JPH0773045B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH0773045B2
JPH0773045B2 JP60159725A JP15972585A JPH0773045B2 JP H0773045 B2 JPH0773045 B2 JP H0773045B2 JP 60159725 A JP60159725 A JP 60159725A JP 15972585 A JP15972585 A JP 15972585A JP H0773045 B2 JPH0773045 B2 JP H0773045B2
Authority
JP
Japan
Prior art keywords
lithium
indium
lead
negative electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60159725A
Other languages
Japanese (ja)
Other versions
JPS6220249A (en
Inventor
一三 由光
聡 北川
耕三 梶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP60159725A priority Critical patent/JPH0773045B2/en
Publication of JPS6220249A publication Critical patent/JPS6220249A/en
Publication of JPH0773045B2 publication Critical patent/JPH0773045B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は非水電解質二次電池に関する。さらに詳しく
は、充放電特性が良好な非水電解質二次電池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery. More specifically, it relates to a non-aqueous electrolyte secondary battery having good charge / discharge characteristics.

〔従来の技術〕[Conventional technology]

従来、リチウムを負極活物質とする非水電解質二次電池
では、金属リチウムが単体で負極に用いられていたが、
充電時の析出リチウムが非常に活性で電解質と反応した
り、リチウムがデンドライト状(樹枝状)に析出し、充
放電の繰り返しによって上記デンドライトが成長し、こ
のデンドライト状に成長したリチウムが正極、負極間を
隔離するセパレータを貫通し、正極に接触して内部短絡
を生じ、充放電特性が低下するという問題があった。
Conventionally, in a non-aqueous electrolyte secondary battery using lithium as a negative electrode active material, metallic lithium was used alone as a negative electrode.
Lithium deposited during charging is very active and reacts with the electrolyte, or lithium is deposited in a dendrite form (dendritic form), the above dendrite grows by repeated charging and discharging, and the lithium grown in this dendrite form the positive electrode and the negative electrode. There is a problem that the separator that penetrates the space is penetrated and comes into contact with the positive electrode to cause an internal short circuit, resulting in deterioration of charge / discharge characteristics.

そのため、リチウム−アルミニウム合金を負極に用いる
ことによって、充放電特性を改良することが提案されて
いる(たとえば米国特許第4,002,492号明細書)。
Therefore, it has been proposed to improve charge / discharge characteristics by using a lithium-aluminum alloy for the negative electrode (for example, US Pat. No. 4,002,492).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記リチウム−アルミニウム合金は、充電時にリチウム
とアルミニウムとの電気化学的合金化反応により、リチ
ウムをアルミニウム中に拡散させることによって析出リ
チウムの電解質との反応やリチウムのデンドライト成長
を抑制しようとするものであるが、充電時におけるリチ
ウムとアルミニウムとの電気化学的合金化反応が充分に
速いとはいえず、必ずしも満足し得るほどの充放電特性
は得られなかった。
The lithium-aluminum alloy is intended to suppress the reaction of the precipitated lithium with the electrolyte and the dendrite growth of lithium by diffusing lithium into aluminum by an electrochemical alloying reaction between lithium and aluminum during charging. However, the electrochemical alloying reaction between lithium and aluminum during charging cannot be said to be sufficiently fast, and satisfactory charge / discharge characteristics were not always obtained.

そのため、本発明者らは、リチウムとインジウムとを合
金化して負極に用いることにより、上記リチウム−アル
ミニウム合金を用いる場合よりも充放電特性の良好な電
池が得られることを見出し、これについて既に特許出願
をした(特願昭59−112260号)。
Therefore, the present inventors have found that by alloying lithium and indium and using them for the negative electrode, a battery having better charge / discharge characteristics can be obtained than when using the above lithium-aluminum alloy. Filed an application (Japanese Patent Application No. 59-112260).

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記知見に基づいて、さらに研究を重ね
た結果、リチウムとの合金化に際してインジウムを単独
で用いるよりも、インジウムを主成分とし、これに鉛を
3〜35原子%になるように添加したインジウムと鉛との
合金を用いる方が充放電特性の優れた非水電解質二次電
池が得られることを見出し、本発明を完成するにいたっ
た。
As a result of further research based on the above findings, the present inventors have found that indium is the main component and lead is contained in an amount of 3 to 35 atomic% rather than indium alone when alloying with lithium. The inventors have found that a non-aqueous electrolyte secondary battery having excellent charge / discharge characteristics can be obtained by using an alloy of indium and lead thus added, and have completed the present invention.

すなわち、リチウムを上記インジウム−鉛合金で合金化
して負極に用いると、充電時のリチウムとインジウムお
よび鉛との電気化学的合金化反応速度が、リチウムとア
ルミニウムとの電気化学的合金化反応速度に対してはも
とより、リチウムとインジウムとの電気化学的合金化速
度よりも速くなり、析出リチウムの電解質との反応やデ
ントライト成長がリチウム−アルミニウム合金やリチウ
ム−インジウム合金の場合よりもより一層防止されるよ
うになり、それによって充放電特性が、リチウム−アル
ミニウム合金の場合に比べてはもとより、リチウム−イ
ンジウム合金に比べてもさらに向上するのである。
That is, when lithium is alloyed with the above indium-lead alloy and used for the negative electrode, the electrochemical alloying reaction rate of lithium with indium and lead during charging becomes the electrochemical alloying reaction rate of lithium with aluminum. On the other hand, it becomes faster than the electrochemical alloying rate of lithium and indium, and the reaction of the deposited lithium with the electrolyte and the dendrite growth are prevented more than in the case of the lithium-aluminum alloy and the lithium-indium alloy. As a result, the charging / discharging characteristics are further improved not only in the case of the lithium-aluminum alloy but also in the case of the lithium-indium alloy.

インジウムと鉛との合金化は、通常、それらの金属粉末
を混合して加熱溶融する、いわゆる冶金学的合金化によ
って行われるが、このインジウム−鉛合金とリチウムと
の合金化反応は、冶金学的合金化はもとより、電解質の
存在下での電気化学的合金化によっても行うことができ
る。また、この電気化学的合金化は電池内で行うことも
できるし、また電池外で行ってもよい。
The alloying of indium and lead is usually carried out by so-called metallurgical alloying, in which those metal powders are mixed and heated and melted, but the alloying reaction between this indium-lead alloy and lithium is carried out by metallurgy. In addition to dynamic alloying, electrochemical alloying in the presence of an electrolyte can be used. Further, this electrochemical alloying may be performed inside the battery or outside the battery.

本発明において、上記インジウム−鉛合金の鉛含有量を
3〜35原子にするのは、鉛含有量が3原子%より少ない
場合は鉛の添加に基づくリチウムとの高い電気化学的合
金化反応性が低下し、鉛含有量が35原子%より多い場合
はリチウム−インジウム合金の特徴である負極中への高
い拡散速度が損なわれて、いずれの場合も、充放電特性
が低下し、良好な充放電特性が得られないからである。
In the present invention, the lead content of the above indium-lead alloy is set to 3 to 35 atoms because the high electrochemical alloying reactivity with lithium based on the addition of lead when the lead content is less than 3 atomic%. When the lead content is more than 35 atomic%, the high diffusion rate into the negative electrode, which is a characteristic of the lithium-indium alloy, is impaired, and in any case, the charge / discharge characteristics are reduced and good charging This is because the discharge characteristics cannot be obtained.

なお、リチウムと上記インジウム−鉛合金との合金割合
は、電池の用途に応じて種々に変えられる。一般にはリ
チウムが10〜50原子%の範囲から選ばれるが、特にリチ
ウムが30〜45原子%の範囲で好ましい結果が得られる。
The alloy ratio of lithium and the indium-lead alloy can be variously changed depending on the application of the battery. Generally, lithium is selected from the range of 10 to 50 atom%, and particularly preferable result is obtained in the range of 30 to 45 atom%.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be described in more detail with reference to examples.

実施例1 厚さ0.1mm、直径7.8mmのリチウム板2枚と、厚さ0.3m
m、直径7.8mmで鉛を5原子%含有するインジウム−鉛合
金板とを負極材料に用い、負極缶内に一方のリチウム
板、インジウム−鉛合金板、他方のリチウム板の順に配
置し、常法に準じて電池組立を行い、電解質の存在下で
電気化学的にリチウムとインジウム−鉛合金とを合金化
して負極とした。
Example 1 Two lithium plates having a thickness of 0.1 mm and a diameter of 7.8 mm and a thickness of 0.3 m
m, a diameter of 7.8 mm, and an indium-lead alloy plate containing 5 atomic% of lead were used as the negative electrode material, and one lithium plate, indium-lead alloy plate, and the other lithium plate were placed in this order in the negative electrode can. A battery was assembled according to the method and electrochemically alloyed with lithium and an indium-lead alloy in the presence of an electrolyte to obtain a negative electrode.

上記負極を有する電池を第1図に示す。図中、1はステ
ンレス鋼製で表面にニッケルメッキを施した負極缶で、
2は負極缶1の内面にスポット溶接したステンレス鋼網
よりなる負極集電体である。3は負極で、前記のように
リチウム板、鉛を5原子%含有するインジウム−鉛合金
板およびリチウム板を上記負極缶1内に配置して、電解
質の存在下で合金化することにより形成したものであ
る。4は微孔性ポリプロピレンフィルムからなるセパレ
ータ、5はポリプロピレン不織布からなる電解質吸収体
である。6は二硫化チタン(TiS2)を活物質とし、ポリ
テトラフルオロエチレンをバインダーとして加圧成形し
た正極で、厚さ0.5mm、直径7.0mmの円板状をしており、
その一方の面にはステンレス鋼網からなる正極集電体7
が配設されている。8はステンレス鋼製で表面にニッケ
ルメッキを施した正極缶で、9はポリプロピレン製のガ
スケットである。そして、この電池には、4−メチル−
1,3−ジオキソラン60容量%、1,2−ジメトキシエタン3
4.8容量%およびヘキサメチルホスホリックトリアミド
5.2容量%からなる混合溶媒にLiPF6を1.0mol/溶解し
た液状の有機非水電解質が使用されている。この電池の
負極中のリチウムの組成は約45原子%で、負極理論電気
量は20mAhであり、正極の理論電気量は8mAhである。上
記電解質におけるヘキサメチルホスホリックトリアミド
はLiPF6を安定化させるための安定剤である。
A battery having the above negative electrode is shown in FIG. In the figure, 1 is a negative electrode can made of stainless steel and having a nickel plated surface,
Reference numeral 2 denotes a negative electrode current collector made of stainless steel mesh spot-welded to the inner surface of the negative electrode can 1. Reference numeral 3 denotes a negative electrode, which was formed by placing a lithium plate, an indium-lead alloy plate containing 5 atomic% of lead and a lithium plate in the negative electrode can 1 and alloying them in the presence of an electrolyte as described above. It is a thing. Reference numeral 4 is a separator made of a microporous polypropylene film, and 5 is an electrolyte absorber made of a polypropylene nonwoven fabric. Reference numeral 6 is a positive electrode formed by pressure molding using titanium disulfide (TiS 2 ) as an active material and polytetrafluoroethylene as a binder, and has a disk shape with a thickness of 0.5 mm and a diameter of 7.0 mm.
A positive electrode current collector 7 made of stainless steel mesh is provided on one surface thereof.
Is provided. Reference numeral 8 is a positive electrode can made of stainless steel and having a surface plated with nickel, and 9 is a polypropylene gasket. And in this battery, 4-methyl-
1,3-dioxolane 60% by volume, 1,2-dimethoxyethane 3
4.8% by volume and hexamethylphosphoric triamide
A liquid organic non-aqueous electrolyte in which 1.0 mol / mol of LiPF 6 is dissolved in a mixed solvent of 5.2% by volume is used. The composition of lithium in the negative electrode of this battery was about 45 atomic%, the theoretical amount of electricity of the negative electrode was 20 mAh, and the theoretical amount of electricity of the positive electrode was 8 mAh. Hexamethylphosphoric triamide in the above electrolyte is a stabilizer for stabilizing LiPF 6 .

実施例2 鉛を5原子%含有するインジウム−鉛合金板に代えて、
鉛含有量が15原子%のインジウム−鉛合金板を用いたほ
かは実施例1と同様にして非水電解質二次電池を製造し
た。
Example 2 Instead of an indium-lead alloy plate containing 5 atomic% of lead,
A non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 except that an indium-lead alloy plate having a lead content of 15 atomic% was used.

実施例3 鉛を5原子%含有するインジウム−鉛合金板に代えて、
鉛含有量が30原子%のインジウム−鉛合金板を用いたほ
かは実施例1と同様にして非水電解質二次電池を製造し
た。
Example 3 Instead of an indium-lead alloy plate containing 5 atom% of lead,
A non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 except that an indium-lead alloy plate having a lead content of 30 atomic% was used.

比較例1 厚さ0.1mm、直径7.8mmのリチウム板2枚と、厚さ0.3m
m、直径7.8mmのインジウム板とを負極材料として用い、
負極缶に一方のリチウム板、インジウム板、他方のリチ
ウム板の順に配置し、電解質の存在下でリチウムとイン
ジウムとを合金化して負極としたほかは実施例1と同様
にして非水電解質二次電池を製造した。
Comparative Example 1 Two lithium plates with a thickness of 0.1 mm and a diameter of 7.8 mm and a thickness of 0.3 m
m, using an indium plate with a diameter of 7.8 mm as the negative electrode material,
Nonaqueous electrolyte secondary as in Example 1 except that one lithium plate, indium plate, and the other lithium plate were placed in this order in the negative electrode can, and lithium and indium were alloyed in the presence of an electrolyte to form a negative electrode. A battery was manufactured.

比較例2 鉛を5原子%含有するインジウム−鉛合金板に代えて、
鉛含有量が1原子%のインジウム−鉛合金板を用いたほ
かは実施例1と同様にして非水電解質二次電池を製造し
た。
Comparative Example 2 Instead of an indium-lead alloy plate containing 5 atom% of lead,
A non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 except that an indium-lead alloy plate having a lead content of 1 atomic% was used.

比較例3 鉛を5原子%含有するインジウム−鉛合金板に代えて、
鉛含有量が40原子%のインジウム−鉛合金板を用いたほ
かは実施例1と同様にして非水電解質二次電池を製造し
た。
Comparative Example 3 Instead of an indium-lead alloy plate containing 5 atom% of lead,
A non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 except that an indium-lead alloy plate having a lead content of 40 atomic% was used.

上記実施例1〜3の電池および比較例1〜3の電池を1.
0mAの定電流で0.5mAhの充放電を1.3〜2.2Vの電圧範囲で
サイクルさせた際の0.5mAh放電終了時の電池電圧と充放
電サイクル数との関係を調べた。その結果を第2図に示
す。なお、実施例1〜3の電池の各充放電サイクルにお
ける0.5mAh放電終了時の電池電圧は、いずれもほぼ同様
であり、それぞれについて図示すると繁雑化するため、
第2図においては、実施例1の電池電圧のみを図示し、
実施例2、3の電池電圧は図示することなく、実施例1
の電池電圧で代表表示し、実施例1の電池電圧変化を示
す曲線に実施例1の文字と共に実施例2、3の数字を付
した。
The batteries of Examples 1 to 3 and the batteries of Comparative Examples 1 to 3 were 1.
The relationship between the battery voltage and the number of charge / discharge cycles at the end of discharge of 0.5 mAh when charging / discharging 0.5 mAh at a constant current of 0 mA was cycled in the voltage range of 1.3 to 2.2 V was investigated. The results are shown in FIG. In addition, the battery voltage at the end of 0.5 mAh discharge in each charge / discharge cycle of the batteries of Examples 1 to 3 is almost the same, and it becomes complicated when illustrated for each,
In FIG. 2, only the battery voltage of Example 1 is shown,
The battery voltages of Examples 2 and 3 are not shown, and the battery voltage of Example 1 is not shown.
The curve representing the battery voltage change of Example 1 is represented by the battery voltage of Example 1 and the numbers of Examples 2 and 3 are attached to the curve of Example 1 together with the letters of Example 1.

第2図に示す結果からも明らかなように、鉛をそれぞれ
5原子%、15原子%、30原子%含有するインジウム−鉛
合金を用いた実施例1、2および3の電池は、鉛を含ま
ないインジウムを用いた比較例1の電池に比べて、各サ
イクルにおける0.5mAh放電終了時の電池電圧が高く、ま
た1.3V終了で見た場合の0.5mAh放電可能なサイクル数も
多く、充放電特性が優れていた。
As is clear from the results shown in FIG. 2, the batteries of Examples 1, 2 and 3 using the indium-lead alloys containing lead at 5 atomic%, 15 atomic% and 30 atomic%, respectively, contained lead. The battery voltage at the end of 0.5mAh discharge in each cycle is higher than that of the battery of Comparative Example 1 using no indium, and the number of cycles that can be discharged at 0.5mAh at 1.3V is large, and the charge / discharge characteristics are high. Was excellent.

しかし、インジウム−鉛合金を用いた場合でも、これに
対して、鉛含有量が1原子%と少ないインジウム−鉛合
金を用いた比較例2の電池や鉛含有量が40原子%のイン
ジウム−鉛合金を用いた比較例3の電池は、比較例1の
電池よりは充放電特性が優れているものの、充放電サイ
クル数が多くなると実施例1〜3の電池に比べて充放電
特性が低下した。
However, even when the indium-lead alloy is used, the battery of Comparative Example 2 using the indium-lead alloy having a small lead content of 1 atomic% and the indium-lead having a lead content of 40 atomic% are used. The battery of Comparative Example 3 using the alloy had better charge / discharge characteristics than the battery of Comparative Example 1, but the charge / discharge characteristics deteriorated as the number of charge / discharge cycles increased, as compared with the batteries of Examples 1 to 3. .

これは、鉛含有量が1原子%と少ない比較例2の電池で
は、鉛含有量が少ないために、鉛の添加に基づくリチウ
ムとの電気化学的合金化反応性が充分に高くならず、鉛
含有量が40原子%と多い比較例3の電池では、鉛含有量
が多くなったためにインジウムの含有量が少なくなり、
そのため、リチウム−インジウム合金の特徴である負極
中へのリチウムの高い拡散速度が損なわれ、いずれの場
合も、充放電特性が低下したものと考えられる。
This is because the battery of Comparative Example 2 having a low lead content of 1 atomic% does not have sufficiently high electrochemical alloying reactivity with lithium based on the addition of lead because of the low lead content. In the battery of Comparative Example 3 having a large content of 40 atomic%, the content of indium was small due to the large content of lead,
Therefore, it is considered that the high diffusion rate of lithium into the negative electrode, which is a characteristic of the lithium-indium alloy, is impaired, and in any case, the charge / discharge characteristics are deteriorated.

上記実施例では、電解質として、4−メチル−1,3−ジ
オキソランと1,2−ジメトキシエタンとを溶媒とする液
状の有機電解質を用いたが、溶媒の種類、また溶媒の種
類も種々変え得る。一般には、たとえば1,2−ジメトキ
シエタン、1,2−ジエトキシエタン、プロピレンカーボ
ネート、γ−ブチロラクトン、テトラヒドロフラン、2
−メチルテトラヒドロフラン、1,3−ジオキソラン、4
−メチル−1,3−ジオキソランなどの単独または2種以
上の混合溶媒に、たとえばLiClO4、LiPF6、LiBF4、LiB(C6H
5)4などの溶質を1種または2種以上溶解したものが用
いられる。
In the above examples, a liquid organic electrolyte using 4-methyl-1,3-dioxolane and 1,2-dimethoxyethane as a solvent was used as the electrolyte, but the kind of the solvent and the kind of the solvent may be variously changed. . Generally, for example, 1,2-dimethoxyethane, 1,2-diethoxyethane, propylene carbonate, γ-butyrolactone, tetrahydrofuran, 2
-Methyltetrahydrofuran, 1,3-dioxolane, 4
-Methyl-1,3-dioxolane or the like or a mixed solvent of two or more thereof, for example, LiClO 4 , LiPF 6 , LiBF 4 , LiB (C 6 H
5 ) One or two or more solutes such as 4 are used.

また、実施例では、正極活物質として、二硫化チタンを
用いたが、それに代えて、たとえば二硫化モリブデン
(MoS2)、三硫化モリブデン(MoS3)、二硫化鉄(Fe
S2)、硫化ジルコニウム(ZrS2)、二硫化ニオブ(Nb
S2)、三硫化リンニッケル(NiPS3)、バナジウムセレ
ナイド(VSe2)なども用いることができる。
Further, in the examples, titanium disulfide was used as the positive electrode active material, but instead of it, for example, molybdenum disulfide (MoS 2 ), molybdenum trisulfide (MoS 3 ), iron disulfide (Fe
S 2 ), zirconium sulfide (ZrS 2 ), niobium disulfide (Nb
S 2 ), phosphorous nickel trisulfide (NiPS 3 ), vanadium selenide (VSe 2 ) and the like can also be used.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明ではリチウムと、鉛含有量
が3〜35原子%のインジウムを主成分とするインジウム
−鉛合金とを合金化して負極とすることにより充放電特
性の優れた非水電解質二次電池を提供することができ
た。
As described above, according to the present invention, lithium is alloyed with an indium-lead alloy containing indium having a lead content of 3 to 35 atomic% as a main component to form a negative electrode. An electrolyte secondary battery could be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る非水電解質二次電池の一例を示す
断面図である。第2図は本発明の実施例1〜3の電池と
比較例1〜3の電池の充放電サイクルを繰り返したとき
の0.5mAh放電終了時の電池電圧と充放電サイクル数との
関係を示す図である。 3……負極、6……正極
FIG. 1 is a sectional view showing an example of a non-aqueous electrolyte secondary battery according to the present invention. FIG. 2 is a diagram showing the relationship between the battery voltage and the number of charge / discharge cycles at the end of 0.5 mAh discharge when the charge / discharge cycles of the batteries of Examples 1 to 3 of the present invention and the batteries of Comparative Examples 1 to 3 were repeated. Is. 3 ... Negative electrode, 6 ... Positive electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】正極、リチウムイオン伝導性非水電解質お
よび負極を備えてなる非水電解質二次電池において、リ
チウムと、鉛含有量が3〜35原子%のインジウムを主成
分とするインジウム−鉛合金とを合金化して負極に用い
たことを特徴とする非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode, a lithium ion conductive non-aqueous electrolyte and a negative electrode, wherein indium-lead is composed mainly of lithium and indium having a lead content of 3 to 35 atomic%. A non-aqueous electrolyte secondary battery characterized by being used as a negative electrode after alloying with an alloy.
JP60159725A 1985-07-18 1985-07-18 Non-aqueous electrolyte secondary battery Expired - Lifetime JPH0773045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60159725A JPH0773045B2 (en) 1985-07-18 1985-07-18 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60159725A JPH0773045B2 (en) 1985-07-18 1985-07-18 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS6220249A JPS6220249A (en) 1987-01-28
JPH0773045B2 true JPH0773045B2 (en) 1995-08-02

Family

ID=15699911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60159725A Expired - Lifetime JPH0773045B2 (en) 1985-07-18 1985-07-18 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH0773045B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186274A (en) * 1983-04-07 1984-10-23 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolyte secondary battery
JPS6166370A (en) * 1984-09-08 1986-04-05 Hitachi Maxell Ltd Lithium secondary battery

Also Published As

Publication number Publication date
JPS6220249A (en) 1987-01-28

Similar Documents

Publication Publication Date Title
JP2597091B2 (en) Lithium secondary battery
JP2558519B2 (en) Button type lithium organic secondary battery and method of manufacturing the same
JPH07114124B2 (en) Non-aqueous electrolyte secondary battery
JPH06342673A (en) Lithium secondary battery
JPH05151995A (en) Nonaqueous electrolyte secondary battery
JPH0724219B2 (en) Lithium secondary battery
JPS6166369A (en) Lithium secondary battery
JPH01124969A (en) Lithium secondary battery
JPS63178449A (en) Nonaqueous electrolyte secondary battery
US6465131B1 (en) Lithium secondary cell with a stannous electrode material
JPH0773044B2 (en) Non-aqueous electrolyte secondary battery
JPH0810605B2 (en) Lithium secondary battery
JPH0773045B2 (en) Non-aqueous electrolyte secondary battery
JPH0746602B2 (en) Method for manufacturing lithium organic secondary battery
JPS6220248A (en) Nonaqueous electrolyte secondary battery
JP2526093B2 (en) Lithium secondary battery
JPH01294375A (en) Charging/discharging method for lithium secondary battery
JPS62119865A (en) Lithium secondary cell
JPH06101325B2 (en) Lithium secondary battery
JPS62119866A (en) Lithium secondary cell
JPS6313265A (en) Lithium secondary battery
JPS6166370A (en) Lithium secondary battery
JPS62123651A (en) Lithium secondary battery
JPS6313266A (en) Lithium secondary battery
JPS6174258A (en) Lithium organic secondary battery