JPH0770643A - Preparation of electrolytic iron sheet - Google Patents

Preparation of electrolytic iron sheet

Info

Publication number
JPH0770643A
JPH0770643A JP1087794A JP1087794A JPH0770643A JP H0770643 A JPH0770643 A JP H0770643A JP 1087794 A JP1087794 A JP 1087794A JP 1087794 A JP1087794 A JP 1087794A JP H0770643 A JPH0770643 A JP H0770643A
Authority
JP
Japan
Prior art keywords
annealing
iron
iron plate
final
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1087794A
Other languages
Japanese (ja)
Inventor
Heinz-Dieter Dr Wiesinger
ヴィージンガー ハインツ−ディーター
Manfred Mueller
ミュラー マンフレート
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut fuer Festkoerper und Werkstofforschung Dresden eV
Original Assignee
Institut fuer Festkoerper und Werkstofforschung Dresden eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut fuer Festkoerper und Werkstofforschung Dresden eV filed Critical Institut fuer Festkoerper und Werkstofforschung Dresden eV
Publication of JPH0770643A publication Critical patent/JPH0770643A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing

Abstract

PURPOSE: To enable the formation of a cubic structure to a thick steel sheet at a low temp. and for a desirable time by annealing a half-finished iron product refined into a specific carbon content in a wet atmosphere and, finally annealing and working it at a specific temp. in dried hydrogen while avoiding the rising of the carbon and oxygen contents in the steel.
CONSTITUTION: In a method for the production of an electrical sheet having a cubic structure and containing 0.9-4.5 wt.% Si, molten iron having ordinary impurities is refined with oxygen to obtain the molten iron or a half-finished iron product which is decarburized to ≤20 wt.ppm C and then, this iron is annealed in a wet atmosphere. The obtd. molten block or the half-finished iron product is remelted under a better vacuum than 1.33 Pa as the case may be, during alloying the necessary Si or successively, to lower the oxygen content to ≤10 ppm. Finally, this silicon steel material is further worked to the electrical sheet with a ordinary steel sheet producing method by using the finally- annealing to be executed at 950-1200°C in dried hydrogen while avoiding the adsorption of impurities particularly, the rising of the carbon and the oxygen contents.
COPYRIGHT: (C)1995,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、立方体構造を有し、か
つ珪素含量0.9〜4.5重量%を有する電気鉄板の製
造方法に関する。この鉄板は、静的用途においては異方
性の磁気特性を有する変圧器用鉄板としておよび回転用
途においては鉄板平面に十分な等方性の特性を有するダ
イナモ鉄板として電気機器の磁気回路のために使用可能
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electric iron sheet having a cubic structure and having a silicon content of 0.9 to 4.5% by weight. This iron plate is used for the magnetic circuit of electrical equipment as a transformer iron plate with anisotropic magnetic properties in static applications and as a dynamo iron plate with sufficient isotropic properties in the iron plate plane for rotating applications. It is possible.

【0002】[0002]

【従来の技術】立方体の、空間的に中心に配置されたS
i0.9〜4.5%を有する鉄/珪素合金からなる鉄板
(この場合にSiの代わりに全部または一部分Alが使
用されていてもよい)に、鉄板厚さを制御した、表面張
力に誘発された二次再結晶により立方体構造を生じるこ
とができることは公知である。この構造においては、鉄
板の粒子は、粒子の立方体平面(ミラー指数(10
0))が鉄板平面に平行であるかまたはこの平面に対し
て最大7°傾斜するように配向されている。
BACKGROUND OF THE INVENTION A cubic, spatially centered S
Iron plate consisting of iron / silicon alloy with i 0.9-4.5% (in this case all or part of Al may be used instead of Si), iron plate thickness controlled, surface tension induced It is known that a cubic structure can be produced by secondary recrystallization carried out. In this structure, the iron plate particles have a cubic plane (Miller index (10
0)) is parallel to the plane of the iron plate or oriented such that it is inclined at a maximum of 7 ° with respect to this plane.

【0003】その際、いわゆる立方体構造(100)
[001]においては、立方体の稜(=最も簡単に磁化
可能な方向)が圧延方向および横方向に向かっており、
従って2つの磁気的優先方向が存在し、かつ鉄板平面の
いずれの方向にも磁気的に不利な(111)方向が存在
しない。そのような鉄板は変圧器に使用するために特に
適している。
At that time, a so-called cubic structure (100)
In [001], the edges of the cube (= the direction in which the magnetization can be most easily magnetized) are directed in the rolling direction and the lateral direction,
Therefore, there are two magnetic preferential directions, and there is no magnetically disadvantageous (111) direction in any direction of the iron plate plane. Such iron plates are particularly suitable for use in transformers.

【0004】いわゆる立方体平面構造((100)[O
kl])においては、有利な立方体の稜の配向が存在し
ない。立方体の稜の方向は鉄板平面に不規則に分散して
おり、従って不利な磁気方向が存在せず、鉄板平面に等
方性の磁気特性が存在する。この鉄板は回転用途(モー
ター、発電機)のために特に適している。
A so-called cubic planar structure ((100) [O
kl]) there is no favorable cubic edge orientation. The directions of the ridges of the cube are irregularly distributed in the plane of the iron plate, so there is no disadvantageous magnetic direction, and the plane of the iron plate has isotropic magnetic properties. This iron plate is particularly suitable for rotary applications (motors, generators).

【0005】立方体の稜が圧延方向に対してほぼ±26
°(配向(100)[012])の方向に重なって配列
し、従って鉄板平面に8つの幅広く散乱した(±10
°)優先方向が存在する構造によりほぼ等方性の特性が
達成される。
The edge of the cube is approximately ± 26 with respect to the rolling direction.
8 (scattering in the (orientation (100) [012]) direction and therefore eight broadly scattered (± 10
°) Due to the structure in which the preferred direction exists, almost isotropic characteristics are achieved.

【0006】種々の形式の立方体の稜の有利な配向また
は配向(不規則な分散)の回避は、周知のように種々の
冷間変形により、たいていは種々の変形度を有する(1
回または数回の)冷間変形により行われる(Z.Metallku
nde.57(1966)751〜754,D.Ganz,H-G.Baer)。
The avoidance of advantageous orientations or orientations (irregular dispersions) of the various types of cube edges has, as is well known, different cold deformations, usually different degrees of deformation (1
(Z.Metallku) performed by cold deformation (one or several times)
nde. 57 (1966) 751-754, D.Ganz, HG.Baer).

【0007】通常の粒子成長により粒子(微結晶)の大
きさが鉄板厚さより実質的に大きい、すなわち鉄板横断
面にそれぞれ1個の粒子のみが存在する場合、および粒
界と表面との交点平面の溝が粒界が動くのを阻止する場
合に、鉄板厚さを制御した、表面張力に誘発された二次
再結晶が行われ、その際、種々の配向された粒子の表面
張力の差が選択的な粒子成長のための付加的駆動力を供
給する。立方体平面がすべての結晶学的平面の最小の表
面張力を有する条件(温度、大気および合金の純度、著
しく低い酸素含量または硫黄含量)下で、その場合にの
み立方体平面が鉄板表面に平行または最大7°傾斜して
いる粒子が成長し、ほかのすべての配向された粒子を十
分に吸収する。立方体構造が得られる(Acta Metallurg
ica7(1959)589〜598,K.Detert,J.Appl.Phys.31(1960)40
8,D.Kohler)。
When the size of particles (microcrystals) is substantially larger than the thickness of the iron plate due to normal grain growth, that is, when there is only one grain in each cross section of the iron plate, and the plane of the intersection between the grain boundary and the surface. Surface tension-induced secondary recrystallization in which the thickness of the iron plate is controlled is carried out when the grooves of the grain block the movement of grain boundaries, and the difference in the surface tension of various oriented grains is Provides additional driving force for selective grain growth. Only if the cubic plane has the minimum surface tension of all crystallographic planes (temperature, atmospheric and alloy purity, remarkably low oxygen content or sulfur content) is the cubic plane parallel or maximum to the iron plate surface. Grains that are tilted by 7 ° grow and fully absorb all other oriented grains. A cubic structure is obtained (Acta Metallurg
ica7 (1959) 589〜598, K.Detert, J.Appl.Phys.31 (1960) 40
8, D.Kohler).

【0008】磁気的に最も有利な立方体構造を有するF
eSi鉄板を製造するための技術的に大規模の実験的製
造は、費用の理由からおよび構造鉄板を製造する際の困
難さのために経済的な量に制御される(F.E.Werner,Ene
rgy Efficient Electrical Steels,Warrendale,Pa-TMS/
AIME,1981,1〜31)。そのための原因は特に従来方法の
以下の欠点である: a)鉄板厚さを制御した、表面張力に誘発された二次再
結晶の際の構造形成は、二次元の粒子成長により行われ
るので、通常の粒子成長によりまず鉄板厚さより大きい
粒度を生じることが必要であり、これには、高い温度お
よび長い焼きなまし時間を回避するために、粒界の高い
運動性、従って合金の高い純度が必要である。同じこと
は引き続く二次元の粒子成長、二次再結晶に当てはま
り、特に表面張力の差からの駆動力が低い。粒界の動き
を特に阻止する不純物は炭素である。
F with the most magnetically favorable cubic structure
Technically large-scale experimental production for producing eSi sheet is controlled in an economical amount due to cost reasons and due to the difficulty in producing structural sheet (FEWerner, Ene
rgy Efficient Electrical Steels, Warrendale, Pa-TMS /
AIME, 1981, 1-31). The causes for this are in particular the following drawbacks of the conventional method: a) Since the structure formation during surface tension-induced secondary recrystallization with controlled iron plate thickness is carried out by two-dimensional grain growth, Normal grain growth must first produce a grain size greater than the iron plate thickness, which requires high grain boundary mobility and therefore high alloy purity to avoid high temperatures and long annealing times. is there. The same applies to the subsequent two-dimensional grain growth and secondary recrystallization, especially the driving force from the difference in surface tension is low. An impurity that particularly prevents grain boundary movement is carbon.

【0009】b)構造形成は鉄板が厚いほどますます困
難に、かつ緩慢に行われる、それというのも鉄板厚さが
増加すると共に増加する粒子成長が必要であり、かつ二
次元の粒子成長において横断面の粒界の曲がりが減少
し、それとともに粒界応力からの駆動力も減少するから
である。従って、たとえば厚さ0.05mmの鉄板での
構造形成はたとえば厚さ0.3mmの鉄板の場合よりも
容易であり、かつより完全である。しかしながら、薄い
鉄板はたとえば圧延、打ち抜き、積層化の際の多くの作
業によりおよび減少した充填密度により、より高い費用
を生じる。
B) The thicker the iron plate is, the more difficult and slower the structure formation is, because the increased grain growth is necessary as the thickness of the iron plate increases, and in the two-dimensional grain growth. This is because the bending of the grain boundary in the cross section is reduced, and the driving force from the grain boundary stress is also reduced. Therefore, for example, the structure formation with an iron plate with a thickness of 0.05 mm is easier and more complete than with an iron plate with a thickness of 0.3 mm. However, thin iron sheets result in higher costs due to many operations, for example in rolling, stamping, laminating and due to the reduced packing density.

【0010】c)立方体表面が最小の表面張力を有する
ための前提は表面の低い酸素濃度であり、従って焼きな
まし雰囲気内のおよび鉄板内の、合金内の低い酸素濃度
である。しかしながら、粒界の運動を特に阻止する炭素
含量の低下は、酸素を用いた処理により、溶融状態で酸
素または酸素を含有するガスを用いた精錬により、鉄板
で、湿った、すなわちH2Oを含有する、従って酸素を
供給するガス(たとえばH2)中での焼きなましにより
行う。その際、合金の酸素含量が上昇し、従って立方体
の構造形成のための前提が失われる。純粋の水素中での
焼きなましによる酸素含量の低下は酸素の少ない拡散能
力のために高い温度および長い焼きなまし時間を必要と
する。炭素は他方では通常の鋼介在物であり、それとい
うのも炭素により鉄鉱石の還元が行われるからである。
従って通常の電気鉄板製造方法においては最小のCおよ
びO含量の同時の達成が十分に排除される。
C) The premise for the cubic surface to have a minimum surface tension is a low oxygen concentration on the surface and thus a low oxygen concentration in the alloy in the annealing atmosphere and in the iron plate. However, the reduction of the carbon content, which particularly inhibits the movement of grain boundaries, is caused by the treatment with oxygen, the refining with oxygen or a gas containing oxygen in the molten state, to remove wet or H 2 O on the iron plate. It is carried out by annealing in a gas which contains and thus supplies oxygen (for example H 2 ). In doing so, the oxygen content of the alloy rises and thus the premise for the cubic structure formation is lost. The reduction of oxygen content by annealing in pure hydrogen requires high temperatures and long annealing times due to the low oxygen diffusivity. Carbon, on the other hand, is a normal steel inclusion because it reduces the iron ore.
Thus, simultaneous achievement of minimum C and O contents is largely eliminated in conventional electric iron sheet manufacturing processes.

【0011】d)鉄板厚さの寸法を達成するまでに必要
な著しい通常の粒子成長および引き続く立方体粒子の著
しい選択性のために、一般に大きい粒度(約10mm以
上)を生じる。それにより磁気的元素領域の大きさが増
加し、従って磁化の際に高められた異常な損失を生じ
る。
D) Larger grain sizes (above about 10 mm) generally result due to the significant normal grain growth required to achieve the iron plate thickness dimension and the subsequent significant grain selectivity. This leads to an increase in the size of the magnetic elemental region and thus to an increased anomalous loss during magnetization.

【0012】[0012]

【発明が解決しようとする課題】本発明の課題は、0.
1mmより厚い鉄板に1200℃までの温度で経済的に
好ましい時間で立方体の構造形成を可能にし、その際約
1〜5mmの粒度を生じる電気鉄板の製造方法を提供す
ることであった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
It was an object of the invention to provide a process for the production of electric iron sheets which allows the formation of cubic structures on iron sheets thicker than 1 mm at temperatures up to 1200 ° C. in an economically favorable time, with grain sizes of about 1-5 mm.

【0013】[0013]

【課題を解決するための手段】前記課題は、本発明によ
り、 a)まず、通常の不純物を有する鉄溶融物または鉄半製
品を炭素20重量ppm未満まで脱炭し、そのために鉄
溶融物を酸素で精錬し、かつ鉄半製品を湿った雰囲気内
で焼きなまし、 b)その後、得られた溶融ブロックまたは焼きなました
鉄半製品を、場合により必要な珪素との合金中にまたは
それに続いて酸素含量を10重量ppm未満の値に低下
させるために1.33Paより良好な真空下で再溶融
し、かつ c)最終的に、こうして製造した鉄珪素材料を通常の鉄
板製造方法で、ただし不純物の吸収を回避して、特に材
料中の調整された炭素含量および酸素含量の上昇を回避
して、構造形成のために乾燥した水素中で950〜12
00℃で実施すべき最終焼きなましを使用して電気鉄板
に更に加工することにより解決される。
According to the present invention, the above-mentioned problems are as follows: a) First, an iron melt or an iron semi-finished product having usual impurities is decarburized to less than 20 ppm by weight of carbon, and therefore the iron melt is Refining with oxygen and annealing the iron semi-finished product in a moist atmosphere, b) the resulting molten block or the annealed iron semi-finished product is then subjected to oxygen content, optionally in or subsequently to the alloy with silicon. Remelting under a vacuum better than 1.33 Pa in order to reduce to less than 10 ppm by weight, and c) finally, the ferrosilicon material thus produced is subjected to the usual iron plate production method, but with the absorption of impurities. 950-12 in dry hydrogen for structure formation, avoiding, in particular, the elevated regulated carbon and oxygen contents of the material.
It is solved by further processing into electric iron plates using the final anneal to be carried out at 00 ° C.

【0014】本発明による方法は以下のように実施する
ことができる:工程a)においては炭素含量を10重量
ppm未満、有利には5重量ppm未満の値に低下させ
る。
The process according to the invention can be carried out as follows: In step a) the carbon content is reduced to a value below 10 ppm by weight, preferably below 5 ppm by weight.

【0015】工程b)により酸素含量を低下させるため
に電子ビーム溶融炉内で再溶融を実施する。
Remelting is carried out in the electron beam melting furnace in order to reduce the oxygen content according to step b).

【0016】工程b)においては、最終焼きなましの際
の材料の酸素含量および焼きなまし雰囲気の水含量との
相互作用において、すべての結晶学的平面の(100)
結晶面が最小の表面張力を有するように酸素含量を10
重量ppm未満の値にまで低下させる。
In step b), in interaction with the oxygen content of the material during the final annealing and the water content of the annealing atmosphere, all crystallographic planes (100) of (100)
The oxygen content is adjusted to 10 so that the crystal plane has the minimum surface tension.
Reduce to values below ppm by weight.

【0017】工程b)の結果において製造された溶融物
は晶出器内で2〜250mmの範囲内の厚さに鋳造し、
かつこうして得られた板用鋼片を直接工程c)に相当す
る別の加工に供給する。
The melt produced in the result of step b) is cast in a crystallizer to a thickness in the range from 2 to 250 mm,
And the plate steel thus obtained is directly fed to another process corresponding to step c).

【0018】工程c)に含まれる最終焼きなましの際の
焼きなまし雰囲気の硫黄含量を介して、すべての結晶学
的平面の(100)結晶面が最小の表面張力を有するよ
うに鉄板表面に臨界的硫黄濃度を生じさせる。
Through the sulfur content of the annealing atmosphere during the final annealing included in step c), the critical sulfur on the iron plate surface is such that the (100) crystal faces of all crystallographic planes have the minimum surface tension. Give rise to a concentration.

【0019】工程c)に含まれる最終焼きなましにおい
ては、露点−60℃未満を有する乾燥した水素を使用
し、かつ焼きなましを1時間以内で実施する。
In the final anneal included in step c), dry hydrogen having a dew point below -60 ° C. is used and the anneal is carried out within 1 hour.

【0020】工程c)により鉄板を製造するために、中
間焼きなましおよび精錬焼きなましを回避して、鉄珪素
材料を鉄板最終厚さで最終焼きなましまで移行する。有
利には鍛造方法も回避し、鉄珪素材料を鉄板最終厚さに
熱間圧延および冷間圧延することだけにより構造形成の
ために最終焼きなましまで移行する。
In order to produce the iron plate according to step c), the intermediate annealing and the refining annealing are avoided and the ferrosilicon material is transferred to the final annealing of the iron plate at the final thickness. Advantageously, the forging process is also avoided, and the final annealing is carried out for structure formation only by hot-rolling and cold-rolling the ferro-silicon material to the final iron plate thickness.

【0021】工程c)による鉄板製造のほかの変形によ
り、鉄珪素材料を鍛造方法および熱間圧延を回避して鉄
板最終厚さに冷間圧延することだけにより、有利には唯
一の冷間圧延工程だけで構造形成のために最終焼きなま
しまで移行する。
Due to another variant of the iron plate production according to step c), the iron-silicon material is advantageously cold-rolled only by cold-rolling to the final iron-plate thickness, avoiding the forging method and hot-rolling. Only the process moves to final annealing for structure formation.

【0022】2工程の冷間圧延の場合は1回だけ焼きな
まし、その際再結晶のための中間焼きなましとして焼き
なましを実施する。
In the case of the two-step cold rolling, the annealing is performed only once, at which time the annealing is performed as an intermediate annealing for recrystallization.

【0023】本発明による方法は技術水準に比較して一
連の著しい利点を有する。
The method according to the invention has a series of significant advantages compared to the state of the art.

【0024】本発明による方法の相対的容易性および信
頼度ならびにこの方法により製造可能な電気鉄板の品質
特性は特に優れている。乾燥した水素中で950〜12
00℃の温度範囲内で1時間未満の時間で最終焼きなま
しする場合に申し分のない立方体の構造が得られる。粒
度は約1〜5mm、平均して3mmである。(たとえば
老化を回避するための)磁気特性を改良するための構造
形成後の高温での精錬焼きなましは合金純度のために必
要でない。
The relative ease and reliability of the method according to the invention and the quality characteristics of the electric iron sheet which can be produced by this method are particularly excellent. 950-12 in dry hydrogen
A perfect cubic structure is obtained when the final annealing is carried out in a temperature range of 00 ° C. for less than 1 hour. The particle size is about 1-5 mm, averaging 3 mm. Refining anneals at elevated temperatures after structure formation to improve magnetic properties (eg to avoid aging) are not required for alloy purity.

【0025】[0025]

【実施例】本発明を以下の実施例により詳細に説明す
る。
The present invention will be described in detail with reference to the following examples.

【0026】例1 鉄溶融物をシーメンス炉内で精錬し、鎮静せずに鋳型内
で鋳造し、その後同じ材料からなる電極を有するアーク
炉内で再溶融した。鋳型内で鋳造し、かつ1000℃で
30mmφのバーを鍛造した。それにより鉄は炭素14
重量ppm、酸素850重量ppm、硫黄271重量p
pm、窒素30重量ppmおよびほかの主な不純物Cr
約600重量ppm、Ni520重量ppm、Cu45
0重量ppm、As400重量ppmおよびMo79重
量ppm(質量分析法による測定)の含量を有した。
Example 1 An iron melt was refined in a Siemens furnace, cast in a mold without sedation and then remelted in an arc furnace with electrodes of the same material. It cast in a mold and forged a bar of 30 mmφ at 1000 ° C. As a result, iron is carbon 14
Weight ppm, oxygen 850 weight ppm, sulfur 271 weight p
pm, nitrogen 30 ppm by weight and other main impurities Cr
About 600 ppm by weight, Ni520 ppm by weight, Cu45
It had a content of 0 ppm by weight, 400 ppm by weight of As and 79 ppm by weight of Mo (measured by mass spectrometry).

【0027】この鉄を最も純粋な珪素と一緒に電子ビー
ム溶融炉内の銅シェルに溶融し、かつ4×10~2Pa
(3×10~4トル)の真空で18分間溶融液状に保っ
た。凝固後合金を裏返し、4×10~2Paでなお10分
間溶融し、引き続き銅鋳型に流し込んだ。それにより合
金はSi3.27重量%、C16重量ppm、O5重量
ppm、S2重量ppmおよびN2重量ppmを有し
た。
This iron was melted together with the purest silicon into a copper shell in an electron beam melting furnace, and 4 × 10 2 Pa
Was maintained at 18 min melt liquid at vacuum (3 × 10 ~ 4 Torr). After solidification, the alloy was turned inside out, melted at 4 × 10 to 2 Pa for 10 minutes, and then poured into a copper mold. The alloy thereby had 3.27 wt% Si, 16 wtppm C, 5 wtppm O, 5 wtppm S2 and 2 wtppm N2.

【0028】溶融ブロックを1000℃で15mmの厚
さに鍛造するかまたは15mmの厚さの板に切断した。
15mmから2.5mmに熱間圧延し、デスケーリング
のために酸で洗った後で最終厚さ0.25mmに冷間圧
延した。更に鉄板を化学的に研磨し、乾燥した水素中
(露点−60℃未満)でインコネル合金からなる鉄板の
間で1150℃で1時間最終焼きなましした。
The melt blocks were forged to a thickness of 15 mm at 1000 ° C. or cut into plates with a thickness of 15 mm.
It was hot rolled from 15 mm to 2.5 mm, washed with acid for descaling and then cold rolled to a final thickness of 0.25 mm. Further, the iron plates were chemically polished and finally annealed at 1150 ° C. for 1 hour between iron plates made of Inconel alloy in dry hydrogen (dew point less than −60 ° C.).

【0029】それによりこの鉄板は90%以上が、鉄板
表面に対して平行または最大7°傾斜した立方体平面お
よび圧延方向に対して±22.5°の鉄板平面の8つの
重なった立方体の稜を有する粒子からなっていた。粒子
の大きさは直径1〜5mmであった。
As a result, 90% or more of this iron plate has a cube plane parallel to the iron plate surface or inclined at a maximum of 7 ° and eight overlapping ridges of the iron plate plane of ± 22.5 ° with respect to the rolling direction. Had particles. The size of the particles was 1-5 mm in diameter.

【0030】例2 厚さ約3mmの電解質鉄板を湿った水素中で焼きなまし
た。それによりこの鉄板はC13重量ppm、O121
重量ppm、S6重量ppmおよびN3重量ppmを有
した。この鉄板を最も純粋な珪素と一緒に電子ビーム溶
融炉内の銅シェルに溶融し、かつ4×10~2Paの真空
中で15分間溶融し、凝固後裏返して、なお10分間液
状に保った。これをCu鋳型に流し込んだ。それにより
合金はSi3.38重量%、C10重量ppm、O5重
量ppm、S1重量ppm未満およびN2重量ppmを
有した。溶融ブロックを1000℃で15mmの厚さに
鍛造するかまたは15mmの厚さの板に分離し、100
0℃で2.5mmに熱間圧延した。その後鉄板を酸洗い
し、0.3mmに冷間圧延した。引き続き鉄板を乾燥し
た水素中(露点−60℃未満)でインコネル鉄板(被覆
された)の間で1100℃で1時間最終焼きなましし
た。それによりこの鉄板は95%以上が、鉄板表面に対
して最大7°傾斜した立方体平面および圧延方向に対し
て±22.5°の方向の8つの重なった立方体の稜を有
する0.8〜4mmの大きさの粒子からなっていた。
Example 2 An electrolytic iron plate having a thickness of about 3 mm was annealed in moist hydrogen. As a result, this iron plate has C13 weight ppm, O121
It had ppm by weight, S6 ppm by weight and N3 ppm by weight. This iron plate was melted together with the purest silicon into a copper shell in an electron beam melting furnace, melted in a vacuum of 4 × 10 to 2 Pa for 15 minutes, turned over after solidification, and kept liquid for 10 minutes. . This was poured into a Cu mold. The alloy thereby had 3.38 wt.% Si, 10 wt. Ppm C, O5 wt. Ppm, less than S1 wt. Ppm and N2 wt. Ppm. The fused block is forged at 1000 ° C. to a thickness of 15 mm or separated into plates with a thickness of 15 mm.
It was hot rolled to 2.5 mm at 0 ° C. Then, the iron plate was pickled and cold-rolled to 0.3 mm. The iron plates were then finally annealed in dry hydrogen (dew point below -60 ° C) between Inconel iron plates (coated) at 1100 ° C for 1 hour. As a result, more than 95% of this iron plate has a cubic plane inclined by a maximum of 7 ° with respect to the surface of the iron plate and eight overlapping cubic edges of ± 22.5 ° with respect to the rolling direction, 0.8 to 4 mm. It consisted of particles the size of.

【0031】例3 この例ではカルボニル鉄から厚さ1mmの鉄板からなる
棒屑を製造し、脱炭して焼きなまし、出発物質として使
用した。棒屑はC8重量ppm、O50重量ppm、N
1重量ppmおよびS1重量ppmを有した。棒屑を電
子ビーム溶融炉内で最も純粋な珪素とともに溶融し、溶
融で最大12分間保持し、かつCu鋳型に流し込んだ。
それにより鉄はSi2重量%、C6重量ppm、O9重
量ppmを有した。
Example 3 In this example, bar scrap consisting of a 1 mm thick iron plate was produced from carbonyl iron, decarburized and annealed and used as the starting material. Rod scraps are C8 weight ppm, O50 weight ppm, N
It had 1 ppm by weight and S1 ppm by weight. Rod scrap was melted with the purest silicon in an electron beam melting furnace, held in the melt for up to 12 minutes and cast into a Cu mold.
The iron thereby had Si 2 wt.%, C 6 wt. Ppm, O 9 wt. Ppm.

【0032】得られた溶融物ブロックを例1に記載の方
法により最終焼きなましした鉄板にまで更に加工した。
これは例1で製造した鉄板と同じ構造および組織形状を
有した。
The resulting melt block was further processed by the method described in Example 1 to a final annealed iron plate.
It had the same structure and texture as the iron plate produced in Example 1.

【0033】例4 銑鉄をLD転炉内でC20重量ppmに精錬し、鍋内で
Siと合金した。この合金はSi3.2重量%、O50
重量ppmおよびC15重量ppmを有した。この合金
の溶融したバーを電子ビーム炉内で再溶融した。凝固は
連続的に晶出器内で実施した。それにより合金はC含量
14重量ppmおよびO含量10重量ppmを有した。
このブロックを1130〜900℃で厚さ150mmの
板用鋼片に鍛造し、平削りし、1200℃で3mmに熱
間圧延し、その後連続的に腐食し、0.15mmに冷間
圧延した。この鉄板を巻き付け、コイルでフード炉内で
焼成したAl23からなる焼きなまし分離体とともに乾
燥した水素(露点−60℃未満)中で最終焼きなましし
た。それによりこれは85%以上の立方体構造を有し
た。
Example 4 Pig iron was refined to 20 ppm by weight of C in an LD converter and alloyed with Si in a pot. This alloy contains 3.2 wt% Si and 50 O
It had ppm by weight and C15 ppm by weight. A molten bar of this alloy was remelted in an electron beam furnace. Solidification was carried out continuously in a crystallizer. The alloy thereby had a C content of 14 ppm by weight and an O content of 10 ppm by weight.
This block was forged into a plate steel piece having a thickness of 150 mm at 1130 to 900 ° C., planed, hot-rolled at 1200 ° C. to 3 mm, then continuously corroded, and cold-rolled to 0.15 mm. The iron plate was wrapped and final annealed in dry hydrogen (dew point below -60 ° C) with an annealed separator of Al 2 O 3 that was fired in a hood furnace with a coil. Thereby it had a cubic structure greater than 85%.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 立方体構造を有し、かつ珪素含量0.9
〜4.5重量%を有する電気鉄板の製造方法において、 a)まず、通常の不純物を有する鉄溶融物または鉄半製
品を炭素20重量ppm未満まで脱炭し、そのために鉄
溶融物を酸素で精錬し、かつ鉄半製品を湿った雰囲気内
で焼きなまし、 b)その後、得られた溶融ブロックまたは焼きなました
鉄半製品を、場合により必要な珪素との合金中にまたは
それに続いて酸素含量を10重量ppm未満の値に低下
させるために1.33Paより良好な真空下で再溶融
し、かつ c)最終的に、こうして製造した鉄珪素材料を通常の鉄
板製造方法で、ただし不純物の吸収を回避して、特に材
料中の調整された炭素含量および酸素含量の上昇を回避
して、構造形成のために乾燥した水素中で950〜12
00℃で実施すべき最終焼きなましを使用して電気鉄板
に更に加工することを特徴とする電気鉄板の製造方法。
1. A cubic structure and a silicon content of 0.9.
In the method for producing an electric iron plate having ˜4.5% by weight, a) first, an iron melt or an iron semi-finished product having usual impurities is decarburized to less than 20 ppm by weight of carbon, for which purpose the iron melt is oxygenated. Refining and annealing the iron semi-finished product in a moist atmosphere, b) the resulting molten block or the annealed iron semi-finished product is then optionally mixed with or in the alloy with silicon to obtain the oxygen content of 10 Remelt under a vacuum better than 1.33 Pa to reduce the value to less than ppm by weight, and c) Finally, the ferrosilicon material thus produced is subjected to the usual iron plate production method, but avoiding the absorption of impurities. 950-12 in dry hydrogen for structure formation, especially avoiding elevated regulated carbon and oxygen contents in the material.
A method for producing an electric iron plate, characterized by further processing into an electric iron plate using the final annealing to be carried out at 00 ° C.
【請求項2】 工程a)において、炭素含量を10重量
ppm未満の値に低下させる請求項1記載の方法。
2. A process according to claim 1, wherein in step a) the carbon content is reduced to a value below 10 ppm by weight.
【請求項3】 工程b)による酸素含量の低下のために
電子ビーム溶融炉内で再溶融を実施する請求項1記載の
方法。
3. The method according to claim 1, wherein remelting is carried out in an electron beam melting furnace for the reduction of oxygen content according to step b).
【請求項4】 工程b)において、最終焼きなましの際
の材料の酸素含量および焼きなまし雰囲気の水含量との
相互作用において、すべての結晶面の(100)結晶面
が最小の表面張力を有するように酸素含量を10重量p
pm未満の値にまで低下させる請求項1記載の方法。
4. In step b), in interaction with the oxygen content of the material during the final annealing and the water content of the annealing atmosphere, all (100) crystal faces of the crystal faces have a minimum surface tension. Oxygen content 10 p
The method of claim 1, wherein the value is reduced to below pm.
【請求項5】 工程b)の結果において製造された溶融
物を晶出器内で2〜250mmの範囲内の厚さに鋳造
し、こうして得られた板用鋼片を直接工程c)に相当す
る別の加工に供給する請求項1記載の方法。
5. The melt produced as a result of step b) is cast in a crystallizer to a thickness in the range of 2-250 mm, and the plate steel thus obtained corresponds directly to step c). The method according to claim 1, wherein the method is supplied to another processing to be performed.
【請求項6】 工程c)に含まれる最終焼きなましにお
いて、焼きなまし雰囲気の硫黄含量を介してすべての結
晶面の(100)結晶面が最小の表面張力を有するよう
に鉄板表面に臨界的硫黄濃度を生じさせる請求項1記載
の方法。
6. In the final annealing included in step c), a critical sulfur concentration is set on the iron plate surface so that the (100) crystal faces of all the crystal faces have a minimum surface tension via the sulfur content of the annealing atmosphere. The method of claim 1, wherein the method is generated.
【請求項7】 工程c)に含まれる最終焼きなましにお
いて、−60℃未満の露点を有する乾燥した水素を使用
し、かつ焼きなましを1時間以内で実施する請求項1記
載の方法。
7. The method according to claim 1, wherein in the final anneal included in step c), dry hydrogen having a dew point of less than −60 ° C. is used and the anneal is carried out within 1 hour.
【請求項8】 工程c)による鉄板製造のために中間焼
きなましおよび精錬焼きなましを回避して鉄珪素材料を
鉄板最終厚さで最終焼きなましまで移行し、または中間
焼きなましおよび精錬焼きなましを回避しておよび鍛造
方法を回避して鉄珪素材料を鉄板最終厚さに熱間圧延お
よび冷間圧延することだけにより最終焼きなましまで移
行する請求項1記載の方法。
8. An intermediate annealing and a refining annealing are avoided for the production of the iron plate according to step c) and the ferrosilicon material is transferred to the final annealing at the final thickness of the iron plate, or the intermediate annealing and the refining annealing are avoided and forged. 2. The method of claim 1 wherein the ferrous silicon material is bypassed to final anneal only by hot and cold rolling to the final thickness of the iron sheet.
【請求項9】 工程c)による鉄板製造のために鍛造方
法および熱間圧延を回避して鉄珪素材料を鉄板最終厚さ
に冷間圧延することだけにより最終焼きなましまで移行
する請求項1記載の方法。
9. The method according to claim 1, wherein the forging method and the hot rolling are avoided to produce the iron plate according to step c), and the final annealing is performed only by cold rolling the iron silicon material to the final thickness of the iron plate. Method.
【請求項10】 冷間圧延の際に鉄珪素材料を唯一の工
程でまたは2工程で鉄板最終厚さで移行し、その際、2
工程の冷間圧延の場合は鉄板最終厚さで1回だけ焼きな
まし、かつ再結晶するための中間焼きなましとして焼き
なましを実施する請求項9記載の方法。
10. During cold rolling, the ferro-silicon material is transferred to the final thickness of the iron plate in a single step or in two steps, in which case 2
The method according to claim 9, wherein in the case of cold rolling in the step, annealing is carried out only once at the final thickness of the iron plate, and annealing is carried out as an intermediate annealing for recrystallization.
JP1087794A 1993-02-02 1994-02-02 Preparation of electrolytic iron sheet Pending JPH0770643A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4302813.6 1993-02-02
DE19934302813 DE4302813C2 (en) 1993-02-02 1993-02-02 Process for the production of a cube surface texture ((100) [Okl]) in electrical sheets

Publications (1)

Publication Number Publication Date
JPH0770643A true JPH0770643A (en) 1995-03-14

Family

ID=6479394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1087794A Pending JPH0770643A (en) 1993-02-02 1994-02-02 Preparation of electrolytic iron sheet

Country Status (3)

Country Link
EP (1) EP0613957A1 (en)
JP (1) JPH0770643A (en)
DE (1) DE4302813C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103173586A (en) * 2013-04-15 2013-06-26 攀钢集团攀枝花钢铁研究院有限公司 Method for lowering contents of oxygen and nitrogen in molten steel at smelting end in semisteel smelting converter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0741191B1 (en) * 1995-05-02 2003-01-22 Sumitomo Metal Industries, Ltd. A magnetic steel sheet having excellent magnetic characteristics and blanking performance

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD50637A (en) * 1900-01-01
DE1276673B (en) * 1957-08-30 1968-09-05 Westinghouse Electric Corp Process for producing cube texture in sheets or strips made of iron-silicon alloys
DE1250850B (en) * 1958-03-15 1967-09-28
DE1111225B (en) * 1959-03-18 1961-07-20 Westinghouse Electric Corp Process for the production of magnetizable sheets with a cube texture from iron-silicon alloys
US3124491A (en) * 1960-05-23 1964-03-10 Heavy gauge double oriented magnetic sheet material
DE1433809A1 (en) * 1961-03-20 1969-03-20 Westinghouse Electric Corp Process for reducing the sulfur loss in iron-silicon alloy sheets during final annealing
US3351501A (en) * 1964-06-04 1967-11-07 Westinghouse Electric Corp Process for producing magnetic sheets with cube-on-face grain texture
US3278348A (en) * 1965-01-28 1966-10-11 Westinghouse Electric Corp Process for producing doubly oriented cube-on-face magnetic sheet material
DE1558012A1 (en) * 1966-09-14 1970-02-12 Vacuumschmelze Gmbh Process for reducing the losses in cube texture sheets made of iron-silicon alloys
US3575739A (en) * 1968-11-01 1971-04-20 Gen Electric Secondary recrystallization of silicon iron with nitrogen
AU1221270A (en) * 1969-03-14 1971-09-09 Armco Steel Corporation Process forthe production of oriented silicon iron by vacuum degassing and continuous casting
DE1966686C3 (en) * 1969-05-08 1975-06-26 Creusot-Loire, Paris Process for the production of magnetic steel sheets with a cube texture
JPS5414043B1 (en) * 1969-12-23 1979-06-04
GB1386162A (en) * 1971-05-20 1975-03-05 Nippon Steel Corp Steel alloys and processes for their preparation
US3867211A (en) * 1973-08-16 1975-02-18 Armco Steel Corp Low-oxygen, silicon-bearing lamination steel
SU502963A1 (en) * 1974-06-24 1976-02-15 Новолипецкий Металлургический Завод The method of processing electrical steel
SU800217A1 (en) * 1978-05-18 1981-01-30 Уральский Научно-Исследовательс-Кий Институт Черных Металлов Method of high-temperature annealing of textured electroengineering steel under vacuum
US4202711A (en) * 1978-10-18 1980-05-13 Armco, Incl. Process for producing oriented silicon iron from strand cast slabs
FR2665181B1 (en) * 1990-07-30 1994-05-27 Ugine Aciers PROCESS FOR PRODUCING MAGNETIC STEEL SHEET WITH NON-ORIENTED GRAINS AND SHEET OBTAINED BY THIS PROCESS.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103173586A (en) * 2013-04-15 2013-06-26 攀钢集团攀枝花钢铁研究院有限公司 Method for lowering contents of oxygen and nitrogen in molten steel at smelting end in semisteel smelting converter

Also Published As

Publication number Publication date
DE4302813C2 (en) 1996-01-18
EP0613957A1 (en) 1994-09-07
DE4302813A1 (en) 1994-08-04

Similar Documents

Publication Publication Date Title
US10134513B2 (en) High silicon steel sheet having excellent productivity and magnetic properties and method for manufacturing same
EP0084569B1 (en) Process for manufacturing isotropic electromagnetic steel plate having excellent magnetic characteristics
AU632876B2 (en) Non-oriented electrical strip and process for its production
US3575739A (en) Secondary recrystallization of silicon iron with nitrogen
EP0202336B1 (en) Process for producing a thin plate of a high ferrosilicon alloy
US3908432A (en) Process for producing a high magnetic flux density grain-oriented electrical steel sheet
JPH0770643A (en) Preparation of electrolytic iron sheet
JPH0717959B2 (en) Method for manufacturing unidirectional high magnetic flux density electrical steel sheet
JPH083125B2 (en) Method for producing grain-oriented electrical steel sheet with high magnetic flux density
JPH086135B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
US3124491A (en) Heavy gauge double oriented magnetic sheet material
JPH0365001B2 (en)
JPH0742557B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JP2853552B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and manufacturing method
JP3105525B2 (en) Melting method of silicon steel material
US4878959A (en) Method of producing grain-oriented silicon steel with small boron additions
KR100276280B1 (en) The manufacturing method for non oriented electric steel sheet with excellent tensile strength
JPH05279826A (en) Production of 'permalloy(r)' excellent in impedance relative magnetic permeability
JPS5834531B2 (en) Method for manufacturing non-oriented silicon steel sheet with excellent magnetic properties
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JPS581172B2 (en) Manufacturing method of non-oriented silicon steel sheet with excellent magnetic properties
CA1307444C (en) Method of producing grain-oriented silicon steel with small boron additions
SU968085A1 (en) Method for producing electrical steel
RU2211249C1 (en) Method for production of cold-rolled isotropic electrical-sheet steel