JPH0773875A - Hydrogen or its isotope storage method - Google Patents

Hydrogen or its isotope storage method

Info

Publication number
JPH0773875A
JPH0773875A JP5321175A JP32117593A JPH0773875A JP H0773875 A JPH0773875 A JP H0773875A JP 5321175 A JP5321175 A JP 5321175A JP 32117593 A JP32117593 A JP 32117593A JP H0773875 A JPH0773875 A JP H0773875A
Authority
JP
Japan
Prior art keywords
hydrogen
electrode
hydrogen storage
storage metal
deuterium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5321175A
Other languages
Japanese (ja)
Inventor
Keiji Kunimatsu
敬二 國松
Akiko Kubota
亜紀子 久保田
Masafumi Kobayashi
雅史 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technova Inc
Original Assignee
Technova Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technova Inc filed Critical Technova Inc
Priority to JP5321175A priority Critical patent/JPH0773875A/en
Publication of JPH0773875A publication Critical patent/JPH0773875A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a high deuterium storage ratio with excellent reproducibility by using an electrode obtained by partially covering the surface of a hydrogen storage metal with a material whose hydrogen overpotential is higher than that of the hydrogen storage metal. CONSTITUTION:The surface of an electrode 1 made of a hydrogen storage metal such as Pd is covered by about 80% by forming in the form of stripe a thin film 2 of metal such as gold whose hydrogen overpotential is higher than that of Pd. Hydrogen or its isotope is electrolytically stored in the electrode 1. Current is concentrated on the surface 3, where is exposed without being covered with the film 2, of the hydrogen storage metal, and current density on the surface 3 is heightened compared with the average current density on the whole surface of the electrode. Deuterium ions are efficiently stored in the hydrogen storage metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵金属への電解
による水素又はその同位体の吸蔵率を上昇させることが
できる水素又はその同位体の吸蔵方法に関する。このよ
うにして高密度に水素又はその同位体を充填した水素吸
蔵性陰極は、ニッケル水素化物電池、コールド・フュー
ジョン等への応用が可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for storing hydrogen or its isotopes capable of increasing the storage rate of hydrogen or its isotopes by electrolysis of hydrogen storage metals. The hydrogen-storing cathode thus densely filled with hydrogen or its isotope can be applied to nickel hydride batteries, cold fusion and the like.

【0002】[0002]

【従来の技術】従来、パラジウム等の水素吸蔵金属材料
を陰極とし白金を陽極として、直流電流を供給して重水
酸化リチウムLiODを含んだ重水D2 Oの電気分解を
行ない、この電気分解において陰極で発生した重水素原
子を陰極に吸蔵し続けることによって、入力エネルギー
に対して高い出力エネルギーが得られたことが知られて
いる。このような現象を起こすためには、陰極であるパ
ラジウム電極に重水素元素Dをできる限り吸蔵させるこ
とが必要であり、一般的には重水素吸蔵率が原子比(D
/Pd)で0.9以上でなければならないといわれてい
る。
2. Description of the Related Art Conventionally, a hydrogen storage metal material such as palladium is used as a cathode and platinum is used as an anode to supply a direct current to electrolyze heavy water D 2 O containing lithium deuterium oxide LiOD. It is known that a high output energy with respect to the input energy was obtained by continuing to store the deuterium atoms generated in 1. in the cathode. In order to cause such a phenomenon, it is necessary to occlude the deuterium element D in the palladium electrode, which is the cathode, as much as possible. Generally, the deuterium occlusion ratio is the atomic ratio (D
It is said that / Pd) must be 0.9 or more.

【0003】また、電解液に浸されている水素吸蔵金
属、例えば、パラジウム電極を用いて、電解によりパラ
ジウム電極へ重水素を吸蔵させる方法では、1M Li
ODを用いるとパラジウムにおける重水素吸蔵率は、D
/Pd≦0.88であり、通常の方法では、0.88以
上を達成することは困難である。なお、上記の電解条件
において、電解液中にチオ尿素(NH2 2 CSを60
0μM添加すると、最大D/Pd=0.94が得られる
ことが知られている。
Further, in a method in which a hydrogen storage metal immersed in an electrolytic solution, for example, a palladium electrode is used to store deuterium in the palladium electrode by electrolysis, 1M Li
When OD is used, the deuterium storage rate in palladium is D
/Pd≦0.88, and it is difficult to achieve 0.88 or more by the usual method. Under the above electrolysis conditions, 60% thiourea (NH 2 ) 2 CS was added to the electrolytic solution.
It is known that the maximum D / Pd = 0.94 is obtained when 0 μM is added.

【0004】[0004]

【発明が解決しようとする課題】パラジウムにおける重
水素吸蔵率は、電解時の電流密度を上げて水素過電圧を
高めると大きくなるが、0.5A/cm2 以上の大電流
密度で電解を行なうと、入力電力によって電解液温度が
上昇し、そのため、パラジウムに吸蔵されていた重水素
の放出現象が起こり、重水素吸蔵率は逆に小さくなり、
D/Pdを0.88以上にすることは困難である。パラ
ジウムの全表面で重水を電解すると、電流分布が生じ
て、パラジウム表面において一旦吸蔵した重水素の逃げ
口ができるので重水素の放出が始まり、重水素吸蔵率を
上昇させることは困難である。
The deuterium storage rate in palladium increases when the current density during electrolysis is increased to increase the hydrogen overvoltage, but when electrolysis is performed at a large current density of 0.5 A / cm 2 or more. , The temperature of the electrolyte rises due to the input power, so the deuterium release phenomenon that was stored in the palladium occurs, and the deuterium storage rate decreases on the contrary.
It is difficult to set D / Pd to 0.88 or more. When heavy water is electrolyzed on the entire surface of palladium, a current distribution is generated, and deuterium that has been occluded is released on the surface of palladium, so deuterium starts to be released and it is difficult to increase the deuterium storage rate.

【0005】一方、前記チオ尿素を電解液中に添加する
ことにより重水素吸蔵率を上昇させる方法は、チオ尿素
がガス拡散電極に吸着して陽極としての性能を劣化させ
るという問題がある。
On the other hand, the method of increasing the deuterium storage rate by adding thiourea to the electrolytic solution has a problem that thiourea is adsorbed on the gas diffusion electrode to deteriorate the performance as an anode.

【0006】そこで本発明は、水素吸蔵金属に水素又は
その同位体(例えば、重水素)を電解法により吸蔵させ
る方法において、上記した問題点を解決し、重水素吸蔵
率D/Pd≧0.88を再現性よく得ることのできる水
素又はその同位体の吸蔵方法を提供することを目的とす
る。
Therefore, the present invention solves the above-mentioned problems in a method of occluding hydrogen or its isotope (for example, deuterium) in a hydrogen occluding metal by an electrolytic method, and deuterium occluding rate D / Pd ≧ 0. It is an object of the present invention to provide a method of occluding hydrogen or its isotope capable of obtaining 88 with high reproducibility.

【0007】[0007]

【課題を解決するための手段】前記した問題点を解決す
るために、本発明は、電解液中に浸した水素吸蔵金属に
水素又はその同位体(例えば、重水素)を電解法により
吸蔵させる方法において、水素吸蔵金属よりも水素過電
圧が大きい材料(即ち、水素吸蔵金属よりも不活性な材
料)で水素吸蔵金属の表面を部分的に覆うか、あるいは
全面に覆った電極を用いて、水素又はその同位体を吸蔵
させることを特徴とする水素又はその同位体の吸蔵方法
とするものである。
In order to solve the above-mentioned problems, the present invention allows hydrogen storage metal immersed in an electrolytic solution to store hydrogen or its isotope (for example, deuterium) by an electrolytic method. In the method, a material having a hydrogen overvoltage higher than that of the hydrogen storage metal (that is, a material more inert than the hydrogen storage metal) is used to partially cover the surface of the hydrogen storage metal or use an electrode in which the entire surface of the hydrogen storage metal is covered. Alternatively, the method for storing hydrogen or its isotope is characterized by storing the isotope thereof.

【0008】本発明において、「部分的に覆う」とは、
水素吸蔵金属の表面の一部を残して薄膜又は厚膜等の皮
膜を形成して覆った状態、また「全面に覆う」とは水素
吸蔵金属の露出している部分がなく100%覆った状態
をいう。
In the present invention, "partially covering" means
A state in which a film such as a thin film or a thick film is formed and covered while leaving a part of the surface of the hydrogen storage metal, or "covering the entire surface" means a state in which there is no exposed portion of the hydrogen storage metal and it is 100% covered. Say.

【0009】水素吸蔵金属の表面を覆うための皮膜の材
料は、水素吸蔵金属より水素過電圧が大きい材料を使用
する必要がある(電解液中では、パラジウムよりも金の
方が水素過電圧が大きい。)。本発明で使用される膜
は、水素を透過しない膜あるいは水素を透過させにくい
膜とすることが重要であり、且つ電解液に溶解しない膜
であることが必要である。水素吸蔵金属がパラジウムで
ある場合、前記の水素吸蔵金属の表面を覆うための膜の
材料は、Au、Ag、Cuが酸又はアルカリ性電解液に
おいて使用でき、Ni、Cdがアルカリ性電解液におい
て使用できる。また、金属薄膜上に絶縁膜として酸化物
を形成すればさらに効果的である。酸化物材料にはpH
≧12の電解液でAl2 3(AlO2 )、pH≧6の
電解液でTiO2 (Ti2 3 )、pH=4〜13の電
解液でZrO 3、pH≦10の電解液でSiO2 が使用
できる。
As a material of the film for covering the surface of the hydrogen storage metal, it is necessary to use a material having a hydrogen overvoltage larger than that of the hydrogen storage metal (in the electrolytic solution, gold has a larger hydrogen overvoltage than palladium). ). It is important that the membrane used in the present invention is a membrane that does not permeate hydrogen or a membrane that does not easily permeate hydrogen, and that the membrane does not dissolve in the electrolyte. When the hydrogen storage metal is palladium, the material of the film for covering the surface of the hydrogen storage metal is Au, Ag, or Cu that can be used in an acid or alkaline electrolyte, and Ni or Cd can be used in an alkaline electrolyte. . Further, it is more effective to form an oxide as an insulating film on the metal thin film. PH for oxide materials
Al 2 O 3 (AlO 2 ) with an electrolyte solution of ≧ 12, TiO 2 (Ti 2 O 3 ) with an electrolyte solution of pH ≧ 6, ZrO 3 with an electrolyte solution of pH = 4 to 13 and an electrolyte solution of pH ≦ 10 SiO 2 can be used.

【0010】水素吸蔵金属より水素過電圧が大きい材料
で、水素吸蔵金属表面を覆うことにより、形成された膜
は、電解液中において水素吸蔵金属よりも水素電極反応
について不活性となる。その膜の厚さは、薄膜とする場
合は10Å〜100μmに形成することが可能である。
この薄膜の形成には、真空蒸着、電解メッキ、無電解メ
ッキ、粉末の焼結、バルク、薄膜の接合等が適用でき
る。また、本発明における水素吸蔵金属表面を覆う膜の
形成には、前記薄膜以外に厚膜、ラミネート等の手段が
適用可能である。
By covering the surface of the hydrogen storage metal with a material having a hydrogen overvoltage higher than that of the hydrogen storage metal, the formed film becomes more inactive in the electrolytic solution in the hydrogen electrode reaction than the hydrogen storage metal. The thickness of the film can be 10 Å to 100 μm when it is a thin film.
For forming this thin film, vacuum deposition, electrolytic plating, electroless plating, powder sintering, bulk, thin film bonding, etc. can be applied. Further, in order to form the film covering the surface of the hydrogen storage metal in the present invention, means such as thick film and laminating can be applied in addition to the thin film.

【0011】重水の電解法による水素吸蔵金属への重水
素吸蔵方法においては、従来、電流密度を高め、水素過
電圧を大きくすると重水素吸蔵率が高くなることが知ら
れているが、それと同時に電解液の発熱が生じて電解液
の温度が上昇し、そのため水素吸蔵金属に吸蔵されてい
る重水素が放出反応により出てしまい、重水素吸蔵率は
小さくなる。
In the deuterium storage method for hydrogen storage metals by the electrolysis method of heavy water, it is conventionally known that the deuterium storage rate increases when the current density is increased and the hydrogen overvoltage is increased. The liquid heat is generated and the temperature of the electrolytic solution rises. As a result, deuterium stored in the hydrogen storage metal is released by the desorption reaction, and the deuterium storage rate becomes small.

【0012】これに対して、本発明は、水素吸蔵金属よ
りも水素過電圧が大きい材料で水素吸蔵金属の表面を部
分的に覆った電極を用い、電解法により重水素の吸蔵を
行なうことにより、膜で覆われず一部分露出している水
素吸蔵金属の表面に電流が集中し、該表面における電流
密度は電極表面全体の平均的な電流密度より高くなるこ
とにより、重水素イオンを効率よく水素吸蔵金属に吸蔵
させることが考えられる。
On the other hand, according to the present invention, by using an electrode in which the surface of the hydrogen storage metal is partially covered with a material having a hydrogen overvoltage larger than that of the hydrogen storage metal, deuterium is stored by an electrolytic method. The current is concentrated on the surface of the hydrogen storage metal that is not covered with the film and is partially exposed, and the current density on the surface is higher than the average current density of the entire electrode surface, so that deuterium ions are efficiently stored in hydrogen. It is possible to make the metal occlude.

【0013】また、本発明においては、水素が全く透過
しないという膜ではないが、水素透過率の小さく且つ水
素荷電圧が水素吸蔵金属のそれよりも高い材料の膜で水
素吸蔵金属の全面(100%)を覆うことにより、結果
的に水素荷電圧を高め、重水素イオンを効率よく吸蔵さ
せることができる。
Further, in the present invention, although it is not a membrane that does not allow hydrogen to permeate at all, it is a membrane of a material having a low hydrogen permeability and a hydrogen charge voltage higher than that of the hydrogen occluding metal, and the entire surface (100 %), The hydrogen charge voltage is consequently increased, and deuterium ions can be occluded efficiently.

【0014】このように、本発明においては重水素吸蔵
が効率よく行なわれるので、電解液の温度上昇を抑制す
ることができ、重水素吸蔵率を上げることができる。上
記説明は、主として重水の電解法による重水素吸蔵に関
して説明されているが、水の電解法による水素吸蔵につ
いても同様に説明される。
As described above, in the present invention, the deuterium storage is efficiently performed, so that the temperature rise of the electrolytic solution can be suppressed and the deuterium storage rate can be increased. Although the above description mainly describes deuterium storage by the electrolysis method of heavy water, hydrogen storage by the electrolysis method of water is also similarly described.

【0015】[0015]

【実施例】【Example】

〔実施例1〕図1は本実施例で使用される、水素吸蔵金
属よりも水素過電圧が大きい材料で水素吸蔵金属を部分
的に覆った電極の平面図及び側面図である。図2は図1
の側面図のAの部分の拡大図である。図1中の1は電極
であり、パラジウムの表面に金の薄膜2がストライプ状
に部分的に形成されており、パラジウムの全表面の80
%を覆っている。したがって、パラジウムの露出面3は
20%である。図1中の4は、電極1の上面又は下面を
示す。パラジウム表面の金の薄膜2の厚さは2000Å
である。
[Embodiment 1] FIG. 1 is a plan view and a side view of an electrode used in this embodiment in which a hydrogen storage metal is partially covered with a material having a hydrogen overvoltage larger than that of the hydrogen storage metal. 2 is shown in FIG.
It is an enlarged view of the portion A of the side view of FIG. Reference numeral 1 in FIG. 1 denotes an electrode, and a thin gold film 2 is partially formed in a stripe shape on the surface of palladium.
%. Therefore, the exposed surface 3 of palladium is 20%. Reference numeral 4 in FIG. 1 denotes the upper surface or the lower surface of the electrode 1. The thickness of the gold thin film 2 on the palladium surface is 2000Å
Is.

【0016】Pd棒(φ4×21mm、田中貴金属製)
の表面を鏡面研磨したものに、スパッタ装置(ULVA
C社製)を用いてスパッタリングにより膜厚2000Å
のAu薄膜をストライプ状に全パラジウム表面の80%
を覆うように形成した。次にAuのリード線(φ0.5
×15mm)をスポット溶接し、硝酸で5分間エッチン
グして溶接時に付着したAgを除いて200℃で3時
間、真空中でガス出し処理を行ない、本実施例1の水素
吸蔵金属からなる電極とした。一方、スパッタリングを
行なわない外は、全て上記の電極の製造方法と同じよう
にして電極を製造し、比較例の電極とした。
Pd rod (φ4 × 21 mm, made by Tanaka Kikinzoku)
The surface of the mirror is mirror-polished, and the sputtering equipment (ULVA
Film thickness of 2000Å by sputtering using C)
Au thin film of 80% of the total palladium surface in a stripe pattern
Was formed so as to cover. Next, Au lead wire (φ0.5
(* 15 mm) was spot-welded, etched with nitric acid for 5 minutes to remove Ag adhering at the time of welding, and degassed in vacuum at 200 ° C. for 3 hours to obtain an electrode made of the hydrogen storage metal of Example 1. did. On the other hand, an electrode was manufactured in the same manner as the above-described electrode manufacturing method except that sputtering was not performed, and the electrode was used as a comparative example.

【0017】次に、前記本実施例1の水素吸蔵金属から
なる電極及び比較例の水素吸蔵金属からなる電極を用い
て、電解法により重水素の吸蔵を行なった。図3は本実
施例1で使用した電解セルを示す。図3中、11は電解
セルの圧力容器である。その圧力容器11はSUS製で
あるが、その内壁は耐蝕防止のためセラミックスコーテ
ィング(セラシールド:商品名、株式会社吉田SKT
製)が施されており、圧力容器11内には電解液12が
収容されている。圧力容器11の中央付近には水素吸蔵
金属からなる陰極13が保持部材20に保持され、電解
液12に浸漬されて配置されている。この陰極13の周
囲にガス拡散電極からなる陽極14が間隔を以て配置さ
れている。その陽極14には、100×60mmのカー
ボンペーパ21を内包したテフロンメンブレンフィルタ
からなるガス供給装置15が添着されている。電解液1
2中には参照電極(RHE)16が陰極13の上端面か
ら3mm横に固定されている。電解液12中には電解液
12の温度を検出するための電解液用温度計17が、ま
た、圧力容器11内の上部にはガス相の温度を検出する
ためのガス相用温度計18、19がそれぞれ配置されて
いる。
Next, deuterium was occluded by an electrolysis method using the electrode made of the hydrogen storage metal of Example 1 and the electrode made of the hydrogen storage metal of the comparative example. FIG. 3 shows the electrolytic cell used in this Example 1. In FIG. 3, 11 is a pressure vessel of the electrolytic cell. The pressure vessel 11 is made of SUS, but its inner wall is coated with ceramics to prevent corrosion (Cerashield: trade name, Yoshida SKT Co., Ltd.).
Manufactured), and the electrolytic solution 12 is contained in the pressure vessel 11. Near the center of the pressure vessel 11, a cathode 13 made of a hydrogen storage metal is held by a holding member 20 and immersed in the electrolytic solution 12 to be arranged. An anode 14 composed of a gas diffusion electrode is arranged around the cathode 13 with a space. A gas supply device 15 composed of a Teflon membrane filter containing 100 × 60 mm carbon paper 21 is attached to the anode 14. Electrolyte 1
2, a reference electrode (RHE) 16 is fixed laterally 3 mm from the upper end surface of the cathode 13. An electrolytic solution thermometer 17 for detecting the temperature of the electrolytic solution 12 is provided in the electrolytic solution 12, and a gas phase thermometer 18 for detecting the temperature of the gas phase is provided in an upper portion of the pressure vessel 11. 19 are arranged respectively.

【0018】電解液12には1M LiOD/D2 Oを
用い、圧力容器11内に50ml入れた。圧力容器11
内のガス相温度および電解液温度は1箇所づつ測定し
た。圧力容器11内の電解液温度は10℃と一定にし
た。初期電流密度を30mA/cm2 として重水の電解
を行なった。
1 M LiOD / D 2 O was used as the electrolytic solution 12, and 50 ml was put in the pressure vessel 11. Pressure vessel 11
The gas phase temperature and the electrolytic solution temperature inside were measured at each location. The temperature of the electrolytic solution in the pressure vessel 11 was kept constant at 10 ° C. Heavy water was electrolyzed at an initial current density of 30 mA / cm 2 .

【0019】電解初期における電解経過時間に対する水
素吸蔵金属であるPdへの重水素吸蔵率の変化を図4に
示す。図4中ラインAは、対極のガス拡散電極で発生し
たH+ が、全てAu薄膜に覆われていない20%のPd
表面に吸蔵されたと仮定した場合における理想状態(電
流密度100%)のラインを表している。
FIG. 4 shows changes in the deuterium occlusion rate of Pd, which is a hydrogen occlusion metal, with respect to the elapsed time of electrolysis at the initial stage of electrolysis. In the line A in FIG. 4, the H + generated at the gas diffusion electrode of the counter electrode is not covered with the Au thin film, and the Pd content is 20%.
A line in an ideal state (current density 100%) is assumed when the surface is occluded.

【0020】図4中、ラインBは、対極のガス拡散電極
で発生したD+ のうち、Pd表面積比に対応して20%
しかPdに吸蔵されないと仮定した電流効率20%のラ
インを表している。
In FIG. 4, line B represents 20% of D + generated in the counter gas diffusion electrode, which corresponds to the Pd surface area ratio.
It shows a line with a current efficiency of 20% assuming that only Pd is occluded.

【0021】図4中、ラインCは、電流効率が70%で
ある場合のラインを示す。
In FIG. 4, line C shows the line when the current efficiency is 70%.

【0022】図4中、ラインDは、本実施例1に使用さ
れる、水素吸蔵金属であるPdよりも水素過電圧が大き
い材料であるAuでPdの表面を部分的に覆った電極を
用いて重水素吸蔵を行なった実験により実測されたデー
タに基づいて決定されたラインである。このラインDの
曲線に対して、接線を引いて得られた直線は、電極全体
に流れる電流のうち、Pdへの重水素吸蔵に消費された
電流を表し、電流効率100%のラインの傾き(2.2
7)との接線の傾き(1.59)の比から、本実施例1
における電極の電流効率が求められ、70%となり、電
流効率70%の前記ラインCと一致している。
In FIG. 4, a line D is formed by using an electrode, which is used in the first embodiment, in which the surface of Pd is partially covered with Au which is a material having a hydrogen overvoltage larger than Pd which is a hydrogen storage metal. It is a line determined based on the data actually measured by the experiment in which deuterium was stored. A straight line obtained by drawing a tangent line to the curve of the line D represents the current consumed by the deuterium storage in Pd among the currents flowing through the entire electrode, and the slope of the line with a current efficiency of 100% ( 2.2
From the ratio of the slope (1.59) of the tangent to 7),
The current efficiency of the electrode at was calculated to be 70%, which coincides with the line C having a current efficiency of 70%.

【0023】図4によれば、20%のPdの表面積の電
流効率は20%である(ラインBの場合)のに対して、
皮膜処理を行なった本発明のPdは、70%の電流効率
を有する結果が得られている。このことは、本発明の表
面を部分的に(80%)覆った電極を用いた重水素吸蔵
方法によれば、電流効率20%が予測されるにもかかわ
らず、70%の電流効率が達成され、予測よりも3.5
倍高い電流効率が達成されたことが分かる。このような
結果は、AuがPdよりも不活性(水素過電圧が大)
で、電流が流れ難いため、Pdに電流が集中したことに
よるといえる。
According to FIG. 4, the current efficiency for a surface area of 20% Pd is 20% (for line B), whereas
The film-treated Pd of the present invention was found to have a current efficiency of 70%. This means that according to the deuterium storage method of the present invention, which uses an electrode partially (80%) covered on the surface, a current efficiency of 70% is achieved although a current efficiency of 20% is predicted. Better than expected 3.5
It can be seen that a twice higher current efficiency has been achieved. Such results indicate that Au is more inactive than Pd (hydrogen overvoltage is large).
Since it is difficult for the current to flow, it can be said that the current is concentrated on Pd.

【0024】図5は、水素吸蔵金属からなる電極全体に
与えた電流密度の大きさに対する水素吸蔵率の変化を3
6日間の電解によって得たデータに基づいて示したもの
である。図5中、白丸は従来の表面を全く覆わないPd
電極(前記比較例の電極)の場合を示し、黒丸は本実施
例の全パラジウム表面の80%を水素吸蔵金属よりも水
素過電圧が大きい材料Auで覆われたPd電極の場合を
示す。図5によれば、同じ電流密度における重水素吸蔵
率は、本実施例1のAuでPdの表面を部分的に覆った
電極の方が、何も覆わないPd電極よりも重水素吸蔵率
が2〜3%大きく、Pdへの電流密度に関しては、本実
施例1の電極の電流密度の方が高いことが分かる。
FIG. 5 shows changes in the hydrogen storage rate with respect to the magnitude of the current density applied to the entire electrode made of the hydrogen storage metal.
It is shown based on the data obtained by electrolysis for 6 days. In FIG. 5, white circles are Pd that do not cover the conventional surface at all.
The case of the electrode (the electrode of the comparative example) is shown, and the black circle shows the case of the Pd electrode in which 80% of the entire palladium surface of this example is covered with the material Au having a hydrogen overvoltage larger than that of the hydrogen storage metal. According to FIG. 5, as for the deuterium storage rate at the same current density, the electrode of which the surface of Pd was partially covered with Au of Example 1 had a higher deuterium storage rate than the Pd electrode which did not cover anything. It is 2 to 3% larger, and it can be seen that the current density of the electrode of Example 1 is higher with respect to the current density to Pd.

【0025】また、図5によれば、電流密度が0.1A
/cm2 以上において、重水素吸蔵率D/Pdが0.8
8以上を達成していることが分かる。さらに、小電流密
度(0.01A/cm2 )以下でも重水素吸蔵率が下が
らないことが分かる。この理由は、Pd表面を覆ったA
uが、吸収された重水素の放出を抑制しているためと思
われる。
Further, according to FIG. 5, the current density is 0.1 A.
/ Cm 2 or more, deuterium storage ratio D / Pd is 0.8
You can see that you have achieved 8 or more. Further, it can be seen that the deuterium storage ratio does not decrease even at a small current density (0.01 A / cm 2 ) or less. The reason is that A covering the surface of Pd
It seems that u suppresses the release of absorbed deuterium.

【0026】〔実施例2〕本実施例2は、Pd表面に形
成されたAuの薄膜に対してさらに熱による拡散処理を
行なってPdとの密着性を高めた水素吸蔵金属からなる
陰極を得、この水素吸蔵性陰極を用い水素吸蔵を行なっ
た点、及びPd表面に対して100%覆って水素吸蔵性
陰極としたものについても水素又はその同位体の吸蔵性
能を確認した点において、前記実施例1とその実施条件
が大きく異なる。
[Embodiment 2] In this embodiment 2, a cathode made of a hydrogen storage metal in which the adhesion property with Pd is improved by further subjecting the Au thin film formed on the Pd surface to thermal diffusion treatment. In the point that hydrogen storage was performed using this hydrogen storage cathode, and that the storage performance of hydrogen or its isotope was confirmed for the case where the Pd surface was covered with 100% hydrogen storage cathode, The implementation conditions differ greatly from Example 1.

【0027】田中貴金属製のPdをφ4×20mmに切
断し、その表面を鏡面研磨した。Auのリード線(φ
0.5×120mm)を接点にCuを用いてスポット溶
接した。その後、スパッタ装置(ULVAC社製)を用
いてスパッタリングにより膜厚0.7μmのAu薄膜を
全パラジウム表面に対して、100%コートしたもの、
97%コートしたもの、80%コートしたものをそれぞ
れ作成した。次いで、200℃で3時間、真空中でガス
出し処理を行ない、さらに250℃で1時間熱処理を行
なうことによりAu薄膜の成分の一部をPd電極に拡散
させて密着強度を高めて、水素吸蔵性陰極とした。
Tanaka Kikinzoku Pd was cut into φ4 × 20 mm and its surface was mirror-polished. Au lead wire (φ
0.5 × 120 mm) was spot-welded using Cu as a contact. Then, an Au thin film having a film thickness of 0.7 μm was 100% coated on the entire palladium surface by sputtering using a sputtering device (manufactured by ULVAC),
Those coated with 97% and those coated with 80% were prepared. Then, degassing treatment is performed in vacuum at 200 ° C. for 3 hours, and heat treatment is further performed at 250 ° C. for 1 hour to diffuse a part of the components of the Au thin film to the Pd electrode to enhance the adhesion strength and to absorb hydrogen. As a negative electrode.

【0028】前記の方法により得られた被覆率の異なる
3種類の水素吸蔵性陰極と、比較のため何も被覆してい
ないパラジウムのみの電極を用いて、前記実施例1と同
じ条件で1M LiOD/D2 Oの電解液で重水素の吸
蔵を行なった。
Under the same conditions as in Example 1, 1M LiOD was prepared by using three kinds of hydrogen storage cathodes having different coverages obtained by the above method and an electrode made of only palladium which was not coated for comparison. Deuterium was occluded with an electrolyte solution of / D 2 O.

【0029】図6に、電解を開始してから1.2日目ま
での時間経過に対する、陰極中の重水素吸蔵率の関係を
示す。図6中、ライン1は、電流効率100%の場合の
理想状態の水素吸蔵率のラインを表している。ライン2
は何も被覆していないPd電極の場合の実測値に基づい
たラインを示している。ライン3はAu薄膜でパラジウ
ム表面の80%を覆ったPd電極の場合の実測値に基づ
いたラインを示している。ライン4はAu薄膜でパラジ
ウム表面の97%を覆ったPd電極の場合の実測値に基
づいたラインを示している。ライン5はAu薄膜でパラ
ジウム表面の100%を覆ったPd電極の場合の実測値
に基づいたラインを示している。図6によれば、パラジ
ウムの表面をAu薄膜で100%覆ったPd電極を用い
て電解を行なっても、重水素の吸蔵が行なえることがわ
かる。
FIG. 6 shows the relationship of the deuterium storage rate in the cathode with respect to the lapse of time from the start of electrolysis to the 1.2th day. In FIG. 6, line 1 represents the hydrogen storage rate line in the ideal state when the current efficiency is 100%. Line 2
Shows a line based on the actual measurement value in the case of a Pd electrode not covered with anything. Line 3 is a line based on the measured value in the case of a Pd electrode in which 80% of the palladium surface is covered with an Au thin film. Line 4 is a line based on the measured value in the case of a Pd electrode in which 97% of the palladium surface was covered with an Au thin film. Line 5 is a line based on the actual measurement value in the case of a Pd electrode in which 100% of the palladium surface is covered with an Au thin film. From FIG. 6, it is understood that deuterium can be occluded even when electrolysis is performed using a Pd electrode in which the surface of palladium is 100% covered with an Au thin film.

【0030】図7に、電流密度に対する重水素吸蔵率の
変化を、長期間の電解によって得たデータに基づいて示
した。図7中、×印はパラジウム表面を全く覆わないP
d電極、三角印はパラジウム表面をAu薄膜で80%覆
ったPd電極、四角印はパラジウム表面をAu薄膜で9
7%覆ったPd電極を示す。図7に示すようにパラジウ
ム表面をAu薄膜で覆った割合が多いほど、高い(最高
で0.98)重水素吸蔵率(D/Pd)が得られた。
FIG. 7 shows changes in the deuterium storage rate with respect to the current density based on data obtained by long-term electrolysis. In FIG. 7, the X mark indicates P that does not cover the palladium surface at all.
d electrode, a triangular mark is a Pd electrode whose palladium surface is covered with an Au thin film by 80%, and a square mark is a palladium surface which is an Au thin film.
7 shows a Pd electrode with 7% coverage. As shown in FIG. 7, the higher the ratio of covering the palladium surface with the Au thin film, the higher (up to 0.98) the deuterium storage ratio (D / Pd) obtained.

【0031】[0031]

【発明の効果】本発明によれば、水素吸蔵金属よりも水
素過電圧が大きい材料で水素吸蔵金属の表面を部分的或
いは全面に覆った電極を用いて、重水素を吸蔵させるこ
とにより、重水素吸蔵率D/Pd≧0.88を再現性よ
く得ることができる。
According to the present invention, deuterium is absorbed by using an electrode in which the surface of the hydrogen storage metal is partially or entirely covered with a material having a hydrogen overvoltage larger than that of the hydrogen storage metal. The storage ratio D / Pd ≧ 0.88 can be obtained with good reproducibility.

【0032】本発明においては水素又はその同位体(例
えば、重水素)の吸蔵が効率よく行なわれるので、電解
液の温度上昇を抑制することができ、水素又はその同位
体の吸蔵率を上げることができる。
In the present invention, hydrogen or its isotope (for example, deuterium) is efficiently occluded, so that the temperature rise of the electrolytic solution can be suppressed and the occluding rate of hydrogen or its isotope can be increased. You can

【0033】本発明によれば、水素吸蔵金属の表面を水
素過電圧が大きい材料で膜を形成した後に、熱による拡
散処理を行なって膜の剥離等が生じない水素吸蔵金属の
電極を用いているので、重水素吸蔵率をさらに増加させ
ることができる。
According to the present invention, an electrode of a hydrogen storage metal is used in which a film is formed on the surface of the hydrogen storage metal with a material having a large hydrogen overvoltage, and then a diffusion process by heat is performed so that the film is not peeled off. Therefore, the deuterium storage rate can be further increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で使用される、水素吸蔵金属よりも水
素過電圧が大きい材料で水素吸蔵金属を部分的に覆った
電極の平面図及び側面図である。
1A and 1B are a plan view and a side view of an electrode used in Example 1 in which a hydrogen storage metal is partially covered with a material having a hydrogen overvoltage larger than that of the hydrogen storage metal.

【図2】図1の側面図のAの部分の拡大図である。FIG. 2 is an enlarged view of a portion A of the side view of FIG.

【図3】実施例1で使用した電解セルを示す。FIG. 3 shows the electrolytic cell used in Example 1.

【図4】実施例1の電解初期における電解経過時間に対
する水素吸蔵金属であるPdへの重水素吸蔵率の変化を
示す。
FIG. 4 shows changes in the deuterium storage rate of Pd, which is a hydrogen storage metal, with respect to the electrolysis elapsed time in the initial stage of electrolysis in Example 1.

【図5】実施例1の水素吸蔵金属からなる電極全体に与
えた電流密度の大きさに対する水素吸蔵率の変化を示
す。
FIG. 5 shows changes in the hydrogen storage rate with respect to the magnitude of the current density applied to the entire electrode made of the hydrogen storage metal of Example 1.

【図6】実施例2における電解を開始してから1.2日
目までの時間経過に対する、陰極中の重水素吸蔵率の関
係を示す。
FIG. 6 shows the relationship of the deuterium storage rate in the cathode with respect to the elapsed time from the start of electrolysis to Day 1.2 in Example 2.

【図7】電流密度に対する重水素吸蔵率の変化を示す。FIG. 7 shows changes in deuterium storage rate with respect to current density.

【符号の説明】[Explanation of symbols]

1 電極 2 金の薄膜 3 パラジウムの露出面 4 電極の上面又は下面 11 圧力容器 12 電解液 13 陰極 14 陽極 15 ガス供給装置 16 参照電極(RHE) 17 電解液用温度計 18,19 ガス相用温度計 20 保持部材 21 カーボンペーパー 1 Electrode 2 Gold Thin Film 3 Palladium Exposed Surface 4 Top or Bottom of Electrode 11 Pressure Vessel 12 Electrolyte 13 Cathode 14 Anode 15 Gas Supply Device 16 Reference Electrode (RHE) 17 Electrolyte Thermometer 18, 19 Gas Phase Temperature Total 20 Holding member 21 Carbon paper

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電解液中に浸した水素吸蔵金属に水素又
はその同位体を電解法により吸蔵させる方法において、
水素吸蔵金属よりも水素過電圧が大きい材料で水素吸蔵
金属の表面を部分的に覆った電極を用いて電解すること
を特徴とする水素又はその同位体の吸蔵方法。
1. A method of storing hydrogen or its isotope in a hydrogen storage metal immersed in an electrolytic solution by an electrolytic method,
A method for storing hydrogen or its isotope, which comprises performing electrolysis using an electrode in which the surface of the hydrogen storage metal is partially covered with a material having a hydrogen overvoltage higher than that of the hydrogen storage metal.
【請求項2】 電解液中に浸した水素吸蔵金属に水素又
はその同位体を電解法により吸蔵させる方法において、
水素吸蔵金属よりも水素過電圧が大きい材料で水素吸蔵
金属の表面を全面に覆った電極を用いて電解することを
特徴とする水素又はその同位体の吸蔵方法。
2. A method for storing hydrogen or its isotope in a hydrogen storage metal immersed in an electrolytic solution by an electrolytic method,
A method for storing hydrogen or its isotope, which comprises electrolyzing using an electrode in which the surface of the hydrogen storage metal is entirely covered with a material having a hydrogen overvoltage higher than that of the hydrogen storage metal.
【請求項3】 前記水素吸蔵金属よりも水素過電圧が大
きい材料で水素吸蔵金属の表面を部分的あるいは全面に
覆う方法は、水素吸蔵金属の表面を水素過電圧が大きい
材料で膜を形成した後に、熱による拡散処理が行われた
ものである請求項1又は2記載の水素又はその同位体の
吸蔵方法。
3. A method of partially or entirely covering the surface of a hydrogen storage metal with a material having a hydrogen overvoltage higher than that of the hydrogen storage metal, comprising: forming a film on the surface of the hydrogen storage metal by a material having a high hydrogen overvoltage; The method for occluding hydrogen or its isotope according to claim 1 or 2, which has been subjected to a diffusion treatment by heat.
JP5321175A 1993-07-07 1993-11-26 Hydrogen or its isotope storage method Pending JPH0773875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5321175A JPH0773875A (en) 1993-07-07 1993-11-26 Hydrogen or its isotope storage method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19185893 1993-07-07
JP5-191858 1993-07-07
JP5321175A JPH0773875A (en) 1993-07-07 1993-11-26 Hydrogen or its isotope storage method

Publications (1)

Publication Number Publication Date
JPH0773875A true JPH0773875A (en) 1995-03-17

Family

ID=26506945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5321175A Pending JPH0773875A (en) 1993-07-07 1993-11-26 Hydrogen or its isotope storage method

Country Status (1)

Country Link
JP (1) JPH0773875A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000072397A1 (en) * 1999-05-25 2000-11-30 Mitsubishi International Gmbh Electrochemical element
US11008666B2 (en) 2016-06-06 2021-05-18 Ih Ip Holdings Limited Plasma frequency trigger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000072397A1 (en) * 1999-05-25 2000-11-30 Mitsubishi International Gmbh Electrochemical element
US11008666B2 (en) 2016-06-06 2021-05-18 Ih Ip Holdings Limited Plasma frequency trigger

Similar Documents

Publication Publication Date Title
Burke et al. The oxygen electrode. Part 8.—Oxygen evolution at ruthenium dioxide anodes
Zheng et al. Electrochemical determination of the diffusion coefficient of hydrogen through an LaNi4. 25Al0. 75 electrode in alkaline aqueous solution
Conway et al. Role of the transfer coefficient in electrocatalysis: applications to the H2 and O2 evolution reactions and the characterization of participating adsorbed intermediates
US4126733A (en) Electrochemical generator comprising an electrode in the form of a suspension
JPH05144680A (en) Electrolytic capacitor having cathode element wherein noble metal /base metal are commonly deposited and manufacture thereof
EP3060701A2 (en) Electrochemical cell containing a graphene coated electrode
JPH05500432A (en) Proton-conducting solid electrolyte battery
EP1178554A2 (en) Liquid fuel cell
Haran et al. Studies on electroless cobalt coatings for microencapsulation of hydrogen storage alloys
US6444337B1 (en) Fuel cell with low cathodic polarization and high power density
Jakšić et al. Hydridic and electrocatalytic properties of hypo-hyper-d-electronic combinations of transition metal intermetallic phases
US4178418A (en) Galvanic cell for the electrochemical production or storage of electrical energy
US4748091A (en) Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell
US4337124A (en) Non-pulsed electrochemical impregnation of flexible metallic battery plaques
JPH0773875A (en) Hydrogen or its isotope storage method
US5630933A (en) Processes involving metal hydrides
US6379844B1 (en) Low resistance electrode construction
CN104779401B (en) Method for plating metal elements on nano porous metal film
JPH07101701A (en) Method for occluding hydrogen or its isotope in hydrogen storage alloy
JPH07153455A (en) Composite material electrode and storage method for hydrogen or isotope thereof
JPH07104082A (en) Storage method for hydrogen or its isotope with pd-rh alloy
JP3261410B2 (en) Method for producing hydrogen storage electrode
US3772086A (en) Method of making anodes for hydrazine fuel cells
JPS61233968A (en) Manufacture of hydrogen occlusion electrode
JPH06160560A (en) Heavy water electrolysis method, ordinary-temperature nuclear fusion method, and extracting method for its energy