JPH0772995B2 - Superconducting memory circuit - Google Patents

Superconducting memory circuit

Info

Publication number
JPH0772995B2
JPH0772995B2 JP61079131A JP7913186A JPH0772995B2 JP H0772995 B2 JPH0772995 B2 JP H0772995B2 JP 61079131 A JP61079131 A JP 61079131A JP 7913186 A JP7913186 A JP 7913186A JP H0772995 B2 JPH0772995 B2 JP H0772995B2
Authority
JP
Japan
Prior art keywords
superconducting
line
current
gate
read
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61079131A
Other languages
Japanese (ja)
Other versions
JPS62236198A (en
Inventor
一郎 石田
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP61079131A priority Critical patent/JPH0772995B2/en
Publication of JPS62236198A publication Critical patent/JPS62236198A/en
Publication of JPH0772995B2 publication Critical patent/JPH0772995B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超伝導素子を用いた超伝導記憶回路に関する。The present invention relates to a superconducting memory circuit using a superconducting element.

(従来の技術) 従来の超伝導記憶回路は例えばアイ・イー・イー・イー
ジャーナル オブ ソリッド ステート サーキッツ
(IEEE Journal of solid−state Circuits)Vol.sc−1
4No.5 1979 10月794頁にヘンケル等によって示されてい
た。従来の超伝導記憶回路は第5図に示す如く、第1と
第2の分岐44と45から成る超伝導ループと超伝導ループ
に超伝導電流を出し入れする信号線Iy43と上記第1の分
岐44の途中に設けられた書き込みゲート46と該書き込み
ゲート46にそれぞれ電磁気的に結合する信号線Ix47とIy
´48と上記第2の分岐45に電磁気的に結合する読み出し
ゲート49を有する読み出し線Is50で構成されていた。
又、この従来の超伝導記憶回路の記憶方式は次の如くで
ある。2値(1,0)論理の「1」を書き込む方法は信号
線Ix47,Iy´48にそれぞれ適切な電流を流して書き込み
ゲート46を電圧状態にスイッチさせた後信号線Iy43に適
切な電流を流し次に信号線Ix47と信号線Iy´48の電流を
切った後信号線Iy43の電流を切り、超伝導ループに永久
電流を流す。この場合超伝導ループのインダクタンスL
Loopと永久電流Icircの積は磁束量子Φ(2×10-15
Wb)を単位として量子化される。すなわちLLoop・Icirc
=nΦ(nは整数)。
(Prior Art) A conventional superconducting memory circuit is, for example, IEEE Journal of solid-state Circuits Vol.sc-1.
4 No.5 1979 October 794 by Henkel et al. As shown in FIG. 5, a conventional superconducting memory circuit has a superconducting loop composed of first and second branches 44 and 45, a signal line Iy43 for inputting and outputting a superconducting current to the superconducting loop, and the first branch 44. Of the write gate 46 provided in the middle of the line and signal lines Ix47 and Iy electromagnetically coupled to the write gate 46, respectively.
'48 and a read line Is50 having a read gate 49 electromagnetically coupled to the second branch 45.
The memory system of this conventional superconducting memory circuit is as follows. The method of writing “1” of binary (1,0) logic is to apply an appropriate current to each of the signal lines Ix47 and Iy′48 to switch the write gate 46 to the voltage state and then apply an appropriate current to the signal line Iy43. Then, the currents of the signal line Ix47 and the signal line Iy'48 are turned off, and then the current of the signal line Iy43 is turned off, and a permanent current is passed through the superconducting loop. In this case, the inductance L of the superconducting loop
The product of Loop and the permanent current I circ is the magnetic flux quantum Φ 0 (2 × 10 -15
It is quantized in units of Wb). That is, L Loop・ I circ
= NΦ 0 (n is an integer).

「0」を書き込む方法は信号線Ix47,Iy´48にそれぞれ
適切な電流を流して書き込みゲート46を電圧状態にスイ
ッチさせた後、信号線Iy43に電流を流さない。この事に
より超伝導ループに永久電流は流れない。記憶情報を読
み出す方法は読み出し線Is50に適切な電流を流し読み出
しゲート49をバイアスした後Iy43に適切な電流を流す。
情報1が記憶されていて、超伝導ループに永久電流I
circが流れている場合は読み出しゲート49に電磁気的に
結合する第2の分岐45にIy43から流れ込んだ電流の一部
と永久電流Icircが重畳されて流れ、読み出しゲート49
を電圧状態にスイッチさせて情報が1である事を判別す
る。記憶情報が「0」の場合は、超伝導ループに永久電
流Icircが存在せず読み出しゲート49に電磁気的に結合
する第2の分岐45にIy43から流れ込んだ電流のみが流
れ、読み出しゲートは超伝導状態を保ち、情報が0であ
る事を判別する。
In the method of writing "0", an appropriate current is applied to each of the signal lines Ix47 and Iy'48 to switch the write gate 46 to the voltage state, and then no current is applied to the signal line Iy43. As a result, no permanent current flows in the superconducting loop. As a method of reading stored information, an appropriate current is passed through the read line Is50, the read gate 49 is biased, and then an appropriate current is passed through Iy43.
Information 1 is stored and the persistent current I in the superconducting loop
When circ is flowing, a part of the current flowing from Iy43 and the permanent current I circ are superimposed on the second branch 45 that is electromagnetically coupled to the read gate 49, and flow, and the read gate 49
Is switched to the voltage state and it is determined that the information is 1. When the stored information is "0", there is no permanent current I circ in the superconducting loop, and only the current flowing from Iy43 flows into the second branch 45 that electromagnetically couples to the read gate 49, and the read gate has a supercurrent. The conduction state is maintained and it is determined that the information is zero.

(発明が解決しようとする問題点) 従来の超伝導記憶回路では「1」を書き込む場合に信号
線Ix47と、信号線Iy´48に信号電流を流し、次に信号線
43に電流を流した後信号線Ix47と信号線Iy´48の電流を
切り更にその後信号線Iy43の電流を切る必要があり、
「1」書き込み操作の簡素化、及び高速化を妨げてい
た。
(Problems to be Solved by the Invention) In the conventional superconducting memory circuit, when writing “1”, a signal current is passed through the signal line Ix47 and the signal line Iy′48, and then the signal line.
It is necessary to turn off the currents of the signal line Ix47 and the signal line Iy'48 after passing the current through 43, and then turn off the current of the signal line Iy43.
This has hindered the simplification and speedup of the "1" write operation.

本発明の目的はこの問題点を解決した超伝導記憶回路を
提供する事にある。
An object of the present invention is to provide a superconducting memory circuit that solves this problem.

(問題点を解決するための手段) 本発明によれば、超伝導電流が流れ込む点と超伝導電流
が流れ出す点を連結する、互にインダクタンスの等しい
第1と第2の超伝導線路と、第1の超伝導線路の途中に
設けられた第1の書き込みゲートと、第2の超伝導線路
の途中に設けられた第2の書き込みゲートと、第1の書
き込みゲートに電磁気的に結合する第1の信号線と、第
2の書き込みゲートに電磁気的に結合する第2の信号線
と、第1の超伝導線路と電磁気的に結合する読み出しゲ
ートと、この読み出しゲートが途中に配置された読み出
し線と、第1、第2の書き込みゲートと前記読み出しゲ
ートにそれぞれ電磁気的に結合する第3の信号線を有
し、書き込み時には第1、第3の信号線あるいは第2、
第3の信号線に電流を流すことによって、第1または第
2の書き込みゲートを一瞬電圧状態にしたあと超伝導状
態にもどしこの書き込みゲートが途中に設けられた超伝
導線路に流れる電流を他方の超伝導線路に流れる電流よ
り少なくかつ零とはせずしかも両線路の電流値の差は前
記読み取りゲートで判別するのに十分な大きさとし、読
み出し時には前記読み出し線および第3の信号線に電流
を流すことによって前記読み出しゲートが超伝導状態に
なるか電圧状態になるかで記憶内容を読み出すことを特
徴とする超伝導記憶回路が得られる。
(Means for Solving the Problems) According to the present invention, a first superconducting line and a second superconducting line which have the same inductance and which connect the point where the superconducting current flows in and the point where the superconducting current flows out, A first write gate provided in the middle of the first superconducting line, a second write gate provided in the middle of the second superconducting line, and a first electromagnetically coupled to the first write gate. Signal line, a second signal line electromagnetically coupled to the second write gate, a read gate electromagnetically coupled to the first superconducting line, and a read line in which the read gate is arranged midway. And a third signal line electromagnetically coupled to the first and second write gates and the read gate, respectively, and at the time of writing, the first and third signal lines or the second,
By passing a current through the third signal line, the first or second write gate is momentarily brought into a voltage state and then returned to the superconducting state, and the current flowing through the superconducting line provided in the middle of the write gate is changed to the other state. It is smaller than the current flowing in the superconducting line and is not zero, and the difference between the current values of the two lines is large enough to be discriminated by the reading gate. When reading, the current is applied to the reading line and the third signal line. By flowing, the superconducting memory circuit is obtained in which the stored contents are read out depending on whether the read gate is in the superconducting state or the voltage state.

(作用) 第1図は本発明による超伝導記憶回路を説明するための
回路構成図である。
(Operation) FIG. 1 is a circuit configuration diagram for explaining a superconducting memory circuit according to the present invention.

超伝導バイアス線B1は、分岐点P8において超伝導線路の
分岐B1,7と超伝導線路の分岐B06に分岐し、結合点Q9に
おいて超伝導線路の分岐B1,7と超伝導線路の分岐B06が
結合する。分岐B1,7の途中に書き込みゲートG1,11分岐B
06の途中に書き込みゲートG010がそれぞれ配置される。
書き込みゲートG111には信号線Y13と信号線X4が電磁気
的に結合する。書き込みゲートG010には信号線Y02と信
号線X4が電磁気的に結合する。分岐B17と信号線X4に電
磁気的に結合した読み出しゲートGS12が読み出し線S5の
途中に配置される。分岐B17と分岐B06のインダクタンス
LB1,LB0は等しくLB1=LB0=LBに設計される。書き込み
ゲートG1,G011,10の制御特性を第2図(a)(b)に示
す。読み出しゲートGS12の制御特性を第3図に示す。第
2図及び第3図で斜線をほどこした部分は、各ゲートG1
11,G010,GS12がそれぞれ超伝導状態を示す領域である。
又、iB1,iY1,iX,iB0,iY0,iSはそれぞれ分岐B17、信号線
Y13、信号線X4、分岐B06、信号線Y02、読み取り線S5を
流れる電流である。「1」の状態はiB1<iB0、「0」状
態はiB1>iB0の状態にそれぞれ対応させる。(「1」
「0」の呼称は便宜的なもので全て逆にしても説明でき
る。)「1」の書き込み方法を示す。バイアス線B1には
iB=aなる電流を流しておく。初期状態としては分岐
B0,B17,6にiB0=iB1=a/2なる電流が流れる。信号線Y13
にiY1=Cなる電流、信号線X4にiX=bなる電流を同時
に流す。第2図に示す制御特性により書き込みゲートG1
11が電圧状態にスイッチするが並列に超伝導線路分岐B0
6があるので電圧状態は維持されず、iB1=IGminなる電
流を残して、a/2−IGminなる電流を分岐B06に送り出
す。ここでIGminはnΦ=LB(a−2IGmin)で規定さ
れる。nは分岐B17,B06によって構成される閉ループ内
に補捉される磁束量子数(n1)である。その後、i
Y1=iX=0とする。以上の結果書き込みゲートG111,G01
0は超伝導状態になり、iB1=IGmin,iB0=a−IGminとな
る。すなわち、iB1<iB0の「1」状態が実現する。次に
「1」を読み出す方法を示す。読み出し線S5にis=dな
る電流、信号線X4にiX=bなる電流を流す。又iB1=I
Gminである。この条件で第3図に示した制御特性を有す
る読み出しゲート12は超伝導状態のままである。読み出
し線S5の両端に電圧が発生しない事で「1」状態を判別
する。
Superconducting bias line B1 is at the branch point P8 and the branch B 1, 7 of the superconducting line branches to branch B 0 6 superconducting line, the coupling point Q9 and branch B1,7 superconducting line the superconducting line Branch B 0 6 joins. Write gate G 1 , 11 Branch B in the middle of branch B 1,7
The write gate G 0 10 is arranged in the middle of 0 6.
The signal line Y 1 3 and the signal line X 4 are electromagnetically coupled to the write gate G 1 11. The signal line Y 0 2 and the signal line X 4 are electromagnetically coupled to the write gate G 0 10. Branch B 1 7 and the read gate GS12 which electromagnetically coupled to the signal line X4 is positioned in the middle of reading line S5. Inductance of branch B 1 7 and branch B 0 6
L B1 and L B0 are equally designed to be L B1 = L B0 = L B. The control characteristics of the write gates G 1 , G 0 11, 10 are shown in FIGS. The control characteristics of the read gate GS12 are shown in FIG. The shaded area in Figures 2 and 3 indicates the gate G 1
11, G 0 10 and GS 12 are regions showing the superconducting state.
Also, i B1, i Y1, i X, i B0, i Y0, i S each branch B 1 7, signal lines
It is a current flowing through Y 1 3, signal line X 4, branch B 0 6, signal line Y 0 2, and read line S 5. The state of “1” corresponds to the state of i B1 <i B0 , and the state of “0” corresponds to the state of i B1 > i B0 . ("1"
The name "0" is for convenience and can be explained in reverse. ) Indicates a method of writing "1". Bias line B 1
A current of i B = a is passed. Branch as the initial state
A current of i B0 = i B1 = a / 2 flows through B 0 , B 1 7, 6. Signal line Y 1 3
Flow to i Y1 = C becomes current, the signal line X4 i X = b becomes current simultaneously. Due to the control characteristics shown in FIG. 2, the write gate G 1
11 switches to the voltage state, but in parallel the superconducting line branch B 0
Since there is 6, the voltage state is not maintained, and a current of i B1 = I Gmin is left, and a current of a / 2−I Gmin is sent to the branch B 0 6. Here, I Gmin is defined by nΦ 0 = L B (a−2I Gmin ). n is a branched B 1 7, B 0 6 flux quantum number that is Ho捉in the closed loop constituted by (n1). Then i
Let Y1 = i X = 0. Result write gate G 1 11, G 0 1
0 becomes a superconducting state, and i B1 = I Gmin and i B0 = a−I Gmin . That is, the “1” state of i B1 <i B0 is realized. Next, a method of reading "1" will be described. Current IS = d will read line S5, flow i X = b becomes current to the signal line X4. I B1 = I
It is Gmin . Under this condition, the read gate 12 having the control characteristic shown in FIG. 3 remains in the superconducting state. The "1" state is determined by the fact that no voltage is generated across the read line S5.

次に「0」を書き込む方法を示す。信号線Y02にiyo=c
なる電流信号線X4にiX=bなる電流を同時に流す。回路
には「1」状態が記憶されているため、iB0=a−IGmin
である。第2図に示す制御特性により、書き込みゲート
G010が電圧状態にスイッチする。しかし並列に超伝導線
路の分岐B17があるため電圧状態は維持されずiB0=I
Gminなる電流を分岐B06に残してiB1=a−IGminとな
る。その後iY0=iX=0とする。以上の結果書き込みゲ
ートG111,G010は超伝導状態になる。すなわちiB1>iB0
の「0」状態が実現する。
Next, a method of writing "0" will be described. Iyo = c on signal line Y 0 2
A current i x = b is simultaneously applied to the current signal line X4. Since the circuit stores the “1” state, i B0 = a−I Gmin
Is. Due to the control characteristics shown in FIG. 2, the write gate is
G 0 10 switches to the voltage state. However voltage state because of the branch B 1 7 superconducting line in parallel is not maintained i B0 = I
I B1 = a−I Gmin , leaving a current of Gmin in the branch B 0 6. After that, i Y0 = i X = 0. As a result the writing gate G 1 11, G 0 10 becomes superconducting state. That is i B1 > i B0
“0” state of is realized.

次に「0」を読み出す方法を示す。読み出し線S5にis=
dなる電流、信号線X4にix=bなる電流を流す。又iB1
=a−IGminである。この条件で第3図に示した制御特
性を有する読み取りゲート12は電圧状態にスイッチす
る。読み出し線S5の両端に電圧が発生する事で「0」状
態を判別する。
Next, a method of reading "0" will be described. Read line S5 is =
A current of d and a current of ix = b are applied to the signal line X4. I B1
= A-I Gmin . Under this condition, the read gate 12 having the control characteristic shown in FIG. 3 switches to the voltage state. A "0" state is determined by the voltage generated across the read line S5.

以上本発明による超伝導記憶回路により、「1」「0」
の書き込みと非破壊読み出しができる事を示した。本発
明の超伝導記憶方式と、超伝導記憶回路ではバイアス線
B1には常に電流iBが流れており、「1」書き込み時には
信号線Y13と信号線X4に同時に一時的に電流を流す。こ
の結果「1」書き込み操作の簡素化及び高速化を図る事
ができる。
As described above, by the superconducting memory circuit according to the present invention, "1""0"
It has been shown that writing and non-destructive reading can be performed. The superconducting memory system of the present invention and the bias line in the superconducting memory circuit
A current i B is always flowing in B1, and when writing “1”, a current is temporarily supplied to the signal line Y 13 and the signal line X 4 at the same time. As a result, it is possible to simplify and speed up the "1" write operation.

(実施例) 以下本発明の実施例について図面を用いて詳細に説明す
る。第4図は本発明の実施例を示す4ビットジョセフソ
ン接合高速記憶回路のアレイ構成を示す回路図である。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings. FIG. 4 is a circuit diagram showing an array configuration of a 4-bit Josephson junction high speed memory circuit showing an embodiment of the present invention.

第1図に示した超伝導記憶回路を2行×2列のアレイに
配置し、A,B,C,D4つの記憶セルを構成する。バイアス線
B113はAセルにおいて、互にインダクタンスの等しい分
岐B0123,B1124となり、Aセルと直列に連結したCセル
では互にインダクタンスの等しい分岐B0327,B1328とな
る。同様にバイアス線B214はBセルにおいて互にインダ
クタンスの等しい分岐B0225,B1226となり、Bセルと直
列に連結したDセルでは互にインダクタンスの等しい分
岐B0429,B1430となる。信号線Y0115はAセルとCセルの
書き込みゲートG0131,G0335に電磁気的に結合する。信
号線Y1116はAセルとCセルの書き込みゲートG1132,G13
36に電磁気的に結合する。信号線Y0217はBセルとDセ
ルの書き込みゲートG0233,G0437に電磁気的に結合す
る。信号線Y1218はBセルとDセルの書き込みゲートG12
34,G1438に電磁気的に結合する。又AとCの読み出しゲ
ートGS139とGS341は読み取り線S121で直列に連結され
る。BとDの読み出しゲートGS240,GS442は読み取り線S
222で直列に連結される。GS139はB1124に、GS240はB122
6に、GS341はB1328に、GS442はB1438にそれぞれ電磁気
的に結合する。更に信号線X119はAセルとBセルの書き
込みゲートG0131,G1132,G0233,G1234及び読み出しゲー
トGS139とGS240に電磁気的に結合する。信号線X220はC
セルとDセルの書き込みゲートG0335,G1336,G0437,G143
8及び読み取りゲートGS341とGS442に電磁気的に結合す
る。
The superconducting memory circuit shown in FIG. 1 is arranged in an array of 2 rows × 2 columns to form four memory cells A, B, C and D. Bias line
In the A cell, B 1 13 becomes the branches B 01 23 and B 11 24 having the same inductance, and in the C cell connected in series with the A cell, the branches B 03 27 and B 13 28 having the same inductance. Similarly, the bias line B 2 14 becomes the branches B 02 25 and B 12 26 having the same inductance in the B cell, and the branches B 04 29 and B 14 30 having the same inductance in the D cell connected in series with the B cell. Become. The signal line Y 01 15 is electromagnetically coupled to the write gates G 01 31, G 03 35 of the A cell and the C cell. The signal line Y 11 16 is a write gate for cells A and C G 11 32, G 13
Electromagnetically coupled to 36. The signal line Y 02 17 is electromagnetically coupled to the write gates G 02 33 and G 04 37 of the B cell and the D cell. The signal line Y 12 18 is a write gate G 12 for B cells and D cells.
Electromagnetically coupled to 34, G 14 38. The read gates GS 1 39 and GS 3 41 of A and C are connected in series by a read line S 1 21. The read gates GS 2 40 and GS 4 42 of B and D are read lines S
2 22 are connected in series. GS 1 39 to B 11 24, GS 2 40 to B 12 2
6, GS 3 41 is electromagnetically coupled to B 13 28, and GS 4 42 is electromagnetically coupled to B 14 38. Further signal lines X 1 19 is electromagnetically coupled to the writing of the A cell and B cell gate G 01 31, G 11 32, G 02 33, G 12 34 and the read gate GS 1 39 and GS 2 40. Signal line X 2 20 is C
Write gate for cell and D cell G 03 35, G 13 36, G 04 37, G 14 3
8 and read gates GS 3 41 and GS 4 42 electromagnetically coupled.

バイアス線B113,B214にはそれぞれaなる値の電流を流
しておく。例えばAセルに「1」を書き込む方法を示
す。Y1116にCなる値の電流、X119にbなる値の電流を
流す事によりG1132のみが電圧状態にスイッチする。そ
の結果B113を流れる電流は主にB0123に流れる。その後Y
1116,X119に流れる電流を0にする。最終的にB1124には
ゲートの最低駆動電流IGminが流れ、B0123にa−IGmin
なる値の電流が流れる。この状態はAセルが「1」を記
憶している状態である。
The bias lines B 1 13 and B 2 14 are each supplied with a current of value a. For example, a method of writing "1" in the A cell is shown. Only G 11 32 switches to the voltage state by supplying a current of C value to Y 11 16 and a current of b value to X 1 19. As a result, the current flowing in B 1 13 flows mainly in B 01 23. Then Y
The current flowing to 11 16, X 1 19 is set to 0. Finally, the minimum gate drive current I Gmin flows to B 11 24, and a-I Gmin flows to B 01 23.
The current of a certain value flows. In this state, the A cell stores "1".

次にAセルに「0」を書き込む方法を示す。Y0115にC
なる値の電流、X119にbなる値の電流をそれぞれ流す殊
によりG0131のみが電圧状態にスイッチする。その結果B
113を流れる電流は主にB1124に流れる。その後Y0115,X1
19に流れる電流を0にする。最終的にB0123にはゲート
最低駆動電流IGminが流れ、B1124にa−IGminなる値の
電流が流れる。この状態はAセルが「0」を記憶してい
る状態である。以上Aセルについて説明したが、他のセ
ルについても全く同じ原理で書き込み動作が行われる。
例えばDセルに「0」を書き込む場合はY02,17にCなる
値の電流、X220にbなる電流をそれぞれ流してB214を流
れるバイアス電流の大部分をB1430に流す。次にAセル
の情報を読み出す方法を述べる。読み取り線S121にdな
る値の電流を流し、X119にbなる電流を流す。この状態
でAセルが選択される。もしB1124にa−IGminが流れて
いる場合は、GS139が電圧状態にスイッチし読み取り線S
121の両端に電圧が発生する。この状態は「0」であ
る。又、もしB1124にIGminが流れている場合はGS139は
超伝導状態のままで読み取り線S121の両端に電圧は発生
しない。この状態は「1」である。以上の結果、B1124
に流れる電流値に対応して、非破壊でAセルの情報を読
み取る事ができる。以上Aセルについて説明したが他の
セルについても全く同じ原理で読み取り動作が行われ
る。例えばDセルの情報を読み出す場合は、S222にdな
る値の電流を流し、X220にbなる電流を流す。こ時S222
の両端に電圧が発生するか発生しないかで二つの状態を
判別する事ができる。
Next, a method of writing "0" in the A cell will be described. Y 01 to 15 C
In particular, only G 01 31 switches to the voltage state, since a current of value B and a current of value b in X 1 19 respectively flow. As a result B
The current flowing through 1 13 mainly flows into B 11 24. Then Y 01 15, X 1
The current flowing through 19 is set to 0. Finally, the gate minimum drive current I Gmin flows through B 01 23, and a current of a−I Gmin flows through B 11 24. In this state, the A cell stores "0". Although the cell A has been described above, the write operation is performed on the other cells on the same principle.
For example, when writing "0" to the D cell pass a large portion of the Y 02, 17 C a value of current, the bias current flowing through the B 2 14 by flowing b becomes current each X 2 20 to B 14 30. Next, a method of reading the information of the A cell will be described. A current having a value d is applied to the reading line S 1 21 and a current b is applied to X 1 19. In this state, cell A is selected. If a-I Gmin is flowing through B 11 24, GS 1 39 switches to voltage and the read line S
A voltage is generated across 1 1 21. This state is "0". Also, if you are the I Gmin flows in if B 11 24 GS139 is voltage across the read line S 1 21 remain in superconducting state will not occur. This state is "1". As a result, B 11 24
The information of the A cell can be read nondestructively in accordance with the value of the current flowing in the cell. The cell A has been described above, but the reading operation is performed on the other cells on the same principle. For example, when reading the information of the D cell, a current having a value of d is supplied to S 2 22 and a current of b is supplied to X 2 20. At this time S 2 22
Two states can be discriminated by whether or not a voltage is generated at both ends of.

以上4ビットについて説明したがl×mのマトリックス
アレイを構成する事によりl×mビットの記憶が可能で
ある。
Although 4 bits have been described above, 1 × m bits can be stored by forming a 1 × m matrix array.

以上の結果電流経路を変化させる事によって二値の情報
を記憶する事ができる超伝導記憶方式と超伝導記憶回路
が実現できる。
As a result, a superconducting memory system and a superconducting memory circuit that can store binary information can be realized by changing the current path.

(発明の効果) 本発明によれば「1」を書き込む操作は信号線Y1と信号
線Xに同時に信号電流を一時的に流す事で達成できる。
すなわち、「1」書き込み操作時の信号電流操作量が低
減する。以上の結果「1」書き込み操作の簡素化及び高
速化を達成する事ができる。
(Effect of the Invention) According to the present invention, the operation of writing "1" can be achieved by temporarily passing a signal current to the signal line Y1 and the signal line X at the same time.
That is, the amount of operation of the signal current at the time of writing "1" is reduced. As a result, it is possible to simplify and speed up the "1" write operation.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による超伝導記憶回路の回路図、第2図
(a),(b)は本発明の超伝導記憶回路に用いる書き
込みゲートの制御特性を示す図、第3図は本発明の超伝
導記憶回路に用いる読み取りゲートの制御特性を示す
図、第4図は本発明による実施例を示す為の4ビットジ
ョセフソン接合高速記憶回路のアレイ構成を示す回路図
である。第5図は従来の超伝導記憶回路を示す回路図で
ある。 図において、1はバイアス線B、2は信号線Y0、3は信
号線Y1、4は信号線X、5は読み出し線S、6は分岐
B0、7は分岐B1、8は分岐点P、9は結合点Q、10は書
き込みゲートG0、11は書き込みゲートG1、12は読み出し
ゲートGS、13はバイアス線B1、14はバイアス線B2、15は
信号線Y01、16は信号線Y11、17は信号線Y02、18は信号
線Y12、19は信号線X1、20は信号線X2、21は読み取り線S
1、22は読み取り線S2、23は分岐B01、24は分岐B11、25
は分岐B02、26は分岐B12、27は分岐B03、28は分岐B13
29は分岐B04、30は分岐B14、31は書き込みゲートG01、3
2は書き込みゲートG11、33は書き込みゲートG02、34は
書き込みゲートG12、35は書き込みゲートG03、36は書き
込みゲートG13、37は書き込みゲートG04、38は書き込み
ゲートG14、39は読み取りゲートGS1、40は読み取りゲー
トGS2、41は読み取りゲートGS3、42は読み取りゲートGS
4、43は信号線Iy、44は第1の分岐、45は第2の分岐、4
6は書き込みゲート、47は信号線Ix、48は信号線IY´、4
9は読み取りゲート、50は読み取り線Is。
FIG. 1 is a circuit diagram of a superconducting memory circuit according to the present invention, FIGS. 2 (a) and 2 (b) are diagrams showing control characteristics of a write gate used in the superconducting memory circuit of the present invention, and FIG. FIG. 4 is a diagram showing a control characteristic of a read gate used in the superconducting memory circuit of FIG. 4, and FIG. 4 is a circuit diagram showing an array configuration of a 4-bit Josephson junction high speed memory circuit for showing an embodiment according to the present invention. FIG. 5 is a circuit diagram showing a conventional superconducting memory circuit. In the figure, 1 is a bias line B, 2 is a signal line Y 0 , 3 is a signal line Y 1 , 4 is a signal line X, 5 is a read line S, and 6 is a branch.
B 0 , 7 are branches B 1 , 8 is a branch point P, 9 is a junction point Q, 10 is a write gate G 0 , 11 is a write gate G 1 , 12 is a read gate GS, 13 is a bias line B 1 , 14 Bias line B 2 , 15 is signal line Y 01 , 16 is signal line Y 11 , 17 is signal line Y 02 , 18 is signal line Y 12 , 19 is signal line X 1 , 20 is signal line X 2 , 21 is read Line S
1 , 22 is read line S 2 , 23 is branch B 01 , 24 is branch B 11 , 25
Is branch B 02 , 26 is branch B 12 , 27 is branch B 03 , 28 is branch B 13 ,
29 is branch B 04 , 30 is branch B 14 , 31 is write gate G 01 , 3
2 is a write gate G 11 , 33 is a write gate G 02 , 34 is a write gate G 12 , 35 is a write gate G 03 , 36 is a write gate G 13 , 37 is a write gate G 04 , 38 is a write gate G 14 , 39 Is the read gate GS 1 , 40 is the read gate GS 2 , 41 is the read gate GS 3 , 42 is the read gate GS
4 , 43 is the signal line Iy, 44 is the first branch, 45 is the second branch, 4
6 is a write gate, 47 is a signal line Ix, 48 is a signal line I Y ′, 4
9 is a read gate, 50 is a read line Is.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】超伝導電流が流れ込む点と超伝導電流が流
れ出す点を連結する、互にインダクタンスの等しい第1
と第2の超伝導線路と、第1の超伝導線路の途中に設け
られた第1の書き込みゲートと、第2の超伝導線路の途
中に設けられた第2の書き込みゲートと、第1の書き込
みゲートに電磁気的に結合する第1の信号線と、第2の
書き込みゲートに電磁気的に結合する第2の信号線と、
第1の超伝導線路と電磁気的に結合する読み出しゲート
と、この読み出しゲートが途中に配置された読み出し線
と、第1、第2の書き込みゲートと前記読み出しゲート
にそれぞれ電磁気的に結合する第3の信号線を有し、書
き込み時には第1、第3の信号線あるいは第2、第3の
信号線に電流を流すことによって、第1または第2の書
き込みゲートを一瞬電圧状態にしたあと超伝導状態にも
どしこの書き込みゲートが途中に設けられた超伝導線路
に流れる電流を他方の超伝導線路に流れる電流より少な
くかつ零とはせずしかも両線路の電流値の差は前記読み
取りゲートで判別するのに十分な大きさとし、読み出し
時には前記読み出し線および第3の信号線に電流を流す
ことによって前記読み出しゲートが超伝導状態になるか
電圧状態になるかで記憶内容を読み出すことを特徴とす
る超伝導記憶回路。
1. A first inductor having an equal inductance, which connects a point where a superconducting current flows and a point where a superconducting current flows out.
And a second superconducting line, a first write gate provided in the middle of the first superconducting line, a second write gate provided in the middle of the second superconducting line, and a first A first signal line electromagnetically coupled to the write gate, and a second signal line electromagnetically coupled to the second write gate,
A read gate that is electromagnetically coupled to the first superconducting line, a read line in which the read gate is disposed, a first and a second write gate, and a third that is electromagnetically coupled to the read gate. Has a signal line of, and at the time of writing, a current is caused to flow through the first and third signal lines or the second and third signal lines to momentarily bring the first or second write gate into a voltage state and then superconducting. Returning to this state, the current flowing in the superconducting line provided in the middle of this write gate is smaller than the current flowing in the other superconducting line and is not zero, and the difference in the current values of both lines is discriminated by the read gate. The read gate is in a superconducting state or in a voltage state by flowing a current through the read line and the third signal line during reading. Superconducting storage circuit, characterized in that for reading stored contents.
JP61079131A 1986-04-08 1986-04-08 Superconducting memory circuit Expired - Lifetime JPH0772995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61079131A JPH0772995B2 (en) 1986-04-08 1986-04-08 Superconducting memory circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61079131A JPH0772995B2 (en) 1986-04-08 1986-04-08 Superconducting memory circuit

Publications (2)

Publication Number Publication Date
JPS62236198A JPS62236198A (en) 1987-10-16
JPH0772995B2 true JPH0772995B2 (en) 1995-08-02

Family

ID=13681394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61079131A Expired - Lifetime JPH0772995B2 (en) 1986-04-08 1986-04-08 Superconducting memory circuit

Country Status (1)

Country Link
JP (1) JPH0772995B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020840B2 (en) * 1982-05-14 1985-05-23 工業技術院長 Magnetic flux quantum memory storage cell

Also Published As

Publication number Publication date
JPS62236198A (en) 1987-10-16

Similar Documents

Publication Publication Date Title
CN108352180B (en) Josephson magnetic random access memory with inductive shunt
US20200176662A1 (en) Superconducting switch having a persistent and a non-persistent state
AU2016230007B2 (en) Phase hysteretic magnetic josephson junction memory cell
JP2962251B2 (en) Superconducting memory device
KR101690855B1 (en) Josephson magnetic memory cell system
US6177204B1 (en) Ferromagnetic GMR material and method of forming and using
US3643237A (en) Multiple-junction tunnel devices
AU2019366860B2 (en) Quantizing loop memory cell system
JPH09139068A (en) Information recording/reproducing method and information storage
Gueret et al. Investigations for a Josephson computer main memory with single-flux-quantum cells
JPH0226886B2 (en)
EP0506345B1 (en) Josephson logic gate having a plurality of input ports and a Josephson logic circuit that uses such a Josephson logic gate
US4176290A (en) Superconductive Josephson circuit device
WO2019177672A1 (en) Superconducting memory system with stacked drivers and differential transformers
Wada Josephson memory technology
JPH0772995B2 (en) Superconducting memory circuit
US4611132A (en) Circuit utilizing Josephson effect
CN113474839B (en) Use of magnetic josephson junction devices as pi inverters
JPH03235419A (en) Josephson integrated circuit driven by dc power supply
EP0048115B1 (en) Decoder circuit utilising josephson devices
JPH05799B2 (en)
JPH0413799B2 (en)
US3460102A (en) Associative superconductive layer storer
JPH07118199B2 (en) Josephson Destructive Read Memory Circuit
JPH0381240B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term