JPH07709A - Deaerator - Google Patents

Deaerator

Info

Publication number
JPH07709A
JPH07709A JP5146263A JP14626393A JPH07709A JP H07709 A JPH07709 A JP H07709A JP 5146263 A JP5146263 A JP 5146263A JP 14626393 A JP14626393 A JP 14626393A JP H07709 A JPH07709 A JP H07709A
Authority
JP
Japan
Prior art keywords
raw water
steam
feed raw
feed
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5146263A
Other languages
Japanese (ja)
Other versions
JP3342107B2 (en
Inventor
Shogo Yamaguchi
昇吾 山口
Taku Ito
卓 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14626393A priority Critical patent/JP3342107B2/en
Publication of JPH07709A publication Critical patent/JPH07709A/en
Application granted granted Critical
Publication of JP3342107B2 publication Critical patent/JP3342107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)

Abstract

PURPOSE:To curtail installation cost and running cost and to save steam con sumption. CONSTITUTION:Feed raw water is fed to a condenser 51, and steam of deaerated gas sucked from a membrane separator 32 by a vacuum pump 33 is condensed by using the feed raw water as a cooling medium and discharged to outside the condenser 51. Next, the feed raw water is sent to a heat exchanger 53 and heated up by using the feed raw water after deaeration discharged from the membrane separator 32 (deaerated water) as a heating medium, and then the feed raw water is sent to a steam heater 55 and further heated up by using heating steam as a heating medium. Next, the feed raw water after heating-up is sent to the membrane separator 32 and passed through a porous membrane to allow the low pressure deaeration of gas, such as air dissolved in the feed raw water. At this time, a steam flow control valve 63 installed in a heating steam supply system is controlled by a temp. controller 62 to keep constant the temp. of the feed raw water going toward the membrane separator 32 from the steam heater 55.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、供給原水中に溶存して
いる空気等の気体を低圧脱気させる脱気装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a degassing device for degassing gas such as air dissolved in raw water for supply.

【0002】[0002]

【従来の技術】清涼飲料を製造する場合、液中に溶存し
ている空気等の気体を脱気させるために脱気装置が使用
されている。従来の脱気装置の一例(特公平1−116
1号公報に記載のもの)を図2、図3に示し、従来の脱
気装置の他の例(特願平2−255211号明細書に記
載のもの)を図4、図5に示した。
2. Description of the Related Art In producing a soft drink, a deaerator is used to deaerate gas such as air dissolved in a liquid. An example of a conventional deaerator (Japanese Patent Publication No. 1-116
2 and 3 are shown in FIGS. 2 and 3, and another example of the conventional deaerator (as described in Japanese Patent Application No. 2-255211) is shown in FIGS. 4 and 5. .

【0003】先ず図2、図3の脱気装置を説明すると、
図2の1が供給原水供給口、2が流量調節自動弁、3が
三方切換自動弁、4がタンク蓋、5が同タンク蓋4に設
けた噴出ノズル、6が脱気タンクで、上記噴出ノズル5
は、供給原水を脱気タンク6内の供給原水液面へ噴出す
る。6が脱気タンク、7が上記脱気タンク6内の真空度
を検出する真空計、8がタンク覗窓、9が液面制御装
置、10が洗浄配管、10aがタンク洗浄スプレー、
で、上記三方切換自動弁3は、通常の脱気処理操作時に
は、供給原水をタンク蓋4に取付けた噴出ノズル5へ供
給し、脱気タンク6内を洗浄するときには、洗浄水を供
給原水供給口1から洗浄配管10を経てタンク洗浄スプ
レー10aへ供給する。
First, the deaerator shown in FIGS. 2 and 3 will be described.
In FIG. 2, 1 is a supply raw water supply port, 2 is a flow rate adjusting automatic valve, 3 is a three-way switching automatic valve, 4 is a tank lid, 5 is an ejection nozzle provided on the tank lid 4, 6 is a deaeration tank, and the ejection is performed. Nozzle 5
Ejects the supplied raw water to the liquid surface of the supplied raw water in the degassing tank 6. 6 is a degassing tank, 7 is a vacuum gauge for detecting the degree of vacuum in the degassing tank 6, 8 is a tank viewing window, 9 is a liquid level control device, 10 is a cleaning pipe, 10a is a tank cleaning spray,
The three-way switching automatic valve 3 supplies the supplied raw water to the jet nozzle 5 attached to the tank lid 4 during a normal degassing process operation, and supplies the cleaning water when the degassing tank 6 is cleaned. It is supplied to the tank cleaning spray 10a from the mouth 1 through the cleaning pipe 10.

【0004】11が真空引装置、12が真空引配管、1
3が逆止弁で、同真空引装置11は、脱気タンク6内を
所定の真空度に保持して、供給原水中に溶存している空
気等の気体を低圧脱気する一方、脱気気体と蒸気とを逆
止弁13→真空引配管12を経て脱気装置外へ排出す
る。14が送液ポンプで、上記脱気タンク6内の供給原
水の液面は、送液ポンプ14により次工程へ送る脱気処
理済水の送液量に応じて変動する。このとき、液面制御
装置9が流量調節自動弁2を制御して、脱気タンク6内
の供給原水の液面を一定に保持する。
Reference numeral 11 is a vacuuming device, 12 is a vacuuming pipe, 1
Reference numeral 3 is a check valve, and the vacuuming device 11 holds the inside of the degassing tank 6 at a predetermined vacuum degree to degas low-pressure gas such as air dissolved in the raw feed water, while degassing the same. The gas and vapor are discharged to the outside of the deaerator through the check valve 13 → vacuum drawing pipe 12. Reference numeral 14 denotes a liquid feed pump, and the liquid level of the raw feed water in the degassing tank 6 changes depending on the amount of degassed water sent to the next step by the liquid feed pump 14. At this time, the liquid level control device 9 controls the flow rate adjusting automatic valve 2 to keep the liquid level of the raw feed water in the degassing tank 6 constant.

【0005】15が処理済水出口(脱気後の供給原水出
口)16がバイパス配管、17が送液ポンプ14の運転
開始とともに自動的に開になるバイパス自動弁、18が
逆止弁、19が排水弁で、バイパス配管16は、送液ポ
ンプ14により吸引する脱気処理済水の一部をバイパス
自動弁17→噴出ノズル5の一次側→脱気タンク6内→
送液ポンプ14に循環させる。
Reference numeral 15 is a treated water outlet (exhaust feed water outlet after deaeration), 16 is a bypass pipe, 17 is a bypass automatic valve which is automatically opened when the liquid feed pump 14 starts operating, 18 is a check valve, and 19 is a check valve. Is a drain valve, and the bypass pipe 16 uses a part of the degassed water sucked by the liquid feed pump 14 to bypass the automatic valve 17 → the primary side of the jet nozzle 5 → in the degassing tank 6 →
It is circulated to the liquid feed pump 14.

【0006】前記図2に示す従来の脱気装置では、図3
に示すように供給原水を噴出ノズル5の入口20→出口
21から真空雰囲気22の脱気タンク6内に貯えた供給
原水26へ供給原水供給圧と真空圧との差圧により液柱
状23に噴射する。このとき、脱気タンク6内に貯えた
供給原水26の上層部を供給原水の流体運動エネルギー
により激しく叩いて、同上層部内に気泡24を発生させ
るとともに、上層部を激しく攪乱する。
The conventional deaerator shown in FIG. 2 has the structure shown in FIG.
As shown in FIG. 5, the raw feed water is jetted from the inlet 20 of the jet nozzle 5 to the outlet 21 to the raw raw water 26 stored in the degassing tank 6 in the vacuum atmosphere 22 into the liquid column 23 by the pressure difference between the raw raw water supply pressure and the vacuum pressure. To do. At this time, the upper layer portion of the raw feed water 26 stored in the degassing tank 6 is violently hit by the fluid kinetic energy of the raw feed water to generate bubbles 24 in the upper layer portion and also violently disturb the upper layer portion.

【0007】この気泡24は、供給原水から分離した脱
気気体と供給原水の蒸気とよりなり、気泡24の組成
は、脱気タンク6内の真空雰囲気22の気体の組成に近
似的に等しい。この気泡24は、次々に発生する。そし
て互いに一緒になりながら、供給原水26を攪拌しつつ
上昇して、真空雰囲気22中へ放出され、供給原水26
から分離されて、脱気が行われる。
The bubbles 24 are composed of degassed gas separated from the feed raw water and vapor of the feed raw water, and the composition of the bubbles 24 is approximately equal to the composition of the gas in the vacuum atmosphere 22 in the degassing tank 6. The bubbles 24 are generated one after another. Then, while being mixed with each other, the raw feed water 26 rises while being stirred, and is discharged into the vacuum atmosphere 22.
And is degassed.

【0008】次に図4、図5に示す従来の脱気装置を説
明すると、図4の31が供給原水供給ポンプ、32が膜
分離装置、33が真空ポンプである。また図4の膜分離
装置32のA部を拡大して示す図5において、40がポ
リプロピレン、ポリテトラフロールエチレン等により作
られた多数の多孔質中空糸で、この多孔質中空糸40
は、束ねされ、それぞれが内径100μm〜300μm
程度の微細な流体流路41を有している。
Next, the conventional deaerator shown in FIGS. 4 and 5 will be described. In FIG. 4, 31 is a feed raw water feed pump, 32 is a membrane separator, and 33 is a vacuum pump. Further, in FIG. 5 which is an enlarged view of the portion A of the membrane separation device 32 of FIG. 4, 40 is a large number of porous hollow fibers made of polypropylene, polytetrafluoroethylene or the like.
Are bundled, each having an inner diameter of 100 μm to 300 μm
It has a minute fluid flow path 41.

【0009】前記図4、図5に示す従来の脱気装置で
は、供給原水供給ポンプ31により膜分離装置32へ送
られてきた供給原水42を各多孔質中空糸40内に5〜
20m/sec程度の流速で流し、供給原水42中に溶
存している気体を各多孔質中空糸40の微細な流体流路
41→真空ポンプ33へ吸出して、脱気を行う。
In the conventional deaerator shown in FIGS. 4 and 5, the raw raw water 42 sent to the membrane separation device 32 by the raw raw water supply pump 31 is supplied to each porous hollow fiber 40 by 5 to 5.
The gas dissolved in the raw feed water 42 is sucked into the fine fluid flow path 41 of each porous hollow fiber 40 to the vacuum pump 33 to flow the gas, which is flowed at a flow rate of about 20 m / sec, for degassing.

【0010】[0010]

【発明が解決しようとする課題】前記図2、図3に示す
従来の脱気装置では、供給原水中への噴射量を一定に
するための制御手段を必要とし、送液ポンプ14にN
PSHR の低い特殊ポンプを必要とし、送液ポンプ1
4のメカニカルシール部からの空気の吸い込みを防止す
るために、シール水の注水を必要としており、構造が複
雑になる上に、制御手段や周辺の付属設備を設けなけれ
ばならず、設備費が嵩む上に、脱気装置が大型化して、
広い設置スペースが必要になるという問題があった。
The conventional deaerator shown in FIGS. 2 and 3 requires control means for making the injection amount into the raw raw water constant, and the liquid feed pump 14 has N
Liquid pump 1 that requires a special pump with low PSH R
In order to prevent inhalation of air from the mechanical seal part of 4, it is necessary to inject seal water, which complicates the structure and requires the provision of control means and peripheral auxiliary equipment, resulting in equipment cost. In addition to being bulky, the deaerator becomes larger,
There was a problem that a large installation space was required.

【0011】前記図4、図5に示す従来の脱気装置は、
図2、図3の脱気タンク6、制御手段、送液ポンプ14
等が不要で、脱気装置を小型化できて、設置スペースを
節減できる上に、コストダウンできる。またCIP洗浄
時間を短縮でき、供給原水の送液量が変化しても、調整
不要で、操作し易いという利点があるが、多孔質中空糸
40の流体流路41は、気体O2 、N2 等の気体を通す
が、液体を通さない内径100μm〜300μm程度の
微細孔なので、脱気能力に限界があり、大容量の脱気装
置が必要な場合には、膜分離装置32が大型化する上
に、膜分離装置32内の空気を吸引する真空ポンプ33
が大型化する。また多孔質中空糸40が高価であって、
設備費が嵩むという問題があった。
The conventional deaerator shown in FIG. 4 and FIG.
The deaeration tank 6, the control means, and the liquid feed pump 14 shown in FIGS.
Since the deaerator can be downsized, the installation space can be saved, and the cost can be reduced. Further, the CIP cleaning time can be shortened, and even if the feed amount of the supplied raw water changes, there is an advantage that the adjustment is not required and the operation is easy. However, the fluid flow passage 41 of the porous hollow fiber 40 has gas O 2 , N Since it is a fine hole with an inner diameter of about 100 μm to 300 μm that allows gas such as 2 to pass through but does not allow liquid to pass through, it has a limited degassing capacity, and when a large capacity degassing device is required, the membrane separation device 32 becomes larger. In addition, a vacuum pump 33 for sucking air in the membrane separation device 32
Becomes larger. In addition, the porous hollow fiber 40 is expensive,
There was a problem that equipment costs increased.

【0012】本発明は前記の問題点に鑑み提案するもの
であり、その目的とする処は、設備費及びランニングコ
ストを低減できる。また蒸気消費量を節減できる脱気装
置を提供しようとする点にある。
The present invention is proposed in view of the above problems, and the object of the present invention is to reduce equipment costs and running costs. Another point is to provide a deaerator capable of reducing the steam consumption.

【0013】[0013]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の脱気装置は、昇温後の供給原水を多孔膜
を通過させることにより同供給原水中に溶存している空
気等の気体を低圧脱気する膜分離装置と、脱気装置へ供
給される供給原水を冷媒として上記膜分離装置から真空
ポンプにより吸出される脱気気体の水蒸気を凝縮するコ
ンデンサと、上記膜分離装置から排出される脱気後の供
給原水を熱媒として上記コンデンサから排出される供給
原水を昇温させる熱交換器と、加熱蒸気を熱媒として上
記熱交換器から排出される供給原水をさらに昇温させる
蒸気ヒータと、上記加熱蒸気供給系統に設けた蒸気流量
制御弁を制御して上記蒸気ヒータから上記膜分離装置に
向かう供給原水の温度を一定に保持する温度制御装置と
を具えている。
In order to achieve the above-mentioned object, the deaerator of the present invention is an air which is dissolved in the feed raw water after the feed raw water after the temperature rise is passed through the porous membrane. A membrane separator for low-pressure degassing of gas such as the above, a condenser for condensing water vapor of the degassed gas sucked from the above-mentioned membrane separator by a vacuum pump using the raw water supplied to the degasser as a refrigerant, and the above-mentioned membrane separation A heat exchanger for raising the temperature of the feed raw water discharged from the condenser using the degassed feed raw water discharged from the device as a heat medium, and a feed raw water discharged from the heat exchanger using the heating steam as a heat medium are further added. A steam heater for raising the temperature, and a temperature control device for controlling the steam flow rate control valve provided in the heating steam supply system to keep the temperature of the raw feed water flowing from the steam heater to the membrane separation device constant. .

【0014】[0014]

【作用】本発明の脱気装置は前記のように構成されてお
り、供給原水をコンデンサへ供給し、この供給原水を冷
媒として膜分離装置から真空ポンプにより吸出される脱
気気体の水蒸気を凝縮して、コンデンサ外へ排出する。
次いで供給原水を熱交換器へ送り、膜分離装置から排出
される脱気後の供給原水(脱気処理済水)を熱媒として
供給原水を昇温させ、次いで供給原水を蒸気ヒータへ送
り、加熱蒸気を熱媒として供給原水をさらに昇温させ、
次いで昇温後の供給原水を膜分離装置へ送り、多孔膜を
通過させることにより供給原水中に溶存している空気等
の気体を低圧脱気する。このとき、温度制御装置より加
熱蒸気供給系統に設けた蒸気流量制御弁を制御して、蒸
気ヒータから膜分離装置に向かう供給原水の温度を一定
に保持する。
The deaerator of the present invention is configured as described above, and supplies the raw feed water to the condenser and condenses the vapor of the degassed gas sucked by the vacuum pump from the membrane separation device using the raw feed water as a refrigerant. And discharge it to the outside of the condenser.
Next, the feed raw water is sent to the heat exchanger, the feed raw water after degassing discharged from the membrane separation device (degassed water) is used as a heat medium to raise the temperature of the feed raw water, and then the feed raw water is sent to the steam heater, Use the heated steam as a heat medium to further raise the temperature of the raw water supplied,
Next, the feed raw water whose temperature has been raised is sent to a membrane separation device and passed through a porous membrane to degas low-pressure gas such as air dissolved in the feed raw water. At this time, the temperature control device controls the steam flow rate control valve provided in the heating steam supply system to keep the temperature of the raw feed water from the steam heater toward the membrane separation device constant.

【0015】[0015]

【実施例】次に本発明の脱気装置を図1に示す一実施例
により説明すると、51がコンデンサで、同コンデンサ
51は、脱気装置へ供給される供給原水を冷媒として、
膜分離装置32からコンデンサ51の配管68→セパレ
ータ69→真空ポンプ33へ吸出される脱気気体の水蒸
気を凝縮して、この凝縮水をセパレータ69外へ排出す
る(ドレン参照)。
EXAMPLE Next, the deaerator of the present invention will be explained with reference to an example shown in FIG. 1. In the figure, 51 is a condenser, and the condenser 51 uses the raw water supplied to the deaerator as a refrigerant.
The degassed water vapor sucked from the membrane separation device 32 to the pipe 68 of the condenser 51 → the separator 69 → the vacuum pump 33 is condensed, and the condensed water is discharged to the outside of the separator 69 (see drain).

【0016】53が熱交換器で、同熱交換器53は、膜
分離装置32→熱交換器53の配管57→配管58へ排
出される脱気後の供給原水(脱気処理済水)を熱媒とし
て、コンデンサ51→配管52→熱交換器53内へ送る
供給原水を昇温させる。55が蒸気ヒータで、同蒸気ヒ
ータ55は、圧力調整弁(減圧調整弁)64→蒸気流量
制御弁63→配管61→配管65→トラップ66の加熱
蒸気供給系統に流れる加熱蒸気を熱媒として、熱交換器
53内→配管54→蒸気ヒータ55内へ送る供給原水を
さらに昇温させる一方、熱交換後の凝縮した加熱蒸気を
トラップ66外へ排出する(ドレン参照)。
Reference numeral 53 denotes a heat exchanger, which heats the degassed feed raw water (degassed water) discharged to the membrane separator 32 → the pipe 57 of the heat exchanger 53 → the pipe 58. As the heat medium, the temperature of the raw water supplied to the condenser 51, the pipe 52, and the heat exchanger 53 is raised. 55 is a steam heater, and the steam heater 55 uses a heating steam flowing in a heating steam supply system of a pressure adjusting valve (pressure reducing adjusting valve) 64 → steam flow control valve 63 → pipe 61 → pipe 65 → trap 66 as a heat medium, While the temperature of the raw water to be fed to the inside of the heat exchanger 53 → the pipe 54 → the inside of the steam heater 55 is further raised, the condensed heated steam after heat exchange is discharged to the outside of the trap 66 (see drain).

【0017】32が図4、図5に示した膜分離装置と同
様の膜分離装置で、同膜分離装置32は、蒸気ヒータ5
5内→配管56→膜分離装置32に送られる昇温後の供
給原水を多孔膜を通過させることにより供給原水中に溶
存している空気等の気体を低圧脱気する。そして脱気気
体を膜分離装置32→コンデンサ51の配管68→セパ
レータ69→真空ポンプ33の系統により吸出し、脱気
後の供給原水(脱気処理済水)を膜分離装置32→熱交
換器53の配管57→配管58→次工程へ排出する。
Reference numeral 32 is a membrane separation device similar to the membrane separation device shown in FIGS. 4 and 5, and the membrane separation device 32 includes the vapor heater 5
The gas such as air dissolved in the raw raw water is decompressed at a low pressure by passing the raw raw water after being heated, which is sent to the inside of the pipe 5, the pipe 56, and the membrane separation device 32 through the porous membrane. Then, the degassed gas is sucked out by the system of the membrane separation device 32 → the pipe 68 of the condenser 51 → the separator 69 → the vacuum pump 33, and the raw water after degassing (degassed water) is the membrane separation device 32 → the heat exchanger 53. Pipe 57 → Pipe 58 → Discharge to the next step.

【0018】62が配管56に設けた温度制御装置(温
度指示調整計)で、同温度制御装置62は、配管56を
流れる昇温後の供給原水の温度を検出し、そのとき得ら
れる温度検出信号を蒸気流量制御弁63へ送り、同蒸気
流量制御弁63を制御して(蒸気流量を制御して)、蒸
気ヒータ55から膜分離装置32に向かう供給原水の温
度を一定に保持するようになっている。
Reference numeral 62 denotes a temperature control device (temperature indicating regulator) provided in the pipe 56. The temperature control device 62 detects the temperature of the feed raw water that has flown through the pipe 56 and has been heated. A signal is sent to the steam flow control valve 63, and the steam flow control valve 63 is controlled (the steam flow is controlled) to keep the temperature of the raw feed water from the steam heater 55 toward the membrane separation device 32 constant. Has become.

【0019】次に前記図1に示す脱気装置の作用を具体
的に説明する。供給原水をコンデンサ51へ供給し、こ
の供給原水を冷媒として、膜分離装置32からコンデン
サ51の配管68→セパレータ69→真空ポンプ33へ
吸出される脱気気体の水蒸気を凝縮して、コンデンサ5
1外へドレンとして排出する。次いで膜分離装置32か
ら熱交換器53の配管57→配管58へ排出される脱気
後の供給原水(脱気処理済水)を熱媒として、コンデン
サ51→配管52→熱交換器53内へ送る供給原水を昇
温させる一方、この熱交換により温度の低下した脱気後
の供給原水(脱気処理済水)を配管58から次工程へ送
る。
Next, the operation of the deaerator shown in FIG. 1 will be specifically described. The supplied raw water is supplied to the condenser 51, and the supplied raw water is used as a refrigerant to condense the steam of the degassed gas sucked from the membrane separation device 32 to the pipe 68 of the condenser 51 → separator 69 → the vacuum pump 33 to form the condenser 5
1 Discharge as drain. Next, using the raw water after degassing (degassed water) discharged from the membrane separation device 32 to the pipe 57 of the heat exchanger 53 to the pipe 58 as a heat medium, to the condenser 51 → the pipe 52 → into the heat exchanger 53. While raising the temperature of the feed raw water to be sent, the feed raw water after deaeration (deaerated treated water) whose temperature has dropped due to this heat exchange is sent from the pipe 58 to the next step.

【0020】次いで圧力調整弁(減圧調整弁)64→蒸
気流量制御弁63→配管61→配管65→トラップ66
の加熱蒸気供給系統に流れる加熱蒸気を熱媒として、熱
交換器53内→配管54→蒸気ヒータ55内へ送る供給
原水をさらに昇温させる(40〜60℃程度まで昇温さ
せる)一方、熱交換後の凝縮した加熱蒸気をトラップ6
6外へドレンとして排出する。
Next, the pressure adjusting valve (pressure reducing adjusting valve) 64 → steam flow control valve 63 → pipe 61 → pipe 65 → trap 66
Using the heating steam flowing in the heating steam supply system as a heat medium, the temperature of the supply raw water sent to the inside of the heat exchanger 53 → the piping 54 → the steam heater 55 is further raised (the temperature is raised to about 40 to 60 ° C.), while the heat Trap 6 for condensed heated steam after replacement
6 Discharge as drain to the outside.

【0021】次いで昇温後の供給原水を配管56→膜分
離装置32へ送り、多孔膜を通過させることにより、供
給原水中に溶存している空気等の気体を低圧脱気する。
このとき、温度制御装置(温度指示調整計)62より配
管56を流れる昇温後の供給原水の温度を検出し、その
とき得られる温度検出信号を蒸気流量制御弁63へ送
り、同蒸気流量制御弁63を制御して(蒸気流量を制御
して)、蒸気ヒータ55から膜分離装置32に向かう供
給原水の温度を一定に保持する。
Next, the feed raw water after being heated is sent to the pipe 56 → membrane separation device 32 and passed through the porous membrane to degas low-pressure gas such as air dissolved in the feed raw water.
At this time, the temperature control device (temperature instruction adjuster) 62 detects the temperature of the raw feed water that has flown through the pipe 56 and sends a temperature detection signal obtained at that time to the steam flow control valve 63 to control the steam flow. By controlling the valve 63 (controlling the steam flow rate), the temperature of the raw feed water flowing from the steam heater 55 toward the membrane separation device 32 is kept constant.

【0022】上記膜分離装置32へ送られる供給原水
は、昇温しているので、同供給原水に含まれている
2 、N2 等の気体は、常温の場合よりも活性化してお
り、多孔膜の微細孔を通過する能力が2〜3倍と増加す
る。
Since the feed raw water sent to the membrane separation device 32 is heated, the gases such as O 2 and N 2 contained in the feed raw water are more activated than at room temperature, The ability of the porous membrane to pass through the micropores is increased by a factor of 2-3.

【0023】[0023]

【発明の効果】本発明の脱気装置は前記のように膜分離
装置への供給原水を昇温させて、同供給原水に含まれて
いるO2 、N2 等の気体を常温の場合よりも活性化させ
るので、多孔膜の微細孔を通過する能力を2〜3倍と増
加できて、膜分離カラムを小型化できる。また膜分離カ
ラムで蒸発分離した水蒸気をコンデンサで凝縮液化する
ので、真空ポンプの吸引負荷を少なくできて、真空ポン
プを小型化でき、膜分離カラムを小型化できる点と相挨
って設備費を低減できる。
As described above, the deaerator of the present invention raises the temperature of the raw water supplied to the membrane separation device, and the gas such as O 2 and N 2 contained in the raw water supplied is higher than at room temperature. Since it is also activated, the ability to pass through the micropores of the porous membrane can be increased to 2-3 times, and the membrane separation column can be miniaturized. In addition, since the water vapor evaporated and separated by the membrane separation column is condensed and liquefied by the condenser, the suction load of the vacuum pump can be reduced, the vacuum pump can be downsized, and the membrane separation column can be downsized, which leads to equipment costs. It can be reduced.

【0024】またコンデンサの冷媒に脱気前の供給原水
を使用する一方、熱交換器の熱媒に脱気後の供給原水
(脱気処理済水)を使用しており、十分に熱回収でき
て、脱気装置のランニングコストを低減できる。また蒸
気ヒータでは、前段階で温めた脱気前の供給原水の昇温
不足分だけを加熱すればよいので、温度制御装置によ
り、加熱蒸気供給系統に設けた蒸気流量制御弁を制御し
て、蒸気ヒータから膜分離装置に向かう供給原水の温度
を一定に保持する点と相挨って蒸気消費量を節減でき
る。
Further, while the raw raw water before deaeration is used as the refrigerant of the condenser, the raw raw water after deaeration (deaerated treated water) is used as the heat medium of the heat exchanger, so that the heat can be sufficiently recovered. Therefore, the running cost of the deaerator can be reduced. Further, in the steam heater, since it is sufficient to heat only the insufficient temperature rise of the raw feed water that has been warmed in the previous stage and before degassing, the temperature control device controls the steam flow control valve provided in the heating steam supply system, The amount of steam consumed can be reduced in combination with the fact that the temperature of the raw water supplied from the steam heater to the membrane separator is kept constant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の脱気装置の一実施例を示す系統図であ
る。
FIG. 1 is a system diagram showing an embodiment of a deaerator of the present invention.

【図2】従来の脱気装置の一例を示す縦断側面図であ
る。
FIG. 2 is a vertical sectional side view showing an example of a conventional deaerator.

【図3】同脱気装置の作用説明図である。FIG. 3 is an explanatory view of the operation of the deaerator.

【図4】従来の脱気装置の他の例を示す側面図である。FIG. 4 is a side view showing another example of a conventional degassing device.

【図5】図4の矢印A部分の拡大縦断側面図である。5 is an enlarged vertical side view of a portion indicated by an arrow A in FIG.

【符号の説明】[Explanation of symbols]

32 膜分離装置 33 真空ポンプ 51 コンデンサ 53 熱交換器 55 蒸気ヒータ 62 温度制御装置 63 蒸気流量制御弁 32 membrane separator 33 vacuum pump 51 condenser 53 heat exchanger 55 steam heater 62 temperature controller 63 steam flow control valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 昇温後の供給原水を多孔膜を通過させる
ことにより同供給原水中に溶存している空気等の気体を
低圧脱気する膜分離装置と、脱気装置へ供給される供給
原水を冷媒として上記膜分離装置から真空ポンプにより
吸出される脱気気体の水蒸気を凝縮するコンデンサと、
上記膜分離装置から排出される脱気後の供給原水を熱媒
として上記コンデンサから排出される供給原水を昇温さ
せる熱交換器と、加熱蒸気を熱媒として上記熱交換器か
ら排出される供給原水をさらに昇温させる蒸気ヒータ
と、上記加熱蒸気供給系統に設けた蒸気流量制御弁を制
御して上記蒸気ヒータから上記膜分離装置に向かう供給
原水の温度を一定に保持する温度制御装置とを具えてい
ることを特徴とした脱気装置。
1. A membrane separation device for degassing a gas such as air dissolved in the raw raw water by low pressure by passing the raw raw water after heating through a porous membrane, and a supply supplied to the degassing device. A condenser that condenses water vapor of a degassed gas sucked by a vacuum pump from the membrane separation device using raw water as a refrigerant,
A heat exchanger that raises the temperature of the feed raw water discharged from the condenser using the degassed feed raw water discharged from the membrane separator as a heat medium, and a supply discharged from the heat exchanger using heated steam as a heat medium. A steam heater for further raising the temperature of the raw water, and a temperature control device for controlling the steam flow rate control valve provided in the heating steam supply system to keep the temperature of the raw water from the steam heater toward the membrane separation device constant. A deaerator characterized by being equipped with.
JP14626393A 1993-06-17 1993-06-17 Degassing device Expired - Fee Related JP3342107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14626393A JP3342107B2 (en) 1993-06-17 1993-06-17 Degassing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14626393A JP3342107B2 (en) 1993-06-17 1993-06-17 Degassing device

Publications (2)

Publication Number Publication Date
JPH07709A true JPH07709A (en) 1995-01-06
JP3342107B2 JP3342107B2 (en) 2002-11-05

Family

ID=15403791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14626393A Expired - Fee Related JP3342107B2 (en) 1993-06-17 1993-06-17 Degassing device

Country Status (1)

Country Link
JP (1) JP3342107B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101500394B1 (en) * 2013-12-31 2015-03-10 현대자동차 주식회사 Method and apparatus for recycling used refrigerant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294482A (en) * 1986-06-11 1987-12-21 Kirin Brewery Co Ltd Sanitary type degassing apparatus
JPH01215312A (en) * 1988-02-22 1989-08-29 Takuma Co Ltd Method for removing dissolved gas in liquid
JPH02160006A (en) * 1988-12-13 1990-06-20 Hitachi Plant Eng & Constr Co Ltd Device for removing volatile organic matter
JPH0359004U (en) * 1989-10-12 1991-06-10
JPH0487704U (en) * 1990-11-30 1992-07-30

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294482A (en) * 1986-06-11 1987-12-21 Kirin Brewery Co Ltd Sanitary type degassing apparatus
JPH01215312A (en) * 1988-02-22 1989-08-29 Takuma Co Ltd Method for removing dissolved gas in liquid
JPH02160006A (en) * 1988-12-13 1990-06-20 Hitachi Plant Eng & Constr Co Ltd Device for removing volatile organic matter
JPH0359004U (en) * 1989-10-12 1991-06-10
JPH0487704U (en) * 1990-11-30 1992-07-30

Also Published As

Publication number Publication date
JP3342107B2 (en) 2002-11-05

Similar Documents

Publication Publication Date Title
JP2021503714A (en) Capacitor system for high pressure processing system
WO1994003397A1 (en) Improvement to membrane type deaerator
JP2008183512A (en) Vacuum distillation regenerating apparatus
JPH07709A (en) Deaerator
JP4893592B2 (en) Gas dissolved water manufacturing apparatus and manufacturing method
JP2001300512A (en) Evaporating/concentrating device
JP4361203B2 (en) Steam heating device
JP5295726B2 (en) Ejector device
JPH08108005A (en) Deaeration device
JPH09137909A (en) Low pressure steam heater by heat medium
WO2004047924A1 (en) Deaeration apparatus for deaerating water used during ultrasonic focusing tumour treatment
JP6958687B1 (en) Membrane distillation equipment and its operation method
JP2709531B2 (en) Steam trap device
JP2000354541A (en) Steam heating device
JPH0458095A (en) Deoxidizing equipment
JP3282005B2 (en) Steam heating device
JP2998070B2 (en) Liquid degasser
JP4683773B2 (en) Method for evaporating and concentrating effervescent liquid
JP3707145B2 (en) Control method of deaerator
JP2820518B2 (en) Deaeration equipment for soft drinks, etc.
JPH0814183A (en) Sealing water cooling system of water sealing type vacuum pump in deaerator
JP3129965B2 (en) Degassing device
JPH0926103A (en) Vacuum steam heater
JPH0568809A (en) Membrane deaeration equipment and raw water deaeration method
JP3237532B2 (en) Control method of deaerator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020716

LAPS Cancellation because of no payment of annual fees