JP3234065B2 - Condensate makeup water system - Google Patents

Condensate makeup water system

Info

Publication number
JP3234065B2
JP3234065B2 JP21982593A JP21982593A JP3234065B2 JP 3234065 B2 JP3234065 B2 JP 3234065B2 JP 21982593 A JP21982593 A JP 21982593A JP 21982593 A JP21982593 A JP 21982593A JP 3234065 B2 JP3234065 B2 JP 3234065B2
Authority
JP
Japan
Prior art keywords
water
condensate
quality monitoring
make
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21982593A
Other languages
Japanese (ja)
Other versions
JPH0772283A (en
Inventor
暢生 石田
良和 叶内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21982593A priority Critical patent/JP3234065B2/en
Publication of JPH0772283A publication Critical patent/JPH0772283A/en
Application granted granted Critical
Publication of JP3234065B2 publication Critical patent/JP3234065B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、原子力プラントにおけ
る制御水の供給装置に係り、特にプラント補給水の水質
監視が容易な復水補給水装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control water supply system for a nuclear power plant, and more particularly to a condensate make-up system for easily monitoring the quality of plant make-up water.

【0002】[0002]

【従来の技術】従来の復水補給水装置は図4の原子力プ
ラントの要部概要構成図に示すように、主蒸気系の原子
炉圧力容器1で発生した主蒸気2は、タービン3を駆動
させた後に復水器4で凝縮されて復水5となる。その後
に復水5は復水脱塩装置6で浄化されて再び原子炉圧力
容器1へ戻る閉ループを構成している。
2. Description of the Related Art In a conventional condensate makeup water supply system, as shown in FIG. 4, a main steam 2 generated in a reactor pressure vessel 1 of a main steam system drives a turbine 3 After being condensed, the condensed water is condensed by the condenser 4 to be condensed water 5. Thereafter, the condensate 5 is purified by the condensate desalination device 6 and forms a closed loop returning to the reactor pressure vessel 1 again.

【0003】また、この主蒸気系には、(1) 再循環ポン
プパージ水、(2) 原子炉冷却材浄化系ポンプパージ水、
(3) 制御棒駆動系冷却水、(4) 復水器補給水、(5) グラ
ンド蒸気浄化器補給水、等が外部から流入するが、これ
らは主蒸気系にとっては余剰水となるものである。
The main steam system includes (1) recirculation pump purge water, (2) reactor coolant purification system pump purge water,
(3) Control rod drive system cooling water, (4) Condenser make-up water, (5) Ground steam purifier make-up water, etc. flow in from the outside, but these become excess water for the main steam system. is there.

【0004】従って、この余剰分の補給水等に相当する
流量を復水脱塩装置6の出口側より分岐させて、一定流
量を主蒸気系外へ放出している。なお、以後この放出水
を復水脱塩装置6からの戻り水と呼ぶ。また、この戻り
水は制御棒駆動水ポンプ7の水源として制御棒駆動系負
荷8に一定流量を給水しているが、「戻り水>制御棒駆
動水ポンプの給水」の関係にあることから、戻り水の一
部(点線矢印)9は余剰水として連絡配管10を経由して
復水補給水装置11の復水補給水系の各負荷12へ供給され
ている。
Accordingly, a flow rate corresponding to the surplus make-up water and the like is branched from the outlet side of the condensate desalination apparatus 6 to discharge a constant flow rate outside the main steam system. Hereinafter, this released water is referred to as return water from the condensate desalination device 6. Further, this return water is supplied to the control rod drive system load 8 at a constant flow rate as a water source of the control rod drive water pump 7, but because of the relationship of "return water> water supply of control rod drive water pump", A part (return arrow) 9 of the return water is supplied as surplus water to each load 12 of the condensate make-up water system of the condensate make-up water device 11 via the connection pipe 10.

【0005】このように、戻り水の一部9は常時一定流
量を復水補給水系側へ供給されているが、一方、復水補
給水系の負荷12は、使用頻度と使用流量が共に様々であ
る。例えば、復水補給水系の負荷12がほとんど供給水を
必要としない場合では、「復水移送ポンプ13の吐出量<
戻り水の一部9」となり、このために戻り水の一部9
は、給水配管14を逆流して復水貯蔵設備15へ送水される
こともある。
As described above, a part of the return water 9 is always supplied at a constant flow rate to the condensate make-up water system, while the load 12 of the condensate make-up water system has various usage frequencies and use flow rates. is there. For example, when the load 12 of the condensate make-up water system requires little supply water, “the discharge amount of the condensate transfer pump 13 <
Part of return water 9 "
May flow back to the condensate storage facility 15 by flowing backward through the water supply pipe 14.

【0006】なお、前記復水補給水系の各負荷12への供
給水を以降はプラント補給水と呼び白矢印16で示す。ま
た、復水補給水系の負荷12でのプラント補給水16の必要
量が増加した場合には、戻り水の一部9だけでは必要量
を全て供給することができないため、不足分を復水貯蔵
設備15の貯溜水(実線矢印)17が供給され、両者が混合
されて復水補給水系の負荷12へプラント補給水16として
供給される。
The supply water to each load 12 in the condensate make-up water system is hereinafter referred to as plant make-up water and is indicated by a white arrow 16. When the required amount of the plant make-up water 16 at the load 12 of the condensate make-up water system increases, not all of the necessary amount can be supplied by only part 9 of the return water. The stored water (solid arrow) 17 of the equipment 15 is supplied, and the two are mixed and supplied as the plant makeup water 16 to the load 12 of the condensate makeup water system.

【0007】従って、復水補給水系の負荷12へ供給され
るプラント補給水16は、復水貯蔵設備15からの貯溜水17
と復水脱塩装置6からの戻り水の一部9が混合されたも
のであり、その混合比については、復水補給水系の各負
荷12の需要状態等が変動することに伴って変化する。
Accordingly, the plant makeup water 16 supplied to the load 12 of the condensate makeup water system is stored water 17 from the condensate storage facility 15.
And a part 9 of the return water from the condensate desalination device 6, and the mixing ratio changes as the demand state of each load 12 of the condensate make-up water system fluctuates. .

【0008】また、図5の構成図に示すように従来の復
水補給水装置11においては、その水質監視に関して、復
水補給水系の負荷12へ供給するプラント補給水16の一部
を復水移送ポンプ13の下流の採水点18より分岐させ、水
質監視装置19に導いて連続的に水質監視を行っている。
As shown in the block diagram of FIG. 5, in the conventional condensate make-up device 11, a part of the plant make-up water 16 supplied to the load 12 of the condensate make-up water system is condensed with respect to its water quality monitoring. The water is branched from a water sampling point 18 downstream of the transfer pump 13 and guided to a water quality monitoring device 19 to continuously monitor the water quality.

【0009】ここで水質監視をしたプラント補給水の一
部は、前記復水移送ポンプ13の上流における戻し点20に
戻る閉ループが構成されている。なお、復水貯蔵設備15
には別途、廃棄物処理系21からの浄化処理水が導入され
る。
Here, a part of the plant make-up water whose water quality has been monitored forms a closed loop that returns to the return point 20 upstream of the condensate transfer pump 13. The condensate storage facility 15
Separately, purified water from the waste treatment system 21 is introduced.

【0010】[0010]

【発明が解決しようとする課題】上記の復水補給水装置
11においては、水質監視装置19に流入するプラント補給
水16には、復水貯蔵設備15からの貯溜水17と復水脱塩装
置6からの戻り水の一部9が混合されたものである。こ
れは、復水補給水系の負荷12へ供給するプラント補給水
16と同一水質を有するものであり、本復水補給水装置11
におけるプラント補給水16の水質監視の目的には合致し
たものであるが、その一方で貯溜水17のみの水質を単独
に監視することはできなかった。
SUMMARY OF THE INVENTION The above condensate makeup water device
In 11, the plant makeup water 16 flowing into the water quality monitoring device 19 is a mixture of the stored water 17 from the condensate storage facility 15 and a part 9 of the return water from the condensate desalination device 6. . This is the plant make-up water supplied to the load 12 in the condensate make-up water system.
It has the same water quality as 16
Although the purpose of monitoring the water quality of the plant make-up water 16 was met, the water quality of only the stored water 17 could not be monitored independently.

【0011】また、原子力プラントの通常運転時におい
て、プラント補給水16を構成する復貯溜水17と戻り水の
一部9との混合比が変動する場合があり、このことから
連続的に水質監視している導電率が一定とならずに変化
し、指示値がハンチングを起こす不具合が生じる。
Also, during normal operation of the nuclear power plant, the mixing ratio of the return storage water 17 and a part of the return water 9 constituting the plant make-up water 16 may fluctuate. Inconveniently, the electrical conductivity does not become constant and changes, causing a problem that the indicated value causes hunting.

【0012】この指示値がハンチングする原因として
は、貯溜水17と、復水脱塩装置6からの戻り水の一部9
の導電率には、一般に1桁程度の大きな差があり、この
ために混合比によって導電率が大幅に変化することから
指示値が変動することが考えられる。
The cause of the hunting of the indicated value is that the stored water 17 and a part 9 of the return water from the condensate
In general, there is a large difference of about one digit in the electrical conductivity, and the conductivity greatly changes depending on the mixing ratio. Therefore, it is considered that the indicated value fluctuates.

【0013】本発明の目的とするところは、復水貯蔵設
備において貯溜水と余剰水を十分に混合し一括して水質
監視をするか、貯溜水を単独にて水質監視するかにより
測定指示値にハンチングの生じない復水補給水装置を提
供することにある。
It is an object of the present invention to provide a measurement instruction value depending on whether the stored water and the surplus water are sufficiently mixed in the condensate storage facility and the water quality is monitored collectively or the stored water is monitored independently. Another object of the present invention is to provide a condensate makeup water supply device which does not cause hunting.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
請求項1記載の発明に係る復水補給水装置は、復水貯蔵
設備の貯溜水と復水脱塩装置の余剰水を併せてプラント
補給水として制御水の負荷に供給する復水補給水装置に
おいて、前記復水貯蔵設備と負荷の間に復水移送ポンプ
と水質監視装置を並列にして介挿した給水配管を接続
し、前記復水脱塩装置と前記復水貯蔵設備との間を戻り
水配管により接続したことを特徴とする。また、請求項
2記載の発明に係る復水補給水装置は、復水貯蔵設備の
貯溜水と復水脱塩装置の余剰水を併せてプラント補給水
として制御水の負荷に供給する復水補給水装置におい
て、前記復水貯蔵設備と負荷の問に復水移送ポンプと水
質監視装置を並列にして介挿した給水配管を接続し、こ
の給水配管における前記復水移送ポンプの上流側に復水
脱塩装置より逆止弁を介挿した連絡配管を接続すると共
に、逆止弁の上流側と前記復水貯蔵設備との間に戻り水
配管を接続し、前記連絡配管から直接前記給水配管に水
が流通するのを阻止してなることを特徴とする。
According to a first aspect of the present invention, there is provided a condensate replenishing water system comprising: a condensate storage device and a condensate desalination device; in condensate makeup water system for supplying a load control water as makeup water, to connect the water supply piping interposed condensate transfer pump and the water quality monitoring device and in parallel between the load and the condensate storage facilities, the condensate Return between the water desalination unit and the condensate storage facility
It is characterized by being connected by a water pipe . Claims
2. The condensate makeup water device according to the invention described in 2) is a condensate storage facility.
Plant replenishment water by combining the stored water and excess water from the condensate desalination unit
In the condensate make-up water supply to supply the control water load as
The condensate transfer pump and water
Connect the water supply pipe with the quality monitoring device
Condensate upstream of the condensate transfer pump in the water supply pipe
When connecting the communication pipe inserted through the check valve from the desalination unit,
Return water between the upstream side of the check valve and the condensate storage facility.
Connect the piping and supply water directly from the connection piping to the water supply piping.
Are prevented from being distributed.

【0015】また、請求項記載の発明に係る復水補給
水装置は、復水貯蔵設備の貯溜水と復水脱塩装置の余剰
水を併せてプラント補給水として制御水の負荷に供給す
る復水補給水装置において、前記復水貯蔵設備と負荷の
間に復水移送ポンプと第1の水質監視装置を並列にして
介挿した給水配管を接続し、この給水配管の前記復水移
送ポンプの上流側に復水脱塩装置より連絡配管を接続す
ると共に、前記復水移送ポンプの上流側と復水貯蔵設備
の間にブースタポンプと第2の水質監視装置を介挿した
水質監視配管を接続したことを特徴とする。
According to a third aspect of the present invention, there is provided a condensate make-up water device that supplies the control water load to the control water load as a plant make-up water by combining the water stored in the condensate storage facility and the surplus water in the condensate demineralization device. In the condensate makeup water supply device, a condensate transfer pump and a water supply pipe in which a first water quality monitoring device is inserted in parallel are connected between the condensate storage facility and the load, and the condensate transfer pump of the water supply pipe is connected. A connecting pipe is connected to the upstream side of the condensate desalination apparatus, and a water quality monitoring pipe interposed between the upstream side of the condensate transfer pump and the condensate storage equipment via a booster pump and a second water quality monitoring device. It is characterized by being connected.

【0016】さらに、請求項記載の発明に係る復水補
給水装置は、復水貯蔵設備の貯溜水と復水脱塩装置の余
剰水を併せてプラント補給水として制御水の負荷に供給
する復水補給水装置において、前記復水貯蔵設備と負荷
の間に復水移送ポンプと第1の水質監視装置を並列にし
て介挿した給水配管を接続し、この給水配管の前記復水
移送ポンプの上流側に復水脱塩装置より連絡配管を接続
すると共に、前記復水貯蔵設備に第2の水質監視装置を
介挿してドレンに連通する水質監視配管を接続したこと
を特徴とする。
Furthermore, condensate makeup water apparatus according to the fourth aspect of the present invention provides a load control water as plant makeup water together excess water reservoir water and condensate demineralizer condensate storage facility In the condensate makeup water supply device, a condensate transfer pump and a water supply pipe in which a first water quality monitoring device is inserted in parallel are connected between the condensate storage facility and the load, and the condensate transfer pump of the water supply pipe is connected. A connection pipe is connected to the upstream side of the condensate desalination device, and a water quality monitoring pipe connected to the drain through a second water quality monitoring device is connected to the condensate storage facility.

【0017】[0017]

【作用】請求項1および2記載の発明によれば、復水脱
塩装置の余剰水は逆止弁によりプラント補給水に直接混
入しないようにし、一旦、全て復水貯蔵設備に導入し
て、復水貯蔵設備内にて混合して均一化した貯溜水とし
た後に、プラント補給水として制御水の負荷に供給す
る。また、水質測定については復水貯蔵設備内にて水質
が均一化されたプラント補給水の一部を水質監視装置に
導入して連続的に測定する。
According to the first and second aspects of the present invention, the surplus water of the condensate desalination device is prevented from directly mixing into the plant make-up water by the check valve. After being mixed and made uniform in the condensate storage facility, it is supplied to the control water load as plant make-up water. In the water quality measurement, a part of the plant make-up water whose water quality has been equalized in the condensate storage facility is introduced into the water quality monitoring device and continuously measured.

【0018】請求項記載の発明では、復水貯蔵設備内
の貯溜水と復水脱塩装置の余剰水を混合し、プラント補
給水として制御水の負荷に供給する。また、水質測定
は、プラント補給水は水質監視装置により連続的に測定
する。さらに、復水貯蔵設備内の貯溜水はブースタポン
プを運転することによりで単独で第2の水質監視装置に
より連続して測定する。
According to the third aspect of the present invention, the water stored in the condensate storage facility and the surplus water in the condensate demineralizer are mixed and supplied to the control water load as plant make-up water. In the water quality measurement, the plant make-up water is continuously measured by a water quality monitoring device. Further, the stored water in the condensate storage facility is continuously measured by the second water quality monitoring device alone by operating the booster pump.

【0019】請求項記載の発明は、復水貯蔵設備内の
貯溜水と復水脱塩装置の余剰水を混合し、プラント補給
水として制御水の負荷に供給する。また、水質測定につ
いては、プラント補給水は水質監視装置により連続的に
測定すると共に、貯溜水については単独で復水貯蔵設備
より水質監視配管を経由してドレンに流下する途中で第
2の水質監視装置により連続して測定する。
According to a fourth aspect of the present invention, the water stored in the condensate storage facility and the surplus water of the condensate demineralizer are mixed and supplied to the control water load as plant make-up water. Regarding water quality measurement, the replenishment water of the plant is continuously measured by a water quality monitoring device, and the stored water alone is discharged from the condensate storage facility to the drain via the water quality monitoring pipe to the second water quality. Measure continuously with a monitoring device.

【0020】[0020]

【実施例】本発明の一実施例を図面を参照して説明す
る。なお、上記した従来技術と同一構成部分については
同一符号を付して詳細な説明を省略する。原子力プラン
トにおける主蒸気系は上記図4に示すように、原子炉圧
力容器1で発生した主蒸気2は、タービン3を駆動させ
た後に復水器4で凝縮されて復水5となる。その後に復
水5は復水脱塩装置6で浄化されて再び原子炉圧力容器
1へ戻る閉ループを構成している。
An embodiment of the present invention will be described with reference to the drawings. The same components as those of the above-described prior art are denoted by the same reference numerals, and detailed description is omitted. As shown in FIG. 4 above, the main steam 2 generated in the reactor pressure vessel 1 in the nuclear power plant is driven by the turbine 3 and then condensed in the condenser 4 to become condensed water 5. Thereafter, the condensate 5 is purified by the condensate desalination device 6 and forms a closed loop returning to the reactor pressure vessel 1 again.

【0021】復水脱塩装置6における余剰分は復水脱塩
装置6の出口側より分岐させて、一定流量を主蒸気系外
へ放出され、復水脱塩装置6からの戻り水として制御棒
駆動水ポンプ7の水源として制御棒駆動系負荷8に一定
流量を給水している。また、戻り水の一部(点線矢印)
9は余剰水として復水補給水系の各負荷12へ供給されて
いる。
The surplus in the condensate desalination unit 6 is branched from the outlet side of the condensate desalination unit 6 so that a constant flow rate is discharged to the outside of the main steam system and is controlled as return water from the condensate desalination unit 6. A constant flow rate is supplied to the control rod drive system load 8 as a water source of the rod drive water pump 7. Also, part of the return water (dotted arrow)
9 is supplied as surplus water to each load 12 in the condensate makeup water system.

【0022】第1実施例については図1の構成図に示す
ように、復水補給水装置22は、廃棄物処理系21からの浄
化処理水が導入される復水貯蔵設備15と、この復水貯蔵
設備15には貯溜水17を復水補給水系の各負荷12へ供給す
る復水移送ポンプ13を介挿した給水配管14が接続されて
いる。
In the first embodiment, as shown in the block diagram of FIG. 1, the condensate makeup water device 22 includes a condensate storage facility 15 into which purified water from the waste treatment system 21 is introduced, A water supply pipe 14 is connected to the water storage facility 15 through a condensate transfer pump 13 that supplies the stored water 17 to each load 12 of the condensate make-up water system.

【0023】また、この給水配管14には前記復水移送ポ
ンプ13を挟さんだ採水点18より分岐し水質監視装置19を
経由して戻し点20に戻る水質監視系の閉ループが形成さ
れている。さらに復水脱塩装置6からは、戻り水の一部
9を導入する連絡配管10を経由して戻り水配管24が復水
貯蔵設備15に接続され、また、復水移送ポンプ13の上流
と連絡配管10の間には、戻り水の一部9の流入を阻止す
る逆止弁23が接続されて構成している。
The water supply pipe 14 is provided with a closed loop of a water quality monitoring system which branches off from a water sampling point 18 across the condensate transfer pump 13 and returns to a return point 20 via a water quality monitoring device 19. . Further, from the condensate desalination device 6, a return water pipe 24 is connected to a condensate storage facility 15 via a connection pipe 10 for introducing a part 9 of the return water. A check valve 23 for preventing the return water 9 from flowing in is connected between the communication pipes 10.

【0024】次に上記構成による作用について説明す
る。復水脱塩装置6からの戻り水は制御棒駆動水ポンプ
7により制御棒駆動系負荷8に供給されると共に、その
戻り水の一部9は連絡配管10と戻り水配管24を経由し
て、全て一旦、復水貯蔵設備15に流入し、内部で混合さ
れて貯溜水17として貯溜されることにより水質は平均化
される。
Next, the operation of the above configuration will be described. The return water from the condensate desalination device 6 is supplied to the control rod drive system load 8 by the control rod drive water pump 7, and a part 9 of the return water passes through the connecting pipe 10 and the return water pipe 24. All flow into the condensate storage facility 15 once, are mixed inside, and are stored as the storage water 17, so that the water quality is averaged.

【0025】この均一化された復水貯蔵設備15内の貯溜
水17は、復水移送ポンプ13の運転により給水配管14を介
して復水補給水系の負荷12に対し、プラント補給水16と
して供給される。すなわち、比較的少量の戻り水の一部
9(例えば流量約20m3 /h)は、極めて大容量の復水
貯蔵設備15(一般に貯蔵容量約2000m3 )内に導入され
て、貯溜水17と混合されることからその導電率は均一化
され、且つ復水貯蔵設備15内における貯溜水17の水質変
動は極めて緩やかとなる。
The stored water 17 in the condensed condensate storage facility 15 is supplied as a plant make-up water 16 to a load 12 of the condensate make-up water system via a water supply pipe 14 by operating a condensate transfer pump 13. Is done. That is, a part 9 of the relatively small amount of return water (for example, a flow rate of about 20 m 3 / h) is introduced into an extremely large-capacity condensate storage facility 15 (generally, a storage capacity of about 2000 m 3 ), and Due to the mixing, the conductivity is made uniform, and the water quality of the stored water 17 in the condensate storage facility 15 fluctuates extremely slowly.

【0026】さらに、この貯溜水17の一部は復水移送ポ
ンプ13の下流の採水点18から水質監視装置19に導かれて
水質が測定され、戻し点20より給水配管に戻される。こ
こで測定される水質については、復水貯蔵設備15内の貯
溜水17とプラント補給水16が同一水質であることから、
水質監視装置19において両者が一括して測定することが
できる。
Further, a part of the stored water 17 is guided from a water sampling point 18 downstream of the condensate transfer pump 13 to a water quality monitoring device 19 where the water quality is measured, and is returned to a water supply pipe from a return point 20. Regarding the water quality measured here, the storage water 17 in the condensate storage facility 15 and the plant makeup water 16 have the same water quality,
Both can be collectively measured by the water quality monitoring device 19.

【0027】また、水質監視に際しての指示値のハンチ
ングの原因となる導電率の変化については、大容量の貯
溜水17中に比較的少量の戻り水の一部9が流入して混合
されることから、水質監視装置19に導かれた貯溜水17の
水質変動は極めて緩やかに行われるため、水質測定結果
である指示値にハンチングが発生することはない。
Regarding the change in the electrical conductivity which causes the hunting of the indicated value at the time of monitoring the water quality, a relatively small amount of the return water 9 flows into the large-capacity storage water 17 and is mixed. Therefore, since the water quality of the stored water 17 guided to the water quality monitoring device 19 fluctuates extremely slowly, no hunting occurs in the indicated value as the water quality measurement result.

【0028】第2実施例においては図2の構成図に示す
ように、復水補給水装置25の概要構成は図5に示す従来
のものとほぼ同様であるが、復水貯蔵設備15と給水配管
14における連絡配管10の接続点から復水移送ポンプ13寄
りの間にブースタポンプ26と第2の水質監視装置27を介
挿した水質監視配管28を接続して構成されている。
In the second embodiment, as shown in the block diagram of FIG. 2, the schematic configuration of the condensate makeup water supply device 25 is almost the same as the conventional one shown in FIG. Piping
A booster pump 26 and a water quality monitoring pipe 28 interposed with a second water quality monitoring device 27 are connected between the connection point of the communication pipe 10 in FIG.

【0029】上記構成による作用としては、復水脱塩装
置6からの戻り水の一部9が連絡配管10を経由して給水
配管14に流入する。また、貯溜水17も給水配管14を流下
して前記戻り水の一部9と合体し、復水移送ポンプ13を
介してプラント補給水16として復水補給水系の負荷12に
供給される。
As an operation of the above configuration, a part 9 of the return water from the condensate desalination device 6 flows into the water supply pipe 14 via the connection pipe 10. The stored water 17 also flows down the water supply pipe 14 to be combined with the part 9 of the return water, and is supplied to the load 12 of the condensate make-up water system as the plant make-up water 16 via the condensate transfer pump 13.

【0030】この時のプラント補給水16の水質は、復水
移送ポンプ13で撹拌混合された後にその一部が水質監視
装置19に送られて測定されるが、復水貯蔵設備15内の貯
溜水17については、ブースタポンプ26の運転により水質
監視配管28を通り、第2の水質監視装置27において導電
率が連続的に測定、監視される。
At this time, the water quality of the plant replenishing water 16 is stirred and mixed by the condensate transfer pump 13 and a part of the water is sent to the water quality monitoring device 19 for measurement. The water 17 passes through the water quality monitoring pipe 28 by the operation of the booster pump 26, and the conductivity is continuously measured and monitored by the second water quality monitoring device 27.

【0031】しかも、この測定される貯溜水17は単独で
一定量が第2の水質監視装置27を経由してブースタポン
プ26により給水配管14に圧送されるので、戻り水の一部
9およびプラント補給水16との接触はなく、従って、そ
の指示値が変化してハンチングが生じることはない。
Further, since a certain amount of the measured storage water 17 is independently pumped to the water supply pipe 14 by the booster pump 26 via the second water quality monitoring device 27, a part 9 of the return water and the plant There is no contact with the make-up water 16 and, therefore, the hunting does not occur due to the change in the indicated value.

【0032】第3実施例においては図3の構成図に示す
ように、復水補給水装置29の概要構成は図5に示す従来
のものとほぼ同様であるが、復水貯蔵設備15には途中に
第2の水質監視装置27を介挿し、その先端がドレン30に
到達している水質監視配管28を接続した構成している。
In the third embodiment, as shown in the configuration diagram of FIG. 3, the schematic structure of the condensate makeup water supply device 29 is almost the same as the conventional one shown in FIG. A second water quality monitoring device 27 is interposed on the way, and a water quality monitoring pipe 28 whose tip reaches the drain 30 is connected.

【0033】この構成による作用としては、上記第2実
施例と同様に戻り水の一部9と貯溜水17が復水移送ポン
プ13で撹拌混合されてプラント補給水16として復水補給
水系の負荷12に供給されると共に、この一部が水質監視
装置19に送られて水質を測定される。
The operation of this configuration is similar to that of the second embodiment in that a part 9 of the return water and the stored water 17 are stirred and mixed by the condensate transfer pump 13 to become the plant make-up water 16 and the load of the condensate make-up water system. While being supplied to 12, a part of this is sent to a water quality monitoring device 19 to measure the water quality.

【0034】また、復水貯蔵設備15内の貯溜水17はにつ
いては、復水貯蔵設備15より水質監視配管28を介してド
レン30に流下する途中で、第2の水質監視装置27により
連続的に導電率の測定がされ、前記連絡配管10および給
水配管14との連通がないので、戻り水の一部9およびプ
ラント補給水16との接触がなく、従って、第2の水質監
視装置27が測定する貯溜水17単独の導電率には変化が生
じないので、その指示値にハンチングは起きない。
Further, the stored water 17 in the condensate storage facility 15 is continuously discharged by the second water quality monitoring device 27 while flowing down from the condensate storage facility 15 to the drain 30 via the water quality monitoring pipe 28. Since the conductivity is measured and there is no communication with the communication pipe 10 and the water supply pipe 14, there is no contact with the part 9 of the return water and the plant make-up water 16, so that the second water quality monitoring device 27 Since there is no change in the conductivity of the storage water 17 to be measured alone, no hunting occurs in the indicated value.

【0035】[0035]

【発明の効果】以上本発明によれば、プラントの各負荷
に制御水としてプラント補給水を供給する復水補給水装
置において、復水貯蔵設備に貯溜した貯溜水の水質監視
が連続して、しかも指示値にハンチングを起こすことな
く容易に測定できる効果がある。
As described above, according to the present invention, in a condensate make-up water device for supplying plant make-up water as control water to each load of a plant, the quality of the stored water stored in the condensate storage equipment is continuously monitored. In addition, there is an effect that measurement can be easily performed without causing hunting in the indicated value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る第1実施例の復水補給水装置の系
統構成図。
FIG. 1 is a system configuration diagram of a condensate makeup water supply device according to a first embodiment of the present invention.

【図2】本発明に係る第2実施例の復水補給水装置の系
統構成図。
FIG. 2 is a system configuration diagram of a condensate makeup water supply device according to a second embodiment of the present invention.

【図3】本発明に係る第3実施例の復水補給水装置の系
統構成図。
FIG. 3 is a system configuration diagram of a condensate makeup water supply device according to a third embodiment of the present invention.

【図4】従来の原子力プラントの復水補給水系の概略系
統図。
FIG. 4 is a schematic system diagram of a condensate makeup water system of a conventional nuclear power plant.

【図5】従来の復水補給水装置の系統構成図。FIG. 5 is a system configuration diagram of a conventional condensate makeup water supply device.

【符号の説明】[Explanation of symbols]

1…原子炉圧力容器、2…主蒸気、3…タービン、4…
復水器、5…復水、6…復水脱塩装置、7…制御棒駆動
水ポンプ、8…制御棒駆動系負荷、9…戻り水の一部
(点線矢印)、10…連絡配管、11,22,25,29…復水補
給水装置、12…復水補給水系の負荷、13…復水移送ポン
プ、14…給水配管、15…復水貯蔵設備、16…プラント補
給水(白矢印)、17…貯溜水(実線矢印)、18…採水
点、19…水質監視装置、20…戻し点、21…廃棄物処理
系、23…逆止弁、24…戻り水配管、26…ブースタポン
プ、27…第2の水質監視装置、28…水質監視配管、30…
ドレン。
1 ... reactor pressure vessel, 2 ... main steam, 3 ... turbine, 4 ...
Condenser, 5: Condensate, 6: Condensate desalination device, 7: Control rod drive water pump, 8: Control rod drive system load, 9: Part of return water (dotted arrow), 10: Connecting pipe, 11, 22, 25, 29 ... condensate make-up water system, 12 ... condensate make-up water system load, 13 ... condensate transfer pump, 14 ... water supply piping, 15 ... condensate storage facility, 16 ... plant make-up water (white arrow ), 17: stored water (solid arrow), 18: sampling point, 19: water quality monitoring device, 20: return point, 21: waste treatment system, 23: check valve, 24: return water pipe, 26: booster Pump, 27… second water quality monitoring device, 28… water quality monitoring pipe, 30…
Drain.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−27292(JP,A) (58)調査した分野(Int.Cl.7,DB名) G21C 17/02 G21D 1/00 G21D 1/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-27292 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G21C 17/02 G21D 1/00 G21D 1 / 02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 復水貯蔵設備の貯溜水と復水脱塩装置の1. A condensate water storage system and a condensate desalination unit.
余剰水を併せてプラント補給水として制御水の負荷に供The surplus water is combined with the control water load as plant makeup water.
給する復水補給水装置において、前記復水貯蔵設備と負In the condensate makeup water supply system, the condensate storage facility
荷の間に復水移送ポンプと水質監視装置を並列にして介A condensate transfer pump and a water quality monitoring device
挿した給水配管を接続し、前記復水脱塩装置と前記復水Connect the inserted water supply pipe, and connect the condensate
貯蔵設備との間を戻り水配管により接続したことを特徴It is connected to the storage facility by return water piping.
とする復水補給水装置。And condensate make-up water equipment.
【請求項2】 復水貯蔵設備の貯溜水と復水脱塩装置の
余剰水を併せてプラント補給水として制御水の負荷に供
給する復水補給水装置において、前記復水貯蔵設備と負
荷の問に復水移送ポンプと水質監視装置を並列にして介
挿した給水配管を接続し、この給水配管における前記復
水移送ポンプの上流側に復水脱塩装置より逆止弁を介挿
した連絡配管を接続すると共に、逆止弁の上流側と前記
復水貯蔵設備との間に戻り水配管を接続し、前記連絡配
管から直接前記給水配管に水が流通するのを阻止してな
ことを特徴とする復水補給水装置。
2. A condensate make-up water system for supplying a control water load to a control water load as a plant make-up water together with the water stored in the condensate storage device and the surplus water from the condensate demineralization device. A water supply pipe with a condensate transfer pump and a water quality monitoring device interposed in parallel was connected to it, and a check valve was inserted from the condensate desalination device upstream of the condensate transfer pump in this water supply pipe. with connecting pipes, to connect the return water pipe between the condensate storage facilities upstream side of the check valve, the contact arrangement
Do not prevent water from flowing directly from the pipe to the water supply pipe.
Condensate makeup water and wherein the that.
【請求項3】 復水貯蔵設備の貯溜水と復水脱塩装置の
余剰水を併せてプラント補給水として制御水の負荷に供
給する復水補給水装置において、前記復水貯蔵設備と負
荷の間に復水移送ポンプと第1の水質監視装置を並列に
して介挿した給水配管を接続し、この給水配管の前記復
水移送ポンプの上流側に復水脱塩装置より連絡配管を接
続すると共に、前記復水移送ポンプの上流側と復水貯蔵
設備の間にブースタポンプと第2の水質監視装置を介挿
した水質監視配管を接続したことを特徴とする復水補給
水装置。
3. A condensate make-up water system for supplying the control water load as a plant make-up water together with the water stored in the condensate storage system and the surplus water from the condensate desalination unit. A condensate transfer pump and a first water quality monitoring device are connected in parallel, and a water supply pipe is connected therebetween. A connection pipe from a condensate desalination device is connected to the upstream side of the condensate transfer pump of the water supply pipe. And a condensate replenishing water device, wherein a booster pump and a water quality monitoring pipe interposed with a second water quality monitoring device are connected between the upstream side of the condensate transfer pump and the condensate storage facility.
【請求項4】 復水貯蔵設備の貯溜水と復水脱塩装置の
余剰水を併せてプラント補給水として制御水の負荷に供
給する復水補給水装置において、前記復水貯蔵設備と負
荷の間に復水移送ポンプと第1の水質監視装置を並列に
して介挿した給水配管を接続し、この給水配管の前記復
水移送ポンプの上流側に復水脱塩装置より連絡配管を接
続すると共に、前記復水貯蔵設備に第2の水質監視装置
を介挿してドレンに連通する水質監視配管を接続したこ
とを特徴とする復水補給水装置。
4. A condensate make-up water device for supplying a control water load to a control water load as a plant make-up water together with the water stored in the condensate storage device and the surplus water from the condensate desalination device. A condensate transfer pump and a first water quality monitoring device are connected in parallel, and a water supply pipe is connected therebetween. A connection pipe from a condensate desalination device is connected to the upstream side of the condensate transfer pump of the water supply pipe. A condensate water supply device, wherein a water quality monitoring pipe communicating with the drain is connected to the condensate storage facility via a second water quality monitoring device.
JP21982593A 1993-09-03 1993-09-03 Condensate makeup water system Expired - Lifetime JP3234065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21982593A JP3234065B2 (en) 1993-09-03 1993-09-03 Condensate makeup water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21982593A JP3234065B2 (en) 1993-09-03 1993-09-03 Condensate makeup water system

Publications (2)

Publication Number Publication Date
JPH0772283A JPH0772283A (en) 1995-03-17
JP3234065B2 true JP3234065B2 (en) 2001-12-04

Family

ID=16741637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21982593A Expired - Lifetime JP3234065B2 (en) 1993-09-03 1993-09-03 Condensate makeup water system

Country Status (1)

Country Link
JP (1) JP3234065B2 (en)

Also Published As

Publication number Publication date
JPH0772283A (en) 1995-03-17

Similar Documents

Publication Publication Date Title
KR20010034382A (en) Cooling system and method for cooling a generator
JP3234065B2 (en) Condensate makeup water system
CN108870527A (en) A kind of method and energy supplying system of energy supply
JP2794101B2 (en) Adjustment device for flow rate and pressure of sample fluid
US6160863A (en) Variable speed pump for use in nuclear reactor
DE3934084A1 (en) Liquid cooling system for high temperature battery - has heat exchanger loop with pre cooling reservoir stage
CN216253672U (en) Water supplementing and air supplementing device in cooling loop of main pump frequency converter of nuclear power plant
CN219297178U (en) Cooling water dosing equipment
JP3280164B2 (en) Steam condensed water circulation device for fuel cell power generator and control method thereof
JPH04174255A (en) Hot water storage tank for solar heat using hot water supplying system
JPS6245198Y2 (en)
JP4351794B2 (en) Replenishment water facilities for nuclear power plants
JPH03102297A (en) Controlling method for concentration of dissolved oxygen in feed water
JPH0526459Y2 (en)
JPS63131803A (en) Apparatus cooling water control device for power plant
JP3392563B2 (en) Circulation heater for control rod drive system
JPH1082722A (en) Liquid sampler and sampling method
JPH022997A (en) Accessory cooling facility of nuclear power plant
JPH06109893A (en) Improving equipment for quality of water of nuclear power plant
JPH0436501A (en) Drain device for supply water heater
JPH05228467A (en) Deaerator operation control system in water supply pipeline structure of building
CN117558476A (en) Water chemistry adjusting device for researching reactor irradiation test loop
JP2004263993A (en) Once-through boiler and operation method during boiler stop
JPH02102301A (en) High-pressure oil generating device
JPS6053896A (en) Oxygen injection control system

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070921

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 12