JPH07234119A - Finely adjusting mechanism, scanning type probe microscope and infinitesimal displacement detecting method - Google Patents

Finely adjusting mechanism, scanning type probe microscope and infinitesimal displacement detecting method

Info

Publication number
JPH07234119A
JPH07234119A JP32524194A JP32524194A JPH07234119A JP H07234119 A JPH07234119 A JP H07234119A JP 32524194 A JP32524194 A JP 32524194A JP 32524194 A JP32524194 A JP 32524194A JP H07234119 A JPH07234119 A JP H07234119A
Authority
JP
Japan
Prior art keywords
light receiving
light
displacement
focused beam
receiving surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32524194A
Other languages
Japanese (ja)
Inventor
Ryuji Takada
龍二 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP32524194A priority Critical patent/JPH07234119A/en
Publication of JPH07234119A publication Critical patent/JPH07234119A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To enhance fine adjustment detecting sensitivity of a scanning type probe microscope and to accurately measure finely adjusting coordinates by calculating a moving displacement of a flexible system from a detection signal from a single photoreceiving surface of a photoreceiver or detection signal of multisegment photoreceiving surfaces. CONSTITUTION:A laser light emitted from a focused beam light source 11 is reflected on an outer spherical mirror, and received by a quarter or split-half photoreceiving surface type photoreceiver 12. Photoelectric conversion outputs of the split photoreceiving regions are input to a signal differential amplifier 14 to detect axial output differences,DELTAEx-DELTAEz. These differences are all input to a calculator 18 to be calculated. A controller 16 calculates a deflection of a laser light spot of the surface of the photoreceiver 12 from the difference of the calculator 18, and obtains a displacement of a piezoelectric element l from the deflections of the respective axial directions. This relation is previously measured, its formula is obtained by the controller 16, and finely adjusting coordinates at the time of operating an external force of arbitrary magnitude can be accurately calculated from measured values of the DELTAEx-DELTAEz.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微小変位の検出装置を
備えた微動機構及びこれを用いた走査型プローブ顕微鏡
と微動位置の検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine movement mechanism having a minute displacement detecting device, a scanning probe microscope using the same, and a fine movement position detecting method.

【0002】[0002]

【従来の技術】物体の表面をより微細に観察する手段と
して走査型トンネル顕微鏡が開発された。トンネル顕微
鏡は、固体内電子の波動関数の「しみ出し」に着眼し
て、2つの導体を原子の大きさ(nmサイズ)まで近づ
けた時両者間を電子が相互に往来できる現象(トンネル
現象)を利用している。両導体間を流れるトンネル電流
は、清浄な金属表面の場合1nmに近づくと約1nA流
れ、両者間距離が0.1nm増減とすると電流値は1桁
減増する。走査型トンネル顕微鏡は、両導体間(金属探
針と被測定試料間)に流れるトンネル電流値が一定にな
るように探針/試料間距離を保持して試料表面を走査す
ることによって、被測定試料の表面粗さ像を観察する仕
組みである。
2. Description of the Related Art A scanning tunneling microscope has been developed as a means for observing the surface of an object more finely. A tunnel microscope is a phenomenon in which electrons can come and go between two conductors when the two conductors are brought close to the atomic size (nm size) by focusing on the “bleeding out” of the electron's wave function in a solid. Are using. In the case of a clean metal surface, the tunnel current flowing between both conductors flows about 1 nA when it approaches 1 nm, and the current value decreases by one digit when the distance between them increases or decreases by 0.1 nm. The scanning tunneling microscope scans the sample surface by maintaining the probe-sample distance so that the tunnel current value flowing between both conductors (between the metal probe and the sample to be measured) becomes constant. This is a mechanism for observing the surface roughness image of the sample.

【0003】したがって、探針(プローブ)を0.1n
m精度で微動させながらその動きを制御する技術が要求
される。走査型トンネル顕微鏡(STM)開発以来他に
も探針/試料間に作用する量子効果を利用した表面粗さ
計が開発されている。その代表的なものが、原子間力顕
微鏡(AFM)及び磁気力顕微鏡(MFM)である。
Therefore, the probe (probe) is set to 0.1 n.
A technique is required to control the movement while finely moving with m accuracy. Since the development of the scanning tunneling microscope (STM), another surface roughness meter utilizing the quantum effect acting between the probe and the sample has been developed. Typical examples thereof are an atomic force microscope (AFM) and a magnetic force microscope (MFM).

【0004】AFMは、無極性物体間に作用する分散力
に基づく引力や斤力を利用したもので、非導電性物体の
表面観察に適している。また、MFMは磁性体試料の磁
区、磁壁を観察するもので磁気的引力、斤力を利用して
いる。これら各量子効果顕微鏡は、被測定試料表面を2
次元的に走査しながら、nmサイズの表面粗さ(或は特
性差)を探針の上下動の軌跡による走査によって測定し
ようとするもので、総称して走査型プローブ顕微鏡(S
PM)という。
The AFM utilizes an attractive force or a repulsive force based on a dispersion force acting between non-polar objects and is suitable for observing the surface of a non-conductive object. Further, the MFM is for observing magnetic domains and domain walls of a magnetic material sample and utilizes magnetic attractive force and repulsive force. Each of these quantum effect microscopes uses two
While scanning dimensionally, the surface roughness (or characteristic difference) of nm size is to be measured by scanning along the locus of the vertical movement of the probe.
PM).

【0005】走査型プローブ顕微鏡では、探針の微動位
置を正確に把握すると共に、その動きを制御するために
微動機構が用いられる。微動機構は通常、顕微鏡の固定
部分(外壁)に一端を固設し、探針を備えた他端を自由
な状態にした可撓治具に直接外力を作用させて、Z軸方
向(探針/試料間軸方向)のみならず、Z軸に垂直なX
−Y平面方向に探針を移動させるタイプと、さらに前記
外壁に外力の作用によって微動する装置を挟むタイプと
がある。いずれの場合も、探針の動きを把握し且つ制御
するには、0.1nm或はそれ以下の精度で探針を作動
せしめる駆動系とその動きを量的に検知する検出系が必
要である。
In the scanning probe microscope, a fine movement mechanism is used for accurately grasping the fine movement position of the probe and controlling the movement thereof. The fine movement mechanism normally has one end fixed to the fixed portion (outer wall) of the microscope, and the external force is applied directly to a flexible jig with the other end having a probe in a free state, so that the Z-axis direction (probe / X axis perpendicular to the Z axis
There are a type in which the probe is moved in the -Y plane direction, and a type in which a device that is slightly moved by the action of an external force is sandwiched between the outer walls. In any case, in order to grasp and control the movement of the probe, a drive system for operating the probe with an accuracy of 0.1 nm or less and a detection system for quantitatively detecting the movement are required. .

【0006】微小駆動系は、圧電セラミクス素子の圧電
歪と印加電圧の関係を利用して動きを制御することが多
い。検出系は、STMの場合トンネル電流値を電気的に
増幅する装置が用いられるが、AFMやMFMでは探針
に作用する量子的力で撓む可撓治具の自由端の動きを拡
大して捕捉する装置が用いられている。
The minute driving system often controls the movement by utilizing the relationship between the piezoelectric strain of the piezoelectric ceramics element and the applied voltage. As the detection system, in the case of STM, a device that electrically amplifies the tunnel current value is used, but in AFM and MFM, the movement of the free end of the flexible jig that is bent by the quantum force acting on the probe is expanded. A capture device is used.

【0007】前記自由端の変位測定方式には、STMの
探針を利用したトンネル検出方式や光の多重干渉を用い
る光波干渉方式、自由端での光反射を離れた位置で受光
して光電変換する光てこ方式、歪センサを用いるピエゾ
方式などが提案され、一部実用化されている。
The free end displacement measuring method includes a tunnel detection method using an STM probe, a light wave interference method using multiple interference of light, and light reflection at the free end which is received at a remote position and photoelectrically converted. An optical lever method and a piezo method using a strain sensor have been proposed and partially put into practical use.

【0008】光てこ方式を利用した微小変位の測定方法
には、例えばレンズと反射球、受光素子の組合せによる
測定系が提案されている(小原,高増;1991年度精
密工学会秋期大会学術講演会講演論文集、295−29
6頁)。この方式では、He−Neレーザ光を凸レンズ
で平行化し、偏光ビームスプリッタで光の振動面を揃え
た後、第1の凸レンズAでしぼり、反射球に焦点をあわ
せて反射させ、反射光を前記偏光ビームスプリッタで直
交方向に曲げて再び別の第2の凸レンズ(C)でしぼっ
て焦点を光電変換検出器面に結ばせておく。この状態で
反射球を光軸と垂直なX−Y平面方向に(xd、yd)変
位させると、前記検出器面上の変位が(2kxd、2k
d)に拡大されるという原理を利用している。ここ
に、kは、前記凸レンズA、Cの焦点距離をそれぞれf
a、fcとすれば、fc/faで与えられる定数である。
As a measuring method for minute displacements using the optical lever method, for example, a measuring system using a combination of a lens, a reflecting sphere, and a light receiving element has been proposed (Ohara, Takamasu; 1991 Autumn Meeting of the Precision Engineering Society Conference). Conference Proceedings, 295-29
Page 6). In this method, He-Ne laser light is collimated by a convex lens, and the vibrating surface of the light is aligned by a polarization beam splitter, then squeezed by a first convex lens A, and the light is reflected by focusing on a reflecting sphere. It is bent in the orthogonal direction by a polarization beam splitter and then narrowed down by another second convex lens (C) to focus on the photoelectric conversion detector surface. The reflective spheres perpendicular to the optical axis the X-Y plane direction in this state (x d, y d) when displacing the displacement on the detector surface (2kX d, 2k
It uses the principle of being extended to y d ). Here, k is the focal length of the convex lenses A and C, respectively.
Letting a and f c be constants given by f c / f a .

【0009】[0009]

【発明が解決しようとする課題】前記したSPMの微動
機構における検出系のうち、可撓系に直接変位検出セン
サを設置したピエゾ方式は、例えば特公平4−7250
4号に記載された如く、カンチレバー上面に圧電体薄膜
素子を形成し、当該素子に流れる電流が圧電歪によって
変化する現象を増幅して検知するものである。また、カ
ンチレバー下面に付設した薄膜光路を通過する光量がカ
ンチレバーの変位によって変化する量を光電変換・増幅
して検知しようとする試みもある。
Among the detection systems in the fine movement mechanism of the SPM described above, the piezo system in which the displacement detection sensor is directly installed in the flexible system is disclosed in, for example, Japanese Patent Publication No. 4-7250.
As described in No. 4, a piezoelectric thin film element is formed on the upper surface of the cantilever, and a phenomenon in which the current flowing through the element changes due to piezoelectric strain is amplified and detected. There is also an attempt to detect by photoelectrically converting and amplifying the amount of change in the amount of light passing through the thin film optical path attached to the lower surface of the cantilever due to the displacement of the cantilever.

【0010】しかし、これらの方法では、1nm以下等
の高精細な分解能で変位を検出することは困難である。
分解能を高めるには、レーザ変位計などの高精度変位計
を可撓治具に取り付ける方法が考えられるが、可撓治具
の小型化及び微小駆動能力を著しく阻害するので現実的
ではない。
However, it is difficult for these methods to detect the displacement with a high resolution such as 1 nm or less.
A method of attaching a high-precision displacement gauge such as a laser displacement gauge to a flexible jig can be considered to increase the resolution, but this is not realistic because it miniaturizes the flexible jig and significantly impairs the minute driving capability.

【0011】前記したSPMの検出系のうち可撓治具に
直接接触しない方式は、実用性が高い。しかし、カンチ
レバー背面にトンネル電流用探針を近接させるトンネル
検出方式では、レバー表面に吸着している種々の分子を
介してレバーに力を及ぼすため検出感度が制限され、ま
たその動作が不安定になる欠点がある。これに対して光
を用いた光波干渉法や光てこ法は、光の輻射圧が非常に
小さいため(1mWの光の輻射圧は7×10-12N)レ
バーに及ぼす検出系の力は事実上無視できる。
Of the SPM detection systems described above, the method that does not directly contact the flexible jig is highly practical. However, in the tunnel detection method in which the tunnel current probe is placed close to the back surface of the cantilever, the detection sensitivity is limited because the force is exerted on the lever through various molecules adsorbed on the lever surface, and its operation becomes unstable. There is a drawback. On the other hand, in light wave interferometry and optical lever method using light, the radiation pressure of light is very small (radiation pressure of light of 1 mW is 7 × 10 -12 N) and the force of the detection system exerted on the lever is actually Can be ignored.

【0012】しかし、光を用いた検出系は、光検出器と
して光電変換を用いているため、光量変化が少ないとS
/N比が低下して十分な精度で可撓治具の動きを捕捉す
ることができない。この結果、可撓治具に負担がかか
る。即ち被測定試料の表面凹凸に対して高い追随性を有
する可撓治具が求められることになる。このために、探
針の先端形状の鋭敏性や可撓支持部分の材質、膜厚及び
機械的強度が問題となり、可撓治具の加工精度や耐久性
が、しばしば困難になるという課題が残されている。
However, since the detection system using light uses photoelectric conversion as a photodetector, if the change in light quantity is small, S
The / N ratio decreases and the movement of the flexible jig cannot be captured with sufficient accuracy. As a result, a burden is placed on the flexible jig. That is, a flexible jig having high followability with respect to the surface unevenness of the sample to be measured is required. For this reason, the sharpness of the tip shape of the probe, the material of the flexible support portion, the film thickness, and the mechanical strength become problems, and the processing accuracy and durability of the flexible jig often become difficult. Has been done.

【0013】例えば、前記したレンズ/反射球/受光素
子組合せによる光てこ方式では、受光素子受光面の拡大
倍率はX、Y各軸方向移動に対して2K=2fc/fa
なる。fa→小、fc→大とすれば倍率が向上するが、実
用性を考慮すればfaの最小値は4mm程度にとどま
る。そこで、0.1μmの微小変位を検出するために受
光素子受光面上の移動距離を100倍(=10μm)に
拡大するためには、このfa最小値に対してfcは上記式
より200mmとしなければならず、コンパクトな微小
変位検出系、特にSPMに応用しうる微動装置の検出装
置には不向きである。
For example, in the above-mentioned optical lever system using the lens / reflection sphere / light-receiving element combination, the magnification of the light-receiving surface of the light-receiving element is 2K = 2f c / f a with respect to movement in the X and Y axis directions. If f a → small and f c → large, the magnification increases, but in consideration of practicality, the minimum value of f a is limited to about 4 mm. Therefore, in order to increase the movement distance on the light receiving surface of the light receiving element 100 times (= 10 μm) in order to detect a minute displacement of 0.1 μm, f c is 200 mm from the above formula with respect to this f a minimum value. Therefore, it is unsuitable for a compact minute displacement detection system, particularly for a fine movement device detection device applicable to SPM.

【0014】また、この光てこ方式によれば、He−N
eレーザ光が偏光ビームスプリッタ及び位相制御用の1
/4波長板を往復(2回)透過するため、受光素子受光
面での強度が著しく低下する。このためにS/N比が低
下して光電変換時に誤差を含むという検出感度低下の問
題を生ずる。
According to this optical lever system, He-N
e Laser light is used for polarization beam splitter and phase control 1
Since the light is transmitted back and forth (twice) through the / 4 wavelength plate, the intensity on the light receiving surface of the light receiving element is significantly reduced. As a result, the S / N ratio is reduced, which causes a problem of detection sensitivity reduction including an error during photoelectric conversion.

【0015】本発明の目的は、SPMの微動機構の検出
系を小型化し、且つその感度を従来以上に高めることに
よって微動機構の可撓治具に求められる材質や加工精度
の要求を緩和した微動機構を提供することである。
An object of the present invention is to reduce the size of the detection system of the fine movement mechanism of the SPM and to increase its sensitivity more than before, thereby relaxing the requirements for material and processing precision required for the flexible jig of the fine movement mechanism. It is to provide a mechanism.

【0016】本発明の他の目的は、前記した高検出感度
の微動機構を組み込んだSPMを提供し、その微小変位
の検出方法を提供することである。
Another object of the present invention is to provide an SPM incorporating the above-mentioned fine movement mechanism with high detection sensitivity, and to provide a method for detecting a minute displacement thereof.

【0017】[0017]

【課題を解決するための手段】本発明では、外壁に固設
された固定端と外力の作用によって微動する移動端とを
有する可撓系と、該可撓系の移動端に固設した球面ミラ
ーと、球面ミラーの一点に集束ビーム光を照射する集束
ビーム光源とその反射光を受光する単一の受光面形又は
多分割受光面形受光素子とより成り、該集束ビーム光源
と受光素子とが上記外壁の所定位置に所定間隔をおいて
設置されてなる光学検出系と、光学検出系の受光素子の
単一の受光面からの検出信号又は多分割受光面相互の検
出信号から可撓系の移動変位を算出する手段と、より成
る微動機構を開示する。
According to the present invention, a flexible system having a fixed end fixed to an outer wall and a moving end finely moved by the action of an external force, and a spherical surface fixed to the moving end of the flexible system. A mirror, a focused beam light source for irradiating a focused beam of light to one point of a spherical mirror, and a single light receiving surface type or multi-divided light receiving surface type light receiving element for receiving the reflected light, and the focused beam light source and the light receiving element A flexible system based on a detection signal from a single light-receiving surface of a light-receiving element of the optical detection system or a detection signal from the multi-divided light-receiving surfaces of the optical detection system, which is installed at predetermined positions on the outer wall at predetermined intervals. There is disclosed a fine movement mechanism including means for calculating the movement displacement of.

【0018】また、本発明では外壁に固設された固定端
と外力の作用によって微動する移動端とを有する可撓系
と、該可撓系の移動端に固設した球面ミラーと、球面ミ
ラーに互いに異なる方向から集束ビーム光を照射する複
数の集束ビーム光源と、その反射光を受光する、集束ビ
ーム光源と対になる、複数の受光素子とより成り、該互
いに対とする複数の集束ビーム光源と受光素子とが上記
外壁の互いに異なる所定位置に所定間隔をおいて設置さ
れてなる複数対の光学検出系と、複数対の光学検出系の
受光素子の検出信号から可撓系の移動変位を算出する手
段と、より成る微動機構を開示する。
Further, according to the present invention, a flexible system having a fixed end fixed to the outer wall and a moving end finely moved by the action of an external force, a spherical mirror fixed to the moving end of the flexible system, and a spherical mirror. A plurality of focused beam light sources that irradiate focused beam light from different directions to each other, and a plurality of light receiving elements that receive the reflected light and that are paired with the focused beam light source. A plurality of pairs of optical detection systems in which a light source and a light receiving element are installed at predetermined positions different from each other on the outer wall and at predetermined intervals, and a moving displacement of a flexible system from detection signals of the light receiving elements of the plurality of pairs of optical detection systems. And a fine movement mechanism including the means for calculating.

【0019】更に、本発明では外壁に固設された固定端
と外力の作用によって微動する移動端とを有する可撓系
と、該可撓系の移動端に固設した球面ミラーと、球面ミ
ラーに互いに異なる方向から集束ビーム光を照射する複
数の集束ビーム光源と、その反射光を受光する、集束ビ
ーム光源と対になる、複数の多分割受光面形受光素子と
より成り、該互いに対とする複数の集束ビーム光源と多
分割受光面形受光素子とが上記外壁の互いに異なる所定
位置に所定間隔をおいて設置されてなる複数対の光学検
出系と、複数対の光学検出系の多分割受光面形受光素子
の検出信号から可撓系の移動変位を干渉成分を除去した
互いに独立した値として算出する手段と、より成る微動
機構を開示する。
Further, according to the present invention, a flexible system having a fixed end fixed to the outer wall and a moving end finely moved by the action of an external force, a spherical mirror fixed to the moving end of the flexible system, and a spherical mirror. A plurality of focused beam light sources for irradiating focused beam light from different directions to each other, and a plurality of multi-divided light receiving surface type light receiving elements for pairing with the focused beam light source, which receive the reflected light, A plurality of pairs of focused beam light sources and a multi-divided light receiving surface type light receiving element are installed at predetermined positions different from each other on the outer wall at predetermined intervals, and a multi-division of the plurality of pairs of optical detection systems. Disclosed is a fine movement mechanism including means for calculating the movement displacement of the flexible system from the detection signal of the light receiving surface type light receiving element as independent values with interference components removed.

【0020】本発明は、外壁に固設された固定端と外力
の作用によって最大で3軸方向に微動する移動端とを有
する可撓系と、該可撓系の移動端に固設した球面ミラー
と、移動端の3軸の中の1つの平面に沿う変位を検出可
能な外壁位置に、所定間隔をおいて固設された、球面ミ
ラーへ集束ビーム光を送る第1の集束ビーム光源及び外
球面からのこの反射光を受光する4分割受光面形受光素
子と、移動端の上記1つの平面に垂直な平面に沿う変位
を検出可能な外壁位置に、所定間隔をおいて固設され
た、球面ミラーへ集束ビーム光を送る第2の集束ビーム
光源及び外球面からのこの反射光を受光する4分割受光
面形受光素子と、上記第1の4分割受光面形受光素子の
受光面に平行な、移動端の変位を、各受光領域における
出力変化として検出し、上記第2の4分割受光面形受光
素子の受光面に平行な、移動端の変位を、各受光領域に
おける出力変化として検出し、これらの検出信号から可
撓系の3軸移動変位を干渉成分を除去した互いに独立し
た値として算出する手段と、より成る微動機構を開示す
る。
According to the present invention, a flexible system having a fixed end fixed to an outer wall and a moving end finely moving in a maximum of three axial directions by the action of an external force, and a spherical surface fixed to the moving end of the flexible system. A mirror and a first focused beam light source that sends focused beam light to a spherical mirror, which is fixedly installed at a predetermined interval at an outer wall position capable of detecting displacement along one plane in one of the three axes of the moving end; A four-division light-receiving surface type light-receiving element that receives this reflected light from the outer spherical surface, and an outer wall position that can detect displacement along a plane perpendicular to the above-mentioned one plane at the moving end, are fixedly installed at predetermined intervals. A second focused beam light source for sending the focused beam light to the spherical mirror and a four-division light receiving surface type light receiving element for receiving the reflected light from the outer spherical surface, and a light receiving surface of the first four division light receiving surface type light receiving element. Detects parallel displacement of moving end as output change in each light receiving area , The displacement of the moving end, which is parallel to the light receiving surface of the second four-division light receiving surface type light receiving element, is detected as an output change in each light receiving area, and the three-axis movement displacement of the flexible system is interfered from these detection signals. Disclosed is a fine movement mechanism including means for calculating values independent of each other with components removed.

【0021】更に本発明は、固定端に対しその移動端が
X、Y、Z(X、Yが移動端の平面に沿う座標軸、Zが
この平面に垂直な座標軸)の3軸方向に変位可能な圧電
形可撓系と、該可撓系の移動端に固設した球面ミラー
と、移動端の3軸の中の1つの平面に沿う変位を検出可
能な外壁位置に、所定間隔をおいて固設された、球面ミ
ラーへ集束ビーム光を送る第1の集束ビーム光源及び外
球面からのこの反射光を受光する4分割受光面形受光素
子と、移動端の上記1つの平面に垂直な平面に沿う変位
を検出可能な外壁位置に、所定間隔をおいて固設され
た、球面ミラーへ集束ビーム光を送る第2の集束ビーム
光源及び球面からのこの反射光を受光する4分割受光面
形受光素子と、上記第1の4分割受光面形受光素子の受
光面に平行な、移動端の変位を、各受光領域における出
力変化として検出し、上記第2の4分割受光面形受光素
子の受光面に平行な、移動端の変位を、各受光領域にお
ける出力変化として検出し、これらの検出信号から可撓
系の3軸移動変位を干渉成分を除去した互いに独立した
値として算出する手段と、より成る微動機構を開示す
る。
Further, according to the present invention, the movable end is displaceable in three axial directions of X, Y, Z (X, Y are coordinate axes along the plane of the movable end, and Z is a coordinate axis perpendicular to this plane) with respect to the fixed end. A flexible piezoelectric system, a spherical mirror fixed to the moving end of the flexible system, and an outer wall position capable of detecting a displacement along one plane of the three axes of the moving end at predetermined intervals. A fixed first fixed beam light source for sending the focused beam light to the spherical mirror, a four-division light receiving surface type light receiving element for receiving the reflected light from the outer spherical surface, and a plane perpendicular to the one plane at the moving end. A second focused beam light source for sending focused beam light to a spherical mirror and a four-division light receiving surface type for receiving the reflected light from the spherical surface, which is fixedly installed at a predetermined interval at an outer wall position along which displacement can be detected. The light receiving element and the moving end parallel to the light receiving surface of the first four-division light receiving surface type light receiving element The displacement is detected as an output change in each light receiving area, the displacement of the moving end parallel to the light receiving surface of the second four-division light receiving surface type light receiving element is detected as an output change in each light receiving area, and these detections are made. Disclosed is a fine movement mechanism including means for calculating the triaxial movement displacement of a flexible system from a signal as mutually independent values with interference components removed.

【0022】更に本発明は、固定端に対しその移動端が
X、Y、Z(X、Yが移動端の平面に沿う座標軸、Zが
この平面に垂直な座標軸)の3軸方向に変位可能な圧電
形可撓系と、該可撓系の移動端に固設した球面ミラー
と、移動端の3軸の中の1つの平面に沿う変位を検出可
能な外壁位置に、所定間隔をおいて固設された、球面ミ
ラーへ集束ビーム光を送る第1の集束ビーム光源及び球
面からのこの反射光を受光する4分割受光面形受光素子
と、移動端の上記1つの平面に垂直な平面に沿う変位を
検出可能な外壁位置に、所定間隔をおいて固設された、
球面ミラーへ集束ビーム光を送る第2の集束ビーム光源
及び球面からのこの反射光を受光する4分割受光面形受
光素子と、を備え、上記圧電形スキャナにX、Y、Zの
少なくともいずれか1軸方向の変位を与えるべく電圧を
印加して、圧電形スキャナの移動端に変位を生ぜしめ、
この変位の中で、上記第1の4分割受光面形受光素子の
受光面に平行な、移動端の変位を、各受光領域における
出力変化として検出し、上記第2の4分割受光面形受光
素子の受光面に平行な、移動端の変位を、各受光領域に
おける出力変化として検出し、これらの検出信号から可
撓系の3軸移動変位を干渉成分を除去した互いに独立し
た値として算出する圧電形スキャナの微小変位検出方法
を開示する。
Further, according to the present invention, the moving end is displaceable in the three axis directions of X, Y, Z (X, Y are coordinate axes along the plane of the moving end, and Z is a coordinate axis perpendicular to this plane) with respect to the fixed end. A flexible piezoelectric system, a spherical mirror fixed to the moving end of the flexible system, and an outer wall position capable of detecting a displacement along one plane of the three axes of the moving end at predetermined intervals. A fixed first fixed beam light source for transmitting the focused beam light to the spherical mirror and a four-division light receiving surface type light receiving element for receiving the reflected light from the spherical surface, and a plane perpendicular to the one plane at the moving end. Fixed along the outer wall position where the displacement along it can be detected at a predetermined interval,
A second focused beam light source for sending the focused beam light to the spherical mirror and a four-division light receiving surface type light receiving element for receiving the reflected light from the spherical surface, and at least any one of X, Y and Z is provided in the piezoelectric scanner. A voltage is applied to give a displacement in the direction of one axis, causing a displacement at the moving end of the piezoelectric scanner,
In this displacement, the displacement of the moving end, which is parallel to the light receiving surface of the first four-division light receiving surface type light receiving element, is detected as an output change in each light receiving region, and the second four-division light receiving surface type light receiving element is detected. The displacement of the moving end, which is parallel to the light receiving surface of the element, is detected as an output change in each light receiving region, and the triaxial moving displacement of the flexible system is calculated from these detection signals as mutually independent values with interference components removed. A small displacement detection method for a piezoelectric scanner is disclosed.

【0023】更に本発明は、3軸移動変位は、Further, according to the present invention, the three-axis movement displacement is

【数3】 ものとした。更に本発明は、前記微動機構を使用した走
査形プローブ顕微鏡を開示する。
[Equation 3] I decided. Further, the present invention discloses a scanning probe microscope using the fine movement mechanism.

【0024】[0024]

【作用】本発明は、可撓系の移動端に球面ミラーを設け
ておき、固定した位置からの集束ビーム光源と受光素子
とを利用して可撓系の変位を検出する。これによって可
撓系そのものの変位を検出できる。受光素子としては単
一受光面形のものもあれば、4分割受光面形等の複数分
割のものもある。4分割受光面形受光素子は、その受光
面での互いに直交する2つの方向の変位検出に好適であ
る。更に本発明は、球面ミラーに対して、互いに直交す
る方向の位置に、集束ビーム光源と4分割受光面形受光
素子とより成る光学検出系を固定して配置する。そして
球面ミラーの直交する2つの平面での変位をその対応す
る光学検出系で検出する。更にその後でX、Y、Zの各
座標系での変位を互いに独立した値として算出する。
In the present invention, a spherical mirror is provided at the moving end of the flexible system, and the displacement of the flexible system is detected by utilizing the focused beam light source and the light receiving element from a fixed position. This allows the displacement of the flexible system itself to be detected. As the light receiving element, there are a single light receiving surface type and a plurality of divided light receiving elements such as a four-divided light receiving surface type. The four-division light-receiving surface type light-receiving element is suitable for detecting displacements on the light-receiving surface in two directions orthogonal to each other. Further, according to the present invention, an optical detection system including a focused beam light source and a four-division light receiving surface type light receiving element is fixedly arranged at a position orthogonal to each other with respect to the spherical mirror. Then, the displacements of the spherical mirrors on the two orthogonal planes are detected by the corresponding optical detection systems. After that, the displacements in the X, Y, and Z coordinate systems are calculated as independent values.

【0025】[0025]

【実施例】以下、本発明を実施例に基づいてより詳しく
述べる。図1は、実施例による微動機構の主要構成部を
示す斜視見取図である。尚、図で各電極面を斜線表示し
たのは図を見やすくするためである。後述の図2等でも
同じである。図1において、1は圧電素子であって外球
面ミラー10と共に可撓系を構成する。圧電素子1は、
中空圧電セラミクス円筒とその内外円周面にそれぞれ電
気的に独立して配置された複数の電極より成る。電極の
うち4は内周電極で、各軸駆動時に共通電極(グランド
電極)として用いられる。また、5x1(図示せず)と
5x2は、中空圧電セラミクス円筒のX軸に沿って配置
されたX軸方向変位用電極であり、5y1と5y2は前記
円筒のY軸に沿って配置されたY軸方向変位用電極であ
る。さらに、5zは前記円筒円周面に沿って切れ目なく
配置されているZ軸方向変位用電極である。
EXAMPLES The present invention will now be described in more detail based on examples. FIG. 1 is a perspective view showing the main components of the fine movement mechanism according to the embodiment. It should be noted that the hatching of each electrode surface in the figure is to make the figure easier to see. The same applies to FIG. 2 and the like described later. In FIG. 1, reference numeral 1 denotes a piezoelectric element, which constitutes a flexible system together with the outer spherical mirror 10. The piezoelectric element 1 is
It is composed of a hollow piezoelectric ceramic cylinder and a plurality of electrodes electrically and independently arranged on the inner and outer circumferential surfaces thereof. Four of the electrodes are inner peripheral electrodes, which are used as common electrodes (ground electrodes) when driving each axis. Further, 5x 1 (not shown) and 5x 2 are X-axis direction displacement electrodes arranged along the X axis of the hollow piezoelectric ceramic cylinder, and 5y 1 and 5y 2 are along the Y axis of the cylinder. It is the arranged electrode for Y-axis direction displacement. Further, 5z is a Z-axis displacing electrode which is arranged seamlessly along the cylindrical circumferential surface.

【0026】中空圧電セラミクス円筒の上端面2は、外
壁(図示せず)に固定され、一方下端面3は探針等が設
けられている自由端(移動端)である。下端面3には外
球面ミラー10取り付け用の底板6が付設されている。
外球面ミラー10は、図示したように、前記円筒の中心
にZ軸まわりに配置された半球形状を有する(半径
0)。
The upper end surface 2 of the hollow piezoelectric ceramic cylinder is fixed to an outer wall (not shown), while the lower end surface 3 is a free end (moving end) provided with a probe or the like. A bottom plate 6 for attaching the outer spherical mirror 10 is attached to the lower end surface 3.
As shown in the drawing, the outer spherical mirror 10 has a hemispherical shape arranged around the Z axis at the center of the cylinder (radius r 0 ).

【0027】一方、1対の集束ビーム光源11及び4分
割受光面形受光素子12が前記円筒の内側領域の前記外
壁に所定の距離をおいて固設されている。11及び12
は、11から出た集束ビーム光が外球面ミラー10によ
って反射され、反射光が確実に12の4分割受光面で受
光される向きに配置されている。
On the other hand, a pair of focused beam light source 11 and four-division light receiving surface type light receiving element 12 are fixedly installed at a predetermined distance on the outer wall in the inner region of the cylinder. 11 and 12
Is arranged so that the focused beam light emitted from 11 is reflected by the outer spherical mirror 10 and the reflected light is reliably received by the four-division light receiving surface of 12.

【0028】図2は、図1に示した圧電素子1の移動端
の微動を説明するための図である。図では、前記円筒の
X−Z面からみた側面図が記されている。図2の(A)
は、前記円筒のどの電極間にも電圧を印加しない場合を
示す。圧電歪が誘起されないので、前記円筒は変形して
いない。図2の(B)は、電極4−5z間に円筒に引張
り歪が作用する向きの電極を印加した場合を示す。圧電
素子1がZ軸方向に伸びている様子が示されている。図
示してないが、印加電圧の極性を逆にすれば、圧電素子
1はZ軸方向に縮む。
FIG. 2 is a diagram for explaining fine movement of the moving end of the piezoelectric element 1 shown in FIG. In the figure, a side view as seen from the XZ plane of the cylinder is shown. Figure 2 (A)
Shows the case where no voltage is applied between any electrodes of the cylinder. The cylinder is not deformed because no piezoelectric strain is induced. FIG. 2B shows a case where an electrode having a direction in which tensile strain acts on a cylinder is applied between the electrodes 4-5z. It is shown that the piezoelectric element 1 extends in the Z-axis direction. Although not shown, if the polarity of the applied voltage is reversed, the piezoelectric element 1 contracts in the Z-axis direction.

【0029】一方、図2(C)は前記円筒がX軸方向に
曲げられている様子を示す。この場合は、電極4−5x
2間に圧縮歪が誘起されるような極性の電圧を、また電
極4−5x1間には引張り歪が誘記されるような極性の
電圧を印加する。図示してないが、Y方向変位も同様に
して生ぜしめることができる。
On the other hand, FIG. 2C shows a state where the cylinder is bent in the X-axis direction. In this case, electrodes 4-5x
A voltage having a polarity inducing compressive strain is applied between the two electrodes, and a voltage having a polarity inducing tensile strain is applied between the electrodes 4-5x 1 . Although not shown, the Y-direction displacement can be similarly generated.

【0030】圧電セラミクス円筒を用いたX−Y面の適
当な方向への微動は、図2(C)から理解できるように
必ず変位方向と垂直な軸まわりの微小回転を伴うのが特
徴である。
As can be understood from FIG. 2C, the fine movement of the XY plane using the piezoelectric ceramic cylinder in the proper direction is always accompanied by a slight rotation about an axis perpendicular to the displacement direction. .

【0031】図1の集束ビーム光源11は、例えばHe
−Neレーザを当該位置まで導いた光ファイバであって
よい。光出射方向は、光ファイバの出射面調整によって
容易に行うことができる。
The focused beam light source 11 shown in FIG.
-It may be an optical fiber that guides a Ne laser to the position. The light emission direction can be easily adjusted by adjusting the emission surface of the optical fiber.

【0032】図1の4分割受光面形受光素子12の受光
面と受光面上のビーム光強度分布を、図3に示した。受
光面は、均等面積、均等受光感度を有する4分割領域1
3a、13b、13c、13dから成る。各受光領域の
間には、領域分離溝が切られている。各受光領域は、図
示したように前記円筒のX軸、Y軸方向に沿って配置さ
れている。
FIG. 3 shows the light receiving surface of the four-division light receiving surface type light receiving element 12 of FIG. 1 and the beam light intensity distribution on the light receiving surface. The light-receiving surface is a four-divided region 1 having a uniform area and uniform light-receiving sensitivity.
3a, 13b, 13c, 13d. A region separation groove is cut between each light receiving region. The respective light receiving regions are arranged along the X-axis and Y-axis directions of the cylinder as shown in the figure.

【0033】各受光領域13a、13b、13c、13
dの光電変換出力をそれぞれEa、Eb、Ec、Edと
する。受光面上におけるレーザビームスポットの径方向
の光強度分布は、図3(B)の実線で示すように、通常
はガウス分布をしている。しかし、以下の説明では、簡
単のためにビームスポットの光強度分布が図3(B)の
破線で示すように一様であると近似する。各領域の光電
変換出力は、同じ発光スペクトルを有するレーザビーム
光に対しては、受光量に比例する。レーザビーム光が図
3のX1−X2の線をまたいで受光面に入射している場合
には、
Each light receiving area 13a, 13b, 13c, 13
The photoelectric conversion outputs of d are Ea, Eb, Ec, and Ed, respectively. The light intensity distribution in the radial direction of the laser beam spot on the light receiving surface is normally a Gaussian distribution, as shown by the solid line in FIG. However, in the following description, for simplicity, it is approximated that the light intensity distribution of the beam spot is uniform as shown by the broken line in FIG. The photoelectric conversion output of each region is proportional to the amount of received light for laser beam light having the same emission spectrum. When the laser beam light is incident on the light receiving surface across the line X 1 -X 2 in FIG.

【数4】 で表わされる。X1−X2の左右の光量の差に相当する光
電変換出力差ΔExを検出することによって、図示した
X軸方向の変位を検出することができる。一方、レーザ
ビーム光が図3のY1−Y2の線をまたいで受光面に入射
している場合には、
[Equation 4] It is represented by. By detecting a photoelectric conversion output difference Delta] E x corresponding to the difference between the left and right of the light quantity of X 1 -X 2, it is possible to detect the displacement of the X-axis direction illustrated. On the other hand, when the laser beam light is incident on the light receiving surface across the line Y 1 -Y 2 in FIG.

【数5】 で表わされるY1−Y2の上下の光量の差ΔEyを検出す
ることによって図示したY軸方向の変位を検出すること
ができる。
[Equation 5] The displacement in the Y-axis direction shown in the figure can be detected by detecting the difference ΔE y between the light amounts above and below Y 1 -Y 2 .

【0034】最初中立位置にある場合は、レーザビーム
光の中心を図3のX1−X2とY1−Y2の交点付近に、即
ちビームスポットを14aの位置に調整しておくことが
望ましい。前記X、Y軸と適当な角度を成す方向にレー
ザビーム光がシフトしても、(数4)、(数5)で表わ
されるΔEx、ΔEyを共に測定することによりX軸、Y
軸方向の変位を検出することができる。
When the laser beam is initially in the neutral position, the center of the laser beam light should be adjusted near the intersection of X 1 -X 2 and Y 1 -Y 2 in FIG. 3, that is, the beam spot should be adjusted to the position 14a. desirable. Even if the laser beam light is shifted in a direction that forms an appropriate angle with the X and Y axes, the X axis and the Y axis can be measured by measuring both ΔE x and ΔE y expressed by (Equation 4) and (Equation 5).
Axial displacement can be detected.

【0035】例えば、図3(A)に示すようにレーザビ
ームスポットが中立の位置からΔxだけX軸方向にシフ
トし、スポットが14aから14bに移ったとする。シ
フトによって13a及び13dで増えた面積(図の斜線
領域)の合計値をΔSとすれば、(Ea+Ed)はC1Δ
S(ここにC1は比例定数)だけ増加し、逆に(Eb+E
c)はC1ΔSだけ減少する。この結果、Δxのシフトに
よって(数4)に示すΔExは2C1ΔSだけ変化する。
即ち、ΔExは面積の変化分ΔSに比例した出力とな
る。一方変化量Δxが微小な場合は、ΔSはΔxにほぼ
比例すると考えてもよく、C2を比例定数として、
For example, as shown in FIG. 3A, assume that the laser beam spot shifts from the neutral position by Δx in the X-axis direction and the spot shifts from 14a to 14b. If the total value of the areas (shaded areas in the figure) increased in 13a and 13d by the shift is ΔS, then (E a + E d ) is C 1 Δ
S (where C 1 is a proportional constant) increases, and conversely (E b + E
c ) is reduced by C 1 ΔS. As a result, ΔE x shown in (Equation 4) changes by 2C 1 ΔS due to the shift of Δx.
That is, ΔE x is an output proportional to the area change ΔS. On the other hand, when the change amount Δx is small, it may be considered that ΔS is almost proportional to Δx, and C 2 is a constant of proportionality.

【数6】 となる。またΔxが微小でない場合でもΔExとΔxと
はある関係を持った関数であり、いずれにしてもΔEx
を測定することによって、Δxを検出できる。
[Equation 6] Becomes Further, even if Δx is not very small, ΔE x and Δx are functions having a certain relation, and in any case ΔE x
Δx can be detected by measuring

【0036】4分割受光面形受光器12で検出されたΔ
x、ΔEyは、実際には差動増幅器(図示せず)を通し
て高感度増幅した値が示されるので、レーザビーム光ス
ポットの受光面上の移動距離で約0.1μm程度を検出
することも可能である。
Δ detected by the four-division light receiving surface type photodetector 12
Since E x and ΔE y are actually high-sensitivity amplified values through a differential amplifier (not shown), it is necessary to detect about 0.1 μm as the moving distance of the laser beam light spot on the light receiving surface. Is also possible.

【0037】図9は、図3に示した4分割受光面形受光
素子(フォトダイオード)12のレーザ光スポット変位
に対する出力特性例を示す。但し、図の縦軸の受光素子
出力は、増幅率100倍の差動増幅器通過後の出力値を
示す。図9によれば、1μmのスポット変位に対して2
1.5mVの出力変化が得られる。この出力変化を汎用
の12ビットADコンバータ(0〜5V)で計測する場
合、コンバータの分解能は1.22mV/bitあるた
め、1.22(mV/bit)÷21.5(mV/μ
m)=0.057(μm/bit)となり、充分0.1
μmの分解能で変位を計測することが可能なのである。
FIG. 9 shows an example of the output characteristic of the four-division light receiving surface type light receiving element (photodiode) 12 shown in FIG. 3 with respect to the laser light spot displacement. However, the light-receiving element output on the vertical axis in the figure indicates the output value after passing through the differential amplifier with an amplification factor of 100 times. According to FIG. 9, it is 2 for 1 μm spot displacement.
An output change of 1.5 mV can be obtained. When measuring this output change with a general-purpose 12-bit AD converter (0 to 5 V), the converter resolution is 1.22 mV / bit, so 1.22 (mV / bit) /21.5 (mV / μ)
m) = 0.057 (μm / bit), which is sufficiently 0.1
The displacement can be measured with a resolution of μm.

【0038】図6は、本発明の図1とは異なる実施例に
おける微動機構の主要構成部斜視見取図である。圧電素
子1の下端面3に設けられる外球面ミラーは、図1の実
施例では底板中央部に固設したが、本実施例の場合円筒
外の突起部7(X−Y平面にある)先端に固設されてい
る。したがって、集束ビーム光は円筒内ではなく円筒外
に放射される。
FIG. 6 is a perspective view of the main components of the fine movement mechanism in an embodiment different from FIG. 1 of the present invention. The outer spherical mirror provided on the lower end surface 3 of the piezoelectric element 1 is fixed to the central portion of the bottom plate in the embodiment of FIG. 1, but in the case of this embodiment, the tip of the protrusion 7 (in the XY plane) outside the cylinder. It is fixed to. Therefore, the focused beam light is emitted outside the cylinder, not inside the cylinder.

【0039】図6では、外球面ミラー10に入反射する
集束ビーム光が互いにほぼ直交するような向きに、それ
ぞれ各1対の集束ビーム光源と4分割受光面形受光素子
が、外壁(図示せず)の所定位置に固設されている。
In FIG. 6, a pair of focused beam light sources and a four-divided light receiving surface type light receiving element are arranged on the outer wall (not shown) in such directions that the focused beam lights entering and reflected by the outer spherical mirror 10 are substantially orthogonal to each other. No.) is fixed in place.

【0040】11xy、12xyはそれぞれX−Y面変
位測定用の集束ビーム源および4分割受光面形受光素子
であり、11zx、12zxはそれぞれZ−X面変位測
定用の集束ビーム源及び4分割受光面形受光素子であ
る。受光素子12xy、12zxの出力は、同時に演算
装置18のアナログ回路18Aに入力されるよう接続さ
れている。
Reference numerals 11xy and 12xy denote a focused beam source and a four-divided light receiving surface type light receiving element for measuring the X-Y plane displacement, and 11zx and 12zx, a focused beam source and a four-divided light receiving unit for the ZX plane displacement measurement, respectively. It is a planar light receiving element. The outputs of the light receiving elements 12xy and 12zx are connected so as to be input to the analog circuit 18A of the arithmetic unit 18 at the same time.

【0041】演算装置18は、受光素子の領域差Δ
x、ΔEy、ΔEzを入力するアナログ回路18Aと、
アナログ電圧値をディジタルに変換するA/Dコンバー
タ18B、および3軸の変位を独立に算出する演算回路
18Cで構成され、算出された変位は精度の高い微小変
位値として出力される。
The arithmetic unit 18 determines the area difference Δ of the light receiving element.
An analog circuit 18A for inputting E x , ΔE y , and ΔE z ,
It is composed of an A / D converter 18B that converts an analog voltage value into a digital signal, and an arithmetic circuit 18C that calculates displacements of three axes independently, and the calculated displacement is output as a highly accurate minute displacement value.

【0042】集束ビーム源11xy、11zxは、例え
ばHe−Neレーザ光を導入した光ファィバの出射端が
該当する。そのビーム放射方向は、圧電素子1に圧電歪
が印加されない場合、外球面ミラー10の頂点に集束ビ
ーム光が入射するように調整されている。次に図6の外
球面ミラー10を用いての変位を計測する原理について
述べる。
The focused beam sources 11xy and 11zx correspond to, for example, the emission ends of an optical fiber into which He-Ne laser light is introduced. The beam emission direction is adjusted so that the focused beam light is incident on the apex of the outer spherical mirror 10 when piezoelectric strain is not applied to the piezoelectric element 1. Next, the principle of measuring the displacement using the outer spherical mirror 10 of FIG. 6 will be described.

【0043】図4は、図6における外球面ミラー10を
Z軸方向からみた上面図である。最初、図6の各電極に
全く電圧が印加されていない場合にはレーザビーム光
は、図4の0点(外球面ミラー10の頂点)で反射され
るように位置調整されている。次に、図6の内周電極4
及び外周電極5x1、5x2、5y1、5y2に所定の極
性、所定の大きさの電圧を印加した結果、圧電素子1の
下端面3が歪んで、レーザビーム光の外球面ミラー10
の頂点が図4の01点に移動したとする。01点は、X軸
からY軸方向へ角度αだけ、また0点から距離でΔrだ
けシフトした位置である。レーザビーム光源11xy、
11zx及び4分割受光面形受光素子12xy、12z
xは固設されているので、外球面ミラー10上の反射点
は0点にとどまったままである。移動した外球面ミラー
10の上面図を点線で示す。
FIG. 4 is a top view of the outer spherical mirror 10 in FIG. 6 viewed from the Z-axis direction. First, when no voltage is applied to each electrode in FIG. 6, the laser beam light is adjusted in position so as to be reflected at point 0 (vertex of outer spherical mirror 10) in FIG. Next, the inner peripheral electrode 4 of FIG.
And outer electrodes 5x 1, 5x 2, 5y 1, predetermined polarity 5y 2, the result of applying a predetermined magnitude of voltage, distorted lower end surface 3 of the piezoelectric element 1, the outer spherical surface mirror 10 of the laser beam
It is assumed that the apex of moves to the point 0 1 in FIG. The 0 1 point is a position shifted from the X axis by the angle α and from the 0 point by Δr in distance. Laser beam light source 11xy,
11zx and four-division light-receiving surface type light-receiving elements 12xy, 12z
Since x is fixed, the reflection point on the outer spherical mirror 10 remains at 0 point. A top view of the moved outer spherical mirror 10 is shown by a dotted line.

【0044】外球面ミラー10のX、Y軸方向への変位
量をそれぞれΔx、Δyとすると、次式が成り立つ。
When the displacement amounts of the outer spherical mirror 10 in the X and Y axis directions are Δx and Δy, respectively, the following equation is established.

【数7】 [Equation 7]

【0045】図5は、図4のA1−A2線と図6のZ軸と
を含む平面におけるレーザ光ビームの入射と反射の関係
を示す図である。但し本図においては、レーザビーム光
源11xy及び4分割受光面形受光素子12xy、また
入射ビーム及び反射ビームは、本図の平面内に投影され
て描かれている。
FIG. 5 is a diagram showing the relationship between incidence and reflection of a laser light beam on a plane including the line A 1 -A 2 of FIG. 4 and the Z axis of FIG. However, in the figure, the laser beam light source 11xy and the four-division light receiving surface type light receiving element 12xy, and the incident beam and the reflected beam are projected and drawn in the plane of the figure.

【0046】さて、圧電素子1の変形前には、0点(こ
の時外球面ミラー10の頂点)にレーザ光ビームが角度
θで入射していたとする。この時Z軸に平行なZ′軸は
0点を通っており、角度θはZ′軸からの傾きを表わ
す。反射角もθであり、反射ビームは0点から距離Lだ
け離れた位置にある4分割受光面形受光素子12xyに
入射して、図3のX1−X2、Y1−Y2線の交点にほぼビ
ームスポットの中心がくるようにして受光器12の各受
光領域13a〜13dで光電変換される。
Before the deformation of the piezoelectric element 1, it is assumed that the laser light beam is incident on the point 0 (the apex of the outer spherical mirror 10 at this time) at the angle θ. At this time, the Z ′ axis parallel to the Z axis passes through the zero point, and the angle θ represents the inclination from the Z ′ axis. The reflection angle is also θ, and the reflected beam is incident on the four-division light receiving surface type light receiving element 12xy located at a distance L from the 0 point, and is reflected by lines X 1 -X 2 and Y 1 -Y 2 in FIG. Photoelectric conversion is performed in each of the light receiving regions 13a to 13d of the light receiver 12 such that the center of the beam spot is substantially at the intersection.

【0047】今、圧電素子1が歪を受けて移動端、した
がって外球面ミラー10がΔrだけシフトしたとする。
図で点線で描かれているように外球面ミラー10の頂点
1は移動方向へシフトするので、0点(レーザ光ビー
ムの入反射点)での接平面はΔψだけ傾くことになる。
この結果、この接平面(球面と0点で接する平面)上に
立てた0点を通る垂線に対する入射ビーム角は(θ+Δ
ψ)となり、反射角も(θ+Δψ)となる。つまり、Δ
rの外球面ミラーシフトによって0点からの反射ビーム
はZ軸に対して(θ+2Δψ)だけ傾くことになる。勿
論0点への入射ビーム角は、Z軸に対して不変(θ)で
ある。
Now, it is assumed that the piezoelectric element 1 is distorted and the moving end, and hence the outer spherical mirror 10 is shifted by Δr.
Since the vertex 0 1 of the outer spherical mirror 10 shifts in the moving direction as shown by the dotted line in the figure, the tangent plane at the 0 point (the entrance / reflection point of the laser light beam) is inclined by Δψ.
As a result, the incident beam angle with respect to the vertical line passing through the 0 point standing on this tangent plane (the plane that is in contact with the spherical surface at 0 point) is (θ + Δ
ψ), and the reflection angle is also (θ + Δψ). That is, Δ
Due to the outer spherical mirror shift of r, the reflected beam from the point 0 is inclined by (θ + 2Δψ) with respect to the Z axis. Of course, the incident beam angle to the 0 point is invariable (θ) with respect to the Z axis.

【0048】この結果、4分割受光面形受光素子12x
yの受光面(図3参照)における受光ビームスポット
は、光てこの原理によってΔb=2Δψ・Lだけ圧電素
子1の移動方向とは逆方向に振れる。図4では、集束ビ
ーム光源11xy及び受光素子12xyは、紙面に投影
して説明した。したがって、紙面に投影されたZ軸に対
する集束ビーム光の入反射角θも図1で示した実際の入
反射角度とは異なるがθの大きさは受光器受光面におけ
る集束ビームスポットの振れΔbとは無関係であるた
め、図4で得られた結論は影響を受けない。但し、Δr
は微小変位であるため、r0》Δrを意味し、即ち、Δ
ψは微小である。
As a result, the four-division light receiving surface type light receiving element 12x
The light receiving beam spot on the light receiving surface of y (see FIG. 3) is deflected by Δb = 2Δφ · L in the direction opposite to the moving direction of the piezoelectric element 1 by the principle of light lever. In FIG. 4, the focused beam light source 11xy and the light receiving element 12xy are described by projecting them on the paper surface. Therefore, the incident / reflection angle θ of the focused beam light with respect to the Z axis projected on the paper surface is also different from the actual incident / reflection angle shown in FIG. 1, but the magnitude of θ is the deviation Δb of the focused beam spot on the light receiving surface of the light receiver. Is not relevant, the conclusions drawn in FIG. 4 are not affected. However, Δr
Is a small displacement, so that r 0 >> Δr, that is, Δ
ψ is minute.

【0049】以下に、Δψを距離の関数として求める。
図5において、円筒型圧電素子1の変形によってシフト
した外球面ミラー10の位置を示す座標を(xa、ya
とすると図示した半円は、方程式
Below, Δφ is obtained as a function of distance.
In FIG. 5, the coordinates showing the position of the outer spherical mirror 10 shifted by the deformation of the cylindrical piezoelectric element 1 are represented by (x a , y a ).
Then the semicircle shown is the equation

【数8】 で表される円の上半分である。この式からyaを求める
と、
[Equation 8] It is the upper half of the circle represented by. When y a is obtained from this equation,

【数9】 この式をxaで微分して円周上の点の傾きを表す式を求
めると、
[Equation 9] When this equation is differentiated by x a and the equation expressing the inclination of the point on the circumference is obtained,

【数10】 (数10)でxa=Δrの時の円周上の点の傾きがΔψ
であるから、
[Equation 10] In (Equation 10), the slope of the point on the circumference when x a = Δr is Δψ
Therefore,

【数11】 [Equation 11]

【0050】ここで、Δr/r0《1を考慮すると、Here, considering Δr / r 0 << 1,

【数12】 が得られる。それ故、受光素子受光面上での集束ビーム
光スポットの振れは、
[Equation 12] Is obtained. Therefore, the deflection of the focused beam light spot on the light receiving surface of the light receiving element is

【数13】 となる。図3で示した4分割受光面形受光素子12xy
の受光面でのレーザビームスポットのX、Y軸方向の振
れを、それぞれΔbx、Δbyとすれば、
[Equation 13] Becomes 4-division light receiving surface type light receiving element 12xy shown in FIG.
X of the laser beam spot on the light receiving surface of the deflection of the Y-axis direction, respectively [Delta] b x, if [Delta] b y,

【数14】 [Equation 14]

【数15】 となるので、(数7)、(数13)の関係を代入すれ
ば、
[Equation 15] Therefore, by substituting the relationships of (Equation 7) and (Equation 13),

【数16】 となる。実際の振れΔx、Δyがそれぞれ(2L/
0)倍(これを横倍率と呼ぶ)拡大された振れΔbx
びΔbyとなり、その結果発生する受光器12の光電変
換出力の偏差ΔEx及びΔEyは、(数4)、(数5)の
如く実測され、差動増幅器を介して高感度検出される。
したがって、予め、
[Equation 16] Becomes Actual shakes Δx and Δy are (2L /
r 0) multiplied (referred to as a lateral magnification) enlarged shake [Delta] b x and [Delta] b y, and the deviation Delta] E x and Delta] E y of the photoelectric conversion output of the light receiver 12 to the result generated, (Equation 4), (the number It is measured as shown in 5) and is detected with high sensitivity through the differential amplifier.
Therefore, in advance,

【数17】 を(数6)などを用いて演算するか、或は実験的に求め
ておくことによって、外力が作用したとき生ずる任意の
ΔrシフトをF-1(ΔEx、ΔEy)から求めることがで
きる。例えば、r0=1mm、L=50mmの時Δx=
1nmであったとすれば、光てこ法によって受光器受光
面上ではΔbx=100nm(=0.1μm)に拡大さ
れて観測される。このビームスポットの振れは、前記見
積りの通り差動増幅器とA/Dコンバータとを用いれ
ば、検出可能な値である。即ち、外球面ミラーの変位を
1nmの分解能で検出することが可能となる。
[Equation 17] Can be calculated using (Equation 6) or can be obtained experimentally, and an arbitrary Δr shift that occurs when an external force acts can be obtained from F −1 (ΔE x , ΔE y ). . For example, when r 0 = 1 mm and L = 50 mm, Δx =
If it is 1 nm, it is observed by being enlarged to Δb x = 100 nm (= 0.1 μm) on the light receiving surface of the light receiver by the optical lever method. The deflection of the beam spot is a value that can be detected by using the differential amplifier and the A / D converter as estimated above. That is, it becomes possible to detect the displacement of the outer spherical mirror with a resolution of 1 nm.

【0051】前記したレンズ/反射球/受光素子の組合
せによる従来例では、受光器受光面上におけるビームス
ポット変位を100倍に拡大するには、レンズC′/受
光素子間距離を200mmにしなければならず偏光ビー
ムスプリッタやレンズA、1/4波長板も含めて装置が
大型化した。しかし、本例では同じ倍率を得るためにこ
れら光学部品を必要とせず、且つ反射球/受光素子間距
離Lが1/4に短縮されるなど、微動検出系の小型化に
大きな効果を有する。さらに、本発明の場合、偏光ビー
ムスプリッタを用いないのでレーザビームの減衰がな
く、受光面上のビームスポット光強度が充分高いために
検出感度が高いという利点を有する。
In the conventional example of the combination of the lens / reflecting sphere / light receiving element described above, in order to magnify the beam spot displacement on the light receiving surface of the light receiver by 100 times, the distance between the lens C ′ / light receiving element must be 200 mm. Notwithstanding, the device including the polarization beam splitter, the lens A, and the quarter-wave plate was enlarged. However, in this example, these optical parts are not required to obtain the same magnification, and the distance L between the reflecting sphere and the light receiving element is shortened to 1/4, which is a great effect for downsizing the fine motion detection system. Further, in the case of the present invention, since the polarization beam splitter is not used, the laser beam is not attenuated, and the intensity of the beam spot on the light receiving surface is sufficiently high, so that the detection sensitivity is high.

【0052】(数16)から、レーザビームスポットの
受光面上での振れと、圧電素子1の圧電歪によるX軸、
Y軸方向シフトは比例関係にあるので、圧電歪による移
動端のX−Y面内シフト、即ち並進運動成分Δx、Δy
を互いに独立に検出することができる。
From (Equation 16), the shake of the laser beam spot on the light receiving surface and the X axis due to the piezoelectric strain of the piezoelectric element 1,
Since the Y-axis direction shift is in a proportional relationship, the XY in-plane shift of the moving end due to piezoelectric strain, that is, the translational motion components Δx and Δy.
Can be detected independently of each other.

【0053】以上述べたような原理により、4分割受光
面形受光素子12xyの出力から、図6の外球面ミラー
10のX、Y方向変位を検出することができる。全く同
様にして、図6の4分割受光面形受光素子12zxの出
力から外球面ミラー10のZ、X方向変位を検出するこ
とができる。
Based on the principle described above, the displacement of the outer spherical mirror 10 in FIG. 6 in the X and Y directions can be detected from the output of the four-division light receiving surface type light receiving element 12xy. In exactly the same manner, the displacement of the outer spherical mirror 10 in the Z and X directions can be detected from the output of the four-division light receiving surface type light receiving element 12zx in FIG.

【0054】しかるに、図2(C)で示したように圧電
歪による移動端のX−Y平面内のシフトはZ軸方向の変
位(干渉による変位)、またZ−X平面内のシフトはY
軸方向の変位(干渉による変位)を伴うため、その補正
を行わなければ精度の高い変位量の検出ができない。例
えば、単純にZ方向にのみ変位すると、これに基因して
(数21)で示される受光面上でのビームのねじれが生
ずる。このねじれにより、受光素子の各分割面より検出
信号が出力され、単純計算ではあたかもX、Y方向へも
変位したように算出される。これを干渉成分と呼ぶとす
ると、(数26)以降の行列式はこの干渉成分を除去す
るために用いる。(数26)以降の式は3軸各変位成分
を独立して算出する式となる。以下に、意図的なシフト
を行う平面と直交する軸方向の非意図的変位(即ち干
渉)による4分割受光面形受光素子出力への影響を述
べ、更に各変位算出方法について開示し、更に、実施例
では、干渉成分を除去し各軸毎の移動量を正確に検出で
きる方法および(それを使った)微動機構、顕微鏡につ
いて開示する。
However, as shown in FIG. 2C, the shift of the moving end in the XY plane due to the piezoelectric strain is the displacement in the Z-axis direction (the displacement due to the interference), and the shift in the Z-X plane is the Y.
Since displacement in the axial direction (displacement due to interference) is involved, it is not possible to detect the displacement amount with high accuracy unless the correction is performed. For example, simply displacing only in the Z direction causes the twisting of the beam on the light receiving surface as shown in (Equation 21). Due to this twist, a detection signal is output from each divided surface of the light receiving element, and it is calculated by simple calculation as if it were displaced in the X and Y directions. If this is called an interference component, the determinants after (Equation 26) are used to remove this interference component. The equations after (Equation 26) are equations for independently calculating the displacement components of the three axes. Hereinafter, the influence of the unintentional displacement (that is, interference) in the axial direction orthogonal to the plane in which the intentional shift is performed on the output of the four-division light receiving surface type light receiving element is described, and further each displacement calculation method is disclosed. In the embodiments, a method capable of removing an interference component and accurately detecting the amount of movement for each axis, a fine movement mechanism (using it), and a microscope are disclosed.

【0055】図6の機構で、球面ミラー10がZ軸に平
行にシフトした時の4分割受光面形受光素子12xyの
出力変化を評価する。図5に対応する説明図を図12に
示す。図12(A)では、実線で示した中立位置にある
外球面ミラー10が、Z軸方向へのみΔzシフトした状
態を点線で示している。図示ように、集光ビーム源11
xyからの入射ビームは不変のため、Δzのシフトによ
って外球面ミラー10へのビーム入射点が0点から02
点へ移る。この結果、図5のシフトのように02点の接
平面は0点での接平面に比べてΔψZだけ傾く。したが
って、4分割受光面形受光素子12xyの受光面上にお
ける集光ビームスポットのシフト(ビームの振れ)Δb
Zは、 反射点のZ軸方向への平行移動によるシフトΔb
Z1と、 反射点の外球面ミラー10の傾きΔψZによるシフト
ΔbZ2の合計となる。
With the mechanism shown in FIG. 6, the output change of the four-division light receiving surface type light receiving element 12xy when the spherical mirror 10 is shifted parallel to the Z axis will be evaluated. An explanatory view corresponding to FIG. 5 is shown in FIG. In FIG. 12A, a dotted line shows a state where outer spherical mirror 10 in the neutral position shown by the solid line is shifted by Δz only in the Z-axis direction. As shown, the focused beam source 11
Since the incident beam from xy is unchanged, the beam incident point on the outer spherical mirror 10 is changed from 0 to 0 2 by the shift of Δz.
Move to the point. As a result, the tangent plane of 0 2 points is inclined by Δφ Z as compared with the tangent plane at 0 points as in the shift of FIG. Therefore, the shift of the focused beam spot (beam deflection) Δb on the light receiving surface of the four-division light receiving surface type light receiving element 12xy.
Z is the shift Δb due to the parallel movement of the reflection point in the Z-axis direction.
It is the sum of Z1 and the shift Δb Z2 due to the inclination Δψ Z of the outer spherical mirror 10 at the reflection point.

【0056】図12(B)は、外球面ミラー10の集光
ビーム反射点付近の拡大図である。Δzは非意図的なシ
フトであるため、外球面ミラー10の曲率半径r0に比
べて十分小さいと近似することができる。即ち、点線で
示したO2B間は、直線近似できる。これにより、
FIG. 12B is an enlarged view of the outer spherical mirror 10 near the reflection point of the focused beam. Since Δz is an unintentional shift, it can be approximated to be sufficiently smaller than the radius of curvature r 0 of the outer spherical mirror 10. That is, a straight line can be approximated between O 2 B indicated by the dotted line. This allows

【数18】 となる。[Equation 18] Becomes

【0057】次にΔbZ2を計算する。反射点O2の外球
面ミラー接平面の傾きΔψZは、(数11)より、
Next, Δb Z2 is calculated. The inclination Δψ Z of the outer spherical mirror tangent plane of the reflection point O 2 is given by (Equation 11)

【数19】 したがって、ΔψZによるビームの振れΔbZ2は、[Formula 19] Therefore, the beam deflection Δb Z2 due to Δψ Z is

【数20】 (数18)、(数20)よりΔbZは、[Equation 20] From (Equation 18) and (Equation 20), Δb Z is

【数21】 [Equation 21]

【0058】Z−X平面内で移動端をシフトさせる場合
の非意図的なY軸方向の変位Δby(この場合は4分割
受光面形受光素子12zxの出力変化)についても全く
同様である。これら非意図的な変位は、(数16)で示
したような意図的変位の場合とは異なり、集束ビームの
外球面ミラーへの入射角度θ依存性をもつ。
The same applies to the unintentional displacement Δby in the Y-axis direction when the moving end is shifted in the Z-X plane (in this case, the change in the output of the 4-divided light receiving surface type light receiving element 12zx). Unlike the case of the intentional displacement as shown in (Equation 16), these unintentional displacements have the incident angle θ dependence of the focused beam on the outer spherical mirror.

【0059】(数21)で示したZ軸方向の非意図的変
位は、結局4分割受光面形受光素子12xyの出力ΔE
x、ΔEyに振り分けられて、あたかもX、Y軸方向に
外球面ミラー10が変位したかのように振舞う。
The unintentional displacement in the Z-axis direction expressed by (Equation 21) is eventually the output ΔE of the 4-division light-receiving surface light-receiving element 12xy.
It is divided into x and ΔEy and behaves as if the outer spherical mirror 10 were displaced in the X and Y axis directions.

【0060】この誤差は、以下のようにして除くことが
できる。先ず、X−Y平面変位測定用の4分割受光面形
受光素子12xyの(数4)、(数5)で示した受光領
域出力差をそれぞれΔE1x、ΔE1yとする。同様にZ−
X平面変位測定用の受光素子12zxの受光領域出力差
をそれぞれΔE2z、ΔE2xとおく。そして、外球面ミラ
ー10のX、Y、Z軸方向への変位をそれぞれUx
y、Uzとおく。
This error can be eliminated as follows. First, let us say that the light receiving area output differences shown in (Expression 4) and (Expression 5) of the 4-division light receiving surface type light receiving element 12xy for XY plane displacement measurement are ΔE 1x and ΔE 1y , respectively. Similarly Z-
The light receiving area output differences of the light receiving element 12zx for X-plane displacement measurement are set as ΔE 2z and ΔE 2x , respectively. Then, the displacements of the outer spherical mirror 10 in the X, Y, and Z axis directions are respectively U x ,
Let U y and U z .

【0061】前記したように、ΔE1xはX軸方向変位出
力であるがZ軸方向の非意図的変位に影響される。しか
し、Y軸方向の変位には影響されない。そこで、
As described above, ΔE 1x is the displacement output in the X-axis direction, but is influenced by the unintentional displacement in the Z-axis direction. However, it is not affected by the displacement in the Y-axis direction. Therefore,

【数22】 と表しうる。ΔE1y,ΔE2z,ΔE2xも同様にして、[Equation 22] Can be expressed as Similarly, ΔE 1y , ΔE 2z , and ΔE 2x

【数23】 [Equation 23]

【数24】 [Equation 24]

【数25】 と表すことができる。ここに、C22、C23、C32
33、C41、C42は定数である。但し、これら各定数は
(数21)から明らかなように集光ビームの外球面ミラ
ーへの入射角度θを含む。したがって、予めθを固定し
て実測により求めておく必要がある。
[Equation 25] It can be expressed as. Where C 22 , C 23 , C 32 ,
C 33 , C 41 , and C 42 are constants. However, each of these constants includes the incident angle θ of the focused beam on the outer spherical mirror, as is clear from (Equation 21). Therefore, it is necessary to fix θ in advance and obtain it by actual measurement.

【0062】今、Now

【数26】 [Equation 26]

【数27】 [Equation 27]

【数28】 と行列を定数とすると、(数22)〜(数25)はまと
めて、
[Equation 28] And the matrix is a constant, (Equation 22) to (Equation 25) are summarized as

【数29】 と書くことができる。これを展開すると、[Equation 29] Can be written. If you expand this,

【数30】 但し、ここにCTはCの転置行列、(CT・C)-1は(C
T・C)の逆行列を示す。
[Equation 30] Where C T is the transposed matrix of C and (C T · C) −1 is (C
Shows the T · C) of the inverse matrix.

【0063】(数30)を用いれば、受光素子12x
y、12zxの合計4つの出力を用いて、X、Y、Z軸
方向変位がそれぞれ干渉成分を除去した正確で且つ独立
に求められる。
If (Equation 30) is used, the light receiving element 12x
By using a total of four outputs of y and 12zx, the X, Y, and Z axial displacements can be accurately and independently obtained by removing the interference components.

【0064】図6で示した実施例では、X軸方向の微小
変位が4分割受光面形受光素子12xyと12zxの両
者で検出される。前記した如く、外球面ミラー10が圧
電素子1の下端面に配置されている場合は、圧電素子1
を駆動してX軸方向に意図的変位を行うと、Z軸方向の
非意図的変位を伴う。したがって、算出のため2ケの受
光素子による4つの出力値が必要であった。しかし、微
動機構の可撓系が純粋に一方向のみの変位を行うことが
できる構造を有している場合には、前記1対の集束ビー
ム光源と4分割受光面形受光素子の組合わせを2対用い
る検出系ではなく、1対の組合わせを集束ビーム光源と
2分割受光面形受光素子に簡略化することが可能であ
る。
In the embodiment shown in FIG. 6, a minute displacement in the X-axis direction is detected by both the four-division light receiving surface type light receiving elements 12xy and 12zx. As described above, when the outer spherical mirror 10 is arranged on the lower end surface of the piezoelectric element 1, the piezoelectric element 1
Is driven to perform an intentional displacement in the X-axis direction, an unintentional displacement in the Z-axis direction is accompanied. Therefore, four output values from the two light receiving elements are necessary for the calculation. However, when the flexible system of the fine movement mechanism has a structure that can perform displacement in only one direction, the combination of the pair of focused beam light sources and the four-division light receiving surface type light receiving element is required. It is possible to simplify the combination of one pair to the focused beam light source and the two-divided light receiving surface type light receiving element instead of the detection system using two pairs.

【0065】また、以上に述べた2対の集束ビーム光源
と受光素子の組合わせ以外に、3対の集束ビーム光源と
2分割受光面形受光素子の組合わせを用いることもでき
る。得られた出力値を同時に演算装置に入れて前記した
ような演算を行うと、精度の高い変位座標(Δx、Δ
y、Δz)が得られる。
In addition to the above-described combination of two pairs of focused beam light sources and light receiving elements, it is also possible to use a combination of three pairs of focused beam light sources and two split light receiving surface type light receiving elements. When the obtained output values are simultaneously input to the arithmetic device and the above-mentioned arithmetic operation is performed, highly accurate displacement coordinates (Δx, Δ
y, Δz) is obtained.

【0066】尚、以上の説明では外球面ミラー10を、
完全な半球体であるとしたが、集束ビームを反射する領
域とその近傍のみが、半径r0の球状であればよいこと
は、自明である。
In the above description, the outer spherical mirror 10 is
Although it is assumed to be a perfect hemisphere, it is self-evident that only the region for reflecting the focused beam and its vicinity may be spherical with a radius r 0 .

【0067】図1、図6の受光素子12の入出力直線性
は、図10に1例(資料:浜松ホトニクス(株)、フォ
トダイオードカタログ、1992、13頁)を示すとお
り0.1%(10-3)以下まで保つことができるので、
この方式による変位検出精度は0.1%の桁にすること
ができる。
The input / output linearity of the light receiving element 12 shown in FIGS. 1 and 6 is 0.1% as shown in FIG. 10 (Source: Hamamatsu Photonics Co., Ltd., Photodiode Catalog, 1992, page 13). Since it can be kept below 10 -3 ),
The displacement detection accuracy by this method can be in the order of 0.1%.

【0068】図1の微動機構及び測定系を用いて得られ
たデータの1例を図11に示す。図11は、圧電素子1
の下端面3の微小変位量(横軸)に対する4分割受光面
形受光素子12の受光器出力(縦軸)を示している。但
し、縦軸は100倍の差動増幅器を通して得られた値を
示す。この場合、r0=1mm、L=50mmとした。
図の横軸の変位量は、静電容量型変位センサ(分解能
0.01μm以下)で検出したものである。微小変位が
高感度で測定できるシステムであることが示されてい
る。
FIG. 11 shows an example of data obtained by using the fine movement mechanism and the measurement system shown in FIG. FIG. 11 shows the piezoelectric element 1.
5 shows the photodetector output (vertical axis) of the four-division light-receiving surface type light-receiving element 12 with respect to the minute displacement amount (horizontal axis) of the lower end surface 3 of FIG. However, the vertical axis represents the value obtained through a 100-fold differential amplifier. In this case, r 0 = 1 mm and L = 50 mm.
The displacement amount on the horizontal axis of the figure is detected by a capacitance type displacement sensor (resolution 0.01 μm or less). It has been shown to be a system that can measure minute displacements with high sensitivity.

【0069】前記光てこ法は、繰り返し使用することに
よって受光素子受光面上における集束ビームスポットの
振れを一層大きくすることができる。例えば、図8は3
ケの外球面ミラー10(いずれも半径r0)を使用した
例を示す。図5で受光素子12を配置した位置(第1の
外球面ミラー10と距離Lの位置)に第2の外球面ミラ
ーを配置して反射させ、さらに第1の外球面ミラー10
と同じX−Y面上の位置(第2の外球面ミラーとは距離
Lだけ離れた位置)に第3の外球面ミラーを配置しても
う1回反射させ、この反射光を第2の外球面ミラーと同
じX−Y面上の位置(第3の外球面ミラーとは距離Lだ
け離れた位置)に固設された受光素子12の4分割受光
面に入射せしめるのである。この結果、光てこは3段使
用されたことになり、受光素子受光面上における集束ビ
ーム光スポットの振れΔbは、
By repeatedly using the optical lever method, it is possible to further increase the deflection of the focused beam spot on the light receiving surface of the light receiving element. For example, in FIG.
An example is shown in which an outer spherical mirror 10 (having a radius r 0 ) is used. In FIG. 5, a second outer spherical mirror is arranged at a position where the light receiving element 12 is arranged (a position at a distance L from the first outer spherical mirror 10) to reflect the light, and the first outer spherical mirror 10 is further reflected.
The third outer spherical mirror is arranged at the same position on the XY plane as the above (a position separated from the second outer spherical mirror by a distance L), and is reflected once again, and this reflected light is reflected by the second outer spherical mirror. The light is made incident on the four-divided light-receiving surface of the light-receiving element 12 fixed at the same position on the XY plane as the spherical mirror (a position separated from the third outer spherical mirror by a distance L). As a result, the optical lever is used in three stages, and the deflection Δb of the focused beam light spot on the light receiving surface of the light receiving element is

【数31】 となるので、図5の例より1桁振れを拡大することがで
きる。即ち、その分だけ検出感度を高めることができ
る。
[Equation 31] Therefore, the one-digit deviation can be enlarged as compared with the example of FIG. That is, the detection sensitivity can be increased accordingly.

【0070】以上述べた図6の実施例によれば、微動機
構のX−Y平面における変位座標を精度よく測定するこ
とが可能である。即ち、可動部の検出素子に球面ミラー
を用いているので、図2(C)のように可動部が回転す
るような動きをしても、球面ミラー10は回転には何等
影響させることなく、純粋に並進成分の変位のみが検出
できる。
According to the embodiment of FIG. 6 described above, it is possible to accurately measure the displacement coordinate of the fine movement mechanism on the XY plane. That is, since the spherical mirror is used as the detecting element of the movable portion, even if the movable portion rotates as shown in FIG. 2C, the spherical mirror 10 does not affect the rotation at all. Only purely translational component displacements can be detected.

【0071】尚、以上の各実施例では外球面ミラーの光
反射を用いたが、凹球面ミラーを用いても同じである。
また、予め光反射点の変位座標(Δx、Δy)とその位
置における曲面曲率r0(var)を全て測定しておけ
ば、球面以外の曲率を持つミラーを用いることも原理的
には可能である。考え方としては曲率を持った任意曲線
を、X、Y平面に垂直な軸で回転させた回転体の面を持
ったミラーを使えばよいのである。また、4分割受光面
形受光素子に代わる他の素子も可能である。
In each of the above embodiments, the light reflection of the outer spherical mirror is used, but the same applies when a concave spherical mirror is used.
Further, if the displacement coordinates (Δx, Δy) of the light reflection point and the curved surface curvature r 0 (var) at that position are all measured in advance, it is possible in principle to use a mirror having a curvature other than a spherical surface. is there. The idea is to use a mirror having a surface of a rotating body obtained by rotating an arbitrary curve having a curvature on an axis perpendicular to the X and Y planes. Further, other elements that replace the four-division light receiving surface type light receiving element are possible.

【0072】図7は、前記した本発明の微動機構による
可撓系及び検出系の制御、測定回路のブロック図であ
る。圧電素子駆動回路17を駆動していた圧電素子1の
圧電歪による変位は、レーザ発振回路15駆動によって
放射されるレーザ光を導入した光ファイバ出射端から成
る集束ビーム光源11から出射されるレーザ光を、圧電
素子1の移動端3に固設された外球面ミラー10で反射
させ、光てこ法を利用して変位を拡大させて4分割(ま
たは2分割)受光面形受光素子12で受光する。分割さ
れた各受光領域13a〜13dの光電変換出力は、各々
信号差動増幅回路14に入力されて増幅された各軸方向
出力差ΔEx、ΔEy、ΔEzが検出される。これら出力
差は、すべて演算装置18に入力されて演算される。コ
ントローラ16は、演算装置18の出力差から受光素子
12の受光面におけるレーザ光スポットの振れを算出
し、さらに各軸方向の振れから圧電素子1の変位を求め
る。
FIG. 7 is a block diagram of a control and measurement circuit for the flexible system and the detection system by the fine movement mechanism of the present invention described above. The displacement of the piezoelectric element 1 that has driven the piezoelectric element driving circuit 17 due to piezoelectric strain is caused by the laser beam emitted from the focused beam light source 11 including the optical fiber emitting end into which the laser beam emitted by the driving of the laser oscillation circuit 15 is introduced. Is reflected by the outer spherical mirror 10 fixed to the moving end 3 of the piezoelectric element 1, the displacement is enlarged by using the optical lever method, and the light is received by the four-division (or two-division) light-receiving surface light-receiving element 12. . The divided photoelectric conversion outputs of the light receiving regions 13a to 13d are respectively input to the signal differential amplifier circuit 14 and amplified, and the respective axial output differences ΔE x , ΔE y , and ΔE z are detected. All of these output differences are input to the calculation device 18 and calculated. The controller 16 calculates the shake of the laser light spot on the light receiving surface of the light receiving element 12 from the output difference of the arithmetic device 18, and further obtains the displacement of the piezoelectric element 1 from the shake in each axial direction.

【0073】予め、この関係を測定してコントローラ1
6に数式化、変換させておくことによって、任意の大き
さの外力が作用した時の微動座標をΔEx、ΔEy、ΔE
zの測定値から直ちに精度よく算出できる。
This relationship is measured in advance and the controller 1
By formulating and converting into 6, the fine movement coordinates when an external force of arbitrary magnitude acts are ΔE x , ΔE y , ΔE.
It can be calculated immediately and accurately from the measured value of z .

【0074】図6の微動機構は、走査型プローブ顕微
鏡、特に走査型トンネル顕微鏡(STM)の微動装置と
して利用することができる。圧電素子1の下端面3の下
面に探針または試料台を固設し、前記のようにして検出
したX、Y、Z軸座標値を微動制御部に帰還して所定座
標値との偏差がゼロになるように圧電素子1の微動値を
制御することができる。
The fine movement mechanism of FIG. 6 can be used as a fine movement device of a scanning probe microscope, especially a scanning tunneling microscope (STM). A probe or a sample table is fixedly provided on the lower surface of the lower end surface 3 of the piezoelectric element 1, and the X, Y, and Z axis coordinate values detected as described above are fed back to the fine movement control unit, and a deviation from a predetermined coordinate value is detected. The fine movement value of the piezoelectric element 1 can be controlled so as to become zero.

【0075】前記実施例では述べなかったが、圧電素子
1のかわりに可撓系として一端固定のカンチレバーを用
い、探針の背面側に前記外球面ミラーを設置すれば、原
子間力顕微鏡(AFM)として本発明の微動検出系を利
用することができる。また、前記実施例としては、外力
として圧電歪の場合を述べたが、これ以外にも原子間力
や磁気力など他の力が可撓系に作用する場合も本発明に
含まれることは自明である。
Although not described in the above embodiment, if a cantilever having one end fixed as a flexible system is used instead of the piezoelectric element 1 and the outer spherical mirror is installed on the back side of the probe, an atomic force microscope (AFM) is used. As the above), the fine motion detection system of the present invention can be used. Further, as the above-mentioned embodiment, the case where the piezoelectric strain is described as the external force is described, but it is obvious that the present invention also includes a case where other force such as atomic force or magnetic force acts on the flexible system in addition to this. Is.

【0076】[0076]

【発明の効果】以上説明したように、本発明によれば走
査型プローブ顕微鏡(SPM)の微動検出感度を従来以
上に高めることができ且つ高い精度でX、Y、Z軸方向
の微動座標を測定し、制御することができる。また微動
検出系を従来以上に小型簡略化でき、検出光の計測系に
おける損失も小さい。したがって本発明は、微動機構、
特にSPMの微動装置の特性向上に資することができ
る。
As described above, according to the present invention, the sensitivity of the fine motion detection of the scanning probe microscope (SPM) can be increased more than ever before, and the fine motion coordinates in the X, Y, and Z axis directions can be detected with high accuracy. It can be measured and controlled. Further, the fine movement detection system can be made smaller and simpler than before, and the loss of the detection light in the measurement system is small. Therefore, the present invention provides a fine movement mechanism,
In particular, it can contribute to improving the characteristics of the SPM fine movement device.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例による微動機構の主要構成部を示す斜視
見取図である。
FIG. 1 is a perspective view showing a main component of a fine movement mechanism according to an embodiment.

【図2】図1、図6の圧電素子1の微動動作を示す図で
ある。
FIG. 2 is a diagram showing a fine movement operation of the piezoelectric element 1 of FIGS.

【図3】図1、図6の4分割受光面形受光素子の受光領
域を示す図である。
FIG. 3 is a diagram showing a light receiving region of the four-division light receiving surface type light receiving element of FIGS. 1 and 6;

【図4】図1、図6の外球面ミラー微動位置を示す上面
図である。
FIG. 4 is a top view showing fine movement positions of the outer spherical mirror of FIGS. 1 and 6;

【図5】図1、図6の外球面ミラー微動による反射角の
シフトを説明するための図である。
5 is a diagram for explaining a shift of a reflection angle due to fine movement of the outer spherical mirror of FIGS. 1 and 6. FIG.

【図6】別の実施例による微動機構の主要構成部を示す
斜視見取図である。
FIG. 6 is a perspective view showing the main components of a fine movement mechanism according to another embodiment.

【図7】図1、図6の微動機構による微小変位測定回路
構成を示すブロック図である。
FIG. 7 is a block diagram showing a configuration of a minute displacement measuring circuit by the fine movement mechanism of FIGS. 1 and 6.

【図8】別の実施例による光てこ法の利用例(3外球面
ミラー使用)を示す図である。
FIG. 8 is a diagram showing an application example (using 3 outer spherical mirrors) of the optical lever method according to another embodiment.

【図9】4分割受光面形受光素子12の増幅器を通した
出力特性を示す図である。
FIG. 9 is a diagram showing an output characteristic of a four-division light receiving surface type light receiving element 12 through an amplifier.

【図10】受光素子の入出力直線性を示す例である。FIG. 10 is an example showing input / output linearity of a light receiving element.

【図11】図1の装置を用いた微小変位の増幅器を介し
た測定データを示す図である。
11 is a diagram showing measurement data obtained through an amplifier for minute displacement using the apparatus of FIG.

【図12】別の実施例による光てこ法の利用例を示す図
である。
FIG. 12 is a diagram showing an application example of an optical lever method according to another embodiment.

【符号の説明】[Explanation of symbols]

1 圧電素子 2 上端面 3 下端面 4 内周電極(グランド電極) 5x1、5x2 X軸方向変位用電極 5y1、5y2 Y軸方向変位用電極 5z Z軸方向変位用電極 6 底部 7 突起部 10 外球面ミラー 11 集束ビーム光源 11xy X−Y面変位測定用集束ビーム源 11zx Z−X面変位測定用集束ビーム源 12 4分割受光面形受光素子 12xy X−Y面変位測定用4分割受光面形受光素子 12zx Z−X面変位測定用4分割受光面形受光素子 13a、13b、13c、13d 受光領域 14 信号差動増幅回路 15 レーザ発振回路 16 コントローラ 17 圧電素子駆動回路 18 演算装置1 the piezoelectric element 2 the upper end surface 3 the lower end face 4 inner circumference electrode (ground electrode) 5x 1, 5x 2 X-axis direction displacement electrode 5y 1, 5y 2 Y-axis direction displacement electrode 5z Z axis direction displacement electrode 6 bottom 7 projections Part 10 Outer spherical mirror 11 Focused beam light source 11xy Focused beam source for XY plane displacement measurement 11zx Z-X plane displacement measurement focused beam source 12 4-division light receiving surface type light receiving element 12xy XY plane displacement measurement 4-division light reception Surface type light receiving element 12zx Z-X four-sided light receiving surface type light receiving element for displacement measurement 13a, 13b, 13c, 13d Light receiving area 14 Signal differential amplifier circuit 15 Laser oscillation circuit 16 Controller 17 Piezoelectric element drive circuit 18 Arithmetic device

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 外壁に固設された固定端と外力の作用に
よって微動する移動端とを有する可撓系と、 該可撓系の移動端に固設した球面ミラーと、 球面ミラーの一点に集束ビーム光を照射する集束ビーム
光源とその反射光を受光する単一受光面形又は多分割受
光面形受光素子とより成り、該集束ビーム光源と受光素
子とが上記外壁の所定位置に所定間隔をおいて設置され
てなる光学検出系と、 光学検出系の受光素子の単一受光面からの検出信号又は
多分割受光面相互の検出信号から上記可撓系の移動変位
を算出する手段と、より成る微動機構。
1. A flexible system having a fixed end fixed to an outer wall and a moving end finely moved by the action of an external force, a spherical mirror fixed to the moving end of the flexible system, and a spherical mirror at one point. A focused beam light source for irradiating a focused beam light and a single light receiving surface type or a multi-divided light receiving surface type light receiving element for receiving the reflected light thereof, wherein the focused beam light source and the light receiving element are disposed at predetermined positions on the outer wall at predetermined intervals. An optical detection system installed at a position, and means for calculating the movement displacement of the flexible system from a detection signal from a single light-receiving surface of the light-receiving element of the optical detection system or a detection signal between multi-divided light-receiving surfaces, Fine movement mechanism consisting of.
【請求項2】 外壁に固設された固定端と外力の作用に
よって微動する移動端とを有する可撓系と、 該可撓系の移動端に固設した球面ミラーと、 球面ミラーに互いに異なる方向から集束ビーム光を照射
する複数の集束ビーム光源と、その反射光を受光する、
集束ビーム光源と対になる、複数の受光素子とより成
り、該互いに対とする複数の集束ビーム光源と受光素子
とが上記外壁の互いに異なる所定位置に所定間隔をおい
て設置されてなる複数対の光学検出系と、 複数対の光学検出系の受光素子の検出信号から上記可撓
系の移動変位を算出する手段と、より成る微動機構。
2. A flexible system having a fixed end fixed to the outer wall and a moving end finely moved by the action of an external force, a spherical mirror fixed to the moving end of the flexible system, and a spherical mirror different from each other. A plurality of focused beam light sources for irradiating the focused beam light from a direction, and receiving the reflected light thereof,
A plurality of light receiving elements paired with the focused beam light source, and a plurality of pairs of the focused beam light source and the light receiving elements, which are paired with each other, are installed at predetermined positions different from each other on the outer wall at predetermined intervals. And a means for calculating the displacement of the flexible system from the detection signals of the light receiving elements of the plurality of pairs of optical detection systems.
【請求項3】 外壁に固設された固定端と外力の作用に
よって微動する移動端とを有する可撓系と、 該可撓系の移動端に固設した球面ミラーと、 球面ミラーに互いに異なる方向から集束ビーム光を照射
する複数の集束ビーム光源と、その反射光を受光する、
集束ビーム光源と対になる、複数の多分割受光面形受光
素子とより成り、該互いに対とする複数の集束ビーム光
源と多分割受光面形受光素子とが上記外壁の互いに異な
る所定位置に所定間隔をおいて設置されてなる複数対の
光学検出系と、 複数対の光学検出系の多分割受光面形受光素子の検出信
号から上記可撓系の移動変位を干渉成分を除去した互い
に独立した値として算出する手段と、より成る微動機
構。
3. A flexible system having a fixed end fixed to the outer wall and a moving end finely moved by the action of an external force, a spherical mirror fixed to the moving end of the flexible system, and a spherical mirror different from each other. A plurality of focused beam light sources for irradiating the focused beam light from a direction, and receiving the reflected light thereof,
A plurality of multi-segmented light receiving surface type light receiving elements paired with a focused beam light source, and the plurality of focused beam light source and multi segmented light receiving surface type light receiving elements which are paired with each other are provided at predetermined positions different from each other on the outer wall. A plurality of pairs of optical detection systems that are installed at intervals and a plurality of pairs of optical detection systems, which are independent of each other, are obtained by removing the interference component from the movement displacement of the above flexible system from the detection signals of the multi-divided light receiving surface type light receiving element. A fine movement mechanism comprising means for calculating a value and.
【請求項4】 外壁に固設された固定端と外力の作用に
よって最大で3軸方向に微動する移動端とを有する可撓
系と、 該可撓系の移動端に固設した球面ミラーと、 移動端の3軸の中の1つの平面に沿う変位を検出可能な
外壁位置に、所定間隔をおいて固設された、球面ミラー
へ集束ビーム光を送る第1の集束ビーム光源及び球面か
らのこの反射光を受光する4分割受光面形受光素子と、 移動端の上記1つの平面に垂直な平面に沿う変位を検出
可能な外壁位置に、所定間隔をおいて固設された、球面
ミラーへ集束ビーム光を送る第2の集束ビーム光源及び
球面からのこの反射光を受光する4分割受光面形受光素
子と、 上記第1の4分割受光面形受光素子の受光面に平行な、
移動端の変位を、各受光領域における出力変化として検
出し、上記第2の4分割受光面形受光素子の受光面に平
行な、移動端の変位を、各受光領域における出力変化と
して検出し、これらの検出信号から上記可撓系の3軸移
動変位を干渉成分を除去した互いに独立した値として算
出する手段と、より成る微動機構。
4. A flexible system having a fixed end fixed to the outer wall and a moving end finely moving in a maximum of three axial directions by the action of an external force, and a spherical mirror fixed to the moving end of the flexible system. From the first focused beam light source and the spherical surface, which are fixed at predetermined intervals at the outer wall position where displacement along one plane of the three axes of the moving end can be detected and which send the focused beam light to the spherical mirror A four-division light receiving surface type light receiving element for receiving this reflected light, and a spherical mirror fixed at a predetermined interval at an outer wall position capable of detecting a displacement along a plane perpendicular to the one plane at the moving end. A second focused beam light source for sending the focused beam light to the four split light receiving surface type light receiving element for receiving the reflected light from the spherical surface, and a light receiving surface of the first four split light receiving surface type light receiving element
The displacement of the moving end is detected as an output change in each light receiving area, and the displacement of the moving end parallel to the light receiving surface of the second four-division light receiving surface type light receiving element is detected as an output change in each light receiving area, A fine movement mechanism comprising means for calculating the triaxial movement displacement of the flexible system from these detection signals as mutually independent values with interference components removed.
【請求項5】 固定端に対しその移動端がX、Y、Z
(X、Yが移動端の平面に沿う座標軸、Zがこの平面に
垂直な座標軸)の3軸方向に変位可能な圧電形可撓系
と、 該可撓系の移動端に固設した球面ミラーと、 移動端の3軸の中の1つの平面に沿う変位を検出可能な
外壁位置に、所定間隔をおいて固設された、球面ミラー
へ集束ビーム光を送る第1の集束ビーム光源及び球面か
らのこの反射光を受光する4分割受光面形受光素子と、 移動端の上記1つの平面に垂直な平面に沿う変位を検出
可能な外壁位置に、所定間隔をおいて固設された、球面
ミラーへ集束ビーム光を送る第2の集束ビーム光源及び
球面からのこの反射光を受光する4分割受光面形受光素
子と、 上記第1の4分割受光面形受光素子の受光面に平行な、
移動端の変位を、各受光領域における出力変化として検
出し、上記第2の4分割受光面形受光素子の受光面に平
行な、移動端の変位を、各受光領域における出力変化と
して検出し、これらの検出信号から上記可撓系の3軸移
動変位を干渉成分を除去した互いに独立した値として算
出する手段と、より成る微動機構。
5. The movable end is X, Y, Z with respect to the fixed end.
A piezoelectric flexible system displaceable in three axial directions (X and Y are coordinate axes along the plane of the moving end and Z is a coordinate axis perpendicular to this plane), and a spherical mirror fixed to the moving end of the flexible system. And a first focused beam light source for transmitting focused beam light to a spherical mirror, which is fixedly installed at a predetermined interval at an outer wall position capable of detecting displacement along one plane of the three axes of the moving end, and a spherical surface. A four-division light-receiving surface type light-receiving element that receives this reflected light from, and a spherical surface that is fixed at a predetermined interval at the outer wall position where the displacement along the plane perpendicular to the one plane at the moving end can be detected. A second focused beam light source for sending the focused beam light to the mirror and a four-division light receiving surface type light receiving element for receiving the reflected light from the spherical surface, and a light receiving surface of the first four division light receiving surface type light receiving element,
The displacement of the moving end is detected as an output change in each light receiving area, and the displacement of the moving end parallel to the light receiving surface of the second four-division light receiving surface type light receiving element is detected as an output change in each light receiving area, A fine movement mechanism comprising means for calculating the triaxial movement displacement of the flexible system from these detection signals as mutually independent values with interference components removed.
【請求項6】 請求項4〜5に記載の微動機構におい
て、上記算出する手段は、 【数1】 ものとした微動機構。
6. The fine movement mechanism according to any one of claims 4 to 5, wherein the means for calculating is: Fine movement mechanism.
【請求項7】 集束ビーム光源はレーザ光源とし、球面
ミラーは、集束ビーム光が入射する部位のみが球面形状
とする請求項1〜6のいずれかに記載の微動機構。
7. The fine movement mechanism according to claim 1, wherein the focused beam light source is a laser light source, and the spherical mirror has a spherical shape only at a portion where the focused beam light is incident.
【請求項8】 集束ビーム光源はレーザ光源とし、球面
ミラーに代わって、少なくとも集束ビーム光が入射する
部位のみが任意の曲面であるミラーを使用する請求項1
〜6のいずれかに記載の微動機構。
8. The focused beam light source is a laser light source, and in place of the spherical mirror, a mirror having at least a portion on which the focused beam light is incident has an arbitrary curved surface is used.
7. The fine movement mechanism according to any one of to 6.
【請求項9】 走査型プローブ顕微鏡において、その微
動探針を支持する機構として請求項1〜8のいずれか1
つの微動機構を使うものとし、可撓系及び集束ビーム光
源並びに受光素子を固設する固定端は顕微鏡の固定部の
一部とする走査型プローブ顕微鏡。
9. The scanning probe microscope according to claim 1, wherein a mechanism for supporting the fine motion probe is provided.
A scanning probe microscope in which two fixed mechanisms are used, and the fixed end for fixing the flexible system, the focused beam light source, and the light receiving element is part of the fixed portion of the microscope.
【請求項10】 固定端に対しその移動端がX、Y、Z
(X、Yが移動端の平面に沿う座標軸、Zがこの平面に
垂直な座標軸)の3軸方向に変位可能な圧電形可撓系
と、 該可撓系の移動端に固設した球面ミラーと、 移動端の3軸の中の1つの平面に沿う変位を検出可能な
外壁位置に、所定間隔をおいて固設された、球面ミラー
へ集束ビーム光を送る第1の集束ビーム光源及び球面か
らのこの反射光を受光する4分割受光面形受光素子と、 移動端の上記1つの平面に垂直な平面に沿う変位を検出
可能な外壁位置に、所定間隔をおいて固設された、球面
ミラーへ集束ビーム光を送る第2の集束ビーム光源及び
球面からのこの反射光を受光する4分割受光面形受光素
子と、を備え、上記圧電形スキャナにX、Y、Zの少な
くともいずれか1軸方向の変位を与えるべく電圧を印加
して、圧電形スキャナの移動端に変位を生ぜしめ、この
変位の中で、 上記第1の4分割受光面形受光素子の受光面に平行な、
移動端の変位を、各受光領域における出力変化として検
出し、上記第2の4分割受光面形受光素子の受光面に平
行な、移動端の変位を、各受光領域における出力変化と
して検出し、これらの検出信号から上記可撓系の3軸移
動変位を干渉成分を除去した互いに独立した値として算
出する圧電形スキャナの微小変位検出方法。
10. A fixed end of the movable end is X, Y, Z.
A piezoelectric flexible system displaceable in three axial directions (X and Y are coordinate axes along the plane of the moving end and Z is a coordinate axis perpendicular to this plane), and a spherical mirror fixed to the moving end of the flexible system. And a first focused beam light source for transmitting focused beam light to a spherical mirror, which is fixedly installed at a predetermined interval at an outer wall position capable of detecting displacement along one plane of the three axes of the moving end, and a spherical surface. A four-division light-receiving surface type light-receiving element that receives this reflected light from, and a spherical surface that is fixed at a predetermined interval at the outer wall position where the displacement along the plane perpendicular to the one plane at the moving end can be detected. A second focused beam light source for sending the focused beam light to the mirror and a four-division light receiving surface type light receiving element for receiving the reflected light from the spherical surface, and at least any one of X, Y and Z is provided in the piezoelectric scanner. A voltage is applied to give a displacement in the axial direction, Caused displacement in end passes, in this displacement, parallel to the light receiving surface of the first quartered light-receiving surface form the light receiving element,
The displacement of the moving end is detected as an output change in each light receiving area, and the displacement of the moving end parallel to the light receiving surface of the second four-division light receiving surface type light receiving element is detected as an output change in each light receiving area, A method for detecting a small displacement of a piezoelectric scanner, which calculates the three-axis movement displacement of the flexible system as independent values from which interference components are removed from these detection signals.
【請求項11】 請求項10に記載の微小変位検出方法
において、上記算出は、 【数2】 ものとした微小変位検出方法。
11. The method for detecting a minute displacement according to claim 10, wherein the calculation is: Small displacement detection method.
JP32524194A 1993-12-28 1994-12-27 Finely adjusting mechanism, scanning type probe microscope and infinitesimal displacement detecting method Pending JPH07234119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32524194A JPH07234119A (en) 1993-12-28 1994-12-27 Finely adjusting mechanism, scanning type probe microscope and infinitesimal displacement detecting method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33732393 1993-12-28
JP5-337323 1993-12-28
JP32524194A JPH07234119A (en) 1993-12-28 1994-12-27 Finely adjusting mechanism, scanning type probe microscope and infinitesimal displacement detecting method

Publications (1)

Publication Number Publication Date
JPH07234119A true JPH07234119A (en) 1995-09-05

Family

ID=26571771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32524194A Pending JPH07234119A (en) 1993-12-28 1994-12-27 Finely adjusting mechanism, scanning type probe microscope and infinitesimal displacement detecting method

Country Status (1)

Country Link
JP (1) JPH07234119A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515754B2 (en) 2000-06-02 2003-02-04 Nec Corporation Object-displacement detector and object-displacement controller
JP2011145177A (en) * 2010-01-14 2011-07-28 Shimadzu Corp Electronic balance
JP2015219169A (en) * 2014-05-20 2015-12-07 リョーエイ株式会社 Roundness measurement probe, roundness measurement apparatus, and roundness measurement method
EP3445518A4 (en) * 2016-04-21 2019-12-11 Molecular Vista Inc. System and method for optical drift correction

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515754B2 (en) 2000-06-02 2003-02-04 Nec Corporation Object-displacement detector and object-displacement controller
JP2011145177A (en) * 2010-01-14 2011-07-28 Shimadzu Corp Electronic balance
JP2015219169A (en) * 2014-05-20 2015-12-07 リョーエイ株式会社 Roundness measurement probe, roundness measurement apparatus, and roundness measurement method
EP3445518A4 (en) * 2016-04-21 2019-12-11 Molecular Vista Inc. System and method for optical drift correction

Similar Documents

Publication Publication Date Title
JP2516292B2 (en) Atomic force microscope
US5408094A (en) Atomic force microscope with light beam emission at predetermined angle
JP3174465B2 (en) Atomic force microscope
US8760626B2 (en) Focus detection apparatus for projection lithography system
US6642517B1 (en) Method and apparatus for atomic force microscopy
US8087288B1 (en) Scanning stylus atomic force microscope with cantilever tracking and optical access
JPH0774735B2 (en) Apparatus and method for measuring dimensions of surface structure of sample
JP7333434B2 (en) Apparatus and method for scanning probe microscopy
US7581438B2 (en) Surface texture measuring probe and microscope utilizing the same
JP3497734B2 (en) Scanning probe microscope
US6718821B1 (en) Laser interferometry force-feedback sensor for an interfacial force microscope
US5693938A (en) Optical probe microscope having a fiber optic tip that receives both a dither motion and a scanning motion, for nondestructive metrology of large sample surfaces
JPH07234119A (en) Finely adjusting mechanism, scanning type probe microscope and infinitesimal displacement detecting method
US5811796A (en) Optical probe microscope having a fiber optic tip that receives both a dither motion and a scanning motion, for nondestructive metrology of large sample surfaces
JP3349779B2 (en) Scanner system and scanning microscope using the same
JPH05187866A (en) Interatomic force microscope, record reproducing device and reproducing device
JPH07198359A (en) Fine movement mechanism and scanning probe microscope
JP2001343211A (en) Displacement detector and displacement controller
JP3189244B2 (en) Near field microscope
JP2967965B2 (en) Scanner for scanning probe microscope and scanning probe microscope provided with the same
JPH07244058A (en) Surface shape measuring device
JP3327041B2 (en) Atomic force microscope
JPH03296612A (en) Atomic force microscope
JP4535488B2 (en) Scanning probe microscope
JP3242787B2 (en) Photon scanning tunneling microscope