JPH0770327B2 - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH0770327B2
JPH0770327B2 JP61266305A JP26630586A JPH0770327B2 JP H0770327 B2 JPH0770327 B2 JP H0770327B2 JP 61266305 A JP61266305 A JP 61266305A JP 26630586 A JP26630586 A JP 26630586A JP H0770327 B2 JPH0770327 B2 JP H0770327B2
Authority
JP
Japan
Prior art keywords
electrode
active material
current collector
secondary battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61266305A
Other languages
Japanese (ja)
Other versions
JPS63121263A (en
Inventor
健一 実近
吉野  彰
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Priority to JP61266305A priority Critical patent/JPH0770327B2/en
Publication of JPS63121263A publication Critical patent/JPS63121263A/en
Publication of JPH0770327B2 publication Critical patent/JPH0770327B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は新規な二次電池、更には小型、軽量二次電池に
関する。
The present invention relates to a novel secondary battery, and further to a small and lightweight secondary battery.

[従来の技術] 近年、電子機器の小型化、軽量化は目覚ましく、それに
伴い電源となる電池に対しても小型軽量化の要望が非常
に大きい。一次電池の分野では既にリチウム電池等の小
型軽量電池が実用化されているが、これらは一次電池で
あるが故に繰り返し使用できず、その用途分野は限られ
たものであった。一方、二次電池の分野では従来より鉛
電池、ニッケル−カドミ電池が用いられてきたが両者
共、小型軽量化という点で大きな問題点を有している。
かかる観点から、非水系二次電池が非常に注目されてき
ているが、未だ実用化に至っていない、その理由の一つ
は該二次電池に用いる電極活物質でサイクル性、自己放
電特性等の実用物性を満足するものが見出されていない
点にある。
[Prior Art] In recent years, electronic devices have been remarkably reduced in size and weight, and accordingly, there has been a great demand for reduction in size and weight of batteries serving as power sources. In the field of primary batteries, small and lightweight batteries such as lithium batteries have already been put into practical use, but since they are primary batteries, they cannot be repeatedly used, and their fields of use have been limited. On the other hand, lead batteries and nickel-cadmium batteries have been conventionally used in the field of secondary batteries, but both have serious problems in terms of size reduction and weight reduction.
From this point of view, non-aqueous secondary batteries have received a great deal of attention, but have not yet been put into practical use. One of the reasons is that the electrode active material used in the secondary batteries has cycleability, self-discharge characteristics, etc. The point is that nothing satisfying the practical physical properties has been found.

一方、従来のニッケル−カドミ電池、鉛電池などと本質
的に異なる反応形式である層状化合物のインターカレー
ション、又はドーピング現象を利用した新しい群の電極
活物質が注目を集めている。
Meanwhile, a new group of electrode active materials utilizing intercalation of a layered compound or a doping phenomenon, which is a reaction mode which is essentially different from that of conventional nickel-cadmium batteries, lead batteries and the like, has been attracting attention.

かかる新しい電極活物質は、その充電、放電における電
気化学的反応において、複雑な化学反応を起こさないこ
とから、極めて優れた充放電サイクル性が期待されてい
る。
Such a new electrode active material does not cause a complicated chemical reaction in the electrochemical reaction during charging and discharging, and therefore is expected to have an extremely excellent charge / discharge cycle property.

例えば層状化合物のインターカレーションを利用した例
として層状構造を有するカルコゲナイト系化合物が注目
されている。例えばLiXTiS2,LiXMoS3等のカルコゲナイ
ト系化合物は比較的優れたサイクル性を有しているもの
の、起電力が低くLi金属を負極に用いた場合でも、実用
的な放電電圧はせいぜい2V前後であり、非水系電池の特
徴の一つである高起電力という点で満足されるものでは
なかった。一方、同じく層状構造を有するLiXV2O5,LiX
V6O13,LiXCoO2,LiXNiO2等の金属酸化物系化合物は高
起電力という特徴を有する点で注目されている。しかし
ながらこれらの金属酸化物系化合物はサイクル性、利用
率、即ち実際に充放電に利用し得る割合、更には充放電
時における過電圧といった面での性能が劣り、やはり未
だ実用化に至っていない。
For example, as an example utilizing intercalation of a layered compound, a chalcogenite compound having a layered structure has attracted attention. For example, although chalcogenite compounds such as Li X TiS 2 and Li X MoS 3 have relatively excellent cycle characteristics, practical electromotive voltage is at most even when the electromotive force is low and Li metal is used for the negative electrode. It was around 2V and was not satisfactory in terms of high electromotive force, which is one of the features of non-aqueous batteries. On the other hand, Li X V 2 O 5 and Li X having the same layered structure
Metal oxide compounds such as V 6 O 13 , Li X CoO 2 , and Li X NiO 2 are attracting attention because they have the feature of high electromotive force. However, these metal oxide compounds are inferior in terms of cycleability, utilization factor, that is, the ratio that can be actually used for charging and discharging, and further, overvoltage during charging and discharging, and they have not yet been put to practical use.

特に、特開昭55−136131号で開示されているLiXCoO2,L
iXNiO2等の二次電池正極はLi金属を負極として用いた場
合4V以上の起電力を有し、しかも理論的エネルギー密度
(正極活物質当り)は1,100WHr/kg以上という驚異的な
値を有しているにも拘らず、実際に充放電に利用し得る
割合は低く、理論値には程遠いエネルギー密度しか得ら
れない。
In particular, Li X CoO 2 , L disclosed in JP-A-55-136131
The secondary battery positive electrode such as i X NiO 2 has an electromotive force of 4 V or more when Li metal is used as the negative electrode, and the theoretical energy density (per positive electrode active material) is 1,100 WHr / kg, which is an amazing value. However, the ratio that can actually be used for charge and discharge is low, and only an energy density far from the theoretical value can be obtained.

一方、ドーピング現象を離床した電極活物質の例とし
て、例えば導電性高分子を電極材料に用いた新しいタイ
プの二次電池が例えば特開昭56−136469号公報に記載さ
れている。しかしながら、かかる導電性高分子を用いた
二次電池も、不安定性、即ち低いサイクル性、大きな自
己放電等の問題点が未解決で未だ実用化に至っていな
い。
On the other hand, as an example of an electrode active material having a doping phenomenon separated from the bed, for example, a new type secondary battery using a conductive polymer as an electrode material is described in, for example, JP-A-56-136469. However, the secondary battery using such a conductive polymer has not yet been put to practical use because of problems such as instability, that is, low cycleability and large self-discharge.

又、特開昭58−35881、特開昭59−173979、特開昭59−2
07568号公報には、活性炭等の高表面積炭素材料を電極
材料に用いることが提案されている。かかる電極材料は
ドーピング現象と異なるその高表面積に基く電気二重層
形成によると思われる特異な現象が見出されており、特
に正極に用いた場合に優れた性能を発揮するとされてい
る。又、一部には負極にも用いられることが記載されて
いるが、かかる高表面積炭素材料を負極として用いた場
合はサイクル特性、自己放電特性に大きな欠点を有して
おり、又、利用率、即ち炭素1原子当りに可逆的に出入
りし得る電子、(又は対陽イオン)の割合が極めて低
く、0.05以下、通常は0.01〜0.02であり、これは二次電
池の負極として用いた場合重量、体積共に極めて大きく
なることを意味し、実用化に際しての大きな欠点を有し
ている。
Further, JP-A-58-35881, JP-A-59-173979, JP-A-59-2
JP 07568 proposes to use a high surface area carbon material such as activated carbon as an electrode material. Such an electrode material has been found to have a peculiar phenomenon which is considered to be due to the formation of an electric double layer based on its high surface area, which is different from the doping phenomenon, and is said to exhibit excellent performance particularly when used for a positive electrode. Although it is described that it is also used for a negative electrode in part, when such a high surface area carbon material is used as a negative electrode, it has a big defect in cycle characteristics and self-discharge characteristics, and the utilization rate is also high. That is, the ratio of electrons (or counter cations) that can reversibly enter and exit per carbon atom is extremely low, 0.05 or less, usually 0.01 to 0.02, which is the weight when used as a negative electrode of a secondary battery. In addition, it means that both the volume and the volume become extremely large, which has a big drawback in practical use.

又、特開昭58−209864号公報にはフェノール系繊維の炭
化物で水素原子/炭素原子の比が0.33〜0.15の範囲の炭
素質材料を電極材料に用いることが記載されている。主
に陰イオンでp−ドープし正極材料として用いた場合に
優れた特性を発揮するとされており、同時に陽イオンで
n−ドープし負極材料として用い得る旨の記載もなされ
ている。しかしながら、かかる材料もやはりそのn−ド
ープ体を負極として用いた場合、サイクル性、自己放電
特性に大きな欠点を有すると主に、利用率も極めて低く
実用上大きな欠点を有するものであった。
Further, JP-A-58-209864 describes that a carbonaceous material, which is a carbide of a phenolic fiber and has a hydrogen atom / carbon atom ratio of 0.33 to 0.15, is used as an electrode material. It is said that it exhibits excellent properties when it is mainly p-doped with anions and used as a positive electrode material, and at the same time, it is described that it can be n-doped with cations and used as a negative electrode material. However, when such an n-doped material is used as a negative electrode, such a material also has a large defect in the cycle property and the self-discharge characteristic, and the utilization rate is extremely low, which is a large defect in practical use.

又、古くから黒鉛層間化合物を二次電池電極材料として
用いられ得ることが知られており、特にBr ,ClO ,B
F イオン等の陰イオンを取り込んだ黒鉛層間化合物
を正極として用いることは公知である。一方Li イオン
等の陽イオンを取り込んだ黒鉛層間化合物を負極として
用いることは当然考えられ、事実、例えば特開昭59−14
3280号公報に、陽イオンを取り込んだ黒鉛層間化合物を
負極として用いることが記載されている。
Also, graphite intercalation compounds have long been used as secondary battery electrode materials.
It is known that it can be used, in particular Br , ClOFour , B
FFour Graphite intercalation compound incorporating anions such as ions
Is known to be used as a positive electrode. On the other hand Li ion
Graphite intercalation compound incorporating cations such as
It is naturally conceivable to use it, and in fact, for example, JP-A-59-14.
3280 discloses a graphite intercalation compound incorporating cations.
It is described to be used as a negative electrode.

しかしながらかかる陽イオンを取り込んだ黒鉛層間化合
物は極めて不安定であり、特に電解液と極めて高い反応
性を有していることは、エイ・エヌ・デイ(A.N.Dey)
等の「ジャーナル・オブ・エレクトロケミカル・ソサエ
ティー(Journal of Electrochemical Society)vol.11
7,No2,P.222〜224 1970年」の記載から明らかであり、
層間化合物を形成し得る黒鉛、グラファイトを負極とし
て用いた場合、自己放電等電池としての安定性に欠ける
と共に、前述の利用率も極めて低く実用に耐え得るもの
ではなかった。
However, graphite intercalation compounds incorporating such cations are extremely unstable, and in particular, they have extremely high reactivity with electrolytes.
"Journal of Electrochemical Society, vol.11
7, No2, P.222-224 1970 '',
When graphite which can form an intercalation compound or graphite is used as the negative electrode, the stability as a battery such as self-discharge is lacked, and the above-mentioned utilization rate is extremely low and it cannot be put to practical use.

かかる問題点を解決する方法として、先願の特開昭61−
103785に特定の組成を有する複合酸化物及び特殊な構造
を持つ炭素質材料を二次電池用活物質として提案した。
該電池用活物質からなる非水系二次電池用電極はその充
放電効率、利用率、即ち実際の充放電に利用し得る割
合、サイクル特性、更には自己放電特性において、従来
の電極に比べて非常に優れた基本性能を有していること
が明らかとなった。しかしその反面、該電池用活物質か
らなる電極の性能は電極の塗工製膜方法によって著しく
影響され、必ずしも基本性能を発現させることはたやす
くないことが判明した。即ち、金属箔上に小面積で製膜
時には再現性良く優れた電極を与えたのに対し、塗工機
を用いて金属箔上に大面積で塗工した電極の性能は著し
くバラツキのあるものであった。
As a method for solving such a problem, Japanese Patent Application Laid-Open No. 61-
In 103785, a complex oxide having a specific composition and a carbonaceous material having a special structure were proposed as active materials for secondary batteries.
The electrode for a non-aqueous secondary battery made of the active material for a battery has a charge / discharge efficiency, a utilization ratio, that is, a ratio that can be used for actual charge / discharge, a cycle characteristic, and a self-discharge characteristic, as compared with a conventional electrode. It became clear that it had a very good basic performance. On the other hand, however, it has been found that the performance of the electrode made of the active material for a battery is significantly affected by the coating film forming method of the electrode, and it is not always easy to develop the basic performance. That is, while an electrode with excellent reproducibility was provided on a metal foil in a small area during film formation, the performance of an electrode coated on a metal foil with a large area using a coating machine remarkably varies. Met.

かかる原因は、塗工時の巻き取り等の過程で起こる活物
質の電極集電体金属箔からの剥離、それに伴う集電性能
の低下に起因するものと推定される。
It is presumed that such a cause is caused by the peeling of the active material from the metal foil of the electrode current collector, which occurs during the winding process during coating, and the accompanying decrease in the current collecting performance.

この様な事実は、1)電極性能が安定しない、2)該電
極を用いた電池の長期性能において信頼性が無い、3)
該電極を用いて円筒型電池を組立てた場合巻回工程にお
いて活物質の剥離が起こる、等のトラブルが発生する可
能性を示唆しており、大面積でかつ優れた性能を有する
電極を製造するには、かかる問題点を解決することが極
めて重要であると結論するに至った。
These facts indicate that 1) the electrode performance is not stable, 2) the long-term performance of the battery using the electrode is unreliable, 3)
When a cylindrical battery is assembled using the electrode, it suggests that troubles such as peeling of the active material may occur in the winding process, and an electrode having a large area and excellent performance is manufactured. Has concluded that it is extremely important to solve these problems.

[発明が解決しようとする問題点] 前述の如く、前記活物質を電極の活物質として組み込ん
だ実装電池において、集電体の集電性能を飛躍的に向上
せしめ、該活物質の優れた基本特性を如何に引き出すか
が極めて重要な問題である。
[Problems to be Solved by the Invention] As described above, in the mounted battery in which the active material is incorporated as the active material of the electrode, the current collecting performance of the current collector is dramatically improved, and the excellent basic property of the active material is obtained. How to bring out the characteristics is a very important issue.

[問題点を解決するための手段及び作用] 本発明は前述の問題点を解決し、電池性能、特にサイク
ル性、自己放電特性に優れた高性能、高エネルギー密度
の小型軽量二次電池を提供するためになされたものであ
る。
[Means and Actions for Solving Problems] The present invention solves the above problems and provides a small-sized and lightweight secondary battery having excellent battery performance, particularly excellent cycle performance and self-discharge characteristics, high performance and high energy density. It was made to do.

本発明によれば、構成要素として少なくとも、正、負極
活物質、集電体、セパレーター、非水電解液からなる二
次電池であって、複合酸化物の該正極活物質がアルミニ
ウム集電体上に、炭素質材料の該負極活物質が銅集電体
上に各々塗布形成され、該集電体が平均穴径の1.5mm以
下の連通した穴を有し、開口率が5%以上で厚さが500
μm以下の金属集電体であることを特徴とする二次電池
が提供される。
According to the present invention, there is provided a secondary battery comprising at least positive and negative electrode active materials, a current collector, a separator and a non-aqueous electrolyte as constituent elements, wherein the positive electrode active material of the composite oxide is on an aluminum current collector. In addition, the negative electrode active material of carbonaceous material is formed by coating on a copper current collector, and the current collector has continuous holes with an average hole diameter of 1.5 mm or less, and an opening ratio of 5% or more Saga 500
Provided is a secondary battery, which is a metal current collector having a size of μm or less.

本発明の正極活物質は、例えばLi(1-x)MnO2,Li(1-x)Co
O2,Cu2V2O5,a−V2O5−P2O5,Li(1-x)NiO2等の複合酸化
物であるが、本発明の効果が特に発揮されるのは、本発
明者らが特願昭61−103785号に開示した複合酸化物下記
Iがあげられる。
The positive electrode active material of the present invention is, for example, Li (1-x) MnO 2 , Li (1-x) Co
O 2, Cu 2 V 2 O 5, a-V 2 O 5 -P 2 O 5, Li (1-x) is a composite oxide of 2, such as NiO, the effect of the present invention is particularly exhibited in The complex oxides disclosed by the present inventors in Japanese Patent Application No. 61-103785 are listed below.

I:層状構造を有し、一般式 AxMyNzO2 (但しAはアルカリ金属から選ばれた少なくとも一種で
あり、Mは遷移金属であり、NはAl、In,Snの群から選
ばれた少なくとも一種を表わし、x,y,zは各々0.05≦x
≦1.10、0.85≦y≦1.00、0.001≦z≦0.10の数を表わ
す。) で示される複合酸化物。
I: has a layered structure and has the general formula A x M y N z O 2 (wherein A is at least one selected from alkali metals, M is a transition metal, and N is a group of Al, In, Sn). Represents at least one selected, and x, y, z are each 0.05 ≦ x
Represents the numbers ≤1.10, 0.85 ≤ y ≤ 1.00, 0.001 ≤ z ≤ 0.10. ) Is a complex oxide.

かかる層状複合金属酸化物は一般式AxMyNzO2で示される
ものであって、Aはアルカリ金属から選ばれた少なくと
も一種、例えばLi,Na,Kであり、中でもLiが好ましい。
xは値は充電状態、放電状態により変動し、その範囲は
0.05≦x≦1.10である。即ち充電によりA イオンのデ
ィインターカレーションが起こり、xの値は小さくな
り、完全充電状態においてはxの値は0.05に達する。
又、放電によりA イオンのインターカレーションが起
こりxの値は大きくなり、完全放電状態ににおいてはx
の値は1.10に達する。
Such a layered composite metal oxide has the general formula AxMyNzO2Indicated by
Where A is at least one selected from alkali metals
Also, it is one kind, for example, Li, Na, K, and Li is particularly preferable.
The value of x varies depending on the charged state and the discharged state, and the range is
0.05 ≦ x ≦ 1.10. That is, A by charging Aeon de
Intercalation occurs and the value of x becomes small.
Therefore, the value of x reaches 0.05 in the fully charged state.
Also, due to discharge, A Ion intercalation occurs
The value of x becomes large, and x becomes x in the fully discharged state.
Reaches a value of 1.10.

又、Mは遷移金属を表わし、中でもNi,Coが好ましい。
yの値は充電、放電により変動しないが、0.85≦y≦1.
00の範囲である。yの値が0.85未満及び1.00を越す場合
には二次電池用活物質として充分な性能、即ちサイクル
性の低下、過電圧の上昇等の現象が発生し好ましくな
い。
Further, M represents a transition metal, and Ni and Co are preferable among them.
The value of y does not change due to charging and discharging, but 0.85 ≦ y ≦ 1.
The range is 00. When the value of y is less than 0.85 or exceeds 1.00, sufficient performance as an active material for a secondary battery, that is, a phenomenon such as a decrease in cycleability and an increase in overvoltage occurs, which is not preferable.

NはAl,In,Snの群から選ばれた少なくとも一種であり、
中でもSnが好ましい。かかる新規な二次電池用活物質に
おいて、Nの働きは極めて重要であり、サイクル性の向
上、特に深い充電、深い放電サイクルにおいて極めて優
れたサイクル性を発揮する。zの値は充電、放電により
変動しないが、0.001≦z≦0.10の範囲、好ましくは0.0
05≦z≦0.075の範囲である。zの値が0.001未満の場
合、Nの効果が充分発揮されず、前述の深い充電、深い
放電におけるサイクル性が低いと共に、深い充電時にお
ける過電圧が著しく上昇し好ましくない。又、zの値が
0.10を越す場合には、吸湿性が余りに強くなり、扱いが
困難になると共に、二次電池用活物質としての基本特性
が損われ好ましくない。
N is at least one selected from the group consisting of Al, In and Sn,
Of these, Sn is preferable. In such a novel active material for a secondary battery, the function of N is extremely important and exhibits an excellent cycle property, particularly in deep charging and deep discharging cycles. The value of z does not change due to charging and discharging, but is in the range of 0.001 ≦ z ≦ 0.10, preferably 0.0
The range is 05 ≦ z ≦ 0.075. When the value of z is less than 0.001, the effect of N is not sufficiently exerted, the cycleability in deep charging and deep discharging described above is low, and the overvoltage during deep charging remarkably increases, which is not preferable. Also, if the value of z is
When it exceeds 0.10, the hygroscopicity becomes too strong, the handling becomes difficult, and the basic characteristics as an active material for a secondary battery are impaired, which is not preferable.

かかる二次電池活物質用複合酸化物を製造するには、A,
M,N各々の金属の酸化物、水酸化物、炭酸塩、硝酸塩、
有機酸塩等を混合せしめた後、空気中又は酸素雰囲気下
において600℃〜950℃、好ましくは700℃〜900℃の温度
範囲で焼成することにより得られる。
To produce such a composite oxide for a secondary battery active material, A,
M, N metal oxides, hydroxides, carbonates, nitrates,
It is obtained by mixing an organic acid salt and the like, and then firing in a temperature range of 600 ° C to 950 ° C, preferably 700 ° C to 900 ° C in air or in an oxygen atmosphere.

焼成時間は通常5〜48時間程度で充分である。かかる方
法により得られるAxMyNzO2は、二次電池正極としての放
電状態、即ちxの値は通常0.90〜1.10の範囲のものが得
られる。
A firing time of about 5 to 48 hours is usually sufficient. A x M y N z O 2 obtained by such a method, the discharge state of the secondary battery positive electrode, i.e. the value of x is obtained in the range of usually 0.90 to 1.10.

かくして得られるAxMyNzO2は前述の如く充電、放電によ
るディインターカレーション反応、及びインターカレー
ション反応により、xの値は0.05≦x≦1.10の範囲を変
動する。
Thus A x M y N z O 2 resulting charged as described above, de-intercalation reaction by the discharge, and the intercalation reaction, the value of x varies the range of 0.05 ≦ x ≦ 1.10.

該反応を式で示せば、 で表わされる。(ここでx′は充電前のxの値を表わ
し、x″は充電後のxの値を表わす。) 前述の利用率は下式 で定義される値である。
If the reaction is represented by a formula, It is represented by. (Here, x'represents the value of x before charging and x "represents the value of x after charging.) It is a value defined by.

かかる非水系二次電池用活物質はこの利用率が大きいこ
とを特徴とし、即ち深い充電、放電に対し極めて安定な
サイクル性を有する。
Such a non-aqueous secondary battery active material is characterized in that the utilization rate is large, that is, it has an extremely stable cycle property with respect to deep charging and discharging.

かかる二次電池活物質用複合酸化物は、Li標準電位に対
し、3.9〜4.5Vと非常に貴な電位を有し、特に非水二次
電池の正極として用いた場合に特に優れた性能を発揮す
る。
The composite oxide for a secondary battery active material has a very noble potential of 3.9 to 4.5 V with respect to the Li standard potential, and particularly has excellent performance when used as a positive electrode of a non-aqueous secondary battery. Demonstrate.

本発明の負極活物質は、例えばポリアセチレン、ポリ−
p−フェニレン等の導電性高分子負極、気相成長法炭素
繊維に、ピッチ系カーボン、ポリアクリロニトリル系炭
素繊維等の炭素質材料のほか、特願昭61−103785号に開
示される炭素質材料下記IIがあげられる。
Examples of the negative electrode active material of the present invention include polyacetylene and poly-
Conductive polymer negative electrodes such as p-phenylene, vapor grown carbon fibers, carbonaceous materials such as pitch-based carbon and polyacrylonitrile-based carbon fibers, and carbonaceous materials disclosed in Japanese Patent Application No. 61-103785. Listed below are II.

II:BET法比表面積A(m2/g)が0.1<A<100の範囲で、
かつX線回折における結晶厚みLc(Å)と真密度ρ(g/
cm3)の値が下記条件1.70<ρ<2.18かつ10<Lc<120ρ
−189を満たす範囲にある炭素質材料のn−ドープ体。
II: BET specific surface area A (m 2 / g) in the range of 0.1 <A <100,
And the crystal thickness Lc (Å) and the true density ρ (g /
The value of cm 3 ) is 1.70 <ρ <2.18 and 10 <Lc <120ρ under the following conditions.
An n-doped body of a carbonaceous material in a range satisfying −189.

本発明で用いられる炭素質材料は後述のBET法比表面積
A(m2/g)が0.1より大きく、100未満でなければならな
い。好ましくは0.1より大きく50未満、更に好ましくは
0.1より大きく25未満の範囲である。
The carbonaceous material used in the present invention must have a BET specific surface area A (m 2 / g) described below of more than 0.1 and less than 100. Preferably more than 0.1 and less than 50, more preferably
The range is greater than 0.1 and less than 25.

0.1m2/g以下の場合は余りに表面積が小さく、電極表面
での円滑な電気科学的反応が進行しにくく好ましくな
い。又、100m2/g以上の比表面積を有する場合は、サイ
クル寿命特性、自己放電特性、更には電流効率特性等の
面で特性の低下が見られ好ましくない。かかる現象は余
りに表面積が大きいが故に電極表面での種々の副反応の
起こり、電池性能に悪影響を及ぼしているものと推察さ
れる。
If it is 0.1 m 2 / g or less, the surface area is too small and a smooth electrochemical reaction on the electrode surface is difficult to proceed, which is not preferable. Further, when the specific surface area is 100 m 2 / g or more, the characteristics are deteriorated in terms of cycle life characteristics, self-discharge characteristics, and current efficiency characteristics, which is not preferable. It is presumed that such a phenomenon causes a variety of side reactions on the electrode surface because the surface area is too large and adversely affects the battery performance.

又、後述のX線回折における結晶厚みLc(Å)と真密度
ρ(g/cm3)の値が下記条件、即ち1.70<ρ<2.18かつ1
0<Lc<120ρ−189の範囲でなければならない。好まし
くは1.80<ρ<2.16かつ15<Lc<120ρ−196かつLc>12
0ρ−227の範囲、更に好ましくは1.96<ρ<2.16かつ15
<Lc<120ρ−196かつLc>120ρ−227の範囲の範囲であ
る。
In addition, the values of the crystal thickness Lc (Å) and the true density ρ (g / cm 3 ) in the X-ray diffraction described below are the following conditions: 1.70 <ρ <2.18 and 1
It must be in the range 0 <Lc <120ρ-189. Preferably 1.80 <ρ <2.16 and 15 <Lc <120ρ−196 and Lc> 12
0ρ−227, more preferably 1.96 <ρ <2.16 and 15
The range is <Lc <120ρ−196 and Lc> 120ρ−227.

該炭素質材料のn−ドープ体を安定な電極活物質として
用いる場合、前述のX線回折における結晶厚みLc(Å)
と真密度ρ(g/cm3)の値は極めて重要である。
When the n-doped body of the carbonaceous material is used as a stable electrode active material, the crystal thickness Lc (Å) in the above X-ray diffraction is used.
And the value of true density ρ (g / cm 3 ) is extremely important.

即ち、ρの値が1.70以下又はLcの値が10以下の場合は、
炭素質材料が十分に炭化していない、即ち炭素の結晶成
長が進んでおらず、無定形部分が非常に多いことを意味
する。又、その為、この範囲にある炭素質材料はその炭
化過程において表面積が必然的に大きくなり、前記の範
囲のBET法比表面積の値を逸脱する。かかる炭素質材料
のn−ドープ体は極めて不安定であり、ドープ量も低
く、実質的にn−ドープ体として安定に存在することが
できず、電池活物質として用いることはできない。
That is, when the value of ρ is 1.70 or less or the value of Lc is 10 or less,
This means that the carbonaceous material is not sufficiently carbonized, that is, the crystal growth of carbon has not progressed, and that there are a large number of amorphous portions. Therefore, the carbonaceous material in this range inevitably has a large surface area in the carbonization process, and deviates from the value of the BET specific surface area in the above range. Such an n-doped body of a carbonaceous material is extremely unstable, has a low doping amount, cannot substantially stably exist as an n-doped body, and cannot be used as a battery active material.

一方、ρの値が2.18以上又はLcの値が120ρ−189の値以
上の場合、炭素質材料の炭化が余りに進み過ぎ、即ち炭
素の結晶化の進んだ黒鉛、グラファイトに近い構造を有
していることを意味する。
On the other hand, when the value of ρ is 2.18 or more or the value of Lc is 120ρ-189 or more, carbonization of the carbonaceous material proceeds too much, that is, graphite with advanced crystallization of carbon, having a structure similar to graphite. Means that

かかる炭素質材料の構造を示すパラメーターとして、本
発明で限定する、真密度ρ(g/cm3)、結晶厚みLc
(Å)、BET法比表面積A(m2/g)以外に、例えばX線
回折における層間面間隔d002(Å)が挙げられる。かか
る面間隔d002(Å)の値は結晶化の進行と共に小さくな
り、特に限定はしないが、3.43Å未満、更には3.46Å未
満の値を有する炭素質材料は、前記で限定する範囲から
逸脱する。
As parameters showing the structure of such a carbonaceous material, the true density ρ (g / cm 3 ), the crystal thickness Lc, which are limited in the present invention,
In addition to (Å) and BET specific surface area A (m 2 / g), for example, the interlayer surface spacing d 002 (Å) in X-ray diffraction can be mentioned. The value of the interplanar spacing d 002 (Å) becomes smaller as the crystallization progresses, and is not particularly limited, but a carbonaceous material having a value of less than 3.43 Å, and further less than 3.46 Å deviates from the range defined above. To do.

一方、前記ラーマンスペクトルにおける強度比R(I 13
60cm-1/I 1580cm-1)の値も又、炭素質材料の構造を示
すパラメーターであり、かかる強度比Rは結晶化の進行
と共に小さくなり、特に限定はしないが0.6未満又は2.5
以上の範囲、更には0.7未満又は2.5以上の範囲の値を有
する炭素質材料は本発明で限定する範囲から逸脱する。
On the other hand, the intensity ratio R (I 13
60cm -1 / I 1580cm -1) values are also of a parameter showing the structure of the carbonaceous material, such intensity ratio R decreases with the progress of crystallization, in particular but not limited but less than 0.6 or 2.5
Carbonaceous materials having a value in the above range, or even less than 0.7 or in the range of 2.5 or more depart from the range limited by the present invention.

前述の如く、黒鉛、グラファイトは規則的な層状構造を
有しており、かかる構造の炭素材料は種々のイオンをゲ
ストとする層間化合物を形成すること、特にClO ,BF
等の陰イオンとのP型の層間化合物は高い電位を有
し、二次電池正極として用いようとの試みは古くからな
されている。かかる目的の場合層間化合物を形成し易い
ことが必須条件であり、例えば特開昭60−36315号公報
に記載の如く、前記ラーマン強度比R(I 1360cm-1/I 1
580cm-1)は可及的に小さいこと、即ち、ρの値及びLc
の値は可及的に大きいことが必須条件であった。
As mentioned above, graphite has a regular layered structure.
The carbon material of this structure has various ions.
Forming an intercalation compound, especially ClOFour , BF
Four P-type intercalation compounds with anions such as
However, attempts to use it as a positive electrode for a secondary battery have long been known.
Has been done. For such purpose, it is easy to form an intercalation compound
That is an essential condition, for example, JP-A-60-36315.
The Raman intensity ratio R (I 1360 cm-1/ I 1
580 cm-1) Is as small as possible, that is, the value of ρ and Lc
It was essential that the value of was as large as possible.

本発明者らは別の観点から炭素質材料に陰イオンではな
く Li イオン等の陽イオンを取り込ませることを種々検討
する過程において意外な事実を見出した。即ちLi イオ
ン等の陽イオンを取り込ませる場合、ρの値が2.18以
上、又はLcの値が120ρ−189の値以上を有する炭素質材
料を用いると、前述の如く、黒鉛、グラファイト的な挙
動が発現し、サイクル寿命特性、自己放電特性が悪く、
更には利用率が著しく低く、極端な場合二次電池として
実質的に働かない場合もあり好ましくない。
From another point of view, the present inventors consider that carbonaceous materials are not anions.
Ku Li Various studies on incorporating cations such as ions
In the process of doing, I found a surprising fact. That is, Li Io
When incorporating positive ions such as ions, the value of ρ is 2.18 or more.
Above, or carbonaceous material having Lc value of 120ρ-189 or more
If a material is used, as described above, graphite
Motion, the cycle life characteristics and self-discharge characteristics are poor,
Furthermore, the utilization rate is extremely low, and in extreme cases, as a secondary battery
It may not work substantially, which is not preferable.

かかる条件を満たす炭素質材料として例えば、種々の有
機化合物の熱分解、又は焼成炭化により得られる。この
場合、熱履歴温度条件は重要であり、前記の如く、余り
に熱履歴温度が低い場合には炭化が十分でなく、電気電
導度の小さいのみならず該条件とする炭素質材料となら
ない。その温度下限は物により若干異なるが、通常600
℃以上、好ましくは800℃以上である。更に重要なのは
熱履歴温度上限であり、通常の黒鉛、グラファイトや炭
素繊維製造で行われている3,000℃に近い温度での熱処
理は、結晶の成長が余りに進み過ぎ、二次電池としての
機能が著しく損われる。2,400℃以下、好ましくは1,800
℃以下、更には1,400℃以下が好ましい範囲である。か
かる熱処理条件において、昇温速度、冷却速度、熱処理
時間等は目的に応じ任意の条件を選択することができ
る。又、比較的低温領域で熱処理をした後、所定の温度
に昇温する方法も採用される。
The carbonaceous material satisfying such conditions can be obtained, for example, by thermal decomposition of various organic compounds or carbonization by firing. In this case, the heat history temperature condition is important, and as described above, when the heat history temperature is too low, the carbonization is not sufficient, the electric conductivity is small, and the carbonaceous material does not meet the conditions. The lower limit of temperature varies slightly depending on the object, but is usually 600
℃ or more, preferably 800 ℃ or more. What is more important is the thermal history temperature upper limit, and heat treatment at temperatures close to 3,000 ° C., which is used in ordinary graphite, graphite and carbon fiber production, causes crystal growth to proceed too much, and the function as a secondary battery is remarkably high. Be damaged. 2,400 ℃ or less, preferably 1,800
C. or lower, more preferably 1,400.degree. C. or lower is a preferable range. Under such heat treatment conditions, the heating rate, the cooling rate, the heat treatment time, etc. can be arbitrarily selected according to the purpose. Further, a method of performing heat treatment in a relatively low temperature region and then raising the temperature to a predetermined temperature is also adopted.

かかる条件範囲を満たす炭素質材料の一例を示せば、例
えば気相成長法炭素繊維が挙げられる。該気相成長法炭
素繊維は例えば、特開昭59−207823号公報に記載の如
く、ベンゼン、メタン、一酸化炭素等の炭素源化合物を
遷移金属触媒等の存在下気相熱分解(例えば600℃〜150
0℃の温度において)せしめて得られる炭素材料であ
り、公知のこれに類する方法によって得られる全てのも
のを言い、繊維を基材上(例えば、セラミックス、グラ
ファイトの基板、カーボンファイバー、カーボンブラッ
ク、セラミックス粒子等である。)に生成せしめる方法
や気相に生成せしめる方法等が知られている。通常かか
る方法により繊維状、即ち炭素繊維として得られるが、
本発明においては繊維状としてそのまま用いても良い
が、粉砕された粉粒状として用いても良い。
An example of the carbonaceous material satisfying the condition range is, for example, vapor grown carbon fiber. The vapor grown carbon fiber can be obtained, for example, by gas phase pyrolysis of a carbon source compound such as benzene, methane, or carbon monoxide in the presence of a transition metal catalyst (for example, 600 as described in JP-A-59-207823). ℃ ~ 150
A carbon material that can be obtained at most (at a temperature of 0 ° C.), and refers to all that is obtained by a known method similar to the above, in which fibers are placed on a substrate (for example, ceramics, a graphite substrate, carbon fiber, carbon black, Ceramic particles, etc.), a method of generating it in a gas phase, etc. are known. Usually obtained by such a method as fibrous, that is, carbon fiber,
In the present invention, it may be used as a fibrous form as it is, but may be used as a pulverized powder form.

かかる気相成長炭素繊維が易黒鉛化炭素の典型例である
ことは公知の事実である。即ち熱処理により極めて容易
に黒鉛グラファイト化するという特徴を有している。通
常かかる熱処理は2400℃以上の温度下で行われる。かく
して得られる黒鉛化気相成長炭素繊維は極めて結晶構造
の整った黒鉛材料として種々の特徴が既に報告されてお
り、例えば遠藤らが「シンセティック・メタルズ(Synt
hetic Metals)vol.7,P.203,1983年」に記載の如くBr
等の陰イオンと極めて容易に層間化合物を形成するこ
と、更にはかかる陰イオンとの層間化合物を正極及び負
極に用いて温度差電池をつくり得ることが知られてい
る。しかしながら、かかる電池系は通常起電力が極めて
低く実用に耐えるものではなかった。
Such vapor grown carbon fiber is a typical example of graphitizable carbon.
This is a known fact. That is, it is extremely easy by heat treatment
It has the characteristic of graphitizing into graphite. Communication
This heat treatment is usually performed at a temperature of 2400 ° C or higher. Write
The graphitized vapor grown carbon fiber obtained by
Various characteristics have already been reported as a well-organized graphite material.
For example, Endo et al. "Synthetic Metals (Synt
hetic Metals) vol.7, P.203, 1983 ”.
It is extremely easy to form intercalation compounds with anions such as
Furthermore, an intercalation compound with such an anion is used as a positive electrode and a negative electrode.
It is known that it can be used as a pole to make a temperature difference battery.
It However, such a battery system usually has an extremely high electromotive force.
It was too low for practical use.

一方、前述の如く、黒鉛、グラファイトは規則的な層状
構造を有しており、かかる構造の炭素材料は種々のイオ
ンをゲストとする層間化合物を形成すること、特にClO
,BF 等の陰イオンとの層間化合物は高い電位を
有し、二次電池正極として用いようとの試みは古くから
なされている。かかる目的の場合層間化合物を形成し易
いことが必須条件であり、例えば特開昭60−36315号公
報に記載の如く、3000℃近い熱処理をした黒鉛、グラフ
ァイト構造が必須条件であった。本発明者らが特願昭61
−103785に開示した如く、炭素質材料にLi イオン等の
陽イオンを取り込ませる場合、該炭素質材料は過度の熱
履歴を経ない方が優れた特性を有することが示されてい
る。
On the other hand, as mentioned above, graphite and graphite are regular layers.
It has a structure, and carbon materials with such a structure have various types of
Forming intercalation compounds with benzene as guest, especially ClO
Four , BFFour Intercalation compounds with anions such as
It has long been attempted to use it as a positive electrode for secondary batteries.
Has been done. For such purpose, easy formation of intercalation compounds
It is an essential condition that, for example, JP-A-60-36315
Graphite that has been heat-treated near 3000 ℃ as described in the report, Graph
The eight structure was a prerequisite. The present inventors filed a Japanese patent application Sho 61
As disclosed in −103785, carbonaceous materials have Such as ionic
When incorporating cations, the carbonaceous material will
History has been shown to have better properties
It

即ち本発明において用いられる気相成長炭素繊維は、製
造工程も含めた最高の熱履歴温度が2400℃以下、好まし
くは2000℃以下、特に1400℃以下が好適に用いられる。
2400℃を越すとそのn−ドープ体の特性に悪影響を与え
好ましくない。
That is, the vapor-grown carbon fiber used in the present invention preferably has a maximum thermal history temperature of 2400 ° C. or lower, including the manufacturing process, preferably 2000 ° C. or lower, and particularly 1400 ° C. or lower.
When the temperature exceeds 2400 ° C, the characteristics of the n-doped body are adversely affected, which is not preferable.

又、他の例を示せば、ピッチ系炭素質材料が挙げられ
る。本発明で用いられるピッチ類の一例を示せば、石油
ピッチ、アスファルトピッチ、コールタールピッチ、原
油分解ピッチ、石油スラッジピッチ等の石油、石炭の熱
分解により得られるピッチ、高分子重合体の熱分解によ
り得られるピッチ、テトラベンゾフェナジン等の有機低
分子化合物の熱分解により得られるピッチ等が挙げられ
る。
Another example is a pitch-based carbonaceous material. Examples of pitches used in the present invention include petroleum pitch, asphalt pitch, coal tar pitch, crude oil cracking pitch, petroleum sludge pitch, etc., pitch obtained by thermal decomposition of coal, thermal decomposition of high-molecular polymer And the pitch obtained by thermal decomposition of an organic low molecular weight compound such as tetrabenzophenazine.

かかる条件を満たすピッチ系焼成炭化物を得るには熱履
歴温度条件が重要であり、前述の如く高い温度での熱履
歴は結晶化が進み過ぎた焼成炭化物を与え、n−ドープ
体の特性が著しく悪化する。熱履歴温度条件としては2,
400℃以下、好ましくは1,800℃以下、更には1,400℃以
下が好ましい範囲である。
Thermal history temperature conditions are important for obtaining pitch-based calcined carbides that satisfy such conditions. As described above, thermal history at a high temperature gives calcined carbides that are excessively crystallized, and the characteristics of the n-doped body are remarkably high. Getting worse. The heat history temperature condition is 2,
The preferred range is 400 ° C or lower, preferably 1,800 ° C or lower, and more preferably 1,400 ° C or lower.

又、温度下限としては少なくとも焼成炭化物として、電
気電導度等の特性の発現し始める温度600℃以上、更に
は800℃以上が好ましい範囲である。
The lower limit of the temperature is preferably at least 600 ° C., more preferably at least 800 ° C., at which the characteristics such as electric conductivity of the calcined carbide start to appear.

かかるピッチ系焼成炭化物の具体例を示せば、ニードル
コークス等が挙げられる。
Needle coke etc. are mentioned if a specific example of such a pitch-type calcined carbide is shown.

更にかかる炭素質材料を例示すれば、アクリロニトリル
を主成分とする重合体の焼成炭化物が挙げられる。
Further exemplifying such a carbonaceous material is a calcined carbide of a polymer containing acrylonitrile as a main component.

前述の条件を満たすアクリロニトリルを主成分とする重
合体の焼成炭化物を得るには熱履歴温度条件が重要であ
り、前述の如く高い温度での熱履歴は結晶の余りに成長
し過ぎた焼成炭化物を与え、そのn−ドープ体の特性が
著しく悪化する。熱履歴温度条件としては2,400℃以
下、好ましくは1,800℃以下、更には1,400℃以下が好ま
しい範囲である。
The thermal history temperature condition is important for obtaining a calcined carbide of a polymer containing acrylonitrile as a main component that satisfies the above-mentioned conditions, and as described above, the thermal history at a high temperature gives a calcined carbide in which the crystal grows too much. , The characteristics of the n-doped body are significantly deteriorated. The heat history temperature condition is 2,400 ° C or lower, preferably 1,800 ° C or lower, and more preferably 1,400 ° C or lower.

又、温度下限としては少なくとも焼成炭化物として、電
気電導度等の特性の発現し始める温度600℃以上、更に
は800℃以上が好ましい範囲である。
The lower limit of the temperature is preferably at least 600 ° C., more preferably at least 800 ° C., at which the characteristics such as electric conductivity of the calcined carbide start to appear.

かかる炭素質材料が通常の黒鉛、グラファイトと異なる
ところは、層間化合物を形成し得るような層状構造を有
していないことはX線分析、ラーマン分析、真密度測定
等の結果から明らかであること。事実本発明の条件範囲
の炭素質材料は黒鉛、グラファイトと非常に層間化合物
を形成し易いClO ,BF ,Br 等の陰イオンは全く
取り込まない、又は非常に取り込みにくいという事実が
ある。
Such carbonaceous materials are different from ordinary graphite and graphite
However, it has a layered structure that can form an intercalation compound.
What is not done is X-ray analysis, Raman analysis, true density measurement
It should be clear from the results such as. In fact, the condition range of the present invention
Carbonaceous materials are graphite, graphite and very intercalation compounds
ClO that easily formsFour , BFFour , Br Anions such as
The fact that it ’s not or very hard to capture
is there.

更に具体的に示せば、かかる陰イオンの取り込み量、即
ちp−ドープ量は0.6M−LiClO4−プロピレンカーボネー
ト電解液系において0.005未満、更には0.002未満のもの
が逆に負極として優れた性能を発揮する。
More specifically, the anion uptake amount, that is, the p-doping amount is less than 0.005 in the 0.6M-LiClO 4 -propylene carbonate electrolyte system, and further less than 0.002, on the contrary, shows excellent performance as a negative electrode. Demonstrate.

又、前記特開昭58−35881号公報の例の如く、活性炭等
の高表面積炭素材料に見られる表面での電気二重層形
成、即ち一種のコンデンサー的挙動と異なり、この場
合、表面積と電池性能が全く相関性のないこと、むしろ
逆に表面積が大きいと、電流効率、自己放電等の性能面
においてマイナスになること等の事実がある。
Further, as in the example of the above-mentioned Japanese Patent Laid-Open No. 58-35881, electric double layer formation on the surface found in high surface area carbon materials such as activated carbon, that is, unlike a kind of capacitor-like behavior, in this case surface area and battery performance Has no correlation, and conversely, if the surface area is large, it will have a negative effect on performance such as current efficiency and self-discharge.

かかる事実が従来公知の炭素材料で見出されている現象
と異っており、二次電池活物質として用いた場合、次の
特性を発揮する。サイクル寿命特性として少なくとも10
0回以上、ものにより300回以上、更には500回以上のサ
イクル寿命特性を有する。又、充放電における電流効率
は少なくとも90%以上、ものにより95%以上、更には38
%以上に達する。自己放電率は少なくとも30%/月以
下、ものにより20%/月以下、更には10%/月以下に達
する。更にかかる条件を満たす炭素質材料の特徴の一つ
は利用率が非常に大きいことが挙げられる。
This fact is different from the phenomenon found in conventionally known carbon materials, and when used as a secondary battery active material, the following characteristics are exhibited. At least 10 cycle life characteristics
It has cycle life characteristics of 0 times or more, 300 times or more, and even 500 times or more. In addition, the current efficiency in charging and discharging is at least 90% or more, depending on the thing, 95% or more,
Reach over%. The self-discharge rate is at least 30% / month or less, 20% / month or less, and even 10% / month or less. Furthermore, one of the characteristics of the carbonaceous material that satisfies such conditions is that the utilization rate is very high.

上記利用率とは炭素1原子当りに可逆的に出入りし得る
電子(又は対陽イオン)の割合を意味し、下式で定義さ
れる。
The above-mentioned utilization rate means the ratio of electrons (or counter cations) that can reversibly enter and exit per carbon atom, and is defined by the following formula.

ここでwは用いた炭素質材料の重量(g単位)を表わ
す。
Here, w represents the weight (g unit) of the carbonaceous material used.

かかる利用率は少なくとも0.08以上、更には0.15以上に
達し、少ない重量、体積で多くの電気量を蓄えることが
可能である。
The utilization rate reaches at least 0.08, and even 0.15 or more, and it is possible to store a large amount of electricity with a small weight and volume.

該炭素質材料のn−ドープ体は二次電池活物質として用
いた場合優れた性能を発揮し、特に負極活物質として用
いた場合、更に優れた性能を発揮する。
The n-doped body of the carbonaceous material exhibits excellent performance when used as a secondary battery active material, and particularly excellent performance when used as a negative electrode active material.

上記活物質のうち特に好ましい組合せとして、活物質I:
AxMyNzO2を正極として、活物質IIを負極として用いる組
合せが最も好ましい。
As a particularly preferred combination of the above active materials, active material I:
A combination of using A x M y N z O 2 as a positive electrode and active material II as a negative electrode is most preferable.

前述の如く、例えば塗工機を用いて該電極活物質の連続
塗工を行い製膜して得られた電極の性能は局部的な剥離
のため著しくバラツキのあるものであった。かかる事実
は、1)電極性能が安定しない、2)該電極を用いた電
池の長期性能において信頼性が無い。特に振動等のショ
ックに弱い。3)円筒型電池を組立てた場合巻回工程に
おいて活物質の剥離が起こる等のトラブル発生を示唆し
ており、この様な問題を解決することは極めて重要であ
る。
As described above, for example, the performance of the electrode obtained by continuously coating the electrode active material using a coating machine and forming a film has a remarkable variation due to local peeling. The facts are that 1) the electrode performance is not stable, and 2) the long-term performance of a battery using the electrode is unreliable. Especially vulnerable to shock such as vibration. 3) When a cylindrical battery is assembled, it is suggested that troubles such as peeling of the active material occur in the winding process, and it is extremely important to solve such a problem.

本発明者らは、集電体として平均穴径が1.5mm以下の連
通した穴を有し、開口率が5%以上で、厚さが500μm
以下の金属集電体を用いると、前述の剥離に伴う電極性
能の低下が顕著に改善され、活物質の特性が損われるこ
となしに発現されることを見出した。
The present inventors have, as a current collector, a continuous hole having an average hole diameter of 1.5 mm or less, an opening ratio of 5% or more, and a thickness of 500 μm.
It has been found that the use of the following metal current collector significantly improves the deterioration of the electrode performance due to the above-described peeling and allows the characteristics of the active material to be exhibited without being impaired.

本発明で言うところの平均穴径とは、1cm2当りにある
穴の最大径の相加平均を最小径の相加平均でわった値を
言い、1.5mm以下でなくてはならない。平均穴径が1.5mm
より大きいとかかる集電体からなる電極においては、穴
の中心部の活物質からスムーズに集電することが困難と
なるばかりでなく、穴の中心部が抜けやすくなり機械的
強度において新たな問題が発生する。本発明における開
口率とは1cm2当りの穴の断面積の総和に100%をかけた
値を言い、5%以上でなくてはならない。開口率5%よ
り小さいと製膜体電極の剥離強度に大きな改善が認めら
れず、かかる電極の充放電特性においても性能の著しい
向上は発現しない。本発明で言うところの集電体の厚さ
は500μ以下でなくてはならない。厚さが500μより厚い
場合、かかる集電体自体の見かけ容積が著しく大きくな
るため、本発明の目的とする小型軽量二次電池の集電体
としては好ましくない。本発明における金属集電体とし
ては、正極にアルミニウム、負極に銅の箔、ネット、エ
キスパンドメタルあるいはパンチングメタルのことを言
うが、特にこれらに限定されるものではない。
In the present invention, the average hole diameter means a value obtained by dividing the arithmetic mean of the maximum diameters of holes per cm 2 by the arithmetic mean of the minimum diameters, and it must be 1.5 mm or less. Average hole diameter is 1.5 mm
If it is larger, it becomes difficult to collect current smoothly from the active material in the center of the hole in the electrode composed of such a current collector, and the center of the hole easily comes off, which creates a new problem in mechanical strength. Occurs. The opening ratio in the present invention means a value obtained by multiplying the total cross-sectional area of holes per 1 cm 2 by 100%, and must be 5% or more. When the aperture ratio is less than 5%, no significant improvement in peel strength of the film-forming electrode is observed, and no significant improvement in performance is exhibited even in the charge / discharge characteristics of such electrode. In the present invention, the thickness of the current collector should be 500 μ or less. When the thickness is more than 500 μ, the apparent volume of the current collector itself becomes remarkably large, which is not preferable as the current collector of the small and lightweight secondary battery intended by the present invention. The metal current collector in the present invention refers to a positive electrode made of aluminum and a negative electrode made of copper foil, a net, an expanded metal or a punching metal, but is not particularly limited thereto.

次に前述の活物質と該集電体を用いた二次電池について
述べる。
Next, a secondary battery using the above active material and the current collector will be described.

従来より非水系電池は高エネルギー密度、小型軽量とい
った性能面では優れているものの、水系電池に比べ出力
特性に難点があり、広く一般に用いられるまでに至って
いない。特に出力特性が要求される二次電池の分野では
この欠点が実用化を妨げている一つの要因となってい
る。
Although non-aqueous batteries have been excellent in performance such as high energy density, small size and light weight, they have drawbacks in output characteristics as compared with aqueous batteries and have not been widely used in the past. In particular, in the field of secondary batteries where output characteristics are required, this defect is one of the factors hindering practical use.

非水系電池が出力特性に劣る原因は水系電解液の場合イ
オン電導度が高く、通常10-1Ω-1cm-1オーダー値を有す
るのに対し、非水系の場合通常10-2〜10-4Ω-1cm-1と低
いイオン電導度しか有していないことに起因する。
Causes non-aqueous battery is inferior in output characteristics is high if the ion conductivity of the aqueous electrolyte solution, usually while having 10 -1 Ω -1 cm -1 order values, in the case of the non-aqueous usually 10-2 to - This is due to its low ionic conductivity of 4 Ω -1 cm -1 .

かかる問題点を解決する一つの方法として電極面積を大
きくすること、即ち薄膜、大面積電極を用いることが考
えられる。
As one method for solving such a problem, increasing the electrode area, that is, using a thin film or a large area electrode is considered.

溶媒に溶解及び/又は分散した有機重合体をバインダー
として電極活物質を成形する方法は、かかる薄膜、大面
積電極を得るのに特に好ましい方法である。
A method of forming an electrode active material using an organic polymer dissolved and / or dispersed in a solvent as a binder is a particularly preferable method for obtaining such a thin film and a large area electrode.

前述の如く、集電体として平均穴径の1.5mm以下の連通
した穴を有し、開口率が5%以上で厚さが500μm以下
の金属集電体を用いることによって始めて安定した性能
を有する電極を得ることが可能となった。また、従来剥
離により性能低下の著しかった円筒型電池の特性も少な
くとも一方に該電極を用いることにより著しく改善され
た。
As described above, stable performance is obtained only by using a metal current collector having a hole with an average hole diameter of 1.5 mm or less and having an average hole diameter of 1.5 mm or less and an opening ratio of 5% or more and a thickness of 500 μm or less. It became possible to obtain electrodes. In addition, the characteristics of the cylindrical battery, which has been markedly deteriorated by peeling in the past, were also remarkably improved by using the electrode on at least one side.

かかる有機重合体をバインダーとして用いるに際して
は、該有機重合体を溶媒に溶解せしめたバインダー溶液
に電極活物質を分散せしめたものを塗工液として用いる
方法、又、該有機重合体の水乳化分散液に電極活物質を
分散せしめたものを塗工液として用いる方法等が一例と
して挙げられる。用いるバインダー量は特に限定するも
のではないが、通常、電極活物質100重量部に対し0.1〜
20重量部、好ましくは0.5〜10重量部の範囲である。
When using such an organic polymer as a binder, a method of using as a coating solution a dispersion of an electrode active material in a binder solution prepared by dissolving the organic polymer in a solvent, or water-emulsion dispersion of the organic polymer An example is a method of using a liquid in which an electrode active material is dispersed as a coating liquid. The amount of binder used is not particularly limited, but is usually 0.1 to 100 parts by weight of the electrode active material.
20 parts by weight, preferably 0.5 to 10 parts by weight.

ここで用いられる有機重合体は特に限定されるものでは
ないが、該有機重合体が25℃、周波数1kHzにおける比誘
電率が4.5以上の値を有する場合、特に好ましい結果を
もたらし、特に電池性能として、サイクル性、過電圧等
の面で優れた特性を有する。
The organic polymer used here is not particularly limited, but when the organic polymer has a relative permittivity of 4.5 or more at 25 ° C. and a frequency of 1 kHz, particularly preferable results are obtained, and particularly as battery performance. It has excellent characteristics in terms of cycleability and overvoltage.

かかる条件を満たす有機重合体の一例を示せば、アクリ
ロニトリル、メタクリニトリル、フッ化ビニル、フッ化
ビニリデン、クロロプレン、塩化ビニリデン等の重合体
もしくは共重合体、ニトロセルロース、シアノエチルセ
ルロース、多硫化ゴム等が挙げられる。
Examples of organic polymers satisfying such conditions include polymers or copolymers of acrylonitrile, methacrylonitrile, vinyl fluoride, vinylidene fluoride, chloroprene, vinylidene chloride, nitrocellulose, cyanoethyl cellulose, polysulfide rubber and the like. Can be mentioned.

かかる方法により電極を製造するに際し、前記塗工液を
集電体上に塗布乾燥することにより生成される。
When the electrode is manufactured by such a method, it is produced by coating and drying the coating liquid on the current collector.

本発明の活物質を用いて製造される電池電極には、前記
バインダー、導電補助剤、その他添加剤、例えば増粘
剤、分散剤、増量剤、粘着補強剤等が添加されても良い
が、少なくとも前述の活物質が25重量%以上含まれてい
るものを言う。
The battery electrode manufactured using the active material of the present invention, the binder, the conductive auxiliary agent, other additives, for example, thickeners, dispersants, extenders, adhesion enhancers, etc. may be added, It means one containing at least 25% by weight of the above-mentioned active material.

導電補助剤としては、金属粉、導電金属酸化物粉、カー
ボン等が挙げられる。特にかかる導電補助剤の添加は本
発明のI:AxMyNzO2を用いる場合に顕著な効果が見出され
る。
Examples of the conductive auxiliary agent include metal powder, conductive metal oxide powder, carbon and the like. Particularly, the addition of such a conductive auxiliary agent is found to have a remarkable effect when I: A x M y N z O 2 of the present invention is used.

中でも、好ましい結果を与えるのはカーボンであり、通
常I:AxMyNzO2100重量部に対し1〜30重量部の添加によ
り著しい過電圧の低下効果が発現し、優れたサイクル特
性を発揮する。
Among them, it is carbon that gives preferable results, and the addition of 1 to 30 parts by weight with respect to 100 parts by weight of I: A x M y N z O 2 usually exerts a remarkable effect of reducing overvoltage, and exhibits excellent cycle characteristics. Demonstrate.

ここで云うカーボンとは、前述の条件で限定する炭素質
材料IIとは全く異なる特性が要求されるものであり、必
ずしも特定されたカーボンを意味するものではない。
The carbon referred to here is required to have characteristics completely different from those of the carbonaceous material II defined under the above-mentioned conditions, and does not necessarily mean the specified carbon.

かかるカーボンとしては、グラファイト、カーボンブラ
ック等が挙げられる。特に好ましい組合せとして、平均
粒径0.1〜10μのカーボンと平均粒径0.01μ〜0.08μの
カーボンを混合して用いた場合、特に優れた効果を与え
る。
Examples of such carbon include graphite and carbon black. As a particularly preferred combination, when carbon having an average particle size of 0.1 to 10 μ and carbon having an average particle size of 0.01 μ to 0.08 μ are mixed and used, a particularly excellent effect is provided.

本発明の非水系二次電池を組立てる場合の基本構成要素
として、前記本発明の活物質を用いた電極、更にはセパ
レーター、非水電解液が挙げられる。セパレーターとし
ては特に限定されないが、織布、不織布、ガラス織布、
合成樹脂微多孔膜等が挙げられるが、前述の如く、薄
膜、大面積電極を用いる場合には、例えば特開昭58−59
072号に開示される合成樹脂微多孔膜、特にポリオフィ
ン系微多孔膜が、厚み、強度、膜抵抗の面で好ましい。
The basic constituent elements for assembling the non-aqueous secondary battery of the present invention include an electrode using the active material of the present invention, a separator, and a non-aqueous electrolytic solution. The separator is not particularly limited, woven cloth, non-woven cloth, glass woven cloth,
Examples thereof include synthetic resin microporous membranes. As described above, when a thin film or a large area electrode is used, for example, JP-A-58-59
The synthetic resin microporous membrane disclosed in No. 072, especially a polyophine microporous membrane is preferable in terms of thickness, strength and membrane resistance.

非水電解液の電解質としては特に限定されないが、一例
を示せば、LiClO4,LiBF4,LiAsF6,CF3SO3Li,LiPF6,L
iI,LiAlCl4,NaClO4,NaBF4,NaI,(n−Bu) ClO
,(n−Bu) BF,KPF6等が挙げられる。又、
用いられる電解液の有機溶媒としては、例えばエーテル
類、ケトン類、ラクトン類、ニトリル類、アミン類、ア
ミド類、硫黄化合物、塩素化炭化水素類、エステル類、
カーボネート類、ニトロ化合物、リン酸エステル系化合
物、スルホラン系化合物等を用いることができるが、こ
れらのうちでもエーテル類、ケトン類、ニトリル類、塩
素化炭化水素類、カーボネート類、スリホラン系化合物
が好ましい。更には好ましくは環状カーボネート類であ
る。
The electrolyte of the non-aqueous electrolyte is not particularly limited, but an example
, LiClOFour, LiBFFour, LiAsF6, CF3SO3Li, LiPF6, L
iI, LiAlClFour, NaClOFour, NaBFFour, NaI, (n-Bu)FourN ClO
Four, (N-Bu)FourN BFFour, KPF6Etc. or,
Examples of the organic solvent of the electrolytic solution used include ether.
, Ketones, lactones, nitriles, amines,
Amides, sulfur compounds, chlorinated hydrocarbons, esters,
Carbonates, nitro compounds, phosphate compounds
Compounds, sulfolane compounds, etc. can be used.
Among them, ethers, ketones, nitriles, salts
Organohydrocarbons, carbonates, sriphorane compounds
Is preferred. More preferably cyclic carbonates
It

これらの代表例としては、テトラヒドロフラン、2−メ
チルテトラヒドロフラン、1,4−ジオキサン、アニソー
ル、モノグライム、アセトニトリル、プロピオニトリ
ル、4−メチル−2−ペンタノン、ブチロニトリル、バ
レロニトリル、ベンゾニトリル、1,2−ジクロロエタ
ン、γ−ブチロラクトン、ジメトキシエタン、メチルフ
ォルメイト、プロピレンカーボネート、エチレンカーボ
ネート、ビニレンカーボネート、ジメチルホルムアミ
ド、ジメチルスルホキシド、ジメチルチオホルムアミ
ド、スルホラン、3−メチル−スルホラン、リン酸トリ
メチル、リン酸トリエチルおよびこれらの混合溶媒等を
あげることができるが、必ずしもこれらに限定されるも
のではない。
As typical examples of these, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, anisole, monoglyme, acetonitrile, propionitrile, 4-methyl-2-pentanone, butyronitrile, valeronitrile, benzonitrile, 1,2- Dichloroethane, γ-butyrolactone, dimethoxyethane, methyl formate, propylene carbonate, ethylene carbonate, vinylene carbonate, dimethylformamide, dimethylsulfoxide, dimethylthioformamide, sulfolane, 3-methyl-sulfolane, trimethyl phosphate, trimethyl phosphate, and triethyl phosphate thereof. Examples of the mixed solvent include, but are not necessarily limited to, these.

更に要すれば、端子、絶縁板等の部品を用いて電池が構
成される。又、電池の構造としては、特に限定されるも
のではないが、正極、負極、更に要すればセパレーター
を単層又は複層としたペーパー型電池、積層型電池、又
は正極、負極、更に要すればセパレーターをロール状に
巻いた円筒状電池等の形態が一例として挙げられる。
Further, if necessary, a battery is constructed using parts such as terminals and insulating plates. Further, the structure of the battery is not particularly limited, but a positive electrode, a negative electrode, and further, if necessary, a paper type battery having a single layer or a multi-layer separator, a laminated type battery, or a positive electrode, a negative electrode, and further required. For example, a form of a cylindrical battery or the like in which a separator is wound in a roll shape can be mentioned.

[発明の効果] 本発明の電池は小型軽量であり、特にサイクル特性、自
己放電特性に優れ、小型電子機器用、電気自動車用、電
力貯蔵用等の電源として極めて有用である。
[Effects of the Invention] The battery of the present invention is small and lightweight, has excellent cycle characteristics and self-discharge characteristics in particular, and is extremely useful as a power source for small electronic devices, electric vehicles, power storage, and the like.

[実施例] 以下、実施例、比較例により本発明を更に詳しく説明す
る。
[Examples] Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

尚、表面積は柴田科学器械工業(株)製BET表面積測定
装置P−700型を用いて、窒素吸着法により測定した。
また、X線回折は「日本学術振興会法」に準じて行っ
た。また、真密度は、炭素質材料をメノウ乳鉢で150メ
ッシュ標準篩を通過するように粉砕した粉末を試料と
し、25℃でブロモホルム、四塩化炭素混合溶液を用いる
浮沈法により測定した。真密度が分布を有する試料に関
しては、粉末粒子の全体の約50%が沈降するところの値
を測定値とした。
The surface area was measured by a nitrogen adsorption method using a BET surface area measuring device P-700 type manufactured by Shibata Scientific Instruments Co., Ltd.
In addition, X-ray diffraction was performed according to the "Japan Society for the Promotion of Science". The true density was measured by a float-sink method at 25 ° C. using a powder prepared by crushing a carbonaceous material so as to pass through a 150 mesh standard sieve in an agate mortar and using a mixed solution of bromoform and carbon tetrachloride. For the sample having a true density distribution, the value at which about 50% of the entire powder particles settled was used as the measured value.

比誘電率の測定は下記の条件で行った。The relative permittivity was measured under the following conditions.

(測定温度) 25℃ (測定周波数) 1kHz (試料形状) 0.5mmシート (測定装置) TR−10C型誘電体積測定器(安藤電気
(株)社製) 実験例1 厚さ10μmの銅箔4cm×100cmに穴径1.5mmの丸い穴を1c
m2当り16個開け、平均穴径1.5mmの連通した穴を有し、
開口率が28%で厚さが10μmの銅集電体を得た。
(Measurement temperature) 25 ° C (Measurement frequency) 1kHz (Sample shape) 0.5mm sheet (Measurement device) TR-10C type dielectric volume measuring instrument (manufactured by Ando Electric Co., Ltd.) Experimental example 1 10 μm thick copper foil 4 cm × 1c round hole with a hole diameter of 1.5mm in 100cm
16 holes per m 2 with continuous holes with an average hole diameter of 1.5 mm,
A copper current collector having an aperture ratio of 28% and a thickness of 10 μm was obtained.

実験例2 厚さ15μmのアルミ箔4cm×100cmに穴径1.0mmの丸い穴
を1cm2当り36個開け、平均穴径1.0mmの連通した穴を有
し、開口率が28%で厚さが15μmのアルミ集電体を得
た。
Experimental Example 2 36 round holes 1.0 mm in diameter were drilled in 4 cm x 100 cm aluminum foil with a thickness of 15 μm per cm 2 , and there were continuous holes with an average hole diameter of 1.0 mm, and the aperture ratio was 28% and the thickness was An aluminum current collector of 15 μm was obtained.

実験例3 市販の石油径ニードルコークス(興亜石油社製,KOA−SJ
Coke)をボールミルで平均粒径3μmに粉砕した。こ
の粉末1重量部をフッ素ゴムのメチルイソブチルケトン
溶液(2wt%濃度)2.5重量部と混合し塗工液を調製し
た。
Experimental Example 3 Commercially available petroleum diameter needle coke (Koa Oil Co., Ltd., KOA-SJ
Coke) was crushed with a ball mill to an average particle size of 3 μm. A coating solution was prepared by mixing 1 part by weight of this powder with 2.5 parts by weight of a solution of fluororubber in methyl isobutyl ketone (2 wt% concentration).

実験例4 Li1.03Co0.95Sn0.042O2の組成を有する複合酸化物をボ
ールミルで平均3μmに粉砕した後、複合酸化物1重量
部に対し、フッ素ゴムのメチルイソブチルケトン溶液
(2wt%濃度)1重量部と導電補助剤としてグラファイ
ト0.2重量部とを混合し塗工液を調製した。
Experimental Example 4 A composite oxide having a composition of Li 1.03 Co 0.95 Sn 0.042 O 2 was pulverized with a ball mill to an average of 3 μm, and then 1 part by weight of the composite oxide was added to a solution of fluororubber in methyl isobutyl ketone (2 wt% concentration). By weight, 0.2 part by weight of graphite as a conduction aid was mixed to prepare a coating liquid.

実施例1 実験例3で調製した塗工液を実験例1の穴を有する銅箔
集電体にデップコーターを用いて以下の条件、塗工速度
1m/min,乾燥温度120℃,乾燥ゾーン長さ1mで塗工し、厚
み75μmの製膜体電極を得た。この製膜体の外観は極め
て良好であった。該製膜体電極より1cm×5cmの大きさを
切出し、これをSUSネットにはさみ、第1図に示す電池
の負極とした。
Example 1 The coating liquid prepared in Experimental Example 3 was applied to a copper foil current collector having holes in Experimental Example 1 using a dip coater under the following conditions and coating speed.
Coating was performed at 1 m / min, a drying temperature of 120 ° C. and a drying zone length of 1 m to obtain a film-forming electrode having a thickness of 75 μm. The appearance of this film-forming body was extremely good. A size of 1 cm × 5 cm was cut out from the film-forming electrode and sandwiched with a SUS net to obtain a negative electrode for the battery shown in FIG.

一方、実験例4で調製した塗工液を実験例2の穴を有す
るアルミ箔集電体にデップコーターを用いて同様な条件
で塗工し、厚み100μmの製膜体電極を得た。この製膜
体の外観は極めて良好であった。該製膜体電極から1cm
×5cmの大きさを切出し、これをSUSネットではさんだも
のを正極とした。
On the other hand, the coating liquid prepared in Experimental Example 4 was applied to the aluminum foil current collector having holes in Experimental Example 2 under the same conditions using a dip coater to obtain a film-forming electrode having a thickness of 100 μm. The appearance of this film-forming body was extremely good. 1 cm from the membrane electrode
A size of 5 cm was cut out, and this was sandwiched between SUS nets to be used as a positive electrode.

セパレーターとして、ポリエチレン微多孔膜35μmを用
い、0.6モル濃度のLiClO4−プロピレンカーボネート溶
液を電解液として、定電流2mAで電池評価を行った。
A 35 μm polyethylene microporous membrane was used as a separator, and a LiClO 4 -propylene carbonate solution having a molar concentration of 0.6 was used as an electrolytic solution, and battery evaluation was performed at a constant current of 2 mA.

以上の結果を第1表に示す。The above results are shown in Table 1.

比較例1 実施例1において穴を有する銅箔が銅箔に代わり、同様
に穴を有するアルミ箔がアルミ箔に代わった以外は、実
施例1と全く同様な方法で正,負極を製膜し、その電池
評価を行った。その結果を第1表に示すように、電極製
膜体の外観において局部的に剥離が認められ、電池性能
は安定しない。
Comparative Example 1 Positive and negative electrodes were formed in exactly the same manner as in Example 1 except that the copper foil having holes was replaced with copper foil in Example 1 and the aluminum foil having holes was replaced with aluminum foil. , The battery was evaluated. As the results are shown in Table 1, peeling is locally recognized in the appearance of the electrode film-forming body, and the battery performance is not stable.

実施例2、比較例2〜4 実施例1において金属集電体として種々の厚さ、穴径、
穴の形状、開口率を有する集電体を用いた以外は全く同
様な方法により電極を製膜し、その電池評価を行なっ
た。その結果を第1表に示す。
Example 2, Comparative Examples 2 to 4 In Example 1, various thicknesses, hole diameters, and
An electrode was formed into a film by the same method except that a current collector having a hole shape and an aperture ratio was used, and the battery was evaluated. The results are shown in Table 1.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の二次電池の構成例の断面図である。第
1図において、1は正極、2は負極、3,3′は集電棒、
4,4′はSUSネット、5,5′は外部電極端子、6は電池ケ
ース、7はセパレーター、8は電解液又は固体電解質で
ある。
FIG. 1 is a sectional view of a constitutional example of a secondary battery of the present invention. In FIG. 1, 1 is a positive electrode, 2 is a negative electrode, 3 and 3'are collector rods,
4,4 'is a SUS net, 5,5' is an external electrode terminal, 6 is a battery case, 7 is a separator, and 8 is an electrolytic solution or a solid electrolyte.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】構成要素として少なくとも、正、負極活物
質、集電体、セパレーター、非水電解液からなる二次電
池であって、複合酸化物の該正極活物質がアルミニウム
集電体上に、炭素質材料の該負極活物質が銅集電体上に
各々塗布形成され、該集電体が平均穴径の1.5mm以下の
連通した穴を有し、開口率が5%以上で厚さが500μm
以下の金属集電体であることを特徴とする二次電池。
1. A secondary battery comprising at least a positive electrode, a negative electrode active material, a current collector, a separator and a non-aqueous electrolyte as constituent elements, wherein the positive electrode active material of a composite oxide is formed on an aluminum current collector. The carbonaceous material of the negative electrode active material is applied and formed on a copper current collector, and the current collector has continuous holes each having an average hole diameter of 1.5 mm or less, and an opening ratio of 5% or more and a thickness. Is 500 μm
A secondary battery comprising the following metal current collector.
JP61266305A 1986-11-08 1986-11-08 Secondary battery Expired - Lifetime JPH0770327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61266305A JPH0770327B2 (en) 1986-11-08 1986-11-08 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61266305A JPH0770327B2 (en) 1986-11-08 1986-11-08 Secondary battery

Publications (2)

Publication Number Publication Date
JPS63121263A JPS63121263A (en) 1988-05-25
JPH0770327B2 true JPH0770327B2 (en) 1995-07-31

Family

ID=17429084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61266305A Expired - Lifetime JPH0770327B2 (en) 1986-11-08 1986-11-08 Secondary battery

Country Status (1)

Country Link
JP (1) JPH0770327B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7381499B2 (en) 2002-11-08 2008-06-03 Sanyo Electric Co., Ltd. Nonaqueous electrolyte battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993006628A1 (en) 1991-09-13 1993-04-01 Asahi Kasei Kogyo Kabushiki Kaisha Secondary cell
ATE392018T1 (en) * 1997-02-12 2008-04-15 Solicore Inc POLYAMIDE BATTERY
JP2000243450A (en) * 1999-02-19 2000-09-08 Fujitsu Ltd Alkaline secondary battery
JP3933342B2 (en) 1999-04-05 2007-06-20 東洋アルミニウム株式会社 Metal foil for current collector of secondary battery and current collector for secondary battery
KR100624972B1 (en) 2005-01-28 2006-09-19 삼성에스디아이 주식회사 Electrode Plate of Li Secondary Battery and Method of fabricating the same and Li Secondary Battery with the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711473A (en) * 1980-06-24 1982-01-21 Yuasa Battery Co Ltd Battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711473A (en) * 1980-06-24 1982-01-21 Yuasa Battery Co Ltd Battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7381499B2 (en) 2002-11-08 2008-06-03 Sanyo Electric Co., Ltd. Nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JPS63121263A (en) 1988-05-25

Similar Documents

Publication Publication Date Title
USRE34991E (en) Secondary battery
JP3541913B2 (en) Non-aqueous electrolyte secondary battery
US5951959A (en) Mesophase pitch-based carbon fiber for use in negative electrode of secondary battery and process for producing the same
JPH0424831B2 (en)
JP3540478B2 (en) Anode material for lithium ion secondary battery
US5851697A (en) Negative electrode material for lithium secondary cell, method for its production, and lithium secondary cell
JP2000203818A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP3430614B2 (en) Non-aqueous electrolyte secondary battery
US5556723A (en) Negative electrode for use in a secondary battery
JP2007048717A (en) Battery
JPH0770328B2 (en) Secondary battery
JP3779461B2 (en) Lithium secondary battery, negative electrode thereof and method for producing the same
JP4354723B2 (en) Method for producing graphite particles
US20020160266A1 (en) Graphite material for negative electrode of lithium ion secondary battery and process for producing the same
JP2630939B2 (en) Non-aqueous secondary battery
JPH0770327B2 (en) Secondary battery
JP3651225B2 (en) Lithium secondary battery, negative electrode thereof and method for producing the same
JPS63121259A (en) Secondary battery
JP2004179019A (en) Electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2704841B2 (en) Rechargeable battery
JPH0963585A (en) Carbon material for lithium secondary battery and manufacture thereof
JP2727301B2 (en) Manufacturing method of secondary battery electrode
KR101993461B1 (en) Electrode active material for magnesium battery, method for preparing the same, electrode comprising the same, and magnesium battery comprising the electrode
KR101993456B1 (en) Electrode active material for magnesium battery, method for preparing the same, electrode comprising the same, and magnesium battery comprising the electrode
JP5001977B2 (en) Graphite particles, lithium ion secondary battery and negative electrode material thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term