JPH0568809A - Membrane deaeration equipment and raw water deaeration method - Google Patents

Membrane deaeration equipment and raw water deaeration method

Info

Publication number
JPH0568809A
JPH0568809A JP25837891A JP25837891A JPH0568809A JP H0568809 A JPH0568809 A JP H0568809A JP 25837891 A JP25837891 A JP 25837891A JP 25837891 A JP25837891 A JP 25837891A JP H0568809 A JPH0568809 A JP H0568809A
Authority
JP
Japan
Prior art keywords
water
water tank
raw water
deaerated
raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25837891A
Other languages
Japanese (ja)
Other versions
JP2568954B2 (en
Inventor
Toshihiko Tanaka
俊彦 田中
Kazuo Yoshimi
和夫 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP3258378A priority Critical patent/JP2568954B2/en
Publication of JPH0568809A publication Critical patent/JPH0568809A/en
Application granted granted Critical
Publication of JP2568954B2 publication Critical patent/JP2568954B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain small-scale, membrane deaeration equipment and a deaeration method for producing deaerated water of low concentration of dis solved oxygen by continuously operating a membrane module to circulate excess deaerated water through the membrane module, a deaerated water tank and a raw water tank in this order. CONSTITUTION:A water supply pump 6 for conveying raw water W to a membrane module 3 is continuously operated irrespective of the quantity of deaerated water supplied to the outside to return excess deaerated water Wr to a raw water tank 1 through a water level difference operated value 16. As a result, the less quantity of the dearated water supplied to the outside Wo, the more quantity of the deaerated water returned to the raw water tank 1 W1, and the ratio of the deaerated water quantity to a total water supply quantity Wp by the water supply pump 6 is increased to notably decrease the concentration of dissolved oxygen. The continuous operation of the water supply pump 6 made at all time provides the extremely stable operation of the membrane module 3 and at the same time, the use of equipment at full capacity to obtain deaerated water deaerated to a high degree.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は膜式脱気装置の改良に関
するものであり、主としてボイラ給水の水質改善に使用
されるものである。また、本件発明は水道の赤水や配管
腐食の防止、食品の煮崩れや酸化の防止、半導体製造用
の超高純度洗浄水の製造等にも使用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a membrane type deaerator, which is mainly used for improving the water quality of boiler feed water. Further, the present invention is also used for prevention of red water from water supply and corrosion of pipes, prevention of food collapse and oxidation, production of ultra-high purity cleaning water for semiconductor production, and the like.

【0002】[0002]

【従来の技術】水の脱気法は化学的脱気法と機械的脱気
法に大別される。前者は、亜硫酸ソーダやヒドラジン等
の薬剤を水に添加し、水中の酸素と反応させて溶存酸素
を少なくする方法であり、2Na2SO3+O2=2Na2
SO4,H2N・NH3+O2=2H2O+N2の様な反応を
利用して、水中の酸素を取り除くものである。また、後
者の機械的脱気法は、水に加圧若しくは減圧操作を加え
ることにより、溶存酸素を外部へ抽出するものである。
ところで、前記化学的脱気法には(a)脱気速度が反応
温度によって大きく変動すること、(b)薬剤が強い還
元性であって取扱が容易でないこと、(c)薬剤切れに
よる脱気不良を起こし易いこと、(d)薬剤が高価なた
めに処理費が嵩むこと等の難点が存在する。また、後者
の機械的脱気法にも、装置の単位容積当たりの脱気処理
能力が低いために脱気装置が大型化し、設備費等が高騰
すると云う問題がある。
2. Description of the Related Art Water deaeration methods are roughly classified into chemical deaeration methods and mechanical deaeration methods. The former is a method in which a chemical such as sodium sulfite or hydrazine is added to water and reacted with oxygen in the water to reduce dissolved oxygen. 2Na 2 SO 3 + O 2 = 2Na 2
Oxygen in water is removed by using a reaction such as SO 4 , H 2 N.NH 3 + O 2 = 2H 2 O + N 2 . In the latter mechanical deaeration method, dissolved oxygen is extracted to the outside by applying pressure or pressure reduction operation to water.
By the way, in the above chemical degassing method, (a) the degassing rate greatly varies depending on the reaction temperature, (b) the drug is strongly reducing and is not easy to handle, and (c) the degassing due to the depletion of the drug. There are drawbacks such as easy occurrence of defects and (d) high processing cost due to expensive chemicals. Further, the latter mechanical degassing method also has a problem that the degassing apparatus becomes large due to the low degassing treatment capacity per unit volume of the apparatus, resulting in a high equipment cost.

【0003】一方、上述の如く問題を解決するため、図
9に示す如き所謂膜モジュールを利用した脱気装置が開
発されている。当該膜モジュール方式の脱気装置は、送
水ポンプBによりタンクA内で加熱した原水Wを、膜モ
ジュールCの中空糸内へ圧送すると共に、前記中空糸膜
の外側空間を真空ポンプDによって減圧することによ
り、中空糸膜を通して水中の酸素等を外部へ抽出するよ
う構成されている。また、膜モジュールCを通して処理
された脱気水W0は脱気タンクE内へ一旦貯留され、そ
の後、給水ポンプPによりボイラFの運転状況に応じ
て、所要量の脱気水W0がボイラ給水として供給されて
行く。尚、図9に於いて、Hは蒸気ヒータ、Tは温度セ
ンサー、Qはフィルターである。
On the other hand, in order to solve the problem as described above, a deaerator using a so-called membrane module as shown in FIG. 9 has been developed. In the membrane module type deaerator, the raw water W heated in the tank A by the water feed pump B is pumped into the hollow fiber of the membrane module C, and the outer space of the hollow fiber membrane is depressurized by the vacuum pump D. Thereby, oxygen and the like in water is extracted to the outside through the hollow fiber membrane. Further, the degassed water W 0 treated through the membrane module C is temporarily stored in the degassing tank E, and thereafter, a required amount of degassed water W 0 is generated by the water supply pump P in accordance with the operating condition of the boiler F. It will be supplied as water supply. In FIG. 9, H is a steam heater, T is a temperature sensor, and Q is a filter.

【0004】前記膜式脱気装置は、従前の機械的脱気法
の装置に比較して装置自体の小型化が可能となり、優れ
た実用的効用を奏するものである。しかし、当該膜式脱
気装置にも改良すべき多くの問題が残されている。先ず
第1の問題は、膜モジュールの設備利用率が極めて悪い
と云う点である。即ち、一般にボイラ設備等では、ボイ
ラの最大容量に見合った脱気容量を有する脱気装置を設
置するのが通常である。ところが、ボイラ設備が全負荷
運転されることは殆ど稀であり、50〜70%位の負荷
で運転されるのが通常である。その結果、ボイラ補給水
が少なくて良い場合には、膜式脱気装置の運転を一時的
に休止して膜モジュールCを所謂間欠運転することにな
り、脱気装置としての設備利用率が低下するだけでな
く、中空系の機械的寿命が短くなる等、様々な不都合を
生ずることになる。
The membrane type deaerator has an excellent practical utility because it can be downsized as compared with the conventional mechanical deaerator. However, there still remain many problems to be improved in the membrane type deaerator. The first problem is that the facility utilization rate of the membrane module is extremely poor. That is, generally, in a boiler facility or the like, it is usual to install a deaerator having a deaerating capacity commensurate with the maximum capacity of the boiler. However, it is rare that the boiler equipment is operated at full load, and it is normal to operate it at a load of about 50 to 70%. As a result, when the boiler make-up water is small, the operation of the membrane deaerator is temporarily stopped to operate the membrane module C in a so-called intermittent operation, and the equipment utilization rate as the deaerator decreases. In addition to this, various inconveniences occur, such as shortening the mechanical life of the hollow system.

【0005】第2の問題は脱気装置の大幅な小型化が困
難なうえ、水中の溶存酸素濃度が不安定になり易いとい
う点である。従前の膜式脱気装置に於いては、図9に示
す如く原水タンクAと脱気水タンクEとを膜モジュール
Cを介設して完全に分離し、両タンクA,Eの液面を夫
々個別に電極棒式液面制御法によって制御するようにし
ている。そのため、原水タンクA及び脱気水タンクEの
容量が必然的に大型化すると共に、複数基の液面制御装
置を必要とし、設備費の削減が困難となる。また、原水
Wや脱気水W0の補給が間欠的に行われるため、原水タ
ンクAに於いては原水温度が大きく変動すると共に、膜
モジュールCの方も間欠運転に於ける起動時の脱気特性
が変動する。これとは別に脱気水タンクE内での滞留時
間が長くなると(ボイラ設備の負荷が軽い場合、ボイラ
一時停止の場合)、大気中の溶存酸素を取り込み易く、
一度溶け込んだ溶存酸素を確実に取り除く方法がない。
そのうえ、従前の膜式脱気装置では、原水Wや脱気水W
0の間欠的な補給に際して、水をタンク内へ直接落し込
む方式としているため、補給時に気泡を水中へ巻き込む
虞れがあり、溶存酸素濃度の上昇を招き易いと云う問題
がある。
The second problem is that it is difficult to reduce the size of the deaerator to a large extent and the dissolved oxygen concentration in water tends to be unstable. In the conventional membrane-type deaerator, the raw water tank A and the deaerator tank E are completely separated by the membrane module C as shown in FIG. 9, and the liquid surfaces of both tanks A and E are separated. Each is individually controlled by the electrode rod type liquid level control method. Therefore, the capacities of the raw water tank A and the degassed water tank E inevitably increase, and a plurality of liquid level control devices are required, which makes it difficult to reduce the equipment cost. Further, since the raw water W and the degassed water W 0 are supplied intermittently, the raw water temperature in the raw water tank A fluctuates greatly, and the membrane module C is also degassed at the start-up in the intermittent operation. Qi characteristics fluctuate. Apart from this, if the residence time in the degassed water tank E becomes long (when the load on the boiler equipment is light, when the boiler is temporarily stopped), it is easy to take in dissolved oxygen in the atmosphere,
There is no reliable way to remove dissolved oxygen once dissolved.
Moreover, in the conventional membrane deaerator, the raw water W and the deaerated water W
At the time of intermittent replenishment, water is dropped directly into the tank, so bubbles may be caught in the water at the time of replenishment, and there is a problem that the dissolved oxygen concentration is likely to rise.

【0006】第3の問題は、真空ポンプDが大量の水封
水を消費すると云う点である。膜モジュールCの中空糸
膜の外部空間を真空引きするための真空ポンプDは、相
当量の水封水を消費する。しかし、従前の膜式脱気装置
に於いては、前記水封水は全て外部へ廃棄されており、
原水Wの消費量が著しく増大する。
[0006] The third problem is that the vacuum pump D consumes a large amount of water sealing water. The vacuum pump D for evacuating the outer space of the hollow fiber membrane of the membrane module C consumes a considerable amount of water sealing water. However, in the conventional membrane deaerator, all the water sealing water is discarded to the outside,
The consumption of raw water W is significantly increased.

【0007】[0007]

【発明が解決しようとする課題】本発明は、従前の膜モ
ジュール型脱気方式に於ける上述の如き問題、即ち膜
モジュールがボイラ負荷に応じて間欠運転されるため、
設備利用率の低下や機械的寿命の低下を来たすこと、
比較的容量の大きな原水タンクと脱気水タンクとを必要
とすること、原水及び脱気水の間欠的な補給により、
脱気水中の溶存酸素濃度が変化したり、気泡の原水中へ
の巻き込みを起こし易いこと、ボイラ起動時、溶存酸
素濃度Doの高い水がボイラに供給されること、真空
ポンプの運転により原水の消費量が増大すること等の問
題を解決せんとするものであり膜モジュールをボイラー
負荷に関係なしに連続的に作動させると共に、原水タン
クと脱気水タンクとを有機的に連通させ、余剰脱気水を
膜モジュール−脱気水タンク−原水タンクの順に循環さ
せることにより、脱気装置の大幅な小型化と設備費や運
転費の引き下げが図れ、しかも、必要量のより溶存酸素
濃度の低い脱気水を円滑に得られるようにした膜式脱気
装置と原水の脱気方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has the above-mentioned problems in the conventional membrane module type deaeration system, that is, the membrane module is intermittently operated according to the boiler load.
Causing a reduction in equipment utilization rate and mechanical life,
By requiring a relatively large capacity raw water tank and degassed water tank, and intermittent supply of raw water and degassed water,
Dissolved oxygen concentration may change in the degassed water, susceptible to entrainment of the raw water bubble, at the boiler starts, the high dissolved oxygen concentration D o water is supplied to the boiler, the raw water by the operation of the vacuum pump This is to solve the problem of increasing the consumption of water, etc., and to operate the membrane module continuously regardless of the boiler load, and to connect the raw water tank and the degassed water tank organically, and By circulating deaerated water in the order of membrane module-deaerated water tank-raw water tank, it is possible to significantly reduce the size of the deaerator and reduce the equipment cost and operating cost. It is intended to provide a membrane-type deaerator capable of smoothly obtaining low deaerated water and a method for deaerating raw water.

【0008】[0008]

【課題を解決するための手段】本件装置発明は、原水W
を補給して液面L1を所定位置に保持する液面制御装置
と原水Wを所定温度に加熱する自動加熱装置を備えた原
水タンク1と;真空ポンプ5による真空を利用して前記
原水Wを脱気処理する膜モジュール3と;脱気処理した
脱気水W0を貯留する脱気水タンク2と;原水タンク1
と脱気水タンク2とを連通すると共にその脱気水タンク
2側に、両タンク1,2間の水位差Hが所定値を越える
と開弁する水位差作動弁16を有する循環管路15と;
原水タンク1内の原水Wを所定流量で連続的に膜モジュ
ール3へ圧送する送水ポンプ6とを基本構成とするもの
であり、前記送水ポンプ6を連続的に運転し、脱気水タ
ンク2内の余剰な脱気水Wrを前記循環管路15を通し
て原水タンク1へ環流せしめることを特徴とする。
SUMMARY OF THE INVENTION The invention of the device of the present invention is to provide raw water W.
A raw water tank 1 equipped with a liquid level control device for replenishing the liquid surface to keep the liquid surface L 1 at a predetermined position and an automatic heating device for heating the raw water W to a predetermined temperature; Membrane module 3 for degassing water; Degassing water tank 2 for storing degassed water W 0 that has been degassed; Raw water tank 1
And a degassed water tank 2, and a circulation pipe line 15 having a water level difference actuating valve 16 that opens on the degassed water tank 2 side when the water level difference H between the tanks 1 and 2 exceeds a predetermined value. When;
The basic structure is a water supply pump 6 that continuously feeds the raw water W in the raw water tank 1 at a predetermined flow rate to the membrane module 3. The water supply pump 6 is continuously operated to operate the deaerated water tank 2 inside. The surplus degassed water W r is recirculated to the raw water tank 1 through the circulation pipe 15.

【0009】また、本件方法発明は、原水タンク1から
送水ポンプ6により原水Wを膜モジュール3へ圧送し、
脱気処理した脱気水W0を脱気水タンク2へ貯留すると
共に、給水ポンプ10により脱気水W0を所望箇所へ供
給するようにした膜式脱気装置に於いて、前記送水ポン
プ6を所定の送水流量で連続運転すると共に、脱気水タ
ンク2と原水タンク1間を両者の液面差Hが所定値を越
えると開弁する液面差作動弁16を介設して連通し、脱
気水タンク2内の余剰脱気水Wrを前記液面差作動弁1
6を通して原水タンク1へ環流させるようにしたことを
発明の基本構成とするものである。
Further, in the method invention of the present case, the raw water W is pressure-fed from the raw water tank 1 to the membrane module 3 by the water feed pump 6.
In the membrane type deaerator in which the deaerated water W 0 that has been deaerated is stored in the deaerated water tank 2 and the deaerated water W 0 is supplied to a desired location by the water supply pump 10. 6 is continuously operated at a predetermined water supply flow rate, and the degassed water tank 2 and the raw water tank 1 are connected to each other via a liquid level difference actuating valve 16 that opens when the liquid level difference H between them exceeds a predetermined value. Then, the excess deaerated water W r in the deaerated water tank 2 is supplied to the liquid level differential operation valve 1
It is the basic constitution of the invention that the raw water tank 1 is circulated through the tank 6.

【0010】[0010]

【作用】原水タンク1内の原水Wは、液面制御装置によ
って制御されており、且つ自動加熱装置によって一定温
度に加熱される。加熱された原水Wは、送水ポンプ6に
より所定の流量で膜モジュール3へ連続的に圧送され、
処理された脱気水W0が脱気水タンク2へ供給される。
脱気水W0の外部への供給が少ないと、脱気水タンク2
の液面L0が上昇し、原水タンク1内の液面L1と液面差
Hが所定値を越えると、水位差作動弁16が開放され
て、脱気水Wrが原水タンク1へ環流される。このよう
にして、脱気水タンク2−原水タンク1−送水ポンプ6
−膜モジュール3を通して水が環流され、脱気水W0
外部への供給が少ない場合には、より溶存酸素濃度の低
い脱気水が得られる。また、真空ポンプ5の液ガス排出
口から排出された混合流体は、液ガス分離器20内へ送
られ、回収された原水は原水タンク1内へ戻される。更
に、脱気水タンク2内の液面L0が一定レベル以下に下
がった場合には、バイパス用水位差作動弁18が開放さ
れ、原水Wがバイパス管路17を通して脱気水タンク2
内へ移送することもできる様にしている。
The raw water W in the raw water tank 1 is controlled by the liquid level control device and heated to a constant temperature by the automatic heating device. The heated raw water W is continuously pumped to the membrane module 3 at a predetermined flow rate by the water pump 6.
The treated deaerated water W 0 is supplied to the deaerated water tank 2.
If the supply of deaerated water W 0 to the outside is small, the deaerated water tank 2
The liquid level L 0 is elevated, the liquid level L 1 and the liquid level difference H of the raw water tank 1 exceeds a predetermined value, the water level difference operation valve 16 is opened, the deaerated water W r is the raw water tank 1 Is recirculated. In this way, the deaerated water tank 2-raw water tank 1-water pump 6
-When water is refluxed through the membrane module 3 and the amount of degassed water W 0 supplied to the outside is small, degassed water having a lower dissolved oxygen concentration is obtained. The mixed fluid discharged from the liquid gas outlet of the vacuum pump 5 is sent into the liquid gas separator 20, and the recovered raw water is returned into the raw water tank 1. Furthermore, when the liquid level L 0 in the degassed water tank 2 drops below a certain level, the bypass water level difference actuating valve 18 is opened, and the raw water W passes through the bypass line 17 and the degassed water tank 2
It can be transferred to the inside.

【0011】[0011]

【実施例】以下、図面に基づいて本発明の実施例を説明
する。図1は本発明に係る膜式脱気装置の全体系統図で
ある。図1に於いて、1は原水タンク、2は脱気水タン
ク、3は膜モジュール、4はフィルタ、5は真空ポンプ
(水封水ポンプ)、6は送水ポンプ、7は定流量弁、8
はフィルタ、9はフロースイッチ、10はボイラ給水ポ
ンプ、11はボイラ、12は温度センサ、13は蒸気ヒ
ータ、14は蒸気電磁弁、15は循環管路、16は循環
用水位差作動弁、17はバイパス管路、18はバイパス
用水位差作動弁、19はオーバフロー管路、20は液ガ
ス分離器、21は原水補給制御弁、22〜29は管路、
Wは原水、W0は脱気水、Sは蒸気、Gはガスであり、
前記温度センサ12と蒸気ヒータ13と蒸気電磁弁14
等により自動加熱装置Tが、また前記原水補給制御弁2
1により液面制御装置Yが夫々形成されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an overall system diagram of a membrane type deaerator according to the present invention. In FIG. 1, 1 is a raw water tank, 2 is a deaerated water tank, 3 is a membrane module, 4 is a filter, 5 is a vacuum pump (water sealing water pump), 6 is a water pump, 7 is a constant flow valve, 8
Is a filter, 9 is a flow switch, 10 is a boiler feed water pump, 11 is a boiler, 12 is a temperature sensor, 13 is a steam heater, 14 is a steam solenoid valve, 15 is a circulation pipeline, 16 is a circulating water level difference actuating valve, 17 Is a bypass line, 18 is a bypass water level difference actuating valve, 19 is an overflow line, 20 is a liquid gas separator, 21 is a raw water supply control valve, 22-29 are lines,
W is raw water, W 0 is degassed water, S is steam, G is gas,
The temperature sensor 12, the steam heater 13, and the steam solenoid valve 14
The automatic heating device T is operated by the
The liquid level control devices Y are formed by the respective numbers 1.

【0012】先ず、本発明に係る脱気装置の構成と作動
の概要を図1に基づいて説明する。原水W(ボイラ給水
の場合は軟化水)はフィルタ4を通して固形物を除去し
たあと、原水供給制御弁21を経て原水タンク1内へ供
給され、前記原水供給制御弁21によって一定の液面高
さL1に保持された状態で、原水タンク1に一旦貯えら
れる。原水タンク1内の蒸気ヒータ13へはボイラ11
から蒸気が吹き込まれ、温度センサ12により温度を検
出し、所定の温度になるように蒸気量が調節される。加
熱された原水Wは、送水ポンプ6,定流量弁7,フィル
タ8を経て膜モジュール3へ供給される。膜モジュール
3は膜をはさんで二室に分かれており、膜の一方の側を
加熱原水Wが流通する。また、膜の他方側は真空ポンプ
5により真空吸引され、これによって加熱原水W内の溶
解ガスGを膜透過させ、脱気させる。更に、前記真空ポ
ンプ5へは原水Wの一部が水封水Wsとして供給され、
また、使用後の水封水Wsは液ガス分離器20を通して
原水タンク1へ戻され、原水Wの有効利用が図られてい
る。脱気された水W0は配管25を経て脱気水タンク2
に送られ、またボイラ11へは配管23を経て給水ポン
プ10により供給される。
First, the outline of the construction and operation of the deaerator according to the present invention will be described with reference to FIG. The raw water W (softened water in the case of boiler feed water) is supplied to the raw water tank 1 through the raw water supply control valve 21 after removing solid matters through the filter 4, and the raw water supply control valve 21 causes the liquid surface to have a constant liquid level. It is temporarily stored in the raw water tank 1 while being held at L 1 . The boiler 11 is connected to the steam heater 13 in the raw water tank 1.
Steam is blown in from, the temperature is detected by the temperature sensor 12, and the amount of steam is adjusted to reach a predetermined temperature. The heated raw water W is supplied to the membrane module 3 through the water pump 6, the constant flow valve 7, and the filter 8. The membrane module 3 is divided into two chambers across the membrane, and the heated raw water W flows through one side of the membrane. The other side of the membrane is vacuumed by the vacuum pump 5, whereby the dissolved gas G in the heated raw water W is permeated through the membrane and degassed. Further, part of the raw water W is supplied to the vacuum pump 5 as water sealing water W s ,
In addition, the water-sealing water W s after use is returned to the raw water tank 1 through the liquid gas separator 20 so that the raw water W is effectively used. The deaerated water W 0 is passed through the pipe 25 to the deaerated water tank 2
And is supplied to the boiler 11 by the water supply pump 10 via the pipe 23.

【0013】前記送水ポンプ6は、ボイラ11の負荷の
大小とは関係なしに連続的に運転され、予かじめ定めた
一定流量の水Wpを膜モジュール3へ送る。その結果、
膜モジュール3からは一定流量の脱気水W0が脱気水タ
ンク2へ送られてくる。この状態に於いて、ボイラ11
が軽負荷であってボイラ給水が少ないと、脱気水タンク
2の液面L0が上昇し、原水タンク1と脱気水タンク2
間の水位差Hが大となる。前記水位差Hが一定値を越え
ると、循環用水位差作動弁16が開放され、脱気水Wr
が原水タンク1内へ環流される。つまり、脱気水Wr
送水ポンプ6→膜モジュール3→脱気水タンク2→原水
タンク1の順に循環する。また、逆に、膜モジュール3
の目詰まり等が生じて脱気水タンク2の液面L0が設定
値以下になった場合には、バイパス用水位差作動弁18
が開放され、バイパス管路17を通して原水タンク1内
の原水Wが脱気水タンク2内へ移送される。これによ
り、脱気水W0の不足が一時的に原水Wによって補充す
ることもできる様にしている。
The water supply pump 6 is continuously operated irrespective of the load on the boiler 11 and sends a predetermined constant flow rate of water W p to the membrane module 3. as a result,
From the membrane module 3, a constant flow of degassed water W 0 is sent to the degassed water tank 2. In this state, the boiler 11
Is a light load and the boiler water supply is small, the liquid level L 0 of the deaeration water tank 2 rises, and the raw water tank 1 and the deaeration water tank 2
The water level difference H between them becomes large. When the water level difference H exceeds a certain value, the circulating water level difference actuating valve 16 is opened and the degassed water W r
Is circulated into the raw water tank 1. That is, the degassed water W r circulates in the order of the water pump 6, the membrane module 3, the degassed water tank 2, and the raw water tank 1. On the contrary, the membrane module 3
When the liquid level L 0 of the degassed water tank 2 becomes equal to or less than the set value due to clogging of the water, the bypass water level difference actuating valve 18
Is opened, and the raw water W in the raw water tank 1 is transferred into the degassed water tank 2 through the bypass line 17. As a result, the shortage of the deaerated water W 0 can be temporarily replenished with the raw water W.

【0014】前記膜モジュール3には、所謂中空糸膜製
の膜モジュールが使用されている。当該膜モジュール3
は図2及び図3に示す如く、原水導入口3dと脱気水導
出口3eとガス導出口3fを設けたケーシング3a内
に、中空糸群3bを充填したものである。前記中空糸群
3bの上・下両端部は順次接着剤3cによって密閉され
ており、これによって、中空糸膜3b´を挟んで真空部
3gと通水部3hが形成されると共に、各真空部3gが
ケーシング3aのガス導出口3fへ連通されている。加
熱された原水Wは導入口3dからケーシング3a内へ入
り、中空糸群3bの通水部3hを通って導出口3eから
外部へ排出される。一方、中空糸群3bの真空部3gは
ガス排出口3fを通して真空ポンプ5によって真空引き
されており、加熱原水Wが中空糸内部を流通する過程で
水に溶解したガスGが中空糸膜3b´を透過して真空側
に移動することにより脱気が行われる。尚、膜モジュー
ル3の構造は中空糸膜に限定されず、平膜あるいは平膜
をスパイラル状に巻き込んだものでも良く、またチュー
ブタイプの膜でも同じ作用効果を得ることができる。
The membrane module 3 is a so-called hollow fiber membrane module. The membrane module 3
As shown in FIGS. 2 and 3, the hollow fiber group 3b is filled in a casing 3a provided with a raw water inlet 3d, a degassed water outlet 3e, and a gas outlet 3f. The upper and lower ends of the hollow fiber group 3b are sequentially sealed with an adhesive 3c, whereby a vacuum portion 3g and a water passage portion 3h are formed with the hollow fiber membrane 3b 'sandwiched therebetween, and each vacuum portion 3g. Is communicated with the gas outlet 3f of the casing 3a. The heated raw water W enters the casing 3a through the inlet 3d, passes through the water passage portion 3h of the hollow fiber group 3b, and is discharged outside through the outlet 3e. On the other hand, the vacuum portion 3g of the hollow fiber group 3b is evacuated by the vacuum pump 5 through the gas discharge port 3f, and the gas G dissolved in the water flows through the hollow fiber membrane 3b 'while the heated raw water W is flowing through the hollow fiber. Degassing is performed by passing through and moving to the vacuum side. The structure of the membrane module 3 is not limited to the hollow fiber membrane, and may be a flat membrane or a flat membrane wound in a spiral shape, or the same effect can be obtained with a tube type membrane.

【0015】次に、本発明の要部を構成する原水タンク
1、脱気水タンク2及び膜モジュール3による脱気シス
テムを図4に基づいて説明する。原水タンク1は仕切壁
1a,1bによってその内部が第1室R1、第2室R2
第3室R3の3室に区画されており、各室は通水孔1g
及び1hによって夫々連通されている。また、原水タン
ク1の第1室R1は後述する液ガス分離器20と通水孔
1iを通して連通されており、更に前記第2室R2はバ
イパス管路17を通して、また前記第3室R3は循環管
路15を通して、夫々脱気水タンク2へ連通されてい
る。尚、前記通水孔1gは通水孔1hより若干低い位置
に設けられている。
Next, a degassing system comprising the raw water tank 1, the degassed water tank 2 and the membrane module 3 which constitutes the main part of the present invention will be described with reference to FIG. The raw water tank 1 includes a partition wall 1a and a partition wall 1b, and the inside of the raw water tank 1 includes a first chamber R 1 and a second chamber R 2 ,
It is divided into 3 rooms, the 3rd room R 3 , and each room has a water passage hole 1g.
And 1h are in communication with each other. Further, the first chamber R 1 of the raw water tank 1 is communicated through the liquid-gas separator 20 and the water passage holes 1i which will be described later, through further the second chamber R 2 is bypass conduit 17, also the third chamber R 3 are connected to the degassed water tank 2 through the circulation line 15. The water passage hole 1g is provided at a position slightly lower than the water passage hole 1h.

【0016】前記第1室R1は補給された原水Wの加熱
室を形成しており、その内部には蒸気ヒータ13及び温
度センサ12から成る自動加熱装置Tと液面制御装置Y
を形成するフロート式の原水補給制御弁21が夫々設け
られている。尚、温度センサ12は通水孔1gの近傍に
配置されている。また原水補給制御弁21は、その弁機
構部21aが第1室R1の液面L1の上方に、またフロー
ト部21bが第2室R2の液面L1上に夫々配設されてお
り、更に弁吐出口21cは第1室R1の液面下に配置さ
れている。更に、本実施例では原水タンク1の液面制御
装置Yをフロート式の制御弁21で構成しているが、通
常の電極棒式の液面制御装置Yであってもよい。前記第
2室R2は原水Wの液面検出室を形成しており、後述す
るバイパス管路17の一端と前記フロート部21bが夫
々配設されている。前記第3室R3は原水Wと後述する
脱気水タンク2内の脱気水W0との混合室を形成してお
り、循環管路15の一端と管路24の一端が配設されて
いる。
The first chamber R 1 forms a heating chamber for the replenished raw water W, and an automatic heating device T including a steam heater 13 and a temperature sensor 12 and a liquid level control device Y are provided inside the first chamber R 1.
A float-type raw water supply control valve 21 for forming the above is provided respectively. The temperature sensor 12 is arranged near the water passage hole 1g. The raw water replenishment control valve 21 has a valve mechanism portion 21a disposed above the liquid level L 1 of the first chamber R 1 and a float portion 21b disposed above the liquid level L 1 of the second chamber R 2. Further, the valve discharge port 21c is arranged below the liquid surface of the first chamber R 1 . Further, although the liquid level control device Y of the raw water tank 1 is configured by the float type control valve 21 in this embodiment, it may be a normal electrode rod type liquid level control device Y. The second chamber R 2 forms a liquid level detecting chamber for the raw water W, and is provided with one end of a bypass pipe line 17 described later and the float portion 21b. The third chamber R 3 forms a mixing chamber of raw water W and deaerated water W 0 in the deaerated water tank 2 described later, and one end of the circulation conduit 15 and one end of the conduit 24 are provided. ing.

【0017】原水Wは原水補給制御弁21を通して第1
室R1の原水内へ供給され、タンク内液面L1はそのフロ
ート部21bによって所定の液面レベルに制御されてい
る。尚、補給原水W1は液面下に配置した吐出口21c
からタンク内へ放出されるため、原水の吐出による気泡
の水中への巻き込みは全く生じない。また、原水補給制
御弁21のフロート部21bを第2室R2内に設けてい
るため、原水Wの補給時に液面L1に波動が生じてもフ
ロート部21bへ直接影響が及ばず、極めて正確な液面
制御が行なえる。第1室R1内の原水Wは、温度センサ
12によって流入蒸気量Sを制御しつつ蒸気ヒータ13
により加熱され、所定の温度に保持されている。蒸気ヒ
ータ13による原水Wの加熱により、溶存酸素濃度D0
が減少する。また、通水孔1gが通水孔1hよりも低位
置に設けられているため、第1室R1及び第2室R2の最
低水位時に於いても、温度センサ12は常に原水W中に
位置することになり、より正確な温度制御が可能とな
る。前記所定の温度に加熱された原水Wは、仕切壁1
a,1b,によって気泡の流出を制限されつつ第3室R
3へ流入し、その後管路24を通して膜モジュール3へ
圧送されることにより脱気処理を受け、脱気水W0が脱
気水タンク2へ供給される。
The raw water W is first passed through the raw water supply control valve 21.
It is supplied into the raw water of the chamber R 1 , and the liquid level L 1 in the tank is controlled to a predetermined liquid level by the float 21b. The supplementary raw water W 1 is discharged from the discharge port 21c located below the liquid surface.
Since it is discharged from the tank into the tank, air bubbles are not entrained in the water due to the discharge of raw water. Further, since the provided float portion 21b of the raw water supply control valve 21 into the second chamber R 2, also not reach directly affect the float portion 21b occurs the wave in the liquid level L 1 during replenishment of the raw water W, very Accurate liquid level control is possible. The raw water W in the first chamber R 1 is controlled by the temperature sensor 12 while controlling the inflow steam amount S, and the steam heater 13
And is kept at a predetermined temperature. By heating the raw water W by the steam heater 13, the dissolved oxygen concentration D 0
Is reduced. Further, since the water passage holes 1g is provided at lower position than the water-passing hole 1h, even at the time of the first chamber lowest level of R 1 and the second chamber R 2, a temperature sensor 12 is always in the raw water W Since it is located, more accurate temperature control becomes possible. The raw water W heated to the predetermined temperature is the partition wall 1
The third chamber R while the bubbles are restricted from flowing out by a and 1b.
Degassing water W 0 is supplied to the degassed water tank 2 by flowing into 3 and then being pressure-fed to the membrane module 3 through the conduit 24.

【0018】脱気水タンク2は原水タンク1に隣接して
設けられており、その満水時の容量は、ボイラ11の缶
体内全保有水量を越える容量に選定されている。前記脱
気水タンク2と原水タンク1の第3室R3とは、循環用
水位作動弁16を有する循環管路15によって連通され
ている。脱気水タンク2の液面L0と原水タンク1の液
面L1との水位差Hが設定値以上になると、水位差作動
弁16が開放されて脱気水タンク2内の脱気水Wrが原
水タンク1の第3室R3内へ環流される。また、脱気水
タンク2と原水タンク1の第2室R2とは、バイパス用
水位差作動弁18を備えたバイパス管17によって連結
されており、脱気水タンク2内の液面L0が設定値以下
になると、バイパス用水位差作動弁18が開放され、第
2室R2内の原水Wが脱気水タンク2内へバイパス管1
7を通して移送される。更に、脱気水タンク2と原水タ
ンク1の第1室R1とはオーバフロー管路19により連
通されており、水位差作動弁16等が故障の場合には、
脱気水W0が第1室R1へオーバフローされる。
The degassed water tank 2 is provided adjacent to the raw water tank 1, and the capacity of the dewatered water tank 2 when the water is full is selected to exceed the total amount of water held in the can of the boiler 11. The degassed water tank 2 and the third chamber R 3 of the raw water tank 1 are communicated with each other by a circulation pipe line 15 having a circulation water level operation valve 16. When the water level difference H between the liquid level L 1 of the liquid surface L 0 of degassed water tank 2 raw water tank 1 is equal to or greater than the set value, degassed water by the water level difference operated valve 16 is opened in degassed water tank 2 W r is recirculated into the third chamber R 3 of the raw water tank 1. The degassed water tank 2 and the second chamber R 2 of the raw water tank 1 are connected by a bypass pipe 17 having a bypass water level difference actuating valve 18, and the liquid level L 0 in the degassed water tank 2 is connected. Is below a set value, the bypass water level difference actuating valve 18 is opened, and the raw water W in the second chamber R 2 enters the degassed water tank 2 by-pass pipe 1
Transported through 7. Further, when the first chamber R 1 of degassed water tank 2 and the raw water tank 1 is communicated with an overflow pipe 19, the water level difference actuated valve 16 or the like is failure,
The degassed water W 0 overflows into the first chamber R 1 .

【0019】前記水位差作動弁16は弁座を備えた弁箱
16aと弁体16b等とから形成されており、前記水位
差(水頭)Hが、弁体16bの重量と当り面の面積とか
ら決まる水頭になると、弁が開き始める。また、当該作
動弁16は、弁体16bの一定リフトまではリフト量と
単位時間当りの移送量とが比例し、弁体16bが一定リ
フトに到達すると、移送量は水位差Hに比例することに
なり、最終的には作動弁16を含めた循環管路15の流
路抵抗分の水頭だけ、脱気水タンク2の水位L0が原水
タンク1の水位L1よりも上昇する。即ち、選定した作
動弁16のサイズとその単位時間当りの移送水量との相
関で、脱気水タンク2と原水タンク1との水位差Hが決
定される。尚、当該水位差作動弁16は所謂逆止弁機能
を具備しているため、万一脱気水タンク2の液面L0
原水タンク1の液面L1より低下しても、原水Wが循環
管路15を通して逆流することは無い。
The water level difference actuating valve 16 is composed of a valve box 16a having a valve seat, a valve body 16b and the like. The water level difference (head) H is determined by the weight of the valve body 16b and the area of the contact surface. When the water head is determined by, the valve begins to open. Further, in the actuating valve 16, the lift amount and the transfer amount per unit time are proportional to the constant lift of the valve body 16b, and when the valve body 16b reaches the constant lift, the transfer amount is proportional to the water level difference H. Finally, the water level L 0 of the degassed water tank 2 rises above the water level L 1 of the raw water tank 1 only by the water head of the flow path resistance of the circulation pipe line 15 including the operation valve 16. That is, the water level difference H between the degassed water tank 2 and the raw water tank 1 is determined by the correlation between the size of the selected actuating valve 16 and the amount of transferred water per unit time. Since the water level difference actuating valve 16 has a so-called check valve function, even if the liquid level L 0 of the degassing water tank 2 becomes lower than the liquid level L 1 of the raw water tank 1, the raw water W Does not flow back through the circulation line 15.

【0020】前記バイパス用水位差作動弁18は、弁座
を備えた弁箱18aと弁体18bと背圧調整用スプリン
グ18c等から形成されている。本実施例では、フロー
スイッチ9が作動して送水ポンプ6が停止したような場
合に、脱気水タンク2の液面L0がタンク底面近くまで
下降すると、作動弁18が開放されるように設定されて
いる。
The bypass water level difference actuating valve 18 is composed of a valve box 18a having a valve seat, a valve body 18b, a back pressure adjusting spring 18c and the like. In this embodiment, when the flow switch 9 is activated and the water pump 6 is stopped, when the liquid level L 0 of the degassed water tank 2 is lowered to near the tank bottom surface, the operation valve 18 is opened. It is set.

【0021】送水ポンプ6の容量は、ボイラ11の定格
蒸発量の1〜2倍程度の容量に選定されており、定流量
弁7により設定された一定流量の原水Wが膜モジュール
3へ送られる。また、脱気水タンク2の容量は、前述の
如くボイラ11の缶体保有水量よりも大きく選定されて
いる。その結果、ボイラ運転開始時の初期給水時は勿論
のこと、最大負荷状態に於ける運転時でも、ボイラ給水
ポンプ10によるボイラ給水によって脱気水タンク2内
の脱気水が不足するような事態は起こらない。今、ボイ
ラ11の負荷が減ってボイラ給水量が減少すると、脱気
水タンク2内の液面L0が上昇する。原水タンク1と脱
気水タンク2の液面差Hが設定値に達すると、水位差作
動弁16が開放され、循環管路15を通して脱気水Wr
が原水タンク1の第3室R3内へ戻される。即ち、ボイ
ラ11への給水が少ないほど、脱気水タンク2の液面L
0は速く上昇し、且つ生じた水位差Hが大きいほど多量
の脱気水Wrが循環管路15を通して原水タンク1へ戻
されることになり、前記水位差Hは一定の範囲内で変動
する。
The capacity of the water supply pump 6 is selected to be about 1 to 2 times the rated evaporation amount of the boiler 11, and a constant flow rate of raw water W set by the constant flow rate valve 7 is sent to the membrane module 3. .. Further, the capacity of the degassed water tank 2 is selected to be larger than the amount of water held in the boiler 11 of the boiler 11 as described above. As a result, the degassed water in the degassed water tank 2 becomes insufficient due to the boiler water supply by the boiler water supply pump 10 not only during the initial water supply at the start of the boiler operation but also during the operation under the maximum load condition. Does not happen. Now, when the load on the boiler 11 is reduced and the boiler water supply amount is reduced, the liquid level L 0 in the degassed water tank 2 rises. When the liquid level difference H between the raw water tank 1 and the degassed water tank 2 reaches the set value, the water level difference actuating valve 16 is opened and the degassed water W r is passed through the circulation line 15.
Is returned into the third chamber R 3 of the raw water tank 1. That is, the less water is supplied to the boiler 11, the lower the liquid level L of the degassed water tank 2.
0 increases rapidly, and the larger the generated water level difference H is, the larger amount of degassed water W r is returned to the raw water tank 1 through the circulation line 15, and the water level difference H fluctuates within a certain range. ..

【0022】尚、循環用水位差作動弁16は脱気水W0
の液面下に設けられているため、脱気水Wrの移送に伴
う気泡の水面下への取り込みは全く起生せず、脱気水W
rの循環によって溶存酸素濃度D0が上昇することは全く
ない。また、循環配管15の戻り口が原水タンク1の第
3室R3への原水流入口1hより低位置にあるため、脱
気水W0の戻り分が優先的に送水ポンプ6へ吸収される
ことになり、脱気水タンク2内の脱気水W0の溶存酸素
濃度を能率良く低下させることが可能となる。更に、送
水ポンプ6や膜モジュール3等の故障により脱気水タン
ク2内の液面L0が設定値以下まで下降すると、バイパ
ス用水位差作動弁18が開放され、原水タンク1内の原
水Wが脱気水タンク2内へ供給される。これにより、膜
モジュール3に詰まりを生じたような場合でも、必要に
応じてボイラ11を連続運転することが出来る。
The circulating water level difference actuating valve 16 is operated by the deaerated water W 0.
Since it is provided below the liquid surface of the degassed water W r, no bubbles are taken into the water surface due to the transfer of the degassed water W r.
The dissolved oxygen concentration D 0 never rises due to the circulation of r . Further, since the return port of the circulation pipe 15 is located lower than the raw water inlet port 1h to the third chamber R 3 of the raw water tank 1, the return amount of the degassed water W 0 is preferentially absorbed by the water pump 6. As a result, the dissolved oxygen concentration of the degassed water W 0 in the degassed water tank 2 can be efficiently reduced. Further, when the liquid level L 0 in the degassed water tank 2 falls below a set value due to a failure of the water pump 6 or the membrane module 3, the bypass water level difference actuating valve 18 is opened, and the raw water W in the raw water tank 1 is opened. Is supplied to the deaerated water tank 2. As a result, even if the membrane module 3 is clogged, the boiler 11 can be continuously operated as necessary.

【0023】前記液ガス分離器20は外管20aと内管
20bの二重管構造に形成されており、且つ外管20a
の底部は通水孔1iを通して原水タンク1の第1室の底
部と連通されている。また、外管20aの上端部は逆U
字型にわい曲され、そのわい曲内面H3は原水タンク1
の液面より若干上方に持ち上げられている。外管20a
の上方端面開口部20dは下向きになっている。更に内
管20bの上端開口20cはH3より若干上方に持ち上
げられている。
The liquid-gas separator 20 is formed in a double pipe structure of an outer pipe 20a and an inner pipe 20b, and the outer pipe 20a.
Is communicated with the bottom of the first chamber of the raw water tank 1 through the water passage hole 1i. Also, the upper end of the outer tube 20a has a reverse U shape.
It is distorted in shape, the distortion inner surface H 3 raw water tank 1
It has been lifted slightly above the liquid surface of. Outer tube 20a
The upper end face opening 20d of the is facing downward. Furthermore the upper end opening 20c of the inner tube 20b is lifted slightly above the H 3.

【0024】真空ポンプ5が運転されると、管路29へ
は、管路26を通して吸引したガスGと管路28からの
水封水Wsとの混合体Xが排出される。当該混合体Xは
内管20b内へ導入され、その先端開口20cから外管
20a内へ放出され、ガスGと原水Wとに分離される。
前記分離された原水Wは外管20a内へ落下し、原水タ
ンク1内に回収され、また分離されたガスGの方は、外
管20aの先端開口20dを通して外部へ排出される。
例えば、いまボイラ11の容量が1Ton/hで、10
%の軽負荷で運転されているとすると、原水タンク1へ
の補給水量は1000kg×0.1=100kg/hと
なる。一方、真空ポンプ用の水封水Wsは一般に3l/
min(180kg/h)程度であるので、液ガス分離
器20では180kg/hの水封水Wsが原水タンク1
へ回収される。その結果、180−100=80kg/
hの割合で原水タンク1の液面L1が持ち上げられ、液
面L1がヘッドH3を越えると外管20aの先端開口20
dから外部へ排出されることになる。即ち、ボイラ11
の軽負荷運転時には、負荷に見合った量の水封水Ws
みが回収されることになり、不要な水封水Wsの回収に
よる加熱蒸気エネルギーの消費が削減されることにな
る。
[0024] When the vacuum pump 5 is operated, to the conduit 29, a mixture X with water seal water W s from gas G and the flow path 28 by suction through the conduit 26 is discharged. The mixture X is introduced into the inner pipe 20b, discharged from the tip opening 20c into the outer pipe 20a, and separated into gas G and raw water W.
The separated raw water W drops into the outer pipe 20a and is collected in the raw water tank 1, and the separated gas G is discharged to the outside through the tip opening 20d of the outer pipe 20a.
For example, if the capacity of the boiler 11 is 1 Ton / h, 10
If it is operated with a light load of 100%, the amount of makeup water to the raw water tank 1 is 1000 kg × 0.1 = 100 kg / h. On the other hand, the water sealing water W s for the vacuum pump is generally 3 l /
Since it is about min (180 kg / h), 180 kg / h of water sealing water W s in the liquid gas separator 20 is stored in the raw water tank 1.
Be recovered to. As a result, 180-100 = 80 kg /
the liquid level L 1 of the raw water tank 1 at a rate of h is raised, the distal end opening of the outer tube 20a when the liquid level L 1 exceeds the head H 3 20
It will be discharged from d. That is, the boiler 11
During light load operation, only the amount of the water sealing water W s commensurate with the load is collected, and the consumption of heating steam energy due to the collection of unnecessary water sealing water W s is reduced.

【0025】尚、当該液ガス分離器20に於いては、分
離された水封水Wsが水面に落下する際に、気泡が若干
水面下へ取り込まれることになる。しかし、この取り込
まれた気泡は分離器20が相当の高さH3を有するため
にこの高さH3内で完全に反転され、通水孔1iを通し
て原水W内へ持ち込まれることは全く無い。また、分離
されたガスGは開口部20dから直接外部へ放出される
ため、原水W内へ持ち込まれる虞れが全くない。更に、
回収された水封水Wsは、真空ポンプ5内での熱回収に
よって加熱されており、熱回収も併せて行われることに
なる。加えて、脱気水タンク2及び原水タンク1を含む
システム全体のオーバーフロー口を液ガス分離器20の
外管20aの先端開口20dとしているため、脱気水W
0と外気との接触面積が極く小面積となり、外気との接
触による溶存酸素の増加が防止できる。
In the liquid-gas separator 20, when the separated water-sealed water W s falls on the water surface, some air bubbles are taken in below the water surface. However, this is captured bubbles completely reversed within this height H 3 in order to have a separator 20 considerable height H 3, which it is completely free to brought into the raw water W through water passage holes 1i. Further, since the separated gas G is directly discharged to the outside through the opening 20d, there is no possibility of being brought into the raw water W. Furthermore,
The recovered water sealing water W s is heated by the heat recovery in the vacuum pump 5, and the heat recovery is also performed. In addition, since the overflow port of the entire system including the degassed water tank 2 and the raw water tank 1 is the tip opening 20d of the outer pipe 20a of the liquid gas separator 20, the degassed water W
The contact area between 0 and the outside air becomes extremely small, and the increase in dissolved oxygen due to contact with the outside air can be prevented.

【0026】前記図4に示した本件発明の実施例に於い
ては、原水タンク1の第3室R3に隣接して脱気水タン
ク2を一体的に設け、両者の側壁を共通にする構成とし
ているが、両タンク1,2を夫々独立したタンクとして
もよいことは勿論である。また、図5乃至図8に示す如
く、原水タンク1と脱気水タンク2を並列状に配列して
成る一体形としてもよいことは勿論である。
In the embodiment of the present invention shown in FIG. 4, the degassed water tank 2 is integrally provided adjacent to the third chamber R 3 of the raw water tank 1 so that both side walls are common. Although it is configured, it goes without saying that both tanks 1 and 2 may be independent tanks. Further, as shown in FIGS. 5 to 8, it goes without saying that the raw water tank 1 and the degassed water tank 2 may be arranged in parallel to form an integral type.

【0027】[0027]

【発明の効果】本発明に於いては、原水Wを膜モジュー
ル3へ送る送水ポンプ6を外部への脱気水の供給量とは
無関係に連続運転し、余剰な脱気水Wrは水位差作動弁
16を通して原水タンク1へ環流させる構成としてい
る。その結果、外部への脱気水W0の供給量が少ないほ
ど原水タンク1への脱気水Wrの戻り量が多くなり、送
水ポンプ6による全供給水量Wpに対する脱気水量の比
が増加して、溶存酸素濃度が著しく減少する。また、送
水ポンプ6は常時連続的に運転されており、給水ポンプ
10のon−offにより脱気が停止されることが無
い。その結果、膜モジュール3の運転が極めて安定的に
行なえると共に、設備能力をフルに活用することができ
て、より高度に脱気された脱気水を得ることが出来る。
更に、脱気水W0の循環により、原水補給制御弁21の
フロート部21bを介して原水Wの補給量が調整され、
ボイラ負荷等に見合った原水の補給が電気的制御を用い
ることなしに円滑に行なえると共に、電極液面制御の場
合の間欠的な原水補給とは異なり、脱気水Wrの戻り量
に対する不足分の原水Wのみが連続的に補給されるた
め、原水タンク1の第3室R3に於ける溶存酸素率の変
動が著しく小さくなる。加えて、液ガス分離器20によ
り真空ポンプ5の水封水Wsを回収すると共に、その回
収量を原水タンク1内に必要とする量に制約し、過剰分
は自動的に外部へ排出する構成としているため、原水W
の節減によるランニングコストの引下げのみならず、熱
効率の向上をも併せて計ることができる。本発明は上述
の通り優れた実用的効用を有するものである。
In the present invention, the water feed pump 6 for feeding the raw water W to the membrane module 3 is continuously operated regardless of the supply amount of degassed water to the outside, and the surplus degassed water W r is at the water level. The raw water tank 1 is circulated through the differential operation valve 16. As a result, the smaller the supply amount of deaerated water W 0 to the outside, the larger the return amount of the deaerated water W r to the raw water tank 1, and the ratio of the deaerated water amount to the total supplied water amount W p by the water supply pump 6. Increasing, the dissolved oxygen concentration decreases significantly. Further, the water supply pump 6 is always continuously operated, and degassing is not stopped by the on-off of the water supply pump 10. As a result, the operation of the membrane module 3 can be performed extremely stably, the equipment capacity can be fully utilized, and highly degassed degassed water can be obtained.
Further, the supply amount of the raw water W is adjusted via the float portion 21b of the raw water supply control valve 21 by the circulation of the deaerated water W 0 ,
The supply of raw water commensurate with the boiler load can be performed smoothly without using electrical control, and unlike the intermittent supply of raw water in the case of electrode surface level control, the amount of degassed water W r returned is insufficient. Since only the raw water W for a minute is continuously replenished, the fluctuation of the dissolved oxygen ratio in the third chamber R 3 of the raw water tank 1 is significantly reduced. In addition, the liquid gas separator 20 collects the water sealing water W s of the vacuum pump 5 and limits the amount of the water sealing water W s required in the raw water tank 1 to automatically discharge the excess amount to the outside. Raw water W because it is configured
Not only can the running cost be reduced due to the reduction of the above, but the thermal efficiency can also be improved. The present invention has excellent practical utility as described above.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る膜式脱気装置の全体系統図であ
る。
FIG. 1 is an overall system diagram of a membrane degassing apparatus according to the present invention.

【図2】膜モジュールの一部断面概要図である。FIG. 2 is a schematic partial cross-sectional view of a membrane module.

【図3】図2のX部の拡大図である。FIG. 3 is an enlarged view of an X portion of FIG.

【図4】本発明で使用する原水タンク及び脱気水タンク
廻りの拡大説明図である。
FIG. 4 is an enlarged explanatory view around a raw water tank and a degassed water tank used in the present invention.

【図5】原水タンクと脱気水タンクの他の組合せ例を示
す平面図である。
FIG. 5 is a plan view showing another combination example of the raw water tank and the degassed water tank.

【図6】図5に於けるX−X視断面図である。FIG. 6 is a sectional view taken along line XX in FIG.

【図7】図5に於けるY−Y視断面図である。FIG. 7 is a sectional view taken along line YY in FIG.

【図8】図5に於けるZ−Z視断面図である。8 is a sectional view taken along line ZZ in FIG.

【図9】従前の膜式脱気装置の全体系統図である。FIG. 9 is an overall system diagram of a conventional membrane deaerator.

【符合の説明】[Explanation of sign]

1 原水タンク 16a 弁箱 1a 仕切壁 16b 弁体 1b 仕切壁 17 バイパ
ス管路 1g 通水孔 18 バイパ
ス用水位差作動弁 1h 通水孔 18a 弁箱 1i 通水孔 18b 弁体 R1 第1室 18c スプリ
ング R2 第2室 19 オーバ
フロー管路 R3 第3室 20 液ガス
分離器 2 脱気水タンク 20a 外管 3 膜モジユール 20b 内管 3a ケーシング 20c 上端開
口 3b 中空糸群 20d 上端開
口 3b´中空糸膜 21 原水補
給制御弁 3c 接着剤 21a 弁機構
部 3d 原水導入口 21b フロー
ト部 3e 脱気水導出口 21c 吐出口 3f ガス導出口 22〜29 管
路 3g 真空部 T 自動加
熱装置 3h 通水部 Y 液面制
御装置 4 フィルタ W 原水 5 真空ポンプ W0 脱気水 6 送水ポンプ Wp 膜モジ
ュールへの供給水 7 定流量弁 Wb ボイラ
給水 8 フィルタ Ws 水封水 9 フロースイッチ Wr 循環脱
気水 10 ボイラ給水ポンプ S 蒸気 11 ボイラ G 脱気ガ
ス 12 温度センサ X 脱気ガ
スと水封水の混合体 13 蒸気ヒータ L1 原水タ
ンクの液面 14 蒸気電磁弁 L0 脱気水
タンクの液面 15 循環管路 H 液面差
(L0−L) 16 循環用水位差作動弁 H3 外管2
0aの上方わい曲部内面高さ
1 Raw water tank 16a Valve box 1a Partition wall 16b Valve body 1b Partition wall 17 Bypass pipeline 1g Water passage hole 18 Water level difference actuating valve for bypass 1h Water passage hole 18a Valve box 1i Water passage hole 18b Valve body R 1 First chamber 18c Spring R 2 Second chamber 19 Overflow conduit R 3 Third chamber 20 Liquid gas separator 2 Degassed water tank 20a Outer pipe 3 Membrane module 20b Inner pipe 3a Casing 20c Upper end opening 3b Hollow fiber group 20d Upper end opening 3b 'Hollow fiber membrane 21 Raw Water Supply Control Valve 3c Adhesive 21a Valve Mechanism 3d Raw Water Inlet 21b Float 3e Degassed Water Outlet 21c Discharge Outlet 3f Gas Outlet 22-29 Pipeline 3g Vacuum Part T Automatic Heating Device 3h Water Passing Y Liquid feed water 7 to the surface control unit 4 filter W raw water 5 vacuum pumps W 0 degassed water 6 water pump W p membrane module constant flow valve W b Boi Water 8 filter W s Mizufusui 9 flow switch W r circulating degassed water 10 boiler feedwater pump S steam 11 boiler G mixture 13 steam heater L 1 raw water tank degassing gas 12 temperature sensor X degassed gas and water sealing water Liquid level 14 Steam solenoid valve L 0 Liquid level of degassed water tank 15 Circulation line H Liquid level difference (L 0 −L) 16 Circulation water level difference actuating valve H 3 Outer pipe 2
Height of the upper curved portion of 0a

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 原水(W)を補給して液面(L1)を所
定位置に保持する液面制御装置(Y)と原水(W)を所
定温度に加熱する自動加熱装置(T)を備えた原水タン
ク(1)と;真空ポンプ(5)による真空を利用して前
記原水(W)を脱気処理する膜モジュール(3)と;脱
気処理した脱気水(W0)を貯留する脱気水タンク
(2)と;原水タンク(1)と脱気水タンク(2)とを
連通すると共にその脱気水タンク(2)側に、両タンク
(1),(2)間の水位差(H)が所定値を越えると開
弁する水位差作動弁(16)を有する循環管路(15)
と;原水タンク(1)内の原水(Wp)を所定流量で連
続的に膜モジュール(3)へ圧送する送水ポンプ(6)
とより成り、前記送水ポンプ(6)を連続的に運転し、
脱気水タンク(2)内の余剰な脱気水(Wr)を前記循
環管路(15)を通して原水タンク(1)へ環流せしめ
ることを特徴とする膜式脱気装置。
1. A liquid level control device (Y) for replenishing the raw water (W) to hold the liquid level (L 1 ) at a predetermined position, and an automatic heating device (T) for heating the raw water (W) to a predetermined temperature. A raw water tank (1) provided; a membrane module (3) for degassing the raw water (W) using a vacuum from a vacuum pump (5); and storing degassed degassed water (W 0 ). The deaerated water tank (2) for communicating with the raw water tank (1) and the deaerated water tank (2), and between the tanks (1) and (2) on the deaerated water tank (2) side. Circulation conduit (15) having a water level difference actuating valve (16) that opens when the water level difference (H) exceeds a predetermined value
And; a water feed pump (6) for continuously feeding the raw water (W p ) in the raw water tank (1) to the membrane module (3) at a predetermined flow rate.
And continuously operating the water pump (6),
A membrane-type deaerator characterized in that excess deaerated water (W r ) in the deaerated water tank (2) is circulated to the raw water tank (1) through the circulation pipe (15).
【請求項2】 原水(W)を補給して液面(L1)を所
定位置に保持する液面制御装置(Y)と原水(W)を所
定温度に加熱する自動加熱装置(T)を備えた原水タン
ク(1)と;真空ポンプ(5)による真空を利用して前
記原水(W)を脱気処理する膜モジュール(3)と;脱
気処理した脱気水(W0)を貯留する脱気水タンク
(2)と;原水タンク(1)と脱気水タンク(2)とを
連通すると共にその脱気水タンク(2)側に、両タンク
(1),(2)間の水位差(H)が所定値を越えると開
弁する水位差作動弁(16)を有する循環管路(15)
と;原水タンク(1)内の原水(Wp)を所定流量で連
続的に膜モジュール(3)へ圧送する送水ポンプ(6)
と;原水タンク(1)の液面(L1)よりやや高い上端
を開放した二重管より形成され、その外管(20a)の
下端部と原水タンク(1)内とを連通すると共に、その
内管(20b)の下端部へ前記真空ポンプ(5)の液ガ
ス排出口を連通するようにした液ガス分離器(20)と
より成り、送水ポンプ(6)を連続的に運転して余剰な
脱気水(Wr)を原水タンク(1)内へ環流せしめると
共に、真空ポンプの水封水を回収することを特徴とする
膜式脱気装置。
2. A liquid level control device (Y) for replenishing the raw water (W) to hold the liquid level (L 1 ) at a predetermined position and an automatic heating device (T) for heating the raw water (W) to a predetermined temperature. A raw water tank (1) provided; a membrane module (3) for degassing the raw water (W) using a vacuum from a vacuum pump (5); and storing degassed degassed water (W 0 ). The deaerated water tank (2) for communicating with the raw water tank (1) and the deaerated water tank (2), and between the tanks (1) and (2) on the deaerated water tank (2) side. Circulation conduit (15) having a water level difference actuating valve (16) that opens when the water level difference (H) exceeds a predetermined value
And; a water feed pump (6) for continuously feeding the raw water (W p ) in the raw water tank (1) to the membrane module (3) at a predetermined flow rate.
And; formed by a double pipe having an open upper end that is slightly higher than the liquid level (L 1 ) of the raw water tank (1), and connects the lower end of the outer pipe (20a) with the inside of the raw water tank (1). It comprises a liquid gas separator (20) adapted to connect the liquid gas discharge port of the vacuum pump (5) to the lower end of the inner pipe (20b), and continuously operates the water feed pump (6). Membrane-type deaerator characterized by circulating excess deaerated water (W r ) into the raw water tank (1) and collecting water sealing water from a vacuum pump.
【請求項3】 原水タンク(1)と脱気水タンク(2)
との間を、その脱気水タンク(2)側に脱気水タンク
(2)の液面(L0)が所定値以下に下降すると開弁
し、原水タンク(1)内の原水(Wp)を脱気水タンク
(2)内へ移流するバイパス用水位差作動弁(18)を
有するバイパス管路(17)により連通するようにした
請求項(1)又は請求項(2)に記載の膜式脱気装置。
3. A raw water tank (1) and a degassed water tank (2)
To the degassed water tank (2) side, the valve opens when the liquid level (L 0 ) of the degassed water tank (2) drops below a predetermined value, and the raw water (W) in the raw water tank (1) (W) is opened. The bypass line (17) having a water level difference actuating valve for bypass (18) for advancing p ) into the degassed water tank (2) is communicated with the degassing water tank (2) according to claim (1) or claim (2). Membrane-type deaerator.
【請求項4】 原水タンク(1)を、通水孔(1g),
(1h)を有する仕切壁(1a),(1b)により三室
に区画し、原水(W)を補給する第1室(R1)内へ自
動加熱装置(T)を配設すると共に送水ポンプ(6)へ
原水(Wp)を供給する第3室(R3)内へ循環管路(1
5)の一端を開放する構成とした請求項1又は請求項2
に記載の膜式脱気装置。
4. The raw water tank (1) is provided with a water passage hole (1 g),
It is divided into three chambers by partition walls (1a) and (1b) having (1h), an automatic heating device (T) is arranged in the first chamber (R 1 ) for supplying raw water (W), and a water pump ( 6) Into the third chamber (R 3 ) supplying raw water (W p ) to the circulation line (1
5. The structure according to claim 1 or 2, wherein one end of 5) is opened.
The membrane-type deaerator described in 1.
【請求項5】 原水タンク(1)を通水孔(1g),
(1h)を有する仕切壁(1a),(1b)により三室
に区画すると共に、液面制御装置(Y)をフロート式の
原水補給制御弁(21)とし、原水(W)を第1室(R
1)の液面下へ供給すると共に、原水補給制御弁(2
1)のフロートボール(21b)を第2室(R2)の液
面上へ配設する構成とした請求項1又は請求項2に記載
の膜式脱気装置。
5. A raw water tank (1) through hole (1 g),
It is divided into three chambers by partition walls (1a) and (1b) having (1h), the liquid level control device (Y) is a float type raw water supply control valve (21), and the raw water (W) is stored in the first chamber ( R
Supply below the liquid level of 1 ) and at the same time supply control valve (2)
The membrane deaerator according to claim 1 or 2, wherein the float ball (21b) of 1) is arranged on the liquid surface of the second chamber (R 2 ).
【請求項6】 原水タンク(1)から送水ポンプ(6)
により原水(W)を膜モジュール(3)へ圧送し、脱気
処理した脱気水(W0)を脱気水タンク(2)へ貯留す
ると共に、給水ポンプ(10)により脱気水(W0)を
所望箇所へ供給するようにした膜式脱気装置に於いて、
前記送水ポンプ(6)を所定の送水流量で連続運転する
と共に、脱気水タンク(2)と原水タンク(1)間を両
者の液面差(H)が所定値を越えると開弁する液面差作
動弁(16)を介設して連通し、脱気水タンク(2)内
の余剰な脱気水(Wr)を前記液面差作動弁(16)を
通して原水タンク(1)へ環流させるようにしたことを
特徴とする原水の脱気方法。
6. A water feed pump (6) from a raw water tank (1)
The raw water (W) is pressure-fed to the membrane module (3) by the above, the deaerated water (W 0 ) which has been deaerated is stored in the deaerated water tank (2), and the deaerated water (W) is supplied by the water supply pump (10). 0 ) is supplied to a desired location in a membrane type deaerator,
A liquid that continuously operates the water supply pump (6) at a predetermined water supply flow rate and opens when the liquid level difference (H) between the degassed water tank (2) and the raw water tank (1) exceeds a predetermined value. A surface difference operation valve (16) is provided for communication, and excess deaerated water (W r ) in the deaeration water tank (2) is passed through the liquid surface difference operation valve (16) to the raw water tank (1). A method for degassing raw water, which is characterized in that it is circulated.
JP3258378A 1991-09-09 1991-09-09 Membrane deaerator and raw water deaeration method Expired - Lifetime JP2568954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3258378A JP2568954B2 (en) 1991-09-09 1991-09-09 Membrane deaerator and raw water deaeration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3258378A JP2568954B2 (en) 1991-09-09 1991-09-09 Membrane deaerator and raw water deaeration method

Publications (2)

Publication Number Publication Date
JPH0568809A true JPH0568809A (en) 1993-03-23
JP2568954B2 JP2568954B2 (en) 1997-01-08

Family

ID=17319415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3258378A Expired - Lifetime JP2568954B2 (en) 1991-09-09 1991-09-09 Membrane deaerator and raw water deaeration method

Country Status (1)

Country Link
JP (1) JP2568954B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233791A (en) * 1994-12-23 1996-09-13 Hewlett Packard Co <Hp> Deaerator for liquid chromatography,basic structure thereof and basic module
JP2007263385A (en) * 2006-03-27 2007-10-11 Kurita Water Ind Ltd Boiler water supply processing device, boiler device, and operation method of boiler water supply processing device
JP2007263384A (en) * 2006-03-27 2007-10-11 Kurita Water Ind Ltd Operation method of boiler device, and boiler device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5357836B2 (en) * 2010-06-15 2013-12-04 ダイセン・メンブレン・システムズ株式会社 Purified water production equipment and its use

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233791A (en) * 1994-12-23 1996-09-13 Hewlett Packard Co <Hp> Deaerator for liquid chromatography,basic structure thereof and basic module
JP2007263385A (en) * 2006-03-27 2007-10-11 Kurita Water Ind Ltd Boiler water supply processing device, boiler device, and operation method of boiler water supply processing device
JP2007263384A (en) * 2006-03-27 2007-10-11 Kurita Water Ind Ltd Operation method of boiler device, and boiler device
JP4735363B2 (en) * 2006-03-27 2011-07-27 栗田工業株式会社 Operation method of boiler device and boiler device

Also Published As

Publication number Publication date
JP2568954B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
JPH0568809A (en) Membrane deaeration equipment and raw water deaeration method
JP2004278872A (en) Condensate re-evaporation device
JPH08108005A (en) Deaeration device
JPS5841404B2 (en) Drain collection device
JP3298956B2 (en) Boiler water supply
JP5295725B2 (en) Ejector device
CN207196461U (en) Back-heating type vacuum dust cather
JP5295726B2 (en) Ejector device
JP2008045784A (en) Condensate collecting device
JP4361203B2 (en) Steam heating device
JP2007218471A (en) Waste heat-recovering/pressure-reducing device for steam
JP5188831B2 (en) Vacuum steam heater
JP2008170126A (en) Condensate collecting apparatus
JP2020128845A (en) Drain recovery device
JP2559177B2 (en) Liquid transfer device for septic tank and liquid transfer method
JP5350057B2 (en) Heat exchanger
CN219483531U (en) Cartridge cleaning machine
EP0069763A1 (en) Fuel cell power plant coolant cleaning system and method.
CN213623505U (en) Water body purification device for treating grease
CN107238072A (en) Back-heating type vacuum dust cather
JPH05181249A (en) Concentration processing device and concentration processing method for aqueous solution
JP3322798B2 (en) Membrane deaerator using circulation of sealing water
JPS5841405B2 (en) Drain collection device
JP4126203B2 (en) Oil-water separation method and apparatus
JP3100989B2 (en) Aqueous solution evaporator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20081003

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20091003

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20101003

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20101003

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20111003

EXPY Cancellation because of completion of term