JPH07198359A - Fine movement mechanism and scanning probe microscope - Google Patents

Fine movement mechanism and scanning probe microscope

Info

Publication number
JPH07198359A
JPH07198359A JP33621493A JP33621493A JPH07198359A JP H07198359 A JPH07198359 A JP H07198359A JP 33621493 A JP33621493 A JP 33621493A JP 33621493 A JP33621493 A JP 33621493A JP H07198359 A JPH07198359 A JP H07198359A
Authority
JP
Japan
Prior art keywords
light receiving
light
fine movement
axis direction
receiving surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33621493A
Other languages
Japanese (ja)
Inventor
Ryuji Takada
龍二 高田
Takeshi Murayama
健 村山
Yoshihiro Hoshino
吉弘 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP33621493A priority Critical patent/JPH07198359A/en
Publication of JPH07198359A publication Critical patent/JPH07198359A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position Or Direction (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To provide an apparatus in which the coordinates of fine displacements in the X-axis direction, the Y-axis direction and the Z-axis direction can be specified with high accuracy regarding a fine movement mechanism which is provided with the detection system of the fine displacements. CONSTITUTION:A fine movement mechanism is composed of a flexible system which is provided with a fixed end fixed to, and installed at, an outer wall and with a free end which is moved fine by an external force and of three pairs of detection systems in which outer spherical mirrors 10x, 10y, 10z are installed at the free end, in which beams of focused light radiated from focused-beam light sources 11x, 11y, 11z fixed to an outer wall are reflected by the outer spherical mirrors 10x, 10y, 10z so as to be incident on two-split light-receiving face-type photodetectors 12x, 12y, 12z and which photoelectrically convert the beams of focused light so as to be output. An electromotive force which is detected in every region of two-split light-receiving faces is input to a differential amplifier, and its output is converted into a coordinate value. Thereby, fine movements in the X-axis direction, the Y-axis direction and the Z-axis direction can be detected with high sensitivity. When a probe or a sample stand is fixed to, and installed at, the fine movement mechanism, the mechanism can be utilized for a scanning probe microscope.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微小変位の検出装置を
備えた微動機構及びこれを用いた走査型プローブ顕微鏡
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine movement mechanism equipped with a detection device for minute displacements and a scanning probe microscope using the same.

【0002】[0002]

【従来の技術】物体の表面をより微細に観察する手段と
して走査型トンネル顕微鏡が開発された。トンネル顕微
鏡は、固体内電子の波動関数の「しみ出し」に着眼し
て、2つの導体を原子の大きさ(nmサイズ)まで近づ
けた時両者間を電子が相互に往来できる現象(トンネル
現象)を利用している。両導体間を流れるトンネル電流
は、清浄な金属表面の場合1nmに近づくと約1nA流
れ、両者間距離が0.1nm増減する電流値は1桁減増
する。走査型トンネル顕微鏡は、両導体間(金属探針と
被測定試料間)に流れるトンネル電流値が一定になるよ
うに探針/試料間距離を保持して試料表面を走査するこ
とによって、被測定試料の表面粗さ像を観察する仕組み
である。
2. Description of the Related Art A scanning tunneling microscope has been developed as a means for observing the surface of an object more finely. A tunnel microscope is a phenomenon in which electrons can come and go between two conductors when the two conductors are brought close to the atomic size (nm size) by focusing on the “bleeding out” of the electron's wave function in a solid. Are using. In the case of a clean metal surface, the tunnel current flowing between both conductors flows about 1 nA when approaching 1 nm, and the current value at which the distance between the conductors increases or decreases by 0.1 nm decreases by one digit. The scanning tunneling microscope scans the sample surface by maintaining the probe-sample distance so that the tunnel current value flowing between both conductors (between the metal probe and the sample to be measured) becomes constant. This is a mechanism for observing the surface roughness image of the sample.

【0003】従って、探針(プローブ)を0.1nm精
度で微動させながらその動きを制御する技術が要求され
る。走査型トンネル顕微鏡(STM)開発以来他にも探
針/試料間に作用する量子効果を利用した表面粗さ計が
開発されている。その代表的なものが、原子間力顕微鏡
(AFM)及び磁気力顕微鏡(MFM)である。
Therefore, there is required a technique for controlling the movement of the probe while finely moving it with a precision of 0.1 nm. Since the development of the scanning tunneling microscope (STM), another surface roughness meter utilizing the quantum effect acting between the probe and the sample has been developed. Typical examples thereof are an atomic force microscope (AFM) and a magnetic force microscope (MFM).

【0004】AFMは、無極性物体間に作用する分散力
に基づく引力や斤力を利用したもので、非導電性物体の
表面観察に適している。また、AFMは磁性体試料の磁
区、磁壁を観察するもので磁気的引力、斤力を利用して
いる。これら各量子効果顕微鏡は、被測定試料表面を2
次元的に走査しながら、nmサイズの表面粗さ(或は特
性差)を探針の上下動の軌跡によって測定しようとする
もので、総称して走査型プローブ顕微鏡(SPM)とい
う。
The AFM utilizes an attractive force or a repulsive force based on a dispersion force acting between non-polar objects and is suitable for observing the surface of a non-conductive object. Further, the AFM is for observing magnetic domains and domain walls of a magnetic material sample and utilizes magnetic attractive force and repulsive force. Each of these quantum effect microscopes uses two
While scanning dimensionally, the surface roughness (or characteristic difference) of nm size is to be measured by the trajectory of the vertical movement of the probe, which is generically called a scanning probe microscope (SPM).

【0005】走査型プローブ顕微鏡では、探針の微動位
置を正確に把握すると共に、その動きを制御するために
微動機構が用いられる。微動機構は通常、顕微鏡の固定
部分(外壁)に一端を固設し、探針を備えた他端を自由
な状態にした可撓治具に直接外力を作用させて、Z軸方
向(探針/試料間軸方向)のみならず、Z軸に垂直なX
−Y平面方向に探針を移動させるタイプと、さらに前記
外壁に外力の作用によって微動する装置を挟むタイプと
がある。いずれの場合も、探針の動きを把握し且つ制御
するには、0.1nm或はそれ以下の精度で探針を作動
せしめる駆動系とその動きを量的に検知する検出系が必
要である。
In the scanning probe microscope, a fine movement mechanism is used for accurately grasping the fine movement position of the probe and controlling the movement thereof. The fine movement mechanism normally has one end fixed to the fixed portion (outer wall) of the microscope, and the external force is applied directly to a flexible jig with the other end having a probe in a free state, so that the Z-axis direction (probe / X axis perpendicular to the Z axis
There are a type in which the probe is moved in the -Y plane direction, and a type in which a device that is slightly moved by the action of an external force is sandwiched between the outer walls. In any case, in order to grasp and control the movement of the probe, a drive system for operating the probe with an accuracy of 0.1 nm or less and a detection system for quantitatively detecting the movement are required. .

【0006】微小駆動系は、圧電セラミクス素子の圧電
歪と印加電圧の関係を利用して動きを制御することが多
い。検出系は、STMの場合トンネル電流値を電気的に
増幅する装置が用いられるが、AFMやMFMでは探針
に作用する量子的力で撓む可撓治具の自由端の動きを拡
大して捕捉する装置が用いられている。
The minute driving system often controls the movement by utilizing the relationship between the piezoelectric strain of the piezoelectric ceramics element and the applied voltage. As the detection system, in the case of STM, a device that electrically amplifies the tunnel current value is used, but in AFM and MFM, the movement of the free end of the flexible jig that is bent by the quantum force acting on the probe is expanded. A capture device is used.

【0007】前記自由端の変位測定方式には、STMの
探針を利用したトンネル検出方式や光の多重干渉を用い
る光波干渉方式、自由端での光反射を離れた位置で受光
して光電変換する光てこ方式、歪センサを用いるピエゾ
方式などが提案され、一部実用化されている。
The free end displacement measuring method includes a tunnel detection method using an STM probe, a light wave interference method using multiple interference of light, and light reflection at the free end which is received at a remote position and photoelectrically converted. An optical lever method and a piezo method using a strain sensor have been proposed and partially put into practical use.

【0008】[0008]

【発明が解決しようとする課題】前記したSPMの微動
機構における検出系のうち、可撓系に直接変位検出セン
サを設置したピエゾ方式は、例えば特公平4−7250
4号に記載された如く、カンチレバー上面に圧電体薄膜
素子を形成し、当該素子に流れる電流が圧電歪によって
変化する現象を増幅して検知するものである。また、カ
ンチレバー下面に付設した薄膜光路を通過する光量がカ
ンチレバーの変位によって変化する量を光電変換・増幅
して検知しようとする試みもある。
Among the detection systems in the fine movement mechanism of the SPM described above, the piezo system in which the displacement detection sensor is directly installed in the flexible system is disclosed in, for example, Japanese Patent Publication No. 4-7250.
As described in No. 4, a piezoelectric thin film element is formed on the upper surface of the cantilever, and a phenomenon in which the current flowing through the element changes due to piezoelectric strain is amplified and detected. There is also an attempt to detect by photoelectrically converting and amplifying the amount of change in the amount of light passing through the thin film optical path attached to the lower surface of the cantilever due to the displacement of the cantilever.

【0009】しかし、これらの方法では、分解能を1n
m以下で変位を検出することは困難である。分解能を高
めるには、レーザ変位計などの高精度変位計を可撓治具
に取り付ける方法が考えられるが、可撓治具の小型化及
び微小駆動能力を著しく阻害するので現実的ではない。
However, in these methods, the resolution is 1n.
It is difficult to detect displacement below m. A method of attaching a high-precision displacement gauge such as a laser displacement gauge to a flexible jig can be considered to increase the resolution, but this is not realistic because it miniaturizes the flexible jig and significantly impairs the minute driving capability.

【0010】前記したSPMの検出系のうち可撓治具に
直接接触しない方式は、実用性が高い。しかし、カンチ
レバー背面にトンネル電流用探針を近接させるトンネル
検出方式では、レバー表面に吸着している種々の分子を
介してレバーに力を及ぼすため検出感度が制限され、ま
たその動作が不安定になる欠点がある。これに対して光
を用いた光波干渉法や光てこ法は、光の輻射圧が非常に
小さいため(1mWの光の輻射圧は7×10-12N)レ
バーに及ぼす検出系の力は事実上無視できる。
Of the SPM detection systems described above, the method that does not directly contact the flexible jig is highly practical. However, in the tunnel detection method in which the tunnel current probe is placed close to the back surface of the cantilever, the detection sensitivity is limited because the force is exerted on the lever through various molecules adsorbed on the lever surface, and its operation becomes unstable. There is a drawback. On the other hand, in light wave interferometry and optical lever method using light, the radiation pressure of light is very small (radiation pressure of light of 1 mW is 7 × 10 -12 N) and the force of the detection system exerted on the lever is actually Can be ignored.

【0011】しかし、光を用いた検出系は、光検出器と
して光電変換を用いているため、光量変化が少ないとS
/N比が低下して十分な精度で可撓治具の動きを捕捉す
ることができない。この結果、可撓治具に負担がかか
る。即ち被測定試料の表面凹凸に対して高い追随性を有
する可撓治具が求められることになる。このために、探
針の先端形状の鋭敏性や可撓支持部分の材質、膜厚及び
機械的強度が問題となり、可撓治具の加工精度や耐久性
が、しばしば困難になるという課題が残されている。
However, since the detection system using light uses photoelectric conversion as a photodetector, if the change in light quantity is small, S
The / N ratio decreases and the movement of the flexible jig cannot be captured with sufficient accuracy. As a result, a burden is placed on the flexible jig. That is, a flexible jig having high followability with respect to the surface unevenness of the sample to be measured is required. For this reason, the sharpness of the tip shape of the probe, the material of the flexible support portion, the film thickness, and the mechanical strength become problems, and the processing accuracy and durability of the flexible jig often become difficult. Has been done.

【0012】光てこ法を用いて小型高感度の検出系を構
成し、1次元の微小変位を検出する方法として、円柱状
反射鏡と半導体光重心点位置検出素子(PSD)とを組
み合わせたものが開示されている(北島等;精密工学会
誌、P.P.131〜133、1993年11月)。この方法は、円柱状
反射鏡の直軸に垂直なX−Y平面のある方向から集束ビ
ーム光を前記反射鏡に入射させ、反射光をPSDで受け
光電変換して出力を測定するものである。前記入射方向
と直角に前記反射鏡がシフトすると光反射点がずれるの
で、光てこ法で拡大されたシフトがPSD上の受光点に
生じて光重心点変位として高感度検出される仕組みであ
る。
As a method of detecting a one-dimensional minute displacement by forming a small and highly sensitive detection system using the optical lever method, a combination of a cylindrical reflecting mirror and a semiconductor optical center of gravity position detecting element (PSD) is used. Is disclosed (Kitashima et al .; Journal of Precision Engineering, PP131-133, November 1993). In this method, a focused beam light is made incident on the reflecting mirror from a certain direction of an XY plane perpendicular to the straight axis of the cylindrical reflecting mirror, the reflected light is received by a PSD, and photoelectric conversion is performed to measure the output. . When the reflecting mirror shifts at a right angle to the incident direction, the light reflection point shifts. Therefore, a shift magnified by the optical lever method occurs at the light receiving point on the PSD and is highly sensitively detected as the displacement of the optical center of gravity.

【0013】本発明の目的は、前記光てこ法を用いた高
感度位置検出方法を利用して、SPMに利用できる3次
元の小型高感度微動機構を提供することである。
An object of the present invention is to provide a three-dimensional small high-sensitivity fine movement mechanism that can be used for SPM by utilizing the high-sensitivity position detecting method using the optical lever method.

【0014】本発明の他の目的は、前記した高検出感度
の微動機構を組み込んだSPMを提供し、その微動位置
の制御方法を開示することである。
Another object of the present invention is to provide an SPM incorporating the above-described fine movement mechanism with high detection sensitivity, and disclose a method for controlling the fine movement position thereof.

【0015】[0015]

【作用】本発明では、外壁に固設された固定端及び外力
の作用によって微動する移動端を有する可撓系と、該可
撓系の外の所定位置に所定間隔をおいて固設された3対
の集束ビーム光源及び2分割受光面型受光素子と、前記
移動端の所定位置に固設され且つ前記集束ビーム光源か
ら発する各集束ビーム光を反射して前記2分割受光面型
受光素子にそれぞれ入射させる機能を有する3ケの球面
または円柱面ミラーと、を備え、前記移動端の微動に伴
うX、Y、Z軸方向の各変位をそれぞれ3ケの前記2分
割受光面型受光素子の各受光面領域における出力差の変
化として検出する微動機構を提供する。
According to the present invention, a flexible system having a fixed end fixed to the outer wall and a moving end finely moved by the action of an external force, and a flexible system fixed at a predetermined position outside the flexible system at a predetermined interval. Three pairs of focused beam light sources and two split light receiving surface type light receiving elements, and each focused beam light emitted from the focused beam light source which is fixed at a predetermined position of the moving end and is reflected to the two split light receiving surface type light receiving element. And three spherical or cylindrical mirrors each having a function of making incident light, and three displacements in the X-, Y-, and Z-axis directions associated with the fine movement of the moving end are provided for each of the two light-receiving surface type light receiving elements. Provided is a fine movement mechanism that detects a change in output difference in each light receiving surface area.

【0016】本発明では、上記微動機構を利用して前記
移動端の一部に探針または試料台を固設し、3ケの前記
2分割受光面型受光素子の各受光面領域における出力差
の変化として検出された前記移動端のX、Y、Z軸方向
変位を帰還して、前記外力を制御することによりプロー
ブの微動機構を制御する機能を有する走査型プローブ顕
微鏡を提供する。
In the present invention, the fine movement mechanism is used to fix a probe or a sample table at a part of the moving end, and the output difference in each light receiving surface area of the three divided light receiving surface type light receiving elements is three. There is provided a scanning probe microscope having a function of controlling the fine movement mechanism of the probe by feeding back the displacements of the moving end in the X, Y, and Z-axis directions detected as changes in the above, and controlling the external force.

【0017】前記集束ビーム光は、レーザ光であること
が好ましい。又、前記可撓系は、内周及び外周にそれぞ
れ電気的に独立した駆動用電極を配置した中空圧電セラ
ミクス円柱から成るものであってもよい。
The focused beam light is preferably laser light. Further, the flexible system may be composed of a hollow piezoelectric ceramic cylinder having electrically independent drive electrodes arranged on the inner circumference and the outer circumference.

【0018】本発明は、光てこ法を利用した微小位置の
検出に関するものである。前記微動機構の前記可撓系移
動端に集束ビーム光を反射する球面または円柱面ミラー
を3ケ固設し反射面から距離Lを隔ててそれぞれの反射
ビーム光を受光する3ケの受光素子に、2分割受光面型
受光素子を用いることによって1対の集束ビーム光源及
び受光素子の組合せで1軸方向の微小変位を検出するも
のである。
The present invention relates to the detection of minute positions using the optical lever method. Three spherical or cylindrical mirrors for reflecting the focused beam light are fixedly provided at the moving end of the fine movement mechanism, and three light receiving elements for receiving the respective reflected beam lights at a distance L from the reflecting surface are provided. By using a two-divided light receiving surface type light receiving element, a small displacement in one axis direction is detected by a combination of a pair of focused beam light sources and light receiving elements.

【0019】即ち、X軸方向変位検出用には、Z軸に沿
って受光面を2分割した受光素子と集束ビーム光源と
を、ほぼY軸方向に設置し、逆にY軸方向変位検出用に
は、Z軸に沿って受光面を2分割した受光素子と集束ビ
ーム光源とをほぼX軸方向に設置する。またZ軸方向変
位検出用には、Z軸に垂直なX−Y平面内に2分割線を
有する受光素子と集束ビーム光源とを前記2軸方向と
は、別の方向、例えばX、Yの各軸から45度傾いた方
向に設置する。
That is, in order to detect displacement in the X-axis direction, a light-receiving element whose light-receiving surface is divided into two along the Z-axis and a focused beam light source are installed substantially in the Y-axis direction, and conversely for detecting displacement in the Y-axis direction. In this case, a light-receiving element whose light-receiving surface is divided into two along the Z-axis and a focused beam light source are installed substantially in the X-axis direction. Further, for Z-axis direction displacement detection, a light receiving element having a bisecting line in an XY plane perpendicular to the Z axis and a focused beam light source are provided in directions different from the biaxial direction, for example, in X and Y directions. Install in a direction inclined by 45 degrees from each axis.

【0020】また円柱面ミラーを用いる場合には、その
長軸をX及びY移動用にはZ軸方向に向けるようにし
て、Z軸移動用にはX−Y面上に向けるようにして可撓
系移動端に設置する。
When a cylindrical mirror is used, its major axis may be oriented in the Z-axis direction for X and Y movement, and may be oriented in the XY plane for Z axis movement. Installed at the moving end of the flexible system.

【0021】前記可撓系移動端が外力の作用によって任
意の方向へ微小移動した時、その動きはX、Y、Zの前
記各軸方向微動検出系によって各軸方向の移動量に分解
して捕促される。移動端がどの方向へ微動しても、前記
球面ミラーまたは各軸用円柱ミラーの長軸まわりの曲率
はたえず一定(r0)であるため、光てこ法で増幅され
た変位は、前記2分割受光面における出力差として電気
的に差動増幅され、正確に各軸の移動量として検出でき
る。光てこ法を更に有効に利用するには、前記球面ミラ
ーを複数個用意して多重反射を用いればよい。
When the movable end of the flexible system is minutely moved in an arbitrary direction by the action of an external force, the movement is decomposed into the amount of movement in each axial direction by the X, Y and Z axial fine movement detecting systems. Be punished. No matter which direction the moving end is slightly moved, the curvature about the major axis of the spherical mirror or the cylindrical mirror for each axis is always constant (r 0 ), so the displacement amplified by the optical lever method is divided into the two parts. It is electrically differentially amplified as the output difference on the light receiving surface, and can be accurately detected as the movement amount of each axis. In order to use the optical lever method more effectively, multiple reflections may be used by preparing a plurality of the spherical mirrors.

【0022】[0022]

【実施例】以下本発明を実施例に基づいてより詳しく述
べる。図1は、実施例による微動機構の主要構成部を示
す斜視見取図である。1は円柱型圧電素子であって、3
ケの円柱面ミラー10x、10y、10z(いずれも半
径r0)と共に微動機構の可撓系を構成する。円柱型圧
電素子1は、中空セラミクス円柱と、その内外周面にそ
れぞれ電気的に独立して配設された複数の電極とから成
る。電極のうち4は内周電極であり、各軸方向へ圧電歪
を印加するとき共通電極(グランド電極)として用いら
れる。また、5x1(図示せず)と5x2は、中空圧電セ
ラミクス円柱のX軸に沿って配置されたX軸方向変位用
電極であり、5y1と5y2は前記円柱のY軸に沿って配
置されたY軸方向変位用電極である。更に5zは前記円
柱円周面に沿って切れ目なく配置されているZ軸方向変
位用電極である。
EXAMPLES The present invention will be described in more detail based on the following examples. FIG. 1 is a perspective view showing the main components of the fine movement mechanism according to the embodiment. 1 is a cylindrical piezoelectric element, and 3
A flexible system of the fine movement mechanism is configured with the cylindrical mirrors 10x, 10y, 10z (all having a radius r 0 ). The cylindrical piezoelectric element 1 is composed of a hollow ceramic cylinder and a plurality of electrodes electrically and independently arranged on the inner and outer peripheral surfaces thereof. Four of the electrodes are inner electrodes and are used as common electrodes (ground electrodes) when applying piezoelectric strain in each axial direction. In addition, 5x 1 (not shown) and 5x 2 are X-axis direction displacement electrodes arranged along the X axis of the hollow piezoelectric ceramic cylinder, and 5y 1 and 5y 2 are along the Y axis of the cylinder. It is the arranged electrode for Y-axis direction displacement. Further, 5z is a Z-axis displacing electrode which is arranged along the circumferential surface of the cylinder without interruption.

【0023】中空セラミクス円柱の上端部2は、外壁
(図示せず)に固定され、一方下端部3は、自由端(移
動端)である。下端部3には、3ケの円柱面ミラー10
x、10y、10zが、その外周に取り付けられてい
る。各外球面ミラーは、いずれも半径r0を有する球の
外側が光反射面になった半球状構造を有し、それぞれ円
柱下端部3の中心を座標原点とするX、Y、Z座標軸の
ほぼY軸上(X軸方向変位検出用)、ほぼX軸上(Y軸
方向変位検出用)及びほぼX、Y軸から45度傾いた位
置(Z軸方向変位検出用)に固設されている。
The upper end 2 of the hollow ceramic cylinder is fixed to an outer wall (not shown), while the lower end 3 is a free end (moving end). At the lower end portion 3, there are three cylindrical surface mirrors 10.
x, 10y and 10z are attached to the outer circumference thereof. Each of the outer spherical mirrors has a hemispherical structure in which the outer side of a sphere having a radius r 0 is a light reflecting surface, and each of the X, Y, and Z coordinate axes with the center of the lower end portion 3 of the cylinder as the coordinate origin. It is fixed on the Y-axis (for detecting displacement in the X-axis), approximately on the X-axis (for detecting displacement in the Y-axis), and at a position inclined by 45 degrees from the X and Y axes (for detecting displacement in the Z-axis). .

【0024】これら各円柱面10x、10y、10zの
それぞれに対応して、1対の集光ビーム光源11xと2
分割受光面型受光素子12x、11yと12y、11z
と12zがそれぞれ外壁に所定の距離を隔てて固設され
ている。X軸方向変位検出系は、ほぼY軸に沿って固設
された集束ビーム光源11x、放射された集束ビーム光
が円柱面ミラー10xで反射されて2分割受光面に入射
するように配設されたX軸方向変位検出用の2分割受光
面型受光素子12xとから成る。同様にしてY軸方向変
位検出系は、集束ビーム光源11y、円柱面ミラー10
yおよび2分割受光面型受光素子12yで構成される。
またZ軸方向変位検出系は11z、10z及び12zで
構成されている。これらのうち12x及び12yはZ軸
に沿った溝で受光面が2分割されたおり、12zはX−
Y平面内でX、Y各軸から45度シフトした45度軸に
垂直な溝に沿って受光面が2分割されるように配置され
ている。
Corresponding to each of these cylindrical surfaces 10x, 10y, 10z, a pair of focused beam light sources 11x and 2 are provided.
Divided light receiving surface type light receiving elements 12x, 11y and 12y, 11z
And 12z are respectively fixed to the outer wall with a predetermined distance. The X-axis direction displacement detection system is arranged so that the focused beam light source 11x fixed along the Y axis and the emitted focused beam light is reflected by the cylindrical mirror 10x and is incident on the two-divided light receiving surface. And a two-divided light receiving surface type light receiving element 12x for detecting the X-axis direction displacement. Similarly, the Y-axis direction displacement detection system includes a focused beam light source 11y and a cylindrical surface mirror 10.
y and a two-divided light receiving surface type light receiving element 12y.
The Z-axis direction displacement detection system is composed of 11z, 10z and 12z. Of these, 12x and 12y have a light receiving surface divided into two by a groove along the Z axis, and 12z is X-.
In the Y plane, the light receiving surface is divided into two along a groove perpendicular to the 45 ° axis which is shifted by 45 ° from the X and Y axes.

【0025】集束ビーム光源11x、11y、11z
は、例えばHe−Neレーザ光を導波した光ファイバー
の出射端である。レーザ光の出射方向は、円柱面ミラー
10x、10y、10zで反射した光のスポットが、2
分割受光面型受光素子12x、12y、12zの前記受
光面分割溝をまたいで両受光領域に入射するように調整
される。
Focused beam light sources 11x, 11y, 11z
Is an emitting end of an optical fiber that guides He-Ne laser light, for example. The emission direction of the laser light is 2 when the spot of the light reflected by the cylindrical mirrors 10x, 10y, 10z is 2.
The split light receiving surface type light receiving elements 12x, 12y, 12z are adjusted so as to enter both light receiving regions across the light receiving surface dividing grooves.

【0026】図2は、図1に示した圧電素子1の移動端
の微動を説明するための図である。図では、前記円柱の
X−Z面からみた側面図が記されている。図2の(A)
は、前記円柱のどの電極間にも電圧を印加しない場合を
示す。圧電歪が誘起されないので、前記円柱は変形して
いない。図2の(B)は、電極4−5Z間に円柱に引張
り歪が作用する向きの電極を印加した場合を示す。圧電
素子1がZ軸方向に伸びている様子が示されている。図
示してないが、印加電圧の極性を逆にすれば、圧電素子
1はZ軸方向に縮む。
FIG. 2 is a diagram for explaining fine movement of the moving end of the piezoelectric element 1 shown in FIG. In the figure, a side view of the cylinder viewed from the XZ plane is shown. Figure 2 (A)
Shows the case where no voltage is applied between any electrodes of the cylinder. The cylinder is not deformed because no piezoelectric strain is induced. FIG. 2B shows a case where an electrode having a direction in which tensile strain acts on a cylinder is applied between the electrodes 4-5Z. It is shown that the piezoelectric element 1 extends in the Z-axis direction. Although not shown, if the polarity of the applied voltage is reversed, the piezoelectric element 1 contracts in the Z-axis direction.

【0027】一方、図2(C)は前記円柱がX軸方向に
曲げられている様子を示す。この場合は、電極4−5x
2間に圧縮歪が誘記されるような極性の電圧を、また電
極4−5x1間には引張り歪が誘記されるような極性の
電圧を印加する。図示してないが、Y方向変位も同様に
して生ぜしめることができる。
On the other hand, FIG. 2C shows a state where the cylinder is bent in the X-axis direction. In this case, electrodes 4-5x
A voltage having a polarity such that a compressive strain is induced is applied between the two electrodes, and a voltage having a polarity such that a tensile strain is induced is applied between the electrodes 4-5x 1 . Although not shown, the Y-direction displacement can be similarly generated.

【0028】図3は、2分割受光面型受光素子の受光面
を示してたものである。図では1例として12xの場合
を示したが、他の受光素子も同様である。受光面は、均
等面積、均等受光感度を有する2分割領域12xa、1
2xbから成る。各受光領域間には、X1−X2方向に沿
って領域分離溝が切られている。12xの分離溝は、図
示したようにZ軸に沿って切られいる。
FIG. 3 shows the light receiving surface of the two-divided light receiving surface type light receiving element. In the figure, the case of 12x is shown as an example, but the same applies to other light receiving elements. The light-receiving surface is a two-divided region 12x a having a uniform area and a uniform light-receiving sensitivity, 1
It consists of 2x b . A region separation groove is formed between the light receiving regions along the X 1 -X 2 direction. The 12x isolation groove is cut along the Z axis as shown.

【0029】図2(A)の圧電セラミクス円柱変形前に
は、集束ビーム光スポットは、図3の実線のように、丁
度分離溝付近にスポット14aの中心がくるように、即
ち12xaと12xbの光電変換出力の差がゼロであるよ
うに集束ビーム光源11xの位置調整が行われている。
そして、図2(C)のように圧電セラミクス円柱が、X
軸方向に微動した場合、円柱面ミラー10xによって反
射されて2分割受光面型受光素子12xに入射する集束
ビーム光スポット14aは、図3の点線スポット位置1
4bのように位置シフト(Δx相当)を生ずる。ここ
で、X軸方向の変位Δbの他にZ軸方向変位Δzも伴う
ことがあるが12XはX軸方向変位検出用の受光素子で
あるため、Δzの変位を検出することはない。つまり、
本発明の検出方式によれば、目的とする軸方向の移動量
だけを検出することができる。
[0029] Before the piezoelectric ceramic cylindrical variant of FIG. 2 (A), the focused beam spot, as shown by the solid line in FIG. 3, in such a manner that the center of the spot 14a in the vicinity just separation grooves, i.e. 12x a and 12x The position of the focused beam light source 11x is adjusted so that the difference between the photoelectric conversion outputs of b is zero.
Then, as shown in FIG. 2 (C), the piezoelectric ceramic cylinder is
In the case of a slight movement in the axial direction, the focused beam light spot 14a reflected by the cylindrical surface mirror 10x and incident on the two-divided light receiving surface type light receiving element 12x is the dotted line spot position 1 in FIG.
4b causes a position shift (corresponding to Δx). Here, in addition to the displacement Δb in the X-axis direction, a displacement Δz in the Z-axis direction may be accompanied, but since 12X is a light receiving element for detecting displacement in the X-axis direction, the displacement of Δz is not detected. That is,
According to the detection method of the present invention, it is possible to detect only the target axial movement amount.

【0030】図3の各受光領域12xa、12xbにおけ
る光電変換出力をそれぞれExa、Exbとする。各受光領
域の光電変換出力は、同じ発光スペクトルを有する集束
ビーム光に対しては、受光量に比例する。即ち、
[0030] Each light-receiving regions 12x a in FIG. 3, respectively E xa photoelectric conversion output in 12x b, and E xb. The photoelectric conversion output of each light receiving region is proportional to the amount of received light for focused beam light having the same emission spectrum. That is,

【数1】 で表される左右の光量の差に相当する光電変換出力差Δ
Xを検出することによって、図示したX軸方向の変位
を検出することとができる。ここで、受光領域12xa
へのシフト量Δxによる増分スポット面積は、斜線で示
すようになり、その面積をΔSとすると、EXaはC1Δ
Sだけ増える(但し、C1は比例定数)。一方、EXb
1ΔSだけ減少する。従って、ΔEXは2C1ΔSとな
る。即ち、ΔEXは面積の変化ΔSに比例するものとな
る。一方、変化量がΔxが微小な場合は、ΔSはΔXに
ほぼ比例すると考えてもよく、C2を比例定数として、
2Δxとなる(C2は比例定数)。また、Δxが微小で
ない場合でも、比例関数はないが、ΔEXとΔxとはあ
る関係を持った関数であり、いずれにしてもΔEXを測
定することによりΔxを検出できる。尚、ビームスポッ
トの径方向の光強度分布は、一様であると近似してい
る。同様に、Y軸方向変位検出用の2分割受光面型受光
素子12yを用いた場合には、
[Equation 1] The photoelectric conversion output difference Δ corresponding to the difference between the left and right light amounts
By detecting E X , the illustrated displacement in the X-axis direction can be detected. Here, the light receiving area 12x a
The incremental spot area due to the shift amount Δx to the area becomes as shown by the diagonal line, and if the area is ΔS, EX a is C 1 Δ
Increase by S (however, C 1 is a proportional constant). On the other hand, EX b decreases by C 1 ΔS. Therefore, Delta] E X becomes 2C 1 [Delta] S. That, Delta] E X becomes proportional to the change in area [Delta] S. On the other hand, when the amount of change Δx is small, it may be considered that ΔS is almost proportional to ΔX, and C 2 is a proportional constant.
It becomes C 2 Δx (C 2 is a proportional constant). Even if Δx is not very small, there is no proportional function, but ΔE X and Δx have a certain relationship, and in any case, ΔX can be detected by measuring ΔE X. The light intensity distribution of the beam spot in the radial direction is approximated to be uniform. Similarly, when the two-division light receiving surface type light receiving element 12y for detecting the Y-axis direction displacement is used,

【数2】 で表される光電変換出力差ΔEYを検出すればよい。1
2zでは、
[Equation 2] The photoelectric conversion output difference ΔE Y represented by 1
In 2z,

【数3】 で表される光電変換出力差ΔEZを検出すればよい。[Equation 3] It is sufficient to detect the photoelectric conversion output difference ΔE Z represented by

【0031】検出感度を高めるために、実際には前記Δ
X、ΔEY、ΔEZは差動増幅器(図示せず)を通して
高感度増幅した値が示される。それ故、集束ビーム光ス
ポットの受光面上の移動距離でサブミクロン程度の微動
を検出することが可能になる。
In order to increase the detection sensitivity, the Δ
The values E X , ΔE Y , and ΔE Z are highly sensitively amplified through a differential amplifier (not shown). Therefore, it becomes possible to detect a fine movement of about submicron at the moving distance of the focused beam light spot on the light receiving surface.

【0032】図1及び図3に示した可撓系及び検出系を
用いてX軸方向の微動Δbを検出する方法を、以下に説
明する。
A method of detecting the fine movement Δb in the X-axis direction using the flexible system and the detection system shown in FIGS. 1 and 3 will be described below.

【0033】図4は、図1における円柱面ミラー10x
をZ軸方向からみた上面図である。最初、図1の各電極
に全く電圧が印加されていない場合にはレーザビーム光
は、図4の0点(外球面ミラー10の頂点)で反射され
るように位置調整されている。次に、図1の内周電極4
及び外周電極5x1、5x2、5y1、5y2に所定の極
性、大きさの電圧を印加した結果、圧電素子1の下端面
3が歪んで、レーザビーム光の円柱面ミラー10の頂点
が図4の01点に印加したとする。01点は、X軸からY
軸方向へ角度αだけ、また0点から距離でΔrだけシフ
トした位置である。レーザビーム光源11及び4分割受
光面型受光素子12は固設されているので、円柱ミラー
10上の反射点は0点にとどまったままである。移動し
た円柱面ミラー10の上面図を点線で示す。
FIG. 4 shows the cylindrical mirror 10x in FIG.
FIG. 3 is a top view of FIG. First, when no voltage is applied to each electrode in FIG. 1, the laser beam light is adjusted in position so as to be reflected at point 0 (vertex of the outer spherical mirror 10) in FIG. Next, the inner peripheral electrode 4 of FIG.
And outer electrodes 5x 1, 5x 2, 5y 1, predetermined polarity 5y 2, With a voltage of magnitude, distorted lower end surface 3 of the piezoelectric element 1, the vertex of the cylindrical surface mirror 10 of the laser beam It is assumed that the voltage is applied to point 0 1 in FIG. 0 1 is from the X axis to Y
It is a position shifted in the axial direction by an angle α and by a distance Δr from the zero point. Since the laser beam light source 11 and the four-division light receiving surface type light receiving element 12 are fixed, the reflection point on the cylindrical mirror 10 remains at 0 point. A top view of the moved cylindrical mirror 10 is shown by a dotted line.

【0034】また、図4では集束ビーム光が集束ビーム
光源11xから円柱面ミラー10xに各自θで入射し、
円柱型圧電素子1が変形前には0点より角度θで反射さ
れて反射面より距離Lだけ離れた2分割受光面型受光素
子12xに入射する如く描かれているが、これは、円柱
型圧電素子1の円柱面ミラー10xの中心を通りZ軸に
垂直な平面上に投影して示したものである。従って、実
際の0点への入射、反射角はθとはならない。
Further, in FIG. 4, the focused beam light enters the cylindrical surface mirror 10x from the focused beam light source 11x at an angle of θ.
The cylindrical piezoelectric element 1 is depicted as being reflected at an angle θ from the 0 point before being deformed and incident on a two-divided light receiving surface type light receiving element 12x separated by a distance L from the reflecting surface. The projection is shown on a plane that passes through the center of the cylindrical mirror 10x of the piezoelectric element 1 and is perpendicular to the Z axis. Therefore, the angle of incidence and reflection at the actual zero point is not θ.

【0035】さて、円柱型圧電素子1の変形前には、Y
軸は図の0点(この時の外球面ミラー10xの頂点)を
通過している。0点からの反射ビームは、受光素子12
xの中心にスポットがくるように(図3参照)、即ち、
ΔEX=0であるように集束ビーム光の位置調整が行わ
れている。
Before the deformation of the cylindrical piezoelectric element 1, Y
The axis passes through point 0 in the figure (the vertex of the outer spherical mirror 10x at this time). The reflected beam from the 0 point is received by the light receiving element 12
So that the spot is at the center of x (see FIG. 3), that is,
The position of the focused beam light is adjusted so that ΔE X = 0.

【0036】今、円柱型圧電素子1が歪を受けて移動端
が、従って円柱面ミラー10xがX軸方向にΔxだけシ
フトしたとする。図の点線で描かれているように、円柱
面ミラー10xの頂点01は移動方向へシフトするの
で、0点(集束ビームの入反射点)での接平面はΔψだ
け傾くことになる。
Now, it is assumed that the cylindrical piezoelectric element 1 is distorted and the moving end, and hence the cylindrical mirror 10x, is shifted by Δx in the X-axis direction. As shown by the dotted line in the figure, since the vertex 0 1 of the cylindrical mirror 10x shifts in the moving direction, the tangent plane at the 0 point (focusing beam entrance / reflection point) is inclined by Δψ.

【0037】この結果、この接平面(球面と0点で接す
る平面)上に立てた0点を通る垂線に対する入射ビーム
角(θ+Δψ)となり、反射角も(θ+Δψ)となる。
つまり、Δxの外球面ミラーシフトによって0点からの
反射ビームはZ軸に対して(θ+2Δψ)だけ傾くこと
になる。勿論0点への入射ビーム角は、Z軸に対して不
変(θ)である。
As a result, the incident beam angle (θ + Δψ) and the reflection angle are also (θ + Δψ) with respect to the perpendicular line passing through the zero point standing on this tangential plane (a plane in contact with the spherical surface at the zero point).
That is, the reflected beam from the 0 point is inclined by (θ + 2Δψ) with respect to the Z axis due to the outer spherical mirror shift of Δx. Of course, the incident beam angle to the 0 point is invariable (θ) with respect to the Z axis.

【0038】この結果は、2分割受光面型受光素子12
xの受光面(図3参照)における受光ビームスポット
は、光てこの原理によってΔb=2Δψ・Lだけ圧電素
子1の移動方向とは逆方向に振れる。図4では、集束ビ
ーム光源11x及び受光素子12xは、紙面に投影して
説明した。従って、紙面に投影されたZ軸に対する集束
ビーム光の入反射角θも図1で示した実際の入反射角度
とは異なるがθの大きさは受光器受光面における集束ビ
ームスポットの振れΔbとは無関係であるため、図4で
得られた結論は何ら影響を受けない。但し、Δxは微小
変位であるためr0》Δxを意味し、即ちΔψは微小で
ある。
This result shows that the two-divided light-receiving surface type light-receiving element 12
The light receiving beam spot on the light receiving surface of x (see FIG. 3) is deflected by Δb = 2Δφ · L in the direction opposite to the moving direction of the piezoelectric element 1 by the principle of light lever. In FIG. 4, the focused beam light source 11x and the light receiving element 12x are described by being projected on the paper surface. Therefore, the incident / reflection angle θ of the focused beam light with respect to the Z axis projected on the paper surface is also different from the actual incident / reflection angle shown in FIG. 1, but the magnitude of θ is the deviation Δb of the focused beam spot on the light receiving surface of the light receiver. Is not relevant, the conclusions obtained in FIG. 4 are unaffected. However, since Δx is a minute displacement, it means r 0 >> Δx, that is, Δψ is minute.

【0039】以下に、Δψを距離の関数として求める。
図4において、円柱型圧電素子1の変形によってシフト
した円柱面ミラー10xの位置を示す半円の座標を(x
a、ya)とするこの半円は、方程式
Below, Δφ is obtained as a function of distance.
In FIG. 4, the semicircle coordinates indicating the position of the cylindrical surface mirror 10x shifted by the deformation of the cylindrical piezoelectric element 1 are represented by (x
This semi-circle, the equation for a, and y a)

【数4】 で表される円の上半分である。この式からyaを求める
と、
[Equation 4] It is the upper half of the circle represented by. When y a is obtained from this equation,

【数5】 この式をxaで微分して円周上の点の傾きを表す式を求
めると、
[Equation 5] When this equation is differentiated by x a and the equation expressing the inclination of the point on the circumference is obtained,

【数6】 (数6で)xa=Δxの時の円周上の点の傾きがΔψで
あるから
[Equation 6] Since the slope of the point on the circumference when x a = Δx (in equation 6) is Δψ

【数7】 [Equation 7]

【0040】ここで、Δx/r0《1を考慮するとHere, considering Δx / r 0 << 1

【数8】 が得られる。それ故、受光素子受光面上での集束ビーム
光スポットの振れは、
[Equation 8] Is obtained. Therefore, the deflection of the focused beam light spot on the light receiving surface of the light receiving element is

【数9】 となる。この振れは図3で示されている。Δbの振れに
よって(数1)で示したような左右の光量の差に相当す
る起電力差ΔEXが実測される。従って、予め
[Equation 9] Becomes This swing is shown in FIG. Electromotive force difference Delta] E X corresponding to the difference between the left and right light amount as shown by the deflection of Δb in equation (1) is measured. Therefore, in advance

【数10】 を実験的に求めておくことによって、外力が作用した時
生ずる任意のΔxを逆にF-1(ΔEX)から求めること
ができる。例えば、r0=1mm、L=50mm、Δx
=1nmであったとすれば、光てこ法によって受光素子
受光面上では、Δb=100nmに拡大されて観測され
る。この集束ビーム光スポットの振れは、差動増幅器を
用いれば検出可能な値である。2分割受光面型受光素子
12xの受光面上におけるHe−Neレーザビームスポ
ットの変位Δbと、受光素子12xの差動増幅器(増幅
率100倍)を介した光電変換出力の特性例を図7に示
した。図7から1μmの変位に対して21.5mVの出
力が得られることがわかる。汎用の12bitA/Dコ
ンバータ(0−5V)でこの出力を計測する場合、コン
バータの分解能は1.22mV/bitなので、計測可
能な変位は1.22(mV/bit)÷21.5(mV
/μm)=0.057μm/bitとなる。即ち、前記
したように、サブミクロンの分解能で変位測定が可能と
なる。Y軸やZ軸方向の微動についても全く同じ結論が
得られる。(数9)から集束ビーム光スポットの受光素
子面上での振れと円柱状圧電素子1の圧電歪によるX軸
方向変位は比例関係にあるので、圧電歪による移動端の
X軸方向変位がY軸方向の外球面ミラーの回転を伴って
も、それに影響されることなく、並進運動成分Δx(ま
たはΔy)のみを検出することが可能である。
[Equation 10] By experimentally obtaining, it is possible to conversely find an arbitrary Δx generated when an external force acts from F −1 (ΔE X ). For example, r 0 = 1 mm, L = 50 mm, Δx
If it is = 1 nm, Δb = 100 nm is enlarged and observed on the light receiving surface of the light receiving element by the optical lever method. The fluctuation of the focused beam light spot is a value that can be detected by using a differential amplifier. FIG. 7 shows a characteristic example of the displacement Δb of the He—Ne laser beam spot on the light receiving surface of the two-divided light receiving surface type light receiving element 12x and the photoelectric conversion output of the light receiving element 12x via the differential amplifier (amplification factor 100 times). Indicated. It can be seen from FIG. 7 that an output of 21.5 mV can be obtained for a displacement of 1 μm. When measuring this output with a general-purpose 12-bit A / D converter (0-5V), the converter resolution is 1.22 mV / bit, so the measurable displacement is 1.22 (mV / bit) /21.5 (mV).
/Μm)=0.057 μm / bit. That is, as described above, displacement measurement can be performed with submicron resolution. The same conclusion can be obtained for fine movements in the Y-axis and Z-axis directions. From (Equation 9), since the deflection of the focused beam light spot on the light receiving element surface and the displacement in the X-axis direction due to the piezoelectric strain of the cylindrical piezoelectric element 1 are in a proportional relationship, the displacement at the moving end in the X-axis direction due to piezoelectric strain is Y. It is possible to detect only the translational motion component Δx (or Δy) without being affected by the rotation of the outer spherical mirror in the axial direction.

【0041】また、受光素子12の入出力直線性は図8
に例示したように、0.1%(10-3)以下迄保つこと
ができるので、この方式による変位検出精度も0.1%
の桁にすることができる。
The input / output linearity of the light receiving element 12 is shown in FIG.
As shown in the example, since it can be kept up to 0.1% (10 -3 ) or less, the displacement detection accuracy by this method is also 0.1%.
Can be a digit of

【0042】図1の微動機構を駆動して、微小変位と2
分割受光面型受光素子の差動増幅出力との関係を測定し
た例を、図9に示す。図9では外球面ミラーの半径r0
を1mm、ミラー/受光面距離Lを50mmとした。ま
た、このデータはX軸方向シフトに対して計測したもの
であるが、他の2軸方向についてもほぼ同じ直線関係が
サブミクロン領域で得られた。図9の横軸は、移動端の
変位を静電容量型変位センサー(分解能0.01μm以
下)で検出したものである。
By driving the fine movement mechanism of FIG.
FIG. 9 shows an example of measuring the relationship with the differential amplification output of the divided light receiving surface type light receiving element. In FIG. 9, the radius r 0 of the outer spherical mirror
Was 1 mm, and the mirror / light-receiving surface distance L was 50 mm. Further, although this data was measured with respect to the X-axis direction shift, almost the same linear relationship was obtained in the sub-micron region also in the other two axis directions. The horizontal axis of FIG. 9 shows the displacement of the moving end detected by a capacitance type displacement sensor (resolution: 0.01 μm or less).

【0043】前記光てこ法は、繰り返し使用することに
よって受光素子受光面上における集束ビームスポットの
振れを一層大きくすることができる。例えば。図5は3
ケの円柱面ミラー10x(何れも半径r0)を使用した
例を示す。図4で受光素子12xを配置した位置(第1
の外球面ミラー10xと距離Lの位置)に第2の円柱面
ミラーを配置して反射させ、更に第1の円柱面ミラー1
0xと同じX−Y面上の位置(第2の外球面ミラーとは
距離Lだけ離れた位置)に第3の円柱面ミラーを配置し
てもう1回反射させ、この反射光を第2の円柱面ミラー
と同じX−Y面上の位置(第3の円柱面ミラーとは距離
Lだけ離れた位置)に固設された受光素子12xの2分
割受光面に入射せしめるのである。この結果、光てこは
3段使用されたことになり、受光素子受光面上における
集束ビーム光スポットの振れΔbは
By repeatedly using the optical lever method, it is possible to further increase the deflection of the focused beam spot on the light receiving surface of the light receiving element. For example. Figure 3
An example is shown in which a circular cylindrical surface mirror 10x (having a radius r 0 ) is used. The position where the light receiving element 12x is arranged in FIG.
The second cylindrical surface mirror is arranged at a position (distance L from the outer spherical surface mirror 10x) to reflect the light, and further, the first cylindrical surface mirror 1
The third cylindrical mirror is arranged at the same position on the XY plane as 0x (the position separated from the second outer spherical mirror by the distance L), and is reflected once again. The light is made incident on the two-divided light-receiving surface of the light-receiving element 12x fixed at the same position on the XY plane as the cylindrical mirror (a position separated from the third cylindrical mirror by a distance L). As a result, the optical lever is used in three stages, and the deflection Δb of the focused beam light spot on the light receiving surface of the light receiving element is

【数11】 となるので、図4の例より1桁振れを拡大することがで
きる。即ち、その分だけ検出感度を高めることができ
る。
[Equation 11] Therefore, the one-digit deviation can be enlarged as compared with the example of FIG. That is, the detection sensitivity can be increased accordingly.

【0044】以上述べた図1及び図5の実施例によれ
ば、微動機構のX、Y、Z軸における変位座標を精度よ
く測定することが可能である。
According to the embodiments of FIGS. 1 and 5 described above, it is possible to accurately measure the displacement coordinates of the fine movement mechanism on the X, Y and Z axes.

【0045】前記実施例は、集束ビーム光を反射するミ
ラーとして円柱面ミラーを用いた。しかし、これ以外に
も曲率r0の凹面ミラーを用いても全く同じ効果が得ら
れる。円柱面ミラーは外円柱面でも凹円柱面型でも任意
に用いることができる。円柱面ミラーのかわりに、球面
ミラーでも可である。
In the above embodiment, a cylindrical mirror is used as a mirror for reflecting the focused beam light. However, the same effect can be obtained by using a concave mirror having a curvature r 0 other than this. The cylindrical surface mirror may be an external cylindrical surface or a concave cylindrical surface type. A spherical mirror can be used instead of the cylindrical mirror.

【0046】(x、y、z)の微小変位座標と各座標位
置における曲面曲率を予め全て計測記憶しておけば、任
意の曲面ミラーを用いることも原則的に可能である。
In principle, it is possible to use an arbitrary curved mirror if the minute displacement coordinates of (x, y, z) and the curved surface curvature at each coordinate position are measured and stored in advance.

【0047】図6は、前記した本発明の微動機構による
可撓系及び検出系の制御、測定回路のブロック図であ
る。
FIG. 6 is a block diagram of the control and measurement circuit of the flexible system and the detection system by the fine movement mechanism of the present invention described above.

【0048】円柱型圧電素子1は圧電素子駆動回路15
からの駆動電圧を各電極に印加することによって圧電歪
を誘起する。その微動はHe−Neレーザ発振回路13
を経て光ファイバー出射端などの集束ビーム光源11か
ら放射されるレーザ光を円柱面ミラー10で反射し、2
分割受光面型受光素子12で各領域毎に受光して検知さ
れる。各領域で受光されたレーザ光スポットは、領域毎
に光電変換され、その出力は信号差動増幅回路14に送
られて高感度増幅される。要素11、12、14はX、
Y、Zの3軸用にそれぞれ3ケずつ設けられている。
The cylindrical piezoelectric element 1 is a piezoelectric element drive circuit 15
A piezoelectric strain is induced by applying a drive voltage from the electrodes to each electrode. The fine movement is caused by the He-Ne laser oscillation circuit 13
The laser light emitted from the focused beam light source 11 such as the exit end of the optical fiber through the light is reflected by the cylindrical mirror 10 and
The divided light receiving surface type light receiving element 12 receives and detects light in each area. The laser light spot received in each area is photoelectrically converted for each area, and the output is sent to the signal differential amplifier circuit 14 and amplified with high sensitivity. Elements 11, 12, and 14 are X,
Three Y and Z axes are provided for each of the three axes.

【0049】高感度増幅された差分出力は、円柱型圧電
素子1の各軸方向の変位に比例するものであるから、予
め変位/出力特性を測定しておくことにより検出された
差分出力電圧値から各軸の変位量を捕捉することができ
る。この信号をコントローラ16に送付することによ
り、コントローラ16で設定値との偏差を計算して円柱
型圧電素子駆動回路15に帰還、微動機構の動作を正確
に制御することが可能となる。
Since the differential output amplified with high sensitivity is proportional to the displacement of the cylindrical piezoelectric element 1 in each axial direction, the differential output voltage value detected by measuring the displacement / output characteristic in advance. Therefore, the displacement amount of each axis can be captured. By sending this signal to the controller 16, it becomes possible to calculate the deviation from the set value by the controller 16 and feed it back to the cylindrical piezoelectric element drive circuit 15 to accurately control the operation of the fine movement mechanism.

【0050】以上説明した本発明の微動機構は走査型プ
ローブ顕微鏡、特に走査型トンネル顕微鏡(STM)の
微動装置として利用することができる。圧電素子1の下
端部3の下面に探針または試料台を固設し、前記のよう
にして検出したX、Y、Z軸座標値を微動制御部に帰還
して所定座標値との偏差がゼロになるように圧電素子1
の微動値を制御することができる。
The fine movement mechanism of the present invention described above can be used as a fine movement device of a scanning probe microscope, particularly a scanning tunnel microscope (STM). A probe or a sample stage is fixedly mounted on the lower surface of the lower end portion 3 of the piezoelectric element 1, and the X, Y, and Z axis coordinate values detected as described above are fed back to the fine movement control section, and the deviation from the predetermined coordinate value is detected. Piezoelectric element 1 so that it becomes zero
The tremor value of can be controlled.

【0051】前記実施例では述べなかったが圧電素子1
のかわりに可撓系として一端固定のカンチレバーを用
い、探針の背面側に前記円柱面ミラーを設置すれば、原
子間力顕微鏡(AFM)として本発明の微動検出系を利
用することができる。また、前記実施例としては、外力
として圧電歪の場合を述べたがこれ以外にも原子間力や
磁気力など他の力が可撓系に作用する場合も本発明に含
まれることは自明である。
Although not described in the above embodiment, the piezoelectric element 1
Alternatively, if a cantilever with one end fixed is used as the flexible system and the cylindrical mirror is installed on the back side of the probe, the fine motion detection system of the present invention can be used as an atomic force microscope (AFM). Further, as the above-mentioned embodiment, the case of piezoelectric strain as the external force has been described, but it is obvious that the present invention also includes the case where other forces such as atomic force and magnetic force act on the flexible system. is there.

【0052】[0052]

【発明の効果】以上説明したように、本発明によれば走
査型プローブ顕微鏡(SPM)の微動機構を小型化高感
度化することができ、且つ高い精度でX、Y、Z軸方向
の微動座標を測定、制御することができる。従って、本
発明は、微動機構、特にSPMの微動装置の特性向上に
資することができると考えられる。
As described above, according to the present invention, the fine movement mechanism of the scanning probe microscope (SPM) can be made compact and highly sensitive, and the fine movement in the X, Y, and Z axis directions can be performed with high accuracy. Coordinates can be measured and controlled. Therefore, it is considered that the present invention can contribute to improving the characteristics of the fine movement mechanism, particularly the fine movement device of the SPM.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例による微動機構の主要構成部を示す斜視
見取図である。
FIG. 1 is a perspective view showing a main component of a fine movement mechanism according to an embodiment.

【図2】図1の円柱型圧電素子の微動動作を示す図であ
る。
FIG. 2 is a diagram showing a fine movement operation of the cylindrical piezoelectric element of FIG.

【図3】図1の2分割受光面型受光素子の受光領域を示
す図である。
3 is a diagram showing a light receiving region of the two-divided light receiving surface type light receiving element of FIG.

【図4】図1の円柱面ミラーの微動位置と光の入反射を
示す図である。
FIG. 4 is a diagram showing a fine movement position of a cylindrical surface mirror of FIG. 1 and light reflection / reflection.

【図5】別の実施例による円柱面ミラー微動と反射角の
シフトを説明するための図である。
FIG. 5 is a diagram for explaining fine movement of a cylindrical mirror and shift of a reflection angle according to another embodiment.

【図6】図1の微動機構駆動回路のブロック図である。FIG. 6 is a block diagram of a fine movement mechanism drive circuit in FIG.

【図7】本発明の2分割受光面型受光素子面上の変位と
対応する差動する増幅出力の特性例を示す図である。
FIG. 7 is a diagram showing a characteristic example of differential amplified output corresponding to the displacement on the two-divided light receiving surface type light receiving element surface of the present invention.

【図8】受光素子であるフォトダイオードの入出力直線
性を示す図である。
FIG. 8 is a diagram showing input / output linearity of a photodiode which is a light receiving element.

【図9】図1の微動機構による移動端の微小変位測定例
を示す図である。
9 is a diagram showing an example of measuring a minute displacement of a moving end by the fine movement mechanism of FIG.

【符号の説明】[Explanation of symbols]

1 円柱型圧電素子 2 上端部 3 下端部 4 内周(グランド)電極 5x2 X軸方向変位用電極 5y1、5y2 Y軸方向変位用電極 5z Z軸方向変位用電極 10x、10y、10z 円柱面ミラー 11、11x、11y、11z 集束ビーム光源 12、12x、12y、12z 2分割受光面型受光素
子 13 He−Ne レーザ発振回路 12xa、12xb、 2分割受光領域 14 信号差動増幅回路 15 円柱型圧電素子駆動回路 16 コントローラ
1 cylindrical piezoelectric element 2 upper part 3 lower part 4 inner circumference (ground) electrode 5x 2 X-axis direction displacement electrode 5y 1, 5y 2 Y-axis direction displacement electrode 5z Z axis direction displacement electrode 10x, 10y, 10z cylinder surface mirror 11,11x, 11y, 11z focused beam light source 12,12x, 12y, 12z 2-split light receiving surface light-receiving device 13 the He-Ne laser oscillator 12x a, 12x b, 2-divided light receiving regions 14 signal differential amplifier 15 Cylindrical piezoelectric element drive circuit 16 Controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 外壁に固設された固定端及び外力の作用
によって微動する移動端を有する可撓系と、該可撓系の
外の所定位置に所定間隔をおいて固設された3対の集束
ビーム光源及び2分割受光面型受光素子と、前記移動端
の所定位置に固設され且つ前記集束ビーム光源から発す
る各集束ビーム光を反射して前記2分割受光面型受光素
子にそれぞれ入射させる機能を有する3ケの球面または
円柱面ミラーと、を備え、前記移動端の微動に伴うX、
Y、Z軸方向の各変位をそれぞれ3ケの前記2分割受光
面型受光素子の各受光面領域における出力差の変化とし
て検出する微動機構。
1. A flexible system having a fixed end fixed to an outer wall and a moving end finely moved by the action of an external force, and three pairs fixed at a predetermined position outside the flexible system at a predetermined interval. Of the focused beam light source and the two-divided light receiving surface type light receiving element, and each of the focused beam light emitted from the focused beam light source that is fixed at a predetermined position of the moving end and is incident on the two divided light receiving surface type light receiving element. And three spherical or cylindrical mirrors having a function of causing X to accompany fine movement of the moving end,
A fine movement mechanism that detects each displacement in the Y- and Z-axis directions as a change in output difference in each light-receiving surface area of each of the two light-receiving surface-type light-receiving elements.
【請求項2】 請求項1において、前記移動端の一部に
探針または試料台を固設し、3ケの前記2分割受光面型
受光素子の各受光面領域における出力差の変化として検
出された前記移動端のX、Y、Z軸方向変位を帰還し
て、前記外力を制御することによりプローブの微動機構
を制御する機能を有する走査型プローブ顕微鏡。
2. The probe according to claim 1, wherein a probe or a sample table is fixedly provided on a part of the moving end, and the change is detected as a change in output difference in each light receiving surface region of the three light receiving surface type light receiving elements. A scanning probe microscope having a function of controlling the fine movement mechanism of the probe by controlling the external force by returning the displacement of the moving end in the X-, Y-, and Z-axis directions.
JP33621493A 1993-12-28 1993-12-28 Fine movement mechanism and scanning probe microscope Pending JPH07198359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33621493A JPH07198359A (en) 1993-12-28 1993-12-28 Fine movement mechanism and scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33621493A JPH07198359A (en) 1993-12-28 1993-12-28 Fine movement mechanism and scanning probe microscope

Publications (1)

Publication Number Publication Date
JPH07198359A true JPH07198359A (en) 1995-08-01

Family

ID=18296819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33621493A Pending JPH07198359A (en) 1993-12-28 1993-12-28 Fine movement mechanism and scanning probe microscope

Country Status (1)

Country Link
JP (1) JPH07198359A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515754B2 (en) 2000-06-02 2003-02-04 Nec Corporation Object-displacement detector and object-displacement controller
JP2010527002A (en) * 2007-05-07 2010-08-05 ビーコ インストルメンツ インコーポレイテッド High-speed scanning probe microscope with closed-loop controller and its operation method
WO2017185069A1 (en) * 2016-04-21 2017-10-26 Molecular Vista, Inc. System and method for optical drift correction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515754B2 (en) 2000-06-02 2003-02-04 Nec Corporation Object-displacement detector and object-displacement controller
JP2010527002A (en) * 2007-05-07 2010-08-05 ビーコ インストルメンツ インコーポレイテッド High-speed scanning probe microscope with closed-loop controller and its operation method
WO2017185069A1 (en) * 2016-04-21 2017-10-26 Molecular Vista, Inc. System and method for optical drift correction
CN109195735A (en) * 2016-04-21 2019-01-11 分子前景公司 Optical drift corrects system and method
EP3445518A4 (en) * 2016-04-21 2019-12-11 Molecular Vista Inc. System and method for optical drift correction

Similar Documents

Publication Publication Date Title
JP2516292B2 (en) Atomic force microscope
EP0394962B1 (en) Atomic force microscope
US5408094A (en) Atomic force microscope with light beam emission at predetermined angle
US6642517B1 (en) Method and apparatus for atomic force microscopy
Sulchek et al. Parallel atomic force microscopy with optical interferometric detection
US20130027679A1 (en) Focus detection apparatus for projection lithography system
US7581438B2 (en) Surface texture measuring probe and microscope utilizing the same
Quercioli et al. Monitoring of an atomic force microscope cantilever with a compact disk pickup
EP0843175A1 (en) Scanning probe microscope and signal processing apparatus
JP3073268B2 (en) Small displacement detection method
US6718821B1 (en) Laser interferometry force-feedback sensor for an interfacial force microscope
JPH07198359A (en) Fine movement mechanism and scanning probe microscope
JPH05187866A (en) Interatomic force microscope, record reproducing device and reproducing device
JPH07234119A (en) Finely adjusting mechanism, scanning type probe microscope and infinitesimal displacement detecting method
JP2967965B2 (en) Scanner for scanning probe microscope and scanning probe microscope provided with the same
JPH07244058A (en) Surface shape measuring device
JPH03296612A (en) Atomic force microscope
JPH07159155A (en) Microscope measurement with scanning probe and scanning probe microscope
JP3242787B2 (en) Photon scanning tunneling microscope
JPH02281103A (en) Interatomic force microscope
Marchman et al. Optical probe microscope for nondestructive metrology of large sample surfaces
JPH06289036A (en) Cantilever and scanning force microscope
JPH02128109A (en) Surface shape measuring apparatus
JPH05312561A (en) Interatomic force microscope
JPH06258068A (en) Interatomic force microscope