくとも1種の元素と亜鉛および不可避不純物
からなる酸化亜鉛合金粉末、からなる。
Such a negative electrode active material is preferably the following combination: (1) metallic zinc powder, (2) Cd, Pb, Sn, In, Ga, Tl, Ca, B.
Zinc alloy powder consisting of at least one element selected from i and Al, zinc and unavoidable impurities (3) At least the surface layer is oxidized to form Cd, P
It is composed of at least one element selected from b, Sn, In, Ga, Tl, Ca, Bi and Al, and a zinc oxide alloy powder containing zinc and inevitable impurities.

【0019】このような、酸化亜鉛合金粉末を負極活物
質の少なくとも一部に用いることにより、デントライト
ショート等が生じることが少ない。それ故、この酸化亜
鉛合金粉末を負極活物質の少なくとも一部としてに配置
したアルカリ亜鉛蓄電池は、サイクル特性が大幅に向上
する。
By using such a zinc oxide alloy powder as at least a part of the negative electrode active material, dentite short circuit or the like is less likely to occur. Therefore, the alkaline zinc storage battery in which the zinc oxide alloy powder is disposed as at least a part of the negative electrode active material has a significantly improved cycle characteristic.

【0020】[0020]

【実施例】以下、実施例等に基づき本発明を具体的に説
明する。
EXAMPLES The present invention will be specifically described below based on Examples and the like.

【0021】実施例1 純度99.997%以上の亜鉛地金を約550℃で溶融
し、これに表1に示すごとく、金属亜鉛に対しカドミウ
ムの含有率5.0重量%となるように添加して亜鉛合金
を作製し、これを高圧アルゴンガス(噴出圧5kg/c
2)を使って噴霧して粉体化した。
Example 1 Zinc metal having a purity of 99.997% or more was melted at about 550 ° C. and added to the metal zinc so that the content of cadmium was 5.0% by weight, as shown in Table 1. To produce a zinc alloy, which is then pressurized with high-pressure argon gas (spray pressure 5 kg / c
m 2 ) and atomized into powder.

【0022】得られた5重量%Cd−Zn合金粉末の一
部を、プロパンガスバーナーで加熱酸化して少なくとも
表面層が酸化された酸化亜鉛合金粉末を作製した。得ら
れた酸化亜鉛合金粉末は、少なくとも表面層が酸化され
ていた。
A part of the obtained 5 wt% Cd-Zn alloy powder was heated and oxidized by a propane gas burner to prepare a zinc oxide alloy powder in which at least the surface layer was oxidized. At least the surface layer of the obtained zinc oxide alloy powder was oxidized.

【0023】負極活物質の調製として、粒径1〜50μ
mの酸化亜鉛合金(5重量%Cd−Zn)粉末40重量
部に対して、粒径0.1〜5mmの金属亜鉛粉末を20
重量部、粒径1〜50μmの亜鉛合金(5重量%Cd−
Zn)粉末を40重量部加え混合した。
As the preparation of the negative electrode active material, the particle size is 1 to 50 μm.
m zinc oxide alloy (5 wt% Cd-Zn) powder of 40 parts by weight, metal zinc powder having a particle diameter of 0.1 to 5 mm
Parts by weight, zinc alloy with a particle size of 1 to 50 μm (5 wt% Cd-
40 parts by weight of Zn) powder were added and mixed.

【0024】次に、前記活物質95重量%、フッ素樹脂
5重量%から成る混合粉末に水を加え混練し、ペースト
を得、導電体上に圧着して負極とした。このように作製
した負極と公知の焼結式ニッケル陽極とを組み合わせ
て、公称容量2Ahの密閉型ニッケル−亜鉛蓄電池を得
た。
Next, water was added to a mixed powder composed of 95% by weight of the active material and 5% by weight of a fluororesin, and kneaded to obtain a paste, which was pressure-bonded onto a conductor to obtain a negative electrode. By combining the negative electrode thus produced and a known sintered nickel anode, a sealed nickel-zinc storage battery having a nominal capacity of 2 Ah was obtained.

【0025】実施例2 純度99.997%以上の亜鉛地金を約550℃で溶融
し、これに表1に示すごとく、金属亜鉛に対しカドミウ
ムの含有率5.0重量%となるように添加して亜鉛合金
を作製し、これを実施例1と同様に噴霧して粉体化し
た。
Example 2 Zinc ingot having a purity of 99.997% or more was melted at about 550 ° C., and as shown in Table 1, added so as to have a cadmium content of 5.0% by weight with respect to metallic zinc. Then, a zinc alloy was prepared, and was sprayed in the same manner as in Example 1 to be pulverized.

【0026】得られた5重量%Cd−Zn合金粉末に、
大気中で少量の水酸化カリウム水溶液を散布し、上記合
金粉末を撹拌することにより、酸化反応が進行して少な
くとも表面層が酸化された酸化亜鉛合金粉末を作製し
た。なお、酸化の度合いは、図1に示されるような開閉
可能な容器を用いて亜鉛合金粉末と接触する大気量を制
限することで制御した。
To the obtained 5 wt% Cd-Zn alloy powder,
By sprinkling a small amount of an aqueous potassium hydroxide solution in the air and stirring the alloy powder, a zinc oxide alloy powder in which the oxidation reaction proceeded and at least the surface layer was oxidized was produced. The degree of oxidation was controlled by limiting the amount of atmospheric air in contact with the zinc alloy powder using a container that can be opened and closed as shown in FIG.

【0027】得られた酸化亜鉛合金粉末を用い、実施例
1と同様に負極活物質を調製し、さらに密閉型ニッケル
−亜鉛蓄電池を作製した。
Using the obtained zinc oxide alloy powder, a negative electrode active material was prepared in the same manner as in Example 1, and further a sealed nickel-zinc storage battery was prepared.

【0028】実施例3〜12 亜鉛合金としての含有合金成分が表1となるようにした
こと以外は、実施例1と同様にして実施例1と同容量の
密閉型ニッケル−亜鉛蓄電池電池を作製した。
Examples 3 to 12 A sealed nickel-zinc accumulator battery having the same capacity as in Example 1 was prepared in the same manner as in Example 1 except that the alloy components contained as zinc alloys were changed to those shown in Table 1. did.

【0029】[0029]

【表1】 [Table 1]

【0030】この実施例1〜12で得られた表面層が酸
化された各酸化亜鉛合金粉末の酸化亜鉛層を以下の方法
によって測定した。
The zinc oxide layers of the respective zinc oxide alloy powders obtained by oxidizing the surface layers obtained in Examples 1 to 12 were measured by the following method.

【0031】すなわち塩化アンモニウムとアンモニア水
の混合水溶液中に、酸化亜鉛合金粉末を浸漬して表面の
亜鉛酸化物層を溶解して分析した。その結果、実施例1
〜12では30〜90重量%の酸化割合であった。
That is, the zinc oxide alloy powder was immersed in a mixed aqueous solution of ammonium chloride and ammonia water to dissolve the zinc oxide layer on the surface for analysis. As a result, Example 1
-12, the oxidation rate was 30 to 90% by weight.

【0032】比較例1 負極活物質の調製として金属亜鉛60重量部に対して酸
化亜鉛40重量部を加え混合した。
Comparative Example 1 To prepare a negative electrode active material, 40 parts by weight of zinc oxide was added and mixed with 60 parts by weight of metallic zinc.

【0033】次に、実施例1と同様にして実施例1と同
容量の密閉型ニッケル−亜鉛蓄電池を作成した。
Then, a sealed nickel-zinc storage battery having the same capacity as in Example 1 was prepared in the same manner as in Example 1.

【0034】比較例2 実施例4で作成した亜鉛合金(5重量%Sn−Zn)粉
末50重量部、酸化亜鉛粉末40重量部、金属亜鉛粉末
10重量部を加え混合した。
Comparative Example 2 50 parts by weight of the zinc alloy (5% by weight Sn-Zn) powder prepared in Example 4, 40 parts by weight of zinc oxide powder and 10 parts by weight of metallic zinc powder were added and mixed.

【0035】次に、実施例1と同様にして実施例1と同
容量の密閉型ニッケル−亜鉛蓄電池を作成した。
Then, a sealed nickel-zinc storage battery having the same capacity as in Example 1 was prepared in the same manner as in Example 1.

【0036】実験例 このようにして得られた実施例1〜12の電池と比較例
1〜2の電池を用い、充電電流200mAで10.5時
間充電し、放電電流2Aで終止電圧0.5V迄放電する
という充放電サイクル試験を行なった。充放電サイクル
試験は、電池の容量が1Ahになるまで繰り返し行っ
た。結果を図2に示す。
Experimental Example Using the batteries of Examples 1 to 12 and the batteries of Comparative Examples 1 and 2 thus obtained, charging was performed at a charging current of 200 mA for 10.5 hours, and a final voltage of 0.5 V was obtained at a discharging current of 2 A. A charge / discharge cycle test of discharging up to was performed. The charge / discharge cycle test was repeated until the battery capacity reached 1 Ah. The results are shown in Figure 2.

【0037】図2から明らかなように、比較例1〜2の
電池に比べて、実施例1〜12の電池はサイクル特性が
大幅に改善されていることが分かる。
As is clear from FIG. 2, the cycle characteristics of the batteries of Examples 1 to 12 are significantly improved as compared with the batteries of Comparative Examples 1 and 2.

【0038】[0038]

【発明の効果】以上説明したように、本発明の酸化亜鉛
合金粉末をアルカリ亜鉛蓄電池の負極活物質の少なくと
も一部に用いることにより、デントライトショート等が
防止され、その結果、アルカリ蓄電池のサイクル特性が
大幅に改善される。
As described above, by using the zinc oxide alloy powder of the present invention as at least a part of the negative electrode active material of an alkaline zinc storage battery, a dendrite short circuit or the like is prevented, and as a result, the cycle of the alkaline storage battery is prevented. The characteristics are greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の製造方法の詳細を示すフローチャー
ト。
FIG. 1 is a flowchart showing details of a manufacturing method of the present invention.

【図2】 実施例および比較例における電池容量および
放電回数の関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the battery capacity and the number of discharges in Examples and Comparative Examples.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも表面層が酸化されていること
を特徴とするアルカリ亜鉛蓄電池用酸化亜鉛合金粉末。
1. A zinc oxide alloy powder for an alkaline zinc storage battery, wherein at least a surface layer is oxidized.
【請求項2】 前記亜鉛合金粉末がCd、Pb、Sn、
In、Ga、Tl、Ca、Bi、Alから選ばれる少な
くとも1種の元素と亜鉛および不可避不純物からなる請
求項1に記載のアルカリ亜鉛蓄電池用酸化亜鉛合金粉
末。
2. The zinc alloy powder is Cd, Pb, Sn,
The zinc oxide alloy powder for alkaline zinc storage batteries according to claim 1, comprising at least one element selected from In, Ga, Tl, Ca, Bi, and Al, zinc, and inevitable impurities.
【請求項3】 亜鉛合金粉末を大気中で水酸化カリウム
水溶液を用いて表面層を酸化することを特徴とする酸化
亜鉛合金粉末の製造方法。
3. A method for producing a zinc oxide alloy powder, which comprises oxidizing the surface layer of the zinc alloy powder with an aqueous potassium hydroxide solution in the atmosphere.
【請求項4】 前記亜鉛合金粉末がCd、Pb、Sn、
In、Ga、Tl、Ca、Bi、Alから選ばれる少な
くとも1種の元素と亜鉛および不可避不純物からなる請
求項3に記載のアルカリ亜鉛蓄電池用酸化亜鉛合金粉末
の製造方法。
4. The zinc alloy powder is Cd, Pb, Sn,
The method for producing a zinc oxide alloy powder for an alkaline zinc storage battery according to claim 3, comprising at least one element selected from In, Ga, Tl, Ca, Bi, and Al, zinc, and inevitable impurities.
【請求項5】 (1)金属亜鉛粉末、 (2)Cd、Pb、Sn、In、Ga、Tl、Ca、B
i、Alから選ばれる少なくとも1種の元素と亜鉛およ
び不可避不純物からなる亜鉛合金粉末、 (3)少なくとも表面層が酸化されてなり、Cd、P
b、Sn、In、Ga、Tl、Ca、Bi、Alから選
ばれる少なくとも1種の元素と亜鉛および不可避不純物
からなる酸化亜鉛合金粉末、を負極活物質とするアルカ
リ亜鉛蓄電池。
5. (1) Zinc metal powder, (2) Cd, Pb, Sn, In, Ga, Tl, Ca, B
Zinc alloy powder consisting of at least one element selected from i and Al, zinc and unavoidable impurities (3) At least the surface layer is oxidized to form Cd, P
An alkaline zinc storage battery using, as a negative electrode active material, at least one element selected from b, Sn, In, Ga, Tl, Ca, Bi and Al, and a zinc oxide alloy powder containing zinc and inevitable impurities.
JP6147006A 1993-06-30 1994-06-07 Zinc oxide alloy powder for alkaline zinc storage battery and manufacture thereof Pending JPH0773881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6147006A JPH0773881A (en) 1993-06-30 1994-06-07 Zinc oxide alloy powder for alkaline zinc storage battery and manufacture thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18341493 1993-06-30
JP5-183414 1993-06-30
JP6147006A JPH0773881A (en) 1993-06-30 1994-06-07 Zinc oxide alloy powder for alkaline zinc storage battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0773881A true JPH0773881A (en) 1995-03-17

Family

ID=26477687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6147006A Pending JPH0773881A (en) 1993-06-30 1994-06-07 Zinc oxide alloy powder for alkaline zinc storage battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0773881A (en)

Similar Documents

Publication Publication Date Title
JP3661190B2 (en) Hydrogen storage electrode and manufacturing method thereof
JPH02239566A (en) Hydrogen storage alloy electrode for alkaline storage battery
US20060088764A1 (en) Method of preparing a nickel positive electrode active material
JP2000012016A (en) Negative electrode for battery and its manufacture
US5943545A (en) Method of manufacturing a hydrogen-absorbing alloy for use in an alkali storage cell
JPS60167268A (en) Manufacture of grid for lead-acid battery
US5547784A (en) Alkaline storage battery and method for producing the same
JPH0773881A (en) Zinc oxide alloy powder for alkaline zinc storage battery and manufacture thereof
JP3895985B2 (en) Nickel / hydrogen storage battery
JPH084003B2 (en) Hydrogen storage alloy electrode for alkaline storage battery and manufacturing method thereof
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JPH0765826A (en) Hydrogen storage alloy electrode
JP2001006666A (en) Hydrogen storage alloy for alkaline storage battery and manufacture of such alloy
JP3317099B2 (en) Hydrogen storage alloy powder for alkaline storage battery, method for producing the same, and method for producing hydrogen storage electrode
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JP3054431B2 (en) Metal-hydrogen alkaline storage battery
JP3587213B2 (en) Negative electrode active material for air-Ga primary battery and air-Ga primary battery using the same
JP2680650B2 (en) Sealed alkaline storage battery and manufacturing method thereof
JP3653412B2 (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery using this electrode
JP3075114B2 (en) Nickel positive electrode for alkaline storage batteries
JPH0834100B2 (en) Hydrogen storage alloy electrode
JP3407989B2 (en) Metal hydride electrode
JPH0562671A (en) Manufacture of hydrogen storage electrode
JP3118812B2 (en) Alkaline storage battery
JP2957745B2 (en) Manufacturing method of hydrogen storage alloy electrode