JPH0772283A - Condensate make-up water device - Google Patents

Condensate make-up water device

Info

Publication number
JPH0772283A
JPH0772283A JP5219825A JP21982593A JPH0772283A JP H0772283 A JPH0772283 A JP H0772283A JP 5219825 A JP5219825 A JP 5219825A JP 21982593 A JP21982593 A JP 21982593A JP H0772283 A JPH0772283 A JP H0772283A
Authority
JP
Japan
Prior art keywords
water
condensate
quality monitoring
storage facility
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5219825A
Other languages
Japanese (ja)
Other versions
JP3234065B2 (en
Inventor
Nobuo Ishida
暢生 石田
Yoshikazu Kanouchi
良和 叶内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP21982593A priority Critical patent/JP3234065B2/en
Publication of JPH0772283A publication Critical patent/JPH0772283A/en
Application granted granted Critical
Publication of JP3234065B2 publication Critical patent/JP3234065B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To provide a condensate make-up water device which prevent generation of hunting in measured indication values by monitoring water altogether after sufficiently mixing reservoir water and excess water in a condensate reservoir equipment or monitoring along the reservoir water. CONSTITUTION:A condensate make-up water device 22 supplies control water load 12 with the reservoir water 17 of a condensate reservoir equipment 15 and the excess water of a condensate demineralizing device 6 altogether as plant make-up water 16. Between the condensate reservoir equipment 15 and the load 12, a water supply piping 14 provided on the way with a condensate transportation pump 13 and a water monitoring device 19 is connected. Upstream the condensate transportation pump 13 in the water supply piping 14, a connection piping 10 having a check valve 23 is connected with the condensate demineralizing device 6 and a return water piping 24 is connected in between the upstream of the check valve 23 and the condensate reservoir equipment 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子力プラントにおけ
る制御水の供給装置に係り、特にプラント補給水の水質
監視が容易な復水補給水装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control water supply system in a nuclear power plant, and more particularly to a condensate replenishment water system which facilitates monitoring of the water quality of plant makeup water.

【0002】[0002]

【従来の技術】従来の復水補給水装置は図4の原子力プ
ラントの要部概要構成図に示すように、主蒸気系の原子
炉圧力容器1で発生した主蒸気2は、タービン3を駆動
させた後に復水器4で凝縮されて復水5となる。その後
に復水5は復水脱塩装置6で浄化されて再び原子炉圧力
容器1へ戻る閉ループを構成している。
2. Description of the Related Art In a conventional condensate makeup water supply system, a main steam 2 generated in a reactor pressure vessel 1 of a main steam system drives a turbine 3 as shown in a schematic configuration diagram of a main part of a nuclear power plant in FIG. After this, the water is condensed in the condenser 4 and becomes condensed water 5. Thereafter, the condensate 5 is purified by the condensate demineralizer 6 and constitutes a closed loop which returns to the reactor pressure vessel 1 again.

【0003】また、この主蒸気系には、(1) 再循環ポン
プパージ水、(2) 原子炉冷却材浄化系ポンプパージ水、
(3) 制御棒駆動系冷却水、(4) 復水器補給水、(5) グラ
ンド蒸気浄化器補給水、等が外部から流入するが、これ
らは主蒸気系にとっては余剰水となるものである。
The main steam system also includes (1) recirculation pump purge water, (2) reactor coolant purification system pump purge water,
(3) Control rod drive system cooling water, (4) Condenser make-up water, (5) Grand steam purifier make-up water, etc. flow in from the outside, but these are excess water for the main steam system. is there.

【0004】従って、この余剰分の補給水等に相当する
流量を復水脱塩装置6の出口側より分岐させて、一定流
量を主蒸気系外へ放出している。なお、以後この放出水
を復水脱塩装置6からの戻り水と呼ぶ。また、この戻り
水は制御棒駆動水ポンプ7の水源として制御棒駆動系負
荷8に一定流量を給水しているが、「戻り水>制御棒駆
動水ポンプの給水」の関係にあることから、戻り水の一
部(点線矢印)9は余剰水として連絡配管10を経由して
復水補給水装置11の復水補給水系の各負荷12へ供給され
ている。
Therefore, a flow rate corresponding to the surplus makeup water or the like is branched from the outlet side of the condensate demineralizer 6 to discharge a constant flow rate to the outside of the main steam system. Note that, hereinafter, this discharged water is referred to as return water from the condensate desalination device 6. Further, this return water supplies a constant flow rate to the control rod drive system load 8 as a water source of the control rod drive water pump 7. However, since there is a relation of “return water> supply of control rod drive water pump”, Part of the return water (dotted arrow) 9 is supplied as excess water to each load 12 of the condensate makeup water system of the condensate makeup water system 11 via the connecting pipe 10.

【0005】このように、戻り水の一部9は常時一定流
量を復水補給水系側へ供給されているが、一方、復水補
給水系の負荷12は、使用頻度と使用流量が共に様々であ
る。例えば、復水補給水系の負荷12がほとんど供給水を
必要としない場合では、「復水移送ポンプ13の吐出量<
戻り水の一部9」となり、このために戻り水の一部9
は、給水配管14を逆流して復水貯蔵設備15へ送水される
こともある。
As described above, a part of the return water 9 is constantly supplied to the condensate makeup water system side at a constant flow rate. On the other hand, the load 12 of the condensate makeup water system has various usage frequencies and usage flow rates. is there. For example, when the load 12 of the condensate makeup water system requires almost no supply water, “the discharge amount of the condensate transfer pump 13 <
Part 9 of the return water, and for this reason part 9 of the return water
The water may flow back through the water supply pipe 14 and be sent to the condensate storage facility 15.

【0006】なお、前記復水補給水系の各負荷12への供
給水を以降はプラント補給水と呼び白矢印16で示す。ま
た、復水補給水系の負荷12でのプラント補給水16の必要
量が増加した場合には、戻り水の一部9だけでは必要量
を全て供給することができないため、不足分を復水貯蔵
設備15の貯溜水(実線矢印)17が供給され、両者が混合
されて復水補給水系の負荷12へプラント補給水16として
供給される。
The water supplied to each load 12 of the condensate makeup water system will be hereinafter referred to as plant makeup water and indicated by a white arrow 16. In addition, when the required amount of the plant makeup water 16 at the load 12 of the condensate makeup water system increases, it is not possible to supply all the required amount with only a part of the return water 9. The stored water (solid arrow) 17 of the facility 15 is supplied, and both are mixed and supplied as plant makeup water 16 to the load 12 of the condensate makeup water system.

【0007】従って、復水補給水系の負荷12へ供給され
るプラント補給水16は、復水貯蔵設備15からの貯溜水17
と復水脱塩装置6からの戻り水の一部9が混合されたも
のであり、その混合比については、復水補給水系の各負
荷12の需要状態等が変動することに伴って変化する。
Therefore, the plant make-up water 16 supplied to the load 12 of the condensate make-up water system is the stored water 17 from the condensate storage facility 15.
And a part 9 of the return water from the condensate demineralizer 6 are mixed, and the mixing ratio changes as the demand state of each load 12 of the condensate makeup water system changes. .

【0008】また、図5の構成図に示すように従来の復
水補給水装置11においては、その水質監視に関して、復
水補給水系の負荷12へ供給するプラント補給水16の一部
を復水移送ポンプ13の下流の採水点18より分岐させ、水
質監視装置19に導いて連続的に水質監視を行っている。
Further, as shown in the configuration diagram of FIG. 5, in the conventional condensate replenishment water system 11, part of the plant replenishment water 16 supplied to the load 12 of the condensate replenishment water system is reconstituted with respect to water quality monitoring. Water is branched from a water sampling point 18 downstream of the transfer pump 13 and led to a water quality monitoring device 19 for continuous water quality monitoring.

【0009】ここで水質監視をしたプラント補給水の一
部は、前記復水移送ポンプ13の上流における戻し点20に
戻る閉ループが構成されている。なお、復水貯蔵設備15
には別途、廃棄物処理系21からの浄化処理水が導入され
る。
A part of the plant makeup water, whose water quality has been monitored, returns to the return point 20 upstream of the condensate transfer pump 13 to form a closed loop. Condensate storage facility 15
Purified treated water from the waste treatment system 21 is separately introduced into.

【0010】[0010]

【発明が解決しようとする課題】上記の復水補給水装置
11においては、水質監視装置19に流入するプラント補給
水16には、復水貯蔵設備15からの貯溜水17と復水脱塩装
置6からの戻り水の一部9が混合されたものである。こ
れは、復水補給水系の負荷12へ供給するプラント補給水
16と同一水質を有するものであり、本復水補給水装置11
におけるプラント補給水16の水質監視の目的には合致し
たものであるが、その一方で貯溜水17のみの水質を単独
に監視することはできなかった。
DISCLOSURE OF THE INVENTION Condensate make-up water device
In 11, the plant makeup water 16 flowing into the water quality monitoring device 19 is a mixture of the stored water 17 from the condensate storage facility 15 and a part 9 of the return water from the condensate desalination device 6. . This is the plant make-up water supplied to the load 12 of the condensate make-up water system.
It has the same water quality as 16
Although it was consistent with the purpose of monitoring the water quality of the plant makeup water 16 in, the water quality of only the stored water 17 could not be monitored independently.

【0011】また、原子力プラントの通常運転時におい
て、プラント補給水16を構成する復貯溜水17と戻り水の
一部9との混合比が変動する場合があり、このことから
連続的に水質監視している導電率が一定とならずに変化
し、指示値がハンチングを起こす不具合が生じる。
Further, during the normal operation of the nuclear power plant, the mixing ratio of the reconstituted stored water 17 and the part of the return water 9 which compose the plant makeup water 16 may fluctuate. The conductivity that is being applied changes instead of becoming constant, causing a problem that the indicated value causes hunting.

【0012】この指示値がハンチングする原因として
は、貯溜水17と、復水脱塩装置6からの戻り水の一部9
の導電率には、一般に1桁程度の大きな差があり、この
ために混合比によって導電率が大幅に変化することから
指示値が変動することが考えられる。
The cause of the hunting of the indicated value is the stored water 17 and a part 9 of the return water from the condensate demineralizer 6.
In general, there is a large difference of about one digit in the electric conductivity, and therefore the electric conductivity greatly changes depending on the mixing ratio, so that the indicated value may change.

【0013】本発明の目的とするところは、復水貯蔵設
備において貯溜水と余剰水を十分に混合し一括して水質
監視をするか、貯溜水を単独にて水質監視するかにより
測定指示値にハンチングの生じない復水補給水装置を提
供することにある。
The object of the present invention is to determine whether the stored water and the surplus water are sufficiently mixed and collectively monitored for water quality in the condensate storage facility, or whether the stored water is monitored independently for the measurement indication value. Another object of the present invention is to provide a condensate replenishing water device that does not cause hunting.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
請求項1記載の発明に係る復水補給水装置は、復水貯蔵
設備の貯溜水と復水脱塩装置の余剰水を併せてプラント
補給水として制御水の負荷に供給する復水補給水装置に
おいて、前記復水貯蔵設備と負荷の間に復水移送ポンプ
と水質監視装置を並列にして介挿した給水配管を接続
し、この給水配管における前記復水移送ポンプの上流側
に復水脱塩装置より逆止弁を介挿した連絡配管を接続す
ると共に、逆止弁の上流側と前記復水貯蔵設備との間に
戻り水配管を接続したことを特徴とする。
In order to achieve the above object, a condensate replenishing water device according to the invention of claim 1 is a plant that combines the stored water of a condensate storage facility and the surplus water of a condensate desalination device. In a condensate make-up water device for supplying a load of control water as make-up water, a water supply pipe having a condensate transfer pump and a water quality monitoring device arranged in parallel is connected between the condensate storage facility and the load, and this water supply A connecting pipe having a check valve inserted from a condensate demineralizer is connected to the upstream side of the condensate transfer pump in the pipe, and a return water pipe is provided between the upstream side of the check valve and the condensate storage facility. It is characterized by connecting.

【0015】また、請求項2記載の発明に係る復水補給
水装置は、復水貯蔵設備の貯溜水と復水脱塩装置の余剰
水を併せてプラント補給水として制御水の負荷に供給す
る復水補給水装置において、前記復水貯蔵設備と負荷の
間に復水移送ポンプと水質監視装置を並列にして介挿し
た給水配管を接続し、この給水配管の前記復水移送ポン
プの上流側に復水脱塩装置より連絡配管を接続すると共
に、前記復水移送ポンプの上流側と復水貯蔵設備の間に
ブースタポンプと第2の水質監視装置を介挿した水質監
視配管を接続したことを特徴とする。
In the condensate make-up water device according to the second aspect of the present invention, the stored water of the condensate storage facility and the surplus water of the condensate demineralizer are supplied together to the control water load as plant make-up water. In the condensate replenishment water system, a condensate transfer pump and a water quality monitoring device are connected in parallel between the condensate storage facility and the load, and a water supply pipe is connected between the condensate storage facility and the load. A connecting pipe was connected from the condensate desalination device to the above, and a water quality monitoring pipe having a booster pump and a second water quality monitoring device was connected between the upstream side of the condensate transfer pump and the condensate storage facility. Is characterized by.

【0016】さらに、請求項3記載の発明に係る復水補
給水装置は、復水貯蔵設備の貯溜水と復水脱塩装置の余
剰水を併せてプラント補給水として制御水の負荷に供給
する復水補給水装置において、前記復水貯蔵設備と負荷
の間に復水移送ポンプと水質監視装置を並列にして介挿
した給水配管を接続し、この給水配管の前記復水移送ポ
ンプの上流側に復水脱塩装置より連絡配管を接続すると
共に、前記復水貯蔵設備に第2の水質監視装置を介挿し
てドレンに連通する水質監視配管を接続したことを特徴
とする。
Further, in the condensate make-up water device according to the third aspect of the present invention, the stored water of the condensate storage facility and the surplus water of the condensate desalination device are combined and supplied to the control water load as plant make-up water. In the condensate replenishment water system, a condensate transfer pump and a water quality monitoring device are connected in parallel between the condensate storage facility and the load, and a water supply pipe is connected between the condensate storage facility and the load. A connecting pipe is connected to the condensate demineralizer, and a water quality monitoring pipe communicating with a drain is connected to the condensate storage facility via a second water quality monitoring device.

【0017】[0017]

【作用】請求項1記載の発明によれば、復水脱塩装置の
余剰水は逆止弁によりプラント補給水に直接混入しない
ようにし、一旦、全て復水貯蔵設備に導入して、復水貯
蔵設備内にて混合して均一化した貯溜水とした後に、プ
ラント補給水として制御水の負荷に供給する。また、水
質測定については復水貯蔵設備内にて水質が均一化され
たプラント補給水の一部を水質監視装置に導入して連続
的に測定する。
According to the first aspect of the present invention, excess water of the condensate demineralizer is prevented from being mixed directly into the plant makeup water by the check valve, and once introduced into the condensate storage facility, the condensate is condensed. After being mixed and made uniform in the storage facility to make stored water, it is supplied to the load of control water as plant makeup water. For water quality measurement, a part of the plant makeup water whose water quality is made uniform in the condensate storage facility is introduced into the water quality monitoring device and continuously measured.

【0018】請求項2記載の発明では、復水貯蔵設備内
の貯溜水と復水脱塩装置の余剰水を混合し、プラント補
給水として制御水の負荷に供給する。また、水質測定
は、プラント補給水は水質監視装置により連続的に測定
する。さらに、復水貯蔵設備内の貯溜水はブースタポン
プを運転することによりで単独で第2の水質監視装置に
より連続して測定する。
According to the second aspect of the present invention, the stored water in the condensate storage facility and the surplus water of the condensate demineralizer are mixed and supplied to the control water load as plant makeup water. In addition, in the water quality measurement, plant makeup water is continuously measured by a water quality monitoring device. Further, the stored water in the condensate storage facility is continuously measured by the second water quality monitoring device by operating the booster pump.

【0019】請求項3記載の発明は、復水貯蔵設備内の
貯溜水と復水脱塩装置の余剰水を混合し、プラント補給
水として制御水の負荷に供給する。また、水質測定につ
いては、プラント補給水は水質監視装置により連続的に
測定すると共に、貯溜水については単独で復水貯蔵設備
より水質監視配管を経由してドレンに流下する途中で第
2の水質監視装置により連続して測定する。
According to the third aspect of the present invention, the stored water in the condensate storage facility and the surplus water of the condensate demineralizer are mixed and supplied to the control water load as plant makeup water. For water quality measurement, the plant makeup water is continuously measured by a water quality monitoring device, and for the stored water, the second water quality is measured on the way from the condensate storage facility to the drain via the water quality monitoring pipe. Measure continuously with a monitoring device.

【0020】[0020]

【実施例】本発明の一実施例を図面を参照して説明す
る。なお、上記した従来技術と同一構成部分については
同一符号を付して詳細な説明を省略する。原子力プラン
トにおける主蒸気系は上記図4に示すように、原子炉圧
力容器1で発生した主蒸気2は、タービン3を駆動させ
た後に復水器4で凝縮されて復水5となる。その後に復
水5は復水脱塩装置6で浄化されて再び原子炉圧力容器
1へ戻る閉ループを構成している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. It should be noted that the same components as those of the above-described conventional technique are designated by the same reference numerals and detailed description thereof will be omitted. In the main steam system in a nuclear power plant, as shown in FIG. 4, the main steam 2 generated in the reactor pressure vessel 1 is condensed in a condenser 4 into a condensed water 5 after driving a turbine 3. Thereafter, the condensate 5 is purified by the condensate demineralizer 6 and constitutes a closed loop which returns to the reactor pressure vessel 1 again.

【0021】復水脱塩装置6における余剰分は復水脱塩
装置6の出口側より分岐させて、一定流量を主蒸気系外
へ放出され、復水脱塩装置6からの戻り水として制御棒
駆動水ポンプ7の水源として制御棒駆動系負荷8に一定
流量を給水している。また、戻り水の一部(点線矢印)
9は余剰水として復水補給水系の各負荷12へ供給されて
いる。
The surplus in the condensate desalination unit 6 is branched from the outlet side of the condensate desalination unit 6 and discharged at a constant flow rate outside the main steam system, and is controlled as return water from the condensate desalination unit 6. As a water source of the rod drive water pump 7, a constant flow rate is supplied to the control rod drive system load 8. Also, part of the return water (dotted arrow)
9 is supplied as excess water to each load 12 of the condensate makeup water system.

【0022】第1実施例については図1の構成図に示す
ように、復水補給水装置22は、廃棄物処理系21からの浄
化処理水が導入される復水貯蔵設備15と、この復水貯蔵
設備15には貯溜水17を復水補給水系の各負荷12へ供給す
る復水移送ポンプ13を介挿した給水配管14が接続されて
いる。
In the first embodiment, as shown in the configuration diagram of FIG. 1, the condensate makeup water supply device 22 includes a condensate storage facility 15 into which purified treated water from the waste treatment system 21 is introduced, and the condensate storage device 15. A water supply pipe 14 having a condensate transfer pump 13 for supplying stored water 17 to each load 12 of the condensate makeup water system is connected to the water storage facility 15.

【0023】また、この給水配管14には前記復水移送ポ
ンプ13を挟さんだ採水点18より分岐し水質監視装置19を
経由して戻し点20に戻る水質監視系の閉ループが形成さ
れている。さらに復水脱塩装置6からは、戻り水の一部
9を導入する連絡配管10を経由して戻り水配管24が復水
貯蔵設備15に接続され、また、復水移送ポンプ13の上流
と連絡配管10の間には、戻り水の一部9の流入を阻止す
る逆止弁23が接続されて構成している。
In addition, a closed loop of the water quality monitoring system is formed in the water supply pipe 14 and branches from a water sampling point 18 with the condensate transfer pump 13 interposed and returns to a return point 20 via a water quality monitoring device 19. . Further, from the condensate demineralizer 6, a return water pipe 24 is connected to the condensate storage facility 15 via a communication pipe 10 for introducing a part 9 of the return water, and is also connected to the upstream of the condensate transfer pump 13. A check valve 23 for blocking the inflow of a part 9 of the return water is connected between the connecting pipes 10.

【0024】次に上記構成による作用について説明す
る。復水脱塩装置6からの戻り水は制御棒駆動水ポンプ
7により制御棒駆動系負荷8に供給されると共に、その
戻り水の一部9は連絡配管10と戻り水配管24を経由し
て、全て一旦、復水貯蔵設備15に流入し、内部で混合さ
れて貯溜水17として貯溜されることにより水質は平均化
される。
Next, the operation of the above configuration will be described. Return water from the condensate demineralizer 6 is supplied to the control rod drive system load 8 by the control rod drive water pump 7, and a part of the return water 9 passes through the connecting pipe 10 and the return water pipe 24. The water quality is averaged by once flowing into the condensate storage facility 15, mixed internally and stored as the stored water 17.

【0025】この均一化された復水貯蔵設備15内の貯溜
水17は、復水移送ポンプ13の運転により給水配管14を介
して復水補給水系の負荷12に対し、プラント補給水16と
して供給される。すなわち、比較的少量の戻り水の一部
9(例えば流量約20m3 /h)は、極めて大容量の復水
貯蔵設備15(一般に貯蔵容量約2000m3 )内に導入され
て、貯溜水17と混合されることからその導電率は均一化
され、且つ復水貯蔵設備15内における貯溜水17の水質変
動は極めて緩やかとなる。
The uniformed stored water 17 in the condensate storage facility 15 is supplied as plant make-up water 16 to the load 12 of the condensate make-up water system through the water supply pipe 14 by the operation of the condensate transfer pump 13. To be done. That is, a comparatively small amount of the return water 9 (for example, a flow rate of about 20 m 3 / h) is introduced into an extremely large-capacity condensate storage facility 15 (generally, a storage capacity of about 2000 m 3 ) and stored water 17 Since they are mixed, their electrical conductivity is made uniform, and the water quality fluctuations of the stored water 17 in the condensate storage facility 15 become extremely gentle.

【0026】さらに、この貯溜水17の一部は復水移送ポ
ンプ13の下流の採水点18から水質監視装置19に導かれて
水質が測定され、戻し点20より給水配管に戻される。こ
こで測定される水質については、復水貯蔵設備15内の貯
溜水17とプラント補給水16が同一水質であることから、
水質監視装置19において両者が一括して測定することが
できる。
Further, a part of the stored water 17 is guided from a water sampling point 18 downstream of the condensate transfer pump 13 to a water quality monitoring device 19 to measure the water quality, and returned to a water supply pipe from a return point 20. Regarding the water quality measured here, since the stored water 17 in the condensate storage facility 15 and the plant makeup water 16 have the same water quality,
Both can be collectively measured by the water quality monitoring device 19.

【0027】また、水質監視に際しての指示値のハンチ
ングの原因となる導電率の変化については、大容量の貯
溜水17中に比較的少量の戻り水の一部9が流入して混合
されることから、水質監視装置19に導かれた貯溜水17の
水質変動は極めて緩やかに行われるため、水質測定結果
である指示値にハンチングが発生することはない。
Regarding the change in conductivity which causes hunting of the indicated value when monitoring the water quality, a relatively small amount of a part of the return water 9 flows into the large amount of stored water 17 and is mixed. From this, since the water quality variation of the stored water 17 guided to the water quality monitoring device 19 is performed extremely gently, hunting does not occur in the indicated value which is the water quality measurement result.

【0028】第2実施例においては図2の構成図に示す
ように、復水補給水装置25の概要構成は図5に示す従来
のものとほぼ同様であるが、復水貯蔵設備15と給水配管
14における連絡配管10の接続点から復水移送ポンプ13寄
りの間にブースタポンプ26と第2の水質監視装置27を介
挿した水質監視配管28を接続して構成されている。
In the second embodiment, as shown in the configuration diagram of FIG. 2, the general configuration of the condensate replenishing water device 25 is almost the same as the conventional one shown in FIG. Piping
A booster pump 26 and a water quality monitoring pipe 28, in which a second water quality monitoring device 27 is inserted, are connected between the connection point of the communication pipe 10 at 14 and the condensate transfer pump 13 side.

【0029】上記構成による作用としては、復水脱塩装
置6からの戻り水の一部9が連絡配管10を経由して給水
配管14に流入する。また、貯溜水17も給水配管14を流下
して前記戻り水の一部9と合体し、復水移送ポンプ13を
介してプラント補給水16として復水補給水系の負荷12に
供給される。
As a function of the above structure, a part 9 of the return water from the condensate demineralizer 6 flows into the water supply pipe 14 via the connecting pipe 10. The stored water 17 also flows down through the water supply pipe 14 and merges with the part 9 of the return water, and is supplied via the condensate transfer pump 13 as plant makeup water 16 to the load 12 of the condensate makeup water system.

【0030】この時のプラント補給水16の水質は、復水
移送ポンプ13で撹拌混合された後にその一部が水質監視
装置19に送られて測定されるが、復水貯蔵設備15内の貯
溜水17については、ブースタポンプ26の運転により水質
監視配管28を通り、第2の水質監視装置27において導電
率が連続的に測定、監視される。
The water quality of the plant makeup water 16 at this time is stirred and mixed by the condensate transfer pump 13 and then part of it is sent to the water quality monitoring device 19 for measurement. The water 17 passes through the water quality monitoring pipe 28 by the operation of the booster pump 26, and the conductivity is continuously measured and monitored by the second water quality monitoring device 27.

【0031】しかも、この測定される貯溜水17は単独で
一定量が第2の水質監視装置27を経由してブースタポン
プ26により給水配管14に圧送されるので、戻り水の一部
9およびプラント補給水16との接触はなく、従って、そ
の指示値が変化してハンチングが生じることはない。
Moreover, the measured stored water 17 alone is pumped to the water supply pipe 14 by the booster pump 26 via the second water quality monitoring device 27, so that a part of the return water 9 and the plant. There is no contact with make-up water 16, and therefore the indicated value does not change and hunting does not occur.

【0032】第3実施例においては図3の構成図に示す
ように、復水補給水装置29の概要構成は図5に示す従来
のものとほぼ同様であるが、復水貯蔵設備15には途中に
第2の水質監視装置27を介挿し、その先端がドレン30に
到達している水質監視配管28を接続した構成している。
In the third embodiment, as shown in the configuration diagram of FIG. 3, the general configuration of the condensate replenishing water device 29 is almost the same as the conventional one shown in FIG. A second water quality monitoring device 27 is inserted on the way, and a water quality monitoring pipe 28 whose tip reaches a drain 30 is connected.

【0033】この構成による作用としては、上記第2実
施例と同様に戻り水の一部9と貯溜水17が復水移送ポン
プ13で撹拌混合されてプラント補給水16として復水補給
水系の負荷12に供給されると共に、この一部が水質監視
装置19に送られて水質を測定される。
As in the case of the second embodiment, part of the return water 9 and the stored water 17 are agitated and mixed by the condensate transfer pump 13 and the plant makeup water 16 is loaded into the condensate makeup water system. While being supplied to 12, a part of this is sent to the water quality monitoring device 19 to measure the water quality.

【0034】また、復水貯蔵設備15内の貯溜水17はにつ
いては、復水貯蔵設備15より水質監視配管28を介してド
レン30に流下する途中で、第2の水質監視装置27により
連続的に導電率の測定がされ、前記連絡配管10および給
水配管14との連通がないので、戻り水の一部9およびプ
ラント補給水16との接触がなく、従って、第2の水質監
視装置27が測定する貯溜水17単独の導電率には変化が生
じないので、その指示値にハンチングは起きない。
The stored water 17 in the condensate storage facility 15 is continuously supplied by the second water quality monitoring device 27 while flowing down from the condensate storage facility 15 through the water quality monitoring pipe 28 to the drain 30. Since the conductivity is measured and there is no communication with the communication pipe 10 and the water supply pipe 14, there is no contact with the part 9 of the return water and the plant makeup water 16, and therefore the second water quality monitoring device 27 Since the conductivity of the measured stored water 17 alone does not change, hunting does not occur in the indicated value.

【0035】[0035]

【発明の効果】以上本発明によれば、プラントの各負荷
に制御水としてプラント補給水を供給する復水補給水装
置において、復水貯蔵設備に貯溜した貯溜水の水質監視
が連続して、しかも指示値にハンチングを起こすことな
く容易に測定できる効果がある。
As described above, according to the present invention, in the condensate make-up water device for supplying the plant make-up water as control water to each load of the plant, the water quality of the stored water stored in the condensate storage facility is continuously monitored, Moreover, there is an effect that the indicated value can be easily measured without causing hunting.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る第1実施例の復水補給水装置の系
統構成図。
FIG. 1 is a system configuration diagram of a condensate makeup water supply device according to a first embodiment of the present invention.

【図2】本発明に係る第2実施例の復水補給水装置の系
統構成図。
FIG. 2 is a system configuration diagram of a condensate makeup water supply device according to a second embodiment of the present invention.

【図3】本発明に係る第3実施例の復水補給水装置の系
統構成図。
FIG. 3 is a system configuration diagram of a condensate makeup water supply device according to a third embodiment of the present invention.

【図4】従来の原子力プラントの復水補給水系の概略系
統図。
FIG. 4 is a schematic system diagram of a condensate makeup water system of a conventional nuclear power plant.

【図5】従来の復水補給水装置の系統構成図。FIG. 5 is a system configuration diagram of a conventional condensate makeup water supply device.

【符号の説明】[Explanation of symbols]

1…原子炉圧力容器、2…主蒸気、3…タービン、4…
復水器、5…復水、6…復水脱塩装置、7…制御棒駆動
水ポンプ、8…制御棒駆動系負荷、9…戻り水の一部
(点線矢印)、10…連絡配管、11,22,25,29…復水補
給水装置、12…復水補給水系の負荷、13…復水移送ポン
プ、14…給水配管、15…復水貯蔵設備、16…プラント補
給水(白矢印)、17…貯溜水(実線矢印)、18…採水
点、19…水質監視装置、20…戻し点、21…廃棄物処理
系、23…逆止弁、24…戻り水配管、26…ブースタポン
プ、27…第2の水質監視装置、28…水質監視配管、30…
ドレン。
1 ... Reactor pressure vessel, 2 ... Main steam, 3 ... Turbine, 4 ...
Condenser, 5 ... Condensate, 6 ... Condensate demineralizer, 7 ... Control rod drive water pump, 8 ... Control rod drive system load, 9 ... Part of return water (dotted arrow), 10 ... Communication pipe, 11, 22, 25, 29 ... Condensate make-up water device, 12 ... Condensate make-up water system load, 13 ... Condensate transfer pump, 14 ... Water supply pipe, 15 ... Condensate storage facility, 16 ... Plant make-up water (white arrow) ), 17 ... Stored water (solid arrow), 18 ... Water sampling point, 19 ... Water quality monitoring device, 20 ... Return point, 21 ... Waste treatment system, 23 ... Check valve, 24 ... Return water pipe, 26 ... Booster Pump, 27 ... Second water quality monitoring device, 28 ... Water quality monitoring pipe, 30 ...
Drain.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 復水貯蔵設備の貯溜水と復水脱塩装置の
余剰水を併せてプラント補給水として制御水の負荷に供
給する復水補給水装置において、前記復水貯蔵設備と負
荷の間に復水移送ポンプと水質監視装置を並列にして介
挿した給水配管を接続し、この給水配管における前記復
水移送ポンプの上流側に復水脱塩装置より逆止弁を介挿
した連絡配管を接続すると共に、逆止弁の上流側と前記
復水貯蔵設備との間に戻り水配管を接続したことを特徴
とする復水補給水装置。
1. A condensate replenishment water device for supplying stored water of a condensate water storage facility and surplus water of a condensate desalination device together as control water to a load of control water, wherein: A condensate transfer pump and a water quality monitoring device are connected in parallel between them to connect a water supply pipe, and a check valve is inserted from the condensate desalination device upstream of the condensate transfer pump in this water supply pipe. A condensate make-up water device, characterized in that a return water pipe is connected between the upstream side of the check valve and the condensate storage facility while connecting the pipe.
【請求項2】 復水貯蔵設備の貯溜水と復水脱塩装置の
余剰水を併せてプラント補給水として制御水の負荷に供
給する復水補給水装置において、前記復水貯蔵設備と負
荷の間に復水移送ポンプと水質監視装置を並列にして介
挿した給水配管を接続し、この給水配管の前記復水移送
ポンプの上流側に復水脱塩装置より連絡配管を接続する
と共に、前記復水移送ポンプの上流側と復水貯蔵設備の
間にブースタポンプと第2の水質監視装置を介挿した水
質監視配管を接続したことを特徴とする復水補給水装
置。
2. A condensate replenishment water device for supplying stored water of a condensate storage facility and surplus water of a condensate desalination device together to a load of control water as plant makeup water, wherein A condensate transfer pump and a water quality monitoring device are connected in parallel between them to connect a water supply pipe, and a connection pipe from a condensate desalination device is connected to the upstream side of the condensate transfer pump of this water supply pipe, and A condensate replenishing water device, characterized in that a booster pump and a water quality monitoring pipe having a second water quality monitoring device are connected between the upstream side of the condensate transfer pump and the condensate storage facility.
【請求項3】 復水貯蔵設備の貯溜水と復水脱塩装置の
余剰水を併せてプラント補給水として制御水の負荷に供
給する復水補給水装置において、前記復水貯蔵設備と負
荷の間に復水移送ポンプと水質監視装置を並列にして介
挿した給水配管を接続し、この給水配管の前記復水移送
ポンプの上流側に復水脱塩装置より連絡配管を接続する
と共に、前記復水貯蔵設備に第2の水質監視装置を介挿
してドレンに連通する水質監視配管を接続したことを特
徴とする復水補給水装置。
3. A condensate replenishment water device for supplying stored water of a condensate water storage device and surplus water of a condensate desalination device together as plant make-up water to a load of control water. A condensate transfer pump and a water quality monitoring device are connected in parallel between them to connect a water supply pipe, and a connection pipe from a condensate desalination device is connected to the upstream side of the condensate transfer pump of this water supply pipe, and A condensate replenishment water device characterized in that a water quality monitoring pipe communicating with a drain is connected to a condensate storage facility by inserting a second water quality monitoring device.
JP21982593A 1993-09-03 1993-09-03 Condensate makeup water system Expired - Lifetime JP3234065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21982593A JP3234065B2 (en) 1993-09-03 1993-09-03 Condensate makeup water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21982593A JP3234065B2 (en) 1993-09-03 1993-09-03 Condensate makeup water system

Publications (2)

Publication Number Publication Date
JPH0772283A true JPH0772283A (en) 1995-03-17
JP3234065B2 JP3234065B2 (en) 2001-12-04

Family

ID=16741637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21982593A Expired - Lifetime JP3234065B2 (en) 1993-09-03 1993-09-03 Condensate makeup water system

Country Status (1)

Country Link
JP (1) JP3234065B2 (en)

Also Published As

Publication number Publication date
JP3234065B2 (en) 2001-12-04

Similar Documents

Publication Publication Date Title
KR20010034382A (en) Cooling system and method for cooling a generator
TW200306224A (en) Chemical supply apparatus
JPH06163064A (en) Power storing device
AU552820B2 (en) Primary battery system
JPH0772283A (en) Condensate make-up water device
ES2729784T3 (en) Elimination of dissolved gases in supply water of a nuclear reactor
JPH0249359A (en) Fuel cell power generating system
US6160863A (en) Variable speed pump for use in nuclear reactor
JP3498475B2 (en) Cooling water supply device
US4410486A (en) Nuclear reactor with a liquid coolant
JPH0287479A (en) Fuel cell power generation system
JP3280164B2 (en) Steam condensed water circulation device for fuel cell power generator and control method thereof
CN117199456B (en) Fuel cell shutdown control method, device, equipment and computer readable medium
JP2011096422A (en) Fuel cell cogeneration system
JPH04174255A (en) Hot water storage tank for solar heat using hot water supplying system
WO2024134443A1 (en) Control system for a forced circulation steam generator
JPH03159071A (en) Fuel cell power generation system
CN117558476A (en) Water chemistry adjusting device for researching reactor irradiation test loop
JPH03102297A (en) Controlling method for concentration of dissolved oxygen in feed water
JPH11149930A (en) Fuel cell type power generator and waste heat utilization system
JPS63131803A (en) Apparatus cooling water control device for power plant
JPH03108271A (en) Fuel cell power generating system
JPS6111508A (en) Controller for quantity of water held for electric power plant
JPH0526459Y2 (en)
JPH02260370A (en) Fuel cell power generating system

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070921

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 12