JPH0771912A - Fine adjustment, and scanning type probe microscope - Google Patents

Fine adjustment, and scanning type probe microscope

Info

Publication number
JPH0771912A
JPH0771912A JP21736593A JP21736593A JPH0771912A JP H0771912 A JPH0771912 A JP H0771912A JP 21736593 A JP21736593 A JP 21736593A JP 21736593 A JP21736593 A JP 21736593A JP H0771912 A JPH0771912 A JP H0771912A
Authority
JP
Japan
Prior art keywords
axis
cylinder
fine movement
optical path
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21736593A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hoshino
吉弘 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP21736593A priority Critical patent/JPH0771912A/en
Publication of JPH0771912A publication Critical patent/JPH0771912A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To provide a fine adjustment capable of precisely grasping the moving coordinate of a device having a piezoelectric fine adjustment mechanism in a device finely moving in atomic scale. CONSTITUTION:One end surface vertical to a cylinder axis (Z-axis) of a piezoelectric ceramic 1 is fixed, an optical path device 2 for emitting three or more focused beams in total in parallel to the X and Y-axes of the cylinder is fixed to the other end surface, three or more light receivers 6a, 6b, 6c in total for receiving the focused beams emitted from the optical path device 2 are fixed close to the cylinder, and the change in the focused beam receiving position of the three or more light receivers is detected, thereby, the fine movement coordinate value by piezoelectric distortion is measured and recorded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主として原子的尺度での
微動を行う微動装置及び走査型プローブ顕微鏡微に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a fine movement device for fine movement on an atomic scale and a scanning probe microscope fine.

【0002】[0002]

【従来の技術】近年量子効果を利用した探針式表面粗さ
計である走査型プローブ顕微鏡が原子的尺度で固体表面
の状態を観察するのに好適な手段として注目、開発され
ている。走査型プローブ顕微鏡には、その動作原理によ
って走査型トンネル顕微鏡(STM)、原子間力顕微鏡
(AFM)、磁気力顕微鏡(MFM)などがある。いず
れも鋭く尖った探針を試料表面に極めて接近させ、この
時両者間に作用する量子効果を利用して両者間距離を一
定に保持し、試料を走査する探針の動きを連続的にとら
えることによって、原子的尺度で試料表面の凹凸形状を
測定するものである。
2. Description of the Related Art In recent years, a scanning probe microscope which is a probe type surface roughness meter utilizing the quantum effect has been noticed and developed as a suitable means for observing the state of a solid surface on an atomic scale. The scanning probe microscope includes a scanning tunneling microscope (STM), an atomic force microscope (AFM), a magnetic force microscope (MFM), etc., depending on its operating principle. In both cases, the sharply pointed probe is brought very close to the sample surface, and at this time, the quantum effect that acts between them is used to keep the distance between them constant, and the movement of the probe that scans the sample is continuously captured. Thus, the uneven shape of the sample surface is measured on an atomic scale.

【0003】代表的な走査型プローブ顕微鏡であるST
Mは、電解研磨したタングステン線などの金属探針と導
電性試料との間に電圧を印加して両者間を近接させる
と、約1nm付近でトンネル電流が流れる現象を利用し
ている。トンネル電流値は両者間隔に鋭敏であるため、
この電流値が一定になるように探針の動きを制御しなが
ら試料表面を2次元的に走査すれば、試料表面の凹凸形
状に関する拡大像が得られる。
ST, which is a typical scanning probe microscope
M utilizes a phenomenon in which a tunnel current flows in the vicinity of about 1 nm when a voltage is applied between a metal probe such as an electrolytically polished tungsten wire and a conductive sample to bring them close to each other. Since the tunnel current value is sensitive to the distance between the two,
If the sample surface is two-dimensionally scanned while controlling the movement of the probe so that the current value becomes constant, a magnified image of the uneven shape of the sample surface can be obtained.

【0004】原子的尺度で凹凸を検出する場合、試料の
走査に要求される距離は数〜数十μmに亘る。このため
に走査手段として、粗位置駆動系と微位置駆動系が設け
られる。
When detecting irregularities on an atomic scale, the distance required for scanning a sample ranges from several to several tens of μm. Therefore, a coarse position drive system and a fine position drive system are provided as scanning means.

【0005】微位置駆動系はnmオーダーで探針の動き
を制御するもので、圧電セラミクスなどを利用したX,
Y,Z軸直交アーム型や円筒形状の素子が用いられてい
る。図5は、代表的な形状を示す。
The fine position drive system controls the movement of the probe on the order of nm, and uses X, which utilizes piezoelectric ceramics, etc.
A Y- and Z-axis orthogonal arm type or a cylindrical element is used. FIG. 5 shows a typical shape.

【0006】図5(A)のトライポッド(三脚)型の微
動素子1は、数mm角で長さ数〜数十mmの3本の積層
型圧電素子1a、1b、1cを組合せたものであり、各
圧電素子1a、1b、1cのそれぞれは、圧電部及びそ
の両側に設けた上下電極より成る個別素子を、複数個積
層したものである。そして、電極間に電圧を印加すると
長手方向に伸縮する機能を有する。一方、図5(B)に
示すチューブ型の微動素子1は、直径数mm、長さ数〜
十数mm中空円筒1dが圧電性セラミクスで構成されて
おり、内側と外側の電極(図の斜線部分)1e〜1g間
に電圧を印加すると、円筒が収縮するように分極が与え
られている。内側の電極1hは共通であり、Z軸用の外
側電極1gは一体で単純な収縮を行うが、X軸及びY軸
用の電極1e、1fはそれぞれ2分割されており、互い
に逆極性の電圧をかけて筒のたわみを生ぜしめ、Z軸と
垂直方向の変位を起こす機能を有する。
The tripod (tripod) type fine movement element 1 shown in FIG. 5A is a combination of three laminated piezoelectric elements 1a, 1b and 1c each having a length of several mm to several tens of mm. Each of the piezoelectric elements 1a, 1b, 1c is formed by stacking a plurality of individual elements including a piezoelectric portion and upper and lower electrodes provided on both sides of the piezoelectric portion. It has a function of expanding and contracting in the longitudinal direction when a voltage is applied between the electrodes. On the other hand, the tube type fine movement element 1 shown in FIG. 5 (B) has a diameter of several mm and a length of several mm.
The tens of millimeters hollow cylinder 1d is composed of piezoelectric ceramics, and is polarized so that the cylinder contracts when a voltage is applied between the inner and outer electrodes (hatched portions in the figure) 1e to 1g. The inner electrode 1h is common, the outer electrode 1g for the Z axis performs a simple contraction, but the electrodes 1e, 1f for the X axis and the Y axis are each divided into two, and voltages of opposite polarities. It has a function of causing a deflection of the cylinder by causing a displacement in a direction perpendicular to the Z axis.

【0007】図5(A)のトライポッド型に比べて図5
(B)のチューブ型は応答性と対称性にすぐれているた
め、最近広く用いられるようになっており、本発明の微
動装置もこのタイプの素子を用いるものとする。
As compared with the tripod type shown in FIG.
Since the tube type of (B) has excellent responsiveness and symmetry, it has been widely used recently, and the fine movement device of the present invention also uses this type of element.

【0008】チューブ型微動素子は、円筒の上端面を固
定し、電極間に所定の電圧を印加して自由面である円筒
の下端面を運動せしめる。走査型プローブ顕微鏡では、
この運動側に探針を設けて、探針の微動を行う。図5
(B)では原理説明の都合上、x、y、z電極を円筒上
の別々の位置に形成した例を示したが、最近実際に用い
られるのは、図6に示すようなx、y、z用の電極を一
体化した3電極一体型である。このタイプは、X軸、Y
軸方向に電圧が印加できるようにするために圧電セラミ
クス円筒1dの円周上の電極が4分割(図では手前側の
2つの電極1i、1jのみを開示しているが、裏側にも
同様な2つの電極が設けられている)されており、Z軸
方向に伸縮する場合には全ての外周上電極1i、1j、
…と内周電極1kに電圧を印加する。
In the tube type fine movement element, the upper end surface of the cylinder is fixed, and a predetermined voltage is applied between the electrodes to move the lower end surface of the cylinder which is a free surface. With a scanning probe microscope,
A probe is provided on this movement side to perform fine movement of the probe. Figure 5
In (B), for the sake of explanation of the principle, an example in which the x, y, and z electrodes are formed at different positions on the cylinder is shown. Recently, however, what is actually used is x, y, and z as shown in FIG. It is a three-electrode integrated type that integrates z electrodes. This type is X axis, Y
The electrodes on the circumference of the piezoelectric ceramic cylinder 1d are divided into four in order to be able to apply a voltage in the axial direction (only two electrodes 1i and 1j on the front side are disclosed in the figure, but the same applies to the back side). Two electrodes are provided), and when expanding and contracting in the Z-axis direction, all the outer peripheral upper electrodes 1i, 1j,
... and a voltage is applied to the inner peripheral electrode 1k.

【0009】円筒1dの素材である圧電セラミクスに
は、PZTなどが用いられ、印加電圧に対して所定の変
位をとる。
PZT or the like is used for the piezoelectric ceramics, which is the material of the cylinder 1d, and it has a predetermined displacement with respect to the applied voltage.

【0010】[0010]

【発明が解決しようとする課題】上記した従来の圧電式
微動素子においては、大振幅動作時に駆動電圧に対する
変位量が非直線性を有することが知られている。また、
印加電圧と歪み量との間でヒステリシス現象が発生する
ことや、大電圧印加後はクリープと呼ばれる緩和現象も
報告されている。更に、図5及び図6で示したチューブ
型微動素子の場合には、円筒Z軸に垂直な一端面(上端
面)が固定されているため、X、Y軸方向の下端面移動
は各軸まわりの回転(ゆがみ)を伴う。
In the above-mentioned conventional piezoelectric fine movement element, it is known that the displacement amount with respect to the drive voltage has a non-linearity when operating at a large amplitude. Also,
It has been reported that a hysteresis phenomenon occurs between the applied voltage and the amount of strain, and a relaxation phenomenon called creep after applying a large voltage. Further, in the case of the tube type fine movement element shown in FIGS. 5 and 6, since one end face (upper end face) perpendicular to the cylindrical Z axis is fixed, movement of the lower end face in the X and Y axis directions is performed in each axis. Accompanied by rotation (distortion) around.

【0011】従って、チューブ型微動素子の自由端面
(下端面)に探針を固着した走査型プローブ顕微鏡にお
いて、各関連電極への印加電圧を比例的に変化させて試
料表面をX、Y方向に走査して凹凸形状を観察すると、
補正なしでは像が歪むという問題点がある。
Therefore, in the scanning probe microscope in which the probe is fixed to the free end surface (lower end surface) of the tube type fine movement element, the applied voltage to each related electrode is proportionally changed to move the sample surface in the X and Y directions. When observing the uneven shape by scanning,
There is a problem that the image is distorted without correction.

【0012】これに対するために、従来、予め正確な長
さや角度がわかっているテストパターンを用いてX−Y
平面を走査し、印加電圧に対する変位量の補正係数を求
めていた。しかし、非直線性やヒステリシス現象が駆動
開始時の電圧値や最大印加電圧によって変化し、またク
リーピングもあるため正確な座標位置の較正は困難であ
った。
In order to address this, conventionally, a XY pattern is obtained by using a test pattern whose accurate length and angle are known in advance.
The plane was scanned and the correction coefficient of the displacement amount with respect to the applied voltage was obtained. However, it is difficult to accurately calibrate the coordinate position because the nonlinearity and the hysteresis phenomenon change depending on the voltage value at the start of driving and the maximum applied voltage, and there is creeping.

【0013】本発明の目的は、移動座標を正確に把握で
きる微動装置を提供することである。
An object of the present invention is to provide a fine movement device capable of accurately grasping movement coordinates.

【0014】本発明の他の目的は、試料表面を探針で走
査中に座標較正を行い、歪のない観察像を得ることがで
きる走査型プローブ顕微鏡を提供することである。
Another object of the present invention is to provide a scanning probe microscope capable of obtaining a distortion-free observation image by performing coordinate calibration while scanning the sample surface with a probe.

【0015】[0015]

【課題を解決するための手段】本発明は、中空円筒形状
を有し、該円筒軸(Z軸)に垂直な一端面が固定され、
該円筒に作用する外力によってZ軸に垂直な他端面が並
進及び又は回転の微少運動を行う微動装置において、前
記他端面に固設された、前記円筒のX軸又はY軸方向に
平行に合計3本以上の集束ビーム光を出射する光路装置
と、該光路装置の近傍に独立して設けられ、光路装置よ
り出射される前記集束ビーム光をそれぞれ受光する合計
3ケ以上の受光器と、該3ケ以上の受光器の前記集束ビ
ーム光受光位置の変化を検出して前記微少運動による座
標値を算出する手段と、より成る微動装置を提供する。
The present invention has a hollow cylindrical shape, and one end surface perpendicular to the cylindrical axis (Z axis) is fixed,
In a fine movement device in which the other end surface perpendicular to the Z-axis performs a slight movement of translation and / or rotation by an external force acting on the cylinder, a total fixed in parallel to the X-axis or Y-axis direction of the cylinder fixed to the other end surface. An optical path device for emitting three or more focused beam lights, and a total of three or more light receivers provided independently near the optical path device for respectively receiving the focused beam lights emitted from the optical path device, There is provided a fine movement device comprising means for detecting changes in the focused beam light receiving positions of three or more light receivers and calculating coordinate values due to the fine movement.

【0016】更に本発明は、中空円筒が圧電性材料で形
成され、該円筒軸(Z軸)に垂直な一端面が固定され、
円筒円周面に電極が設けられており、これら電極間に電
圧を印加することによってZ軸に垂直な他円筒端部が並
進及び又は回転の微少運動を行う微動装置において、前
記他円筒端部に固設された、前記円筒のX軸又はY軸方
向に平行に合計3本以上の集束ビーム光を出射する光路
装置と、該光路装置の近傍に独立して設けられ、光路装
置より出射される前記集束ビーム光をそれぞれ受光する
合計3ケ以上の受光器と、該3ケ以上の受光器の前記集
束ビーム光受光位置の変化を検出して前記微少運動によ
る座標値を算出する手段と、より成る微動装置を提供す
る。
Further, according to the present invention, the hollow cylinder is formed of a piezoelectric material, and one end surface perpendicular to the cylinder axis (Z axis) is fixed,
Electrodes are provided on the circumferential surface of the cylinder, and by applying a voltage between these electrodes, the end of the other cylinder perpendicular to the Z-axis performs a fine movement of translation and / or rotation, An optical path device fixed to the optical path device for emitting a total of three or more focused beam lights in parallel to the X-axis or Y-axis direction of the cylinder, and an optical path device independently provided near the optical path device and emitted from the optical path device. A total of three or more light receivers for respectively receiving the focused beam lights, and means for detecting a change in the focused beam light receiving positions of the three or more light receivers to calculate coordinate values due to the minute movement. And a fine movement device.

【0017】更に本発明は、上記受光器は、受光面が少
なくとも4分割されていて、この分割した受光面におけ
る光起電力の大きさで受光位置の変化を検出可能にし
た。
Further, according to the present invention, in the above-mentioned light receiver, the light receiving surface is divided into at least four, and the change in the light receiving position can be detected by the magnitude of the photoelectromotive force on the divided light receiving surface.

【0018】更に本発明は、上記微動装置を用いた走査
型プローブ顕微鏡において、測定された前記集束ビーム
光受光位置の変化を帰還することによって前記電極間に
印加する電圧を制御することを特徴とする走査型プロー
ブ顕微鏡を提供する。
Further, the present invention is characterized in that, in the scanning probe microscope using the fine movement device, the voltage applied between the electrodes is controlled by feeding back the measured change of the focused beam light receiving position. A scanning probe microscope is provided.

【0019】[0019]

【作用】前記の構成の圧電セラミクス円筒電極間に電圧
を印加すると、円筒下端面に固設された光路装置も下端
面と同じ動きをする。その結果光路装置から出射される
集束ビーム光の位置及び方向が変化し、近接して設けら
れた受光器受光面における受光部位がそれぞれ移行す
る。この受光部位の変化は、円筒下端面、従って探針の
並進及び又は回転の情報を含んでいる。圧電以外の外力
による微動側にも適用できる。
When a voltage is applied between the piezoelectric ceramic cylindrical electrodes having the above construction, the optical path device fixed to the lower end surface of the cylinder also moves in the same manner as the lower end surface. As a result, the position and direction of the focused beam light emitted from the optical path device changes, and the light receiving portions on the light receiving surfaces of the light receivers provided close to each other move. This change in the light receiving portion includes information about translation and / or rotation of the lower end surface of the cylinder, and thus the probe. It can also be applied to the fine movement side due to external force other than piezoelectric.

【0020】従って、各受光器受光面での受光位置変化
を検出し、幾何学的な相対位置関係を考慮して演算する
ことで微動装置探針の補正された正確な移動座標を得る
ことができる。この移動座標を基にして走査型プローブ
顕微鏡の観察像を出力すれば、歪のないデータが得られ
る。
Therefore, by detecting the light receiving position change on the light receiving surface of each of the light receivers and performing the calculation in consideration of the geometrical relative positional relationship, it is possible to obtain the corrected accurate moving coordinate of the fine motion device probe. it can. If an observation image of the scanning probe microscope is output based on this moving coordinate, distortion-free data can be obtained.

【0021】[0021]

【実施例】以下、実施例を基にして、本発明を詳しく述
べる。図1は、本発明の実施例である微動装置の主要部
斜視図を示す。図において1はチューブ型圧電素子、2
はその下端側に固定的に取り付けた光路装置、3a及び
3bは光路装置2内に設けたビームスプリッタ、4はレ
ーザ光源、5はレーザ光源4のレーザ出射孔に一端が固
定接続され他端が光路装置2の入射孔に固定接続された
光ファイバ、6a〜6cは光路装置2の近傍に設けられ
た、ビームスプリッタ3a、3bからのレーザ光を受光
する受光素子である。この受光素子6a〜6cは圧電素
子1及び光路装置2とは独立に設置しており、圧電素子
1及び光路装置2が一体として微動しても、動くことは
ない。
EXAMPLES The present invention will be described in detail below based on examples. FIG. 1 is a perspective view of a main part of a fine movement device according to an embodiment of the present invention. In the figure, 1 is a tube-type piezoelectric element, 2
Is a beam path device fixedly attached to the lower end side thereof, 3a and 3b are beam splitters provided in the light path device 2, 4 is a laser light source, 5 is one end fixedly connected to the laser emission hole of the laser light source 4, and the other end is Optical fibers 6a to 6c fixedly connected to the entrance hole of the optical path device 2 are light receiving elements provided near the optical path device 2 for receiving the laser light from the beam splitters 3a and 3b. The light-receiving elements 6a to 6c are installed independently of the piezoelectric element 1 and the optical path device 2, and do not move even if the piezoelectric element 1 and the optical path device 2 integrally move.

【0022】チューブ型圧電素子1のZ軸に垂直な上端
面は、図示してないホルダーに固設されている。光路装
置2は中空円筒形状で、図示したようにレーザ光源4か
ら光ファイバ5を介して入射するレーザ光がその内部
(例えば中心)を通ってX軸に平行に進行する2ケのビ
ームスプリッタ3a、3bはX軸方向に沿って設けられ
ており、入射レーザ光のビームスプリットを行う。ビー
ムスプリッタ3a、3bは簡単のため直角プリズム状に
図示したが、通常は2等辺直角プリズムの斜面をあわせ
たキューブ状をしている。その斜面には、λ/3程度の
薄い空気層が介在していたり、或は一方のプリズムの斜
面に半透膜をコーティングし、他方のプリズム斜面には
反射防止膜がコーティングされている。ビームスプリッ
タ3a、3bに入射したレーザ光は、斜面で反射光と透
過光が、本構成では1本のレーザ光を3本に分割するの
で3aでは1:2、3bでは1:1に分割される。
The upper end surface of the tube-type piezoelectric element 1 perpendicular to the Z axis is fixed to a holder (not shown). The optical path device 2 has a hollow cylindrical shape, and as shown in the drawing, two beam splitters 3a in which the laser light incident from the laser light source 4 through the optical fiber 5 passes through the inside (for example, the center) thereof and is parallel to the X axis. 3b are provided along the X-axis direction and perform beam splitting of the incident laser light. The beam splitters 3a and 3b are illustrated as right-angled prisms for the sake of simplicity, but they are usually in the shape of a cube in which the slopes of isosceles right-angled prisms are combined. A thin air layer of about λ / 3 is interposed on the slope, or a semi-permeable film is coated on the slope of one prism and an antireflection film is coated on the slope of the other prism. The laser light incident on the beam splitters 3a and 3b is reflected light and transmitted light on the slope. In this configuration, one laser light is divided into three, so that 3a is divided into 1: 2 and 3b is divided into 1: 1. It

【0023】光路装置2には、図示したようにビームス
プリッタ3bの透過光及び3a、3bの反射光が射出で
きるような適当な穴2a、2b、2cが設けられてい
る。ビームスプリッタ3aでY軸方向に反射されたレー
ザ光は受光器6bの受光面に、また、3bでY軸方向に
反射されたレーザ光は受光器6aの受光面に、更にビー
ムスプリッタ3a、3bを透過したX軸方向のレーザ光
は受光器6cの受光面に入射して電圧に変換される。
The optical path device 2 is provided with appropriate holes 2a, 2b, 2c through which the transmitted light of the beam splitter 3b and the reflected light of 3a, 3b can be emitted as shown in the figure. The laser light reflected in the Y-axis direction by the beam splitter 3a is on the light-receiving surface of the light receiver 6b, and the laser light reflected in the Y-axis direction by 3b is on the light-receiving surface of the light receiver 6a. The laser light in the X-axis direction that has passed through is incident on the light receiving surface of the light receiver 6c and converted into a voltage.

【0024】受光器6a〜6cの受光面は、受光位置の
変化を明確に捕らえるために、例えば図2に示すように
それぞれ4分割されており、各領域毎に別々に起電力値
が測定される。
The light receiving surfaces of the light receivers 6a to 6c are divided into, for example, four parts as shown in FIG. 2 in order to clearly capture the change in the light receiving position, and the electromotive force value is measured separately for each area. It

【0025】図2で示したように、微動装置の圧電セラ
ミクスに電圧が印加されていない状態では、レーザ光ス
ポット9aは、受光器の各領域8a〜8dに均等に受光
されるように受光面の中心にくるよう設定されている。
各領域8a〜8dにおける光起電力をそれぞれVa〜Vd
で表すことにする。
As shown in FIG. 2, when no voltage is applied to the piezoelectric ceramics of the fine movement device, the laser beam spot 9a is evenly received by each of the regions 8a to 8d of the photodetector. It is set to come to the center of.
Each photovoltaic V a ~V d in each area 8a~8d
Will be represented by.

【0026】微動装置の圧電セラミクス電極間に電圧が
印加されると、選択された電極、印加電圧の大きさに応
じて、図1のチューブ型圧電素子下端面が所定の方向に
移動し、それにつれて各レーザ光の出射方向、位置が変
わる。これは、受光器の受光面では、例えば図2の点線
で示した9bのようにレーザ光スポットの変位となって
現れる。この場合、受光器受光面の座標を図示したよう
に(h、v)で表すと、レーザ光スポットが9aから9
bに移動したことによって生ずる変化は、受光器では水
平方向に(Vc+Vd)−(Va+Vb)の変化として、ま
た垂直方向に(Va+Vc)−(Vb+Vd)の変化として
表れることになる。
When a voltage is applied between the piezoelectric ceramic electrodes of the fine movement device, the lower end surface of the tube-shaped piezoelectric element shown in FIG. 1 moves in a predetermined direction according to the selected electrode and the magnitude of the applied voltage. The emission direction and position of each laser beam change accordingly. This appears as a displacement of the laser light spot on the light receiving surface of the light receiver, for example, as indicated by 9b shown by the dotted line in FIG. In this case, when the coordinates of the light receiving surface of the light receiver are represented by (h, v) as shown in the figure, the laser light spots are 9a to 9a.
changes arising out of the move to b is horizontally by the photodetector (V c + V d) - (V a + V b) as a change in, also in the vertical direction (V a + V c) - (V b + V d) Will appear as a change.

【0027】それ故、受光素子6a〜6cのそれぞれに
ついて、レーザ光スポットの変位を前記した光起電力変
化の関係を予め測定しておけば、各受光素子でチューブ
型圧電素子の変位量に対応した座標値(h、v)、即ち
(ha、va)、(hb、vb)、(hc、vc)を確定する
ことができる。
Therefore, if the displacement of the laser beam spot is measured in advance for each of the light receiving elements 6a to 6c and the relationship of the above-mentioned change in photovoltaic power is measured, each light receiving element corresponds to the amount of displacement of the tube type piezoelectric element. coordinate values (h, v), i.e. (h a, v a), (h b, v b), it is possible to determine the (h c, v c).

【0028】次にこれら(h、v)座標値を用いてチュ
ーブ型圧電素子の変位量、即ち変位に伴う座標値(x、
y、z、θx、θy、θz)をマイクロコンピュータ(図
示せず)で自動的に求める方法を述べる。
Next, using these (h, v) coordinate values, the displacement amount of the tube-type piezoelectric element, that is, the coordinate value (x,
A method for automatically obtaining y, z, θ x , θ y , θ z ) by a microcomputer (not shown) will be described.

【0029】図3は、図1に斜視図を示した光学部品間
の相対位置を示すX−Y平面図である。圧電セラミクス
円筒の中央、3本のレーザ光が存在する平面に座標の原
点をおいている。θxはx軸まわりの微少回転角、θy
y軸まわりの微少回転角であり、更に距離l1〜l5は以
下の定義に従う。 l1…ビームスプリッタ3bのx軸方向の原点からの距
離、 l2…ビームスプリッタ3aのx軸方向の原点からの距
離、 l3…ビームスプリッタ3a、3bのy軸方向の原点か
らの距離、 l4…受光素子6a、6bのy軸方向の原点からの距
離、 l5…受光素子6cのx軸方向の原点からの距離。ま
た、最初は簡単のためにZ軸まわりの微少回転角θz
無視する。
FIG. 3 is an X-Y plan view showing the relative position between the optical components shown in the perspective view of FIG. The origin of the coordinates is set in the center of the piezoelectric ceramic cylinder and on the plane where the three laser beams are present. θ x is a minute rotation angle around the x axis, θ y is a minute rotation angle around the y axis, and the distances l 1 to l 5 are defined as follows. l 1 ... distance from the origin of the beam splitter 3b in the x-axis direction, l 2 ... distance from the origin of the beam splitter 3a in the x-axis direction, l 3 ... distance from the origin of the beam splitters 3a, 3b in the y-axis direction, l 4 ... Distance of the light receiving elements 6a and 6b from the origin in the y-axis direction, l 5 ... Distance of the light receiving element 6c from the origin in the x-axis direction. In addition, for the sake of simplicity, the minute rotation angle θ z about the Z axis is ignored at first.

【0030】各受光器6a〜6cの各々における座標
(h、v)は、幾何学的関係から以下の式で表される。
The coordinates (h, v) in each of the light receivers 6a to 6c are expressed by the following equations from the geometrical relation.

【数1】 [Equation 1]

【数2】 [Equation 2]

【数3】 [Equation 3]

【0031】この結果、チューブ型圧電素子1下端面の
各変位量は、
As a result, each displacement amount of the lower end surface of the tube-type piezoelectric element 1 is

【数4】 [Equation 4]

【数5】 [Equation 5]

【数6】 [Equation 6]

【数7】 [Equation 7]

【数8】 [Equation 8]

【0032】次に、Z軸まわりの微少回転角θzは無視
できない大きさである場合には、前記(数1)〜(数
3)のha〜hcは以下の(数9)〜(数11)のように
なる。但し、va、vb、vcについては(数1)〜(数
3)の通りである。
Next, when the minute rotation angle θ z about the Z axis is a size that cannot be ignored, h a to h c in the above (Equation 1) to (Equation 3) are the following (Equation 9) to It becomes like (Equation 11). However, v a, v b, for v c are as (number 1) through (3).

【0033】[0033]

【数9】 [Equation 9]

【数10】 [Equation 10]

【数11】 (数9)、(数10)よりθzは次式から求められる。[Equation 11] From (Equation 9) and (Equation 10), θ z can be obtained from the following equation.

【数12】 [Equation 12]

【0034】θzのプラスマイナス符号の選択は、(数
12)を(数9)、(数10)に代入してそれぞれの式
からxを求め、チューブ型圧電素子1へ印加される電圧
などを考慮して矛盾の生じない方に決める。このθz
(数11)に代入すれば、yが求められる。
The plus / minus sign of θ z is selected by substituting (Equation 12) into (Equation 9) and (Equation 10) to obtain x from the respective equations, and the voltage applied to the tube-type piezoelectric element 1 or the like. In consideration of the above, decide the one that does not cause contradiction. By substituting this θ z into (Equation 11), y can be obtained.

【0035】図4は、本発明の別の実施例における光学
部品配置を示すX−Y平面図である。本実施例の場合、
圧電セラミクス円筒下端面に固設された光路装置2の中
央部に、X軸方向に透過光が、Y軸に沿って互いに逆方
向に2本の反射光が放射されるようなビームスプリッタ
(図示せず)を設置している。即ち、レーザ光源4から
放射されたレーザ光は、光ファイバ5を経由して座標原
点で3方向に分かれ、光路装置2の穴(図示せず)から
出射して、それぞれ受光器6a〜6cで受光されて光起
電力に変換される。
FIG. 4 is an XY plan view showing the arrangement of optical components in another embodiment of the present invention. In the case of this embodiment,
A beam splitter that radiates transmitted light in the X-axis direction and two reflected lights in opposite directions along the Y-axis at the central portion of the optical path device 2 fixed to the lower end surface of the piezoelectric ceramic cylinder. (Not shown) is installed. That is, the laser light emitted from the laser light source 4 is divided into three directions at the coordinate origin via the optical fiber 5, is emitted from the hole (not shown) of the optical path device 2, and is respectively received by the light receivers 6a to 6c. The light is received and converted into photovoltaic power.

【0036】各電極への電圧印加によってチューブ型圧
電素子1が(x、y、z、θx、θy、θz)だけ微少変
位した時、受光素子6a〜6cの受光面におけるレーザ
光スポットの位置変化座標(h、v)は以下の式で表さ
れる。但し、受光素子6a〜6cは、図2に示したもの
をそのまま用いるものとする。
When the tube type piezoelectric element 1 is slightly displaced by (x, y, z, θ x , θ y , θ z ) by applying a voltage to each electrode, a laser beam spot on the light receiving surface of the light receiving elements 6a to 6c. The position change coordinate (h, v) of is expressed by the following formula. However, as the light receiving elements 6a to 6c, those shown in FIG. 2 are used as they are.

【数13】 [Equation 13]

【数14】 [Equation 14]

【数15】 [Equation 15]

【0037】(数13)〜(数15)より、次式が成り
立つ。
From (Equation 13) to (Equation 15), the following equation is established.

【数16】 従って、[Equation 16] Therefore,

【数17】 [Equation 17]

【0038】以上のようにして求められた微動装置の変
位座標は、本微動装置の光路装置2の下面中央にZ軸に
沿って探針を固設して走査型プローブ顕微鏡に応用した
場合、歪を含まない正確な値を与える。従って、試料表
面を探針で走査して得た2次元情報をそのまま記憶して
ディスプレイに出力すれば、歪のない表面の観察像が得
られる。
The displacement coordinates of the fine movement device obtained as described above are applied to a scanning probe microscope when a probe is fixed along the Z axis at the center of the lower surface of the optical path device 2 of the present fine movement device. Gives an accurate value without distortion. Therefore, if the two-dimensional information obtained by scanning the sample surface with the probe is stored as it is and output to the display, an observation image of the surface without distortion can be obtained.

【0039】以上本発明を実施例に沿って説明したが、
本発明はこれらにとどまるものではない。例えば前記実
施例では変位測定用のレーザ光を光ファイバで光路装置
に導入し、ビームスプリッタによって各方向に分割した
が、予め光路装置内に3方向にそれぞれビームを放射す
るレーザダイオードを3ケ、微動装置と共に仕込んでお
くこともできる。また、集光ビームはレーザ光に限らず
レンズで絞った自然放出光を用いることもできる。更
に、光路装置内の集束ビームの本数は3本以上であれば
何本あってもよいことは、上記記述から自明であろう。
The present invention has been described above with reference to the embodiments.
The present invention is not limited to these. For example, in the above-described embodiment, the laser light for displacement measurement is introduced into the optical path device by the optical fiber and is divided into each direction by the beam splitter. However, three laser diodes each emitting a beam in each of the three directions are previously provided in the optical path device. It can also be prepared together with the fine movement device. Further, the focused beam is not limited to the laser beam, and spontaneous emission light focused by a lens can be used. Further, it will be apparent from the above description that the number of focused beams in the optical path device may be any number as long as it is three or more.

【0040】円筒状微動装置に作用する外力は、前記実
施例の場合圧電歪であったが、これにとどまるものでは
ない。例えば磁気歪みや機械的振動であってもよい。
尚、顕微鏡の駆動に際し、探針駆動例と試料駆動例とが
あるが、本実施例の微動装置はどちらに使用してもよ
い。
The external force acting on the cylindrical fine movement device is piezoelectric strain in the above-mentioned embodiment, but it is not limited to this. For example, it may be magnetostriction or mechanical vibration.
When driving the microscope, there are a probe driving example and a sample driving example, but the fine movement apparatus of this embodiment may be used for either.

【0041】[0041]

【発明の効果】以上述べたように、本発明によれば、一
端を固定された円筒状微動装置に外力が作用して生じた
自由端面の変位座標を正確に把握することができる。特
に、微動装置の円筒が圧電セラミクスで構成され、印加
電圧によって生ずる圧電歪によって並進、回転を行うチ
ューブ型圧電素子の場合には、その自由端面に探針を固
設することによって走査型プローブ顕微鏡の微動装置に
用いることができるのるで、歪のない試料表面観察がで
きる。
As described above, according to the present invention, it is possible to accurately grasp the displacement coordinate of the free end surface caused by the external force acting on the cylindrical fine movement device having one end fixed. In particular, in the case of a tube type piezoelectric element in which the cylinder of the fine movement device is composed of piezoelectric ceramics and translates and rotates due to piezoelectric strain generated by an applied voltage, a scanning probe microscope is provided by fixing a probe on its free end surface. The sample surface can be observed without distortion because it can be used in the micro-moving device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例におけるチューブ型圧電素子の
主要部を示す斜視図である。
FIG. 1 is a perspective view showing a main part of a tube-type piezoelectric element according to an embodiment of the present invention.

【図2】図1に示した受光器の受光面とレーザ光スポッ
トの位置を示す図である。
FIG. 2 is a diagram showing the light receiving surface of the light receiver shown in FIG. 1 and the positions of laser light spots.

【図3】図1に示した素子の変位検出方法の説明図であ
る。
FIG. 3 is an explanatory diagram of a displacement detection method for the element shown in FIG.

【図4】本発明の別の実施例におけるチューブ型圧電素
子の光学部品構成を示すX−Y平面図である。
FIG. 4 is an XY plan view showing an optical component configuration of a tube-type piezoelectric element according to another embodiment of the present invention.

【図5】STM用微動素子の代表的形状を示す図であ
る。
FIG. 5 is a diagram showing a typical shape of a fine movement element for STM.

【図6】従来のチューブ型圧電素子を示す図である。FIG. 6 is a diagram showing a conventional tube-type piezoelectric element.

【符号の説明】[Explanation of symbols]

1 チューブ型圧電素子 2 光路装置 3a、3b ビームスプリッタ 4 レーザ光源 5 光ファイバ 6a、6b、6c 受光素子 DESCRIPTION OF SYMBOLS 1 Tube type piezoelectric element 2 Optical path device 3a, 3b Beam splitter 4 Laser light source 5 Optical fiber 6a, 6b, 6c Light receiving element

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 中空円筒形状を有し、該円筒軸(Z軸)
に垂直な一端面が固定され、該円筒に作用する外力によ
ってZ軸に垂直な他端面が並進及び又は回転の微少運動
を行う微動装置において、前記他端面に固設された、前
記円筒のX軸又はY軸方向に平行に合計3本以上の集束
ビーム光を出射する光路装置と、該光路装置の近傍に独
立して設けられ、光路装置より出射される前記集束ビー
ム光をそれぞれ受光する合計3ケ以上の受光器と、該3
ケ以上の受光器の前記集束ビーム光受光位置の変化を検
出して前記微少運動による座標値を算出する手段と、よ
り成る微動装置。
1. A hollow cylindrical shape having a cylindrical axis (Z axis).
In the fine movement device, one end surface of which is perpendicular to the cylinder is fixed, and the other end surface of which is perpendicular to the Z-axis performs a slight movement of translation and / or rotation by an external force acting on the cylinder. And an optical path device for emitting a total of three or more focused beam lights parallel to the axis or the Y-axis direction, and a total for independently receiving the focused beam lights emitted from the optical path device provided independently in the vicinity of the optical path device. 3 or more receivers,
A fine movement device comprising: a means for detecting a change in the receiving position of the focused beam light of the light receiving device of the above number or more to calculate a coordinate value by the fine movement.
【請求項2】 中空円筒が圧電性材料で形成され、該円
筒軸(Z軸)に垂直な一端面が固定され、円筒円周面に
電極が設けられ、これら電極間に電圧を印加することに
よってZ軸に垂直な他円筒端部が並進及び又は回転の微
少運動を行う微動装置において、前記他円筒端部に固設
された、前記円筒のX軸又はY軸方向に平行に合計3本
以上の集束ビーム光を出射する光路装置と、該光路装置
の近傍に独立して設けられ、光路装置より出射される前
記集束ビーム光をそれぞれ受光する合計3ケ以上の受光
器と、該3ケ以上の受光器の前記集束ビーム光受光位置
の変化を検出して前記微少運動による座標値を算出する
手段と、より成る微動装置。
2. A hollow cylinder is formed of a piezoelectric material, one end surface perpendicular to the cylinder axis (Z axis) is fixed, electrodes are provided on the circumferential surface of the cylinder, and a voltage is applied between these electrodes. In the fine movement device in which the end of the other cylinder perpendicular to the Z-axis makes a slight movement of translation and / or rotation, a total of three parallel to the X-axis or the Y-axis direction of the cylinder fixed to the end of the other cylinder. An optical path device for emitting the above focused beam light, a total of three or more light receivers provided independently in the vicinity of the optical path device for respectively receiving the focused beam light emitted from the optical path device, and the three optical receivers. A fine movement device comprising the above-mentioned means for detecting a change in the receiving position of the focused beam light of the light receiver and calculating a coordinate value by the fine movement.
【請求項3】 上記受光器は、受光面が少なくとも4分
割されていて、この分割した受光面における光起電力の
大きさで受光位置の変化を検出可能にした請求項1又は
2に記載の微動装置。
3. The light receiving surface of the light receiver is divided into at least four, and a change in the light receiving position can be detected by the magnitude of the photoelectromotive force on the divided light receiving surface. Fine movement device.
【請求項4】 請求項2又は3に記載の微動装置を用い
た走査型プローブ顕微鏡において、測定された前記集束
ビーム光受光位置の変化を帰還することによって前記電
極間に印加する電圧を制御することを特徴とする走査型
プローブ顕微鏡。
4. A scanning probe microscope using the fine movement device according to claim 2, wherein the voltage applied between the electrodes is controlled by feeding back the measured change in the focused beam light receiving position. A scanning probe microscope characterized by the above.
JP21736593A 1993-09-01 1993-09-01 Fine adjustment, and scanning type probe microscope Pending JPH0771912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21736593A JPH0771912A (en) 1993-09-01 1993-09-01 Fine adjustment, and scanning type probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21736593A JPH0771912A (en) 1993-09-01 1993-09-01 Fine adjustment, and scanning type probe microscope

Publications (1)

Publication Number Publication Date
JPH0771912A true JPH0771912A (en) 1995-03-17

Family

ID=16703040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21736593A Pending JPH0771912A (en) 1993-09-01 1993-09-01 Fine adjustment, and scanning type probe microscope

Country Status (1)

Country Link
JP (1) JPH0771912A (en)

Similar Documents

Publication Publication Date Title
JP2516292B2 (en) Atomic force microscope
US6928863B2 (en) Apparatus and method for isolating and measuring movement in a metrology apparatus
US6910368B2 (en) Removable probe sensor assembly and scanning probe microscope
US20100180356A1 (en) Nanoindenter
US8495759B2 (en) Probe aligning method for probe microscope and probe microscope operated by the same
JP2002107283A (en) Scanning probe microscope
JP3349779B2 (en) Scanner system and scanning microscope using the same
JPH05187866A (en) Interatomic force microscope, record reproducing device and reproducing device
JPH0771912A (en) Fine adjustment, and scanning type probe microscope
JPH07311029A (en) Fine adjustment and scanning probe microscope
JP2967965B2 (en) Scanner for scanning probe microscope and scanning probe microscope provided with the same
JPH08278317A (en) Interatomic force microscope
JPH0771913A (en) Fine adjustment, and scanning type probe microscope
JPH07190728A (en) Jogging device and scan type probe microscope
JPH07244058A (en) Surface shape measuring device
JP3892184B2 (en) Scanning probe microscope
JPH0625642B2 (en) Scanning tunnel microscope device
JPH0868799A (en) Scanning type probe microscope
JP3327041B2 (en) Atomic force microscope
JPH07198359A (en) Fine movement mechanism and scanning probe microscope
JPH02203205A (en) Three-dimensional actuator and scanning type tunnel microscope device
JP4143722B2 (en) Sensitivity calibration method for atomic force / horizontal force microscope
JP4810241B2 (en) Probe unit and atomic force microscope
JPH06258068A (en) Interatomic force microscope
JPH09171028A (en) Scanner system