JPH0770325B2 - Sodium-sulfur battery - Google Patents
Sodium-sulfur batteryInfo
- Publication number
- JPH0770325B2 JPH0770325B2 JP61224623A JP22462386A JPH0770325B2 JP H0770325 B2 JPH0770325 B2 JP H0770325B2 JP 61224623 A JP61224623 A JP 61224623A JP 22462386 A JP22462386 A JP 22462386A JP H0770325 B2 JPH0770325 B2 JP H0770325B2
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolyte
- sodium
- reinforcing material
- titanium
- sulfur battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
- H01M10/39—Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
- H01M10/3909—Sodium-sulfur cells
- H01M10/3918—Sodium-sulfur cells characterised by the electrolyte
- H01M10/3927—Several layers of electrolyte or coatings containing electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ナトリウム−硫黄電池に係り、特に陰極活物
質と陽極活物質との間に配置され両物質を分離するアル
ミナ系セラミックの固体電解質の補強に関するものであ
る。Description: TECHNICAL FIELD The present invention relates to a sodium-sulfur battery, and in particular, an alumina-based ceramic solid electrolyte disposed between a cathode active material and an anode active material to separate the two materials. Reinforcement of.
〔従来の技術〕 電力貯蔵用二次電池の開発は近年注目を集め、なかでも
ナトリウム−硫黄電池は性能,経済性が優れているなど
により重要視されている。ナトリウム−硫黄電池の具体
的な構造の一例を第6図に示す。第6図において、陰極
活物質1として溶融ナトリウム,陽極活物質2として溶
融硫黄と多硫化ナトリウムを使用し、電解質としてはナ
トリウムイオン(Na+イオン)の伝導性を有する固体電
解質3を用いたものである。電解質3はナトリウムイオ
ンの伝導性が大きいことからβ系アルミナ(β−アルミ
ナ:Na2O・11Al2O3,β″−アルミナ:Na2O・6Al2O3)
が使用されている。β系アルミナは電子伝導性を持たな
いため、陰極と陽極を分離する隔壁の役目もしている。
第6図において、4は陰極室容器、5は陽極室容器であ
り、この周縁部をαアルミナなどで作られた絶縁物質6
を介してステンレス鋼製の締め付けバンド7を圧着して
組立てられている。本電池作動温度は陽極活物質2の融
点を考慮して300℃以上が有効とされている。充放電反
応は、 であり、したがつて電池全体としては次のごとくなる。[Prior Art] The development of secondary batteries for electric power storage has been attracting attention in recent years, and among them, sodium-sulfur batteries are regarded as important because of their excellent performance and economical efficiency. An example of a specific structure of the sodium-sulfur battery is shown in FIG. In FIG. 6, molten sodium is used as the cathode active material 1, molten sulfur and sodium polysulfide are used as the anode active material 2, and a solid electrolyte 3 having sodium ion (Na + ion) conductivity is used as the electrolyte. Is. Since the electrolyte 3 has high conductivity of sodium ions, β-type alumina (β-alumina: Na 2 O · 11Al 2 O 3 , β ″ -alumina: Na 2 O · 6Al 2 O 3 )
Is used. Since β-alumina does not have electronic conductivity, it also serves as a partition wall that separates the cathode and the anode.
In FIG. 6, 4 is a cathode chamber container, 5 is an anode chamber container, and an insulating material 6 made of α-alumina or the like is provided around the peripheral portion.
It is assembled by crimping a tightening band 7 made of stainless steel through. Considering the melting point of the anode active material 2, the operating temperature of this battery is considered to be 300 ° C. or higher. The charge / discharge reaction is Therefore, the battery as a whole is as follows.
ただし、Xは通例3〜5の範囲にとる。 However, X is usually in the range of 3 to 5.
ナトリウム−硫黄電池で使用される固体電解質β系アル
ミナは金属材料に比べると熱膨張率や熱伝導率が小さ
く、機械的強度も一般に小さい。そのため、電池の起
動,停止時の温度差,陰極と陽極の活物質の体積膨張
差、および電池反応の進行によつて生ずる陰極室と陽極
室の間の圧力差などによつて固体電解質が破損する可能
性がある。固体電解質が破損すると両活物質のナトリウ
ムと硫黄が反応し、例えば両活物質の反応熱から到達温
度を試算してみると、10Ah程度の単電池の場合で約850
℃程度になり時にはナトリウムの沸点温度883℃まで達
する可能性がある。The solid electrolyte β-based alumina used in the sodium-sulfur battery has a smaller thermal expansion coefficient and thermal conductivity than a metal material, and generally has a small mechanical strength. Therefore, the solid electrolyte is damaged by the temperature difference at the time of starting and stopping the battery, the volume expansion difference between the cathode and the anode active material, and the pressure difference between the cathode chamber and the anode chamber caused by the progress of the battery reaction. there's a possibility that. When the solid electrolyte is damaged, sodium and sulfur of both active materials react with each other.For example, the temperature reached from the reaction heat of both active materials is estimated to be about 850 for a single cell of about 10 Ah.
The boiling point temperature of sodium may reach 883 ℃.
固体電解質はイオン伝導率向上のため、その肉厚はでき
るだけ薄い方が良いが、薄くなると機械的強度が小さく
なる。そのため固体電解質の表面に対し垂直になるよう
に陰極室内に陰極室の厚さとほぼ等しい幅を有するステ
ンレス鋼製金属帯を補強部材として湾曲屈曲あるいは交
叉させて自立性をあたえ、かつナトリウムの移動の障害
とならないよう固体電解質表面に部分的に接触させた従
来例が存在する。The solid electrolyte is preferably as thin as possible in order to improve the ionic conductivity, but as it becomes thinner, the mechanical strength becomes smaller. Therefore, a stainless steel metal strip having a width substantially equal to the thickness of the cathode chamber is provided as a reinforcing member in the cathode chamber so as to be perpendicular to the surface of the solid electrolyte, thereby giving bending or crossing as a reinforcing member to provide self-supporting property and to prevent sodium migration. There is a conventional example in which the solid electrolyte surface is partially contacted so as not to become an obstacle.
しかしながら固体電解質の破損が一旦起こると、その部
位の周辺に破損は伝播し拡大していく可能性がある。上
記従来例のような補強ではこのような破損の伝播を防止
する効果は小さい。そこで、仮りに固体電解質に割れな
どが入つても、それを大きな破損に至らしめないような
補強方法の開発が望まれている。一つの方法として機械
的強度の強い金属材料を固体電解質の表面に張りつける
ことが考えられる。金属材料としては活物質に対する耐
食性などの点から一般にはステンレス鋼が用いられる必
要があるが、ステンレス鋼と固体電解質を容易に接合す
る技術がこれまでなかつた。However, once the damage of the solid electrolyte occurs, the damage may propagate and spread around the site. With the reinforcement as in the above-mentioned conventional example, the effect of preventing the propagation of such damage is small. Therefore, there is a demand for the development of a reinforcing method that does not lead to large damage even if the solid electrolyte is cracked. As one method, it is possible to attach a metal material having high mechanical strength to the surface of the solid electrolyte. As a metal material, stainless steel is generally required to be used from the viewpoint of corrosion resistance against an active material, but there has been no technique for easily joining stainless steel and a solid electrolyte.
本発明の目的は、かかる問題点を解決するため、アルミ
ナ系セラミツクの固体電解質を有するナトリウム−硫黄
電池において、この固体電解質とこれを補強する補強材
との接合を可能にし、この接合によって固体電解質の破
損及びその伝播拡大を防止することの出来るナトリウム
−硫黄電池を提供することである。The object of the present invention is to solve the above problems, in a sodium-sulfur battery having a solid electrolyte of alumina ceramics, it is possible to join the solid electrolyte and a reinforcing material to reinforce the solid electrolyte, by this joining It is an object of the present invention to provide a sodium-sulfur battery capable of preventing the damage of the battery and the spread of its propagation.
上記目的を達成するために本発明者らは鋭意検討を行つ
た結果、アルミナ系セラミツクはチタン系化合物からな
る層を介することにより種々の補強部材と接合するとい
う新たな知見を得た。As a result of intensive studies conducted by the present inventors in order to achieve the above object, the inventors have obtained a new finding that alumina-based ceramics are bonded to various reinforcing members through a layer made of a titanium-based compound.
本発明は、このような知見によりなされたものであり、
その構成は、溶融ナトリウムを用いる陰極活物質と、溶
融硫黄を用いる陽極活物質と、前記陰極活物質と該陽極
活物質との間に配置され両物質を分離するアルミナ系セ
ラミックの固体電解質とを有するナトリウム−硫黄電池
において、前記固体電解質は、チタン系化合物からなる
層を介して接合された補強材によって補強されているも
のである。The present invention has been made based on such findings,
The structure is such that a cathode active material using molten sodium, an anode active material using molten sulfur, and a solid electrolyte of an alumina-based ceramic disposed between the cathode active material and the anode active material to separate the two materials. In the sodium-sulfur battery having the solid electrolyte, the solid electrolyte is reinforced by a reinforcing material joined through a layer made of a titanium compound.
上記本発明の構成によれば、窒化チタンや炭化チタン等
チタン系化合物を表面にコーテイングした補強材または
チタン系化合物の含有させた補強材を、アルミナ系セラ
ミツクの固体電解質と接触さて真空中で加熱すると補強
材の表面にコーテイングされたチタン系化合物又は補強
材中のチタン系化合物がアルミナ系セラミツクの固体電
解質表面から内部にかけて拡散、析出、成長して、一種
のくぎ打ち効果としての働きを呈し、アルミナ系セラミ
ツクの固体電解質と補強材との密着性が向上する。この
結果、アルミナ系セラミツクの固体電解質はチタン系化
合物からなる層を介して補強材と接合されることによっ
て補強され機械的強度が高くなるので、ナトリウム−硫
黄電池の作動時に生ずる種々の外力による破損および破
損拡大を防止することができる。また、ナトリウム−硫
黄電池の反応生成物であるNa2Sxは、腐食性が強いが、
接合媒体であるチタン系化合物は耐食性に優れておりナ
トリウム−硫黄電池の固体電解質と補強材との接合媒体
として最適である。According to the configuration of the present invention, a reinforcing material coated with a titanium compound such as titanium nitride or titanium carbide on the surface or a reinforcing material containing a titanium compound is heated in vacuum by contacting with a solid electrolyte of an alumina ceramic. Then, the titanium-based compound coated on the surface of the reinforcing material or the titanium-based compound in the reinforcing material diffuses, precipitates, and grows from the solid electrolyte surface of the alumina ceramic to the inside, and acts as a kind of nailing effect, Adhesion between the solid electrolyte of the alumina-based ceramic and the reinforcing material is improved. As a result, the solid electrolyte of the alumina-based ceramic is reinforced by being joined to the reinforcing material through the layer made of the titanium-based compound and the mechanical strength is increased, so that damage due to various external forces generated during the operation of the sodium-sulfur battery is caused. And it is possible to prevent the damage from expanding. In addition, Na 2 Sx, which is a reaction product of a sodium-sulfur battery, is highly corrosive,
The titanium-based compound, which is a joining medium, has excellent corrosion resistance and is optimal as a joining medium between the solid electrolyte of the sodium-sulfur battery and the reinforcing material.
次に、本発明にかかるナトリウム−硫黄電池の実施例に
ついて説明する。本発明のナトリウム−硫黄電池を構成
する固体電解質は、陰極活物質と陽極活物質との間に配
置され両物質を分離するアルミナ系セラミックの固体電
解質であって、Na+透過性の固体電解質である。Next, examples of the sodium-sulfur battery according to the present invention will be described. The solid electrolyte constituting the sodium-sulfur battery of the present invention is a solid electrolyte of an alumina-based ceramic that is disposed between a cathode active material and an anode active material and separates both materials, and is a Na + permeable solid electrolyte. is there.
第1図は、その一実施例の構成を示す断面図である。FIG. 1 is a sectional view showing the structure of the embodiment.
固体電解質と補強材としての金属の接合状態は第1図に
示される如くである。β系アルミナを主成分とする固体
電解質3の補強材8としては、ステンレス鋼などの耐高
温強度が大きく耐食性に優れた金属を用いており、固体
電解質3との接合は、炭化チタンや窒化チタンなどのチ
タン系化合物からなる層である接合媒体9を介して行わ
せる。また補強材8と接合媒体9には、第1図に示すよ
うに同位置にナトリウムイオン導通孔10を設けており、
固体電解質3と陰極室との間でナトリウムイオンの移動
を妨害しないようになつている。The joining state of the solid electrolyte and the metal as the reinforcing material is as shown in FIG. As the reinforcing material 8 of the solid electrolyte 3 containing β-based alumina as a main component, a metal such as stainless steel having high temperature resistance and excellent corrosion resistance is used, and the solid electrolyte 3 is bonded to titanium carbide or titanium nitride. Is performed through a bonding medium 9 which is a layer made of a titanium compound such as. Further, the reinforcing material 8 and the joining medium 9 are provided with sodium ion conducting holes 10 at the same position as shown in FIG.
It does not interfere with the movement of sodium ions between the solid electrolyte 3 and the cathode chamber.
固体電解質3と補強材8との間に接合媒体9を設ける方
法は、補強材8の固体電解質3との接合面側にチタン系
化合物をイオンプレーテイング法やスパツタリング法な
どの方法でコーテイングしてチタン系化合物の薄膜を設
ける。このコーテイング面を固体電解質3と接合させ
る。すなわち、あらかじめ接合媒体を補強材8上に設け
る方法である。他の方法は、補強材8の材質にチタンを
含有する金属、例えばステンレス鋼SUS321などを用い、
固体電解質3と接合させた時に、その接合面に合金中に
炭化チタンなどのチタン系化合物が固体電解質3の表面
から内部にかけて析出成長させて接合させる方法であ
る。The method for providing the bonding medium 9 between the solid electrolyte 3 and the reinforcing material 8 is to coat a titanium compound on the bonding surface side of the reinforcing material 8 with the solid electrolyte 3 by a method such as an ion plating method or a sputtering method. A thin film of titanium compound is provided. This coating surface is bonded to the solid electrolyte 3. That is, it is a method of previously providing the joining medium on the reinforcing material 8. Another method is to use a metal containing titanium as the material of the reinforcing material 8, such as stainless steel SUS321,
This is a method in which a titanium-based compound such as titanium carbide is deposited and grown in the alloy from the surface to the inside of the solid electrolyte 3 when the solid electrolyte 3 is joined to the joining surface.
上記のいずれの方法も、真空中で加圧下700〜1000℃前
後で加熱処理を行つて接合させるものである。その接合
機構は加熱処理によつて接合媒体9となるチタン系化合
物が固体電解質3の主要成分であるβ系アルミナとの接
触界面、並びにその組織内部に析出して成長し、一種の
くぎ打ち効果の働きをする。In any of the above methods, heat treatment is performed in a vacuum at about 700 to 1000 ° C. under pressure to bond them. The bonding mechanism is a kind of nailing effect in which the titanium-based compound that becomes the bonding medium 9 by heating treatment precipitates and grows on the contact interface with β-alumina, which is the main component of the solid electrolyte 3, and inside the structure. To work.
なお、補強材8の材料にチタンを含有する金属を用いた
場合は、チタンが同じく材料中に含まれる炭素と化学結
合して炭化チタンとなつてアルミナ系セラミツク中に析
出成長するのである。When a metal containing titanium is used as the material of the reinforcing material 8, titanium is chemically bonded to carbon contained in the material to form titanium carbide and precipitates and grows in the alumina ceramic.
これにより固体電解質3は接合媒体9を介して補強材8
と接合されて一体化されることになる。その結果、界面
における機械的強度が向上する。As a result, the solid electrolyte 3 is reinforced by the reinforcing material 8 via the bonding medium 9.
Will be joined and integrated. As a result, the mechanical strength at the interface is improved.
上記実施例では、電池作動中の圧力上昇が陽極室に発生
し、固体電解質3に対し陰極室側に向かつた力が働くこ
とから補強材8を陰極室側に接合した場合の実施例とし
て示したが、固体電解質3の両側、すなわち陽極室側に
も補強材8を接合することもできる。その接合は上記実
施例と同じ方法で行うことができ、かつその接合機構も
同じである。固体電解質の両側に補強材8を設けること
による利点は、固体電解質3の機械的強度をさらに向上
させるだけでなく、万一固体電解質3が破損した場合に
その破損片を両補強材内に留め、活物質中への混合分散
を防止できるということである。In the above-described embodiment, a pressure rise during battery operation occurs in the anode chamber, and a force directed to the cathode chamber side acts on the solid electrolyte 3, so that the reinforcing member 8 is joined to the cathode chamber side. Although shown, the reinforcing material 8 can also be joined to both sides of the solid electrolyte 3, that is, the anode chamber side. The joining can be performed by the same method as in the above embodiment, and the joining mechanism is also the same. The advantage of providing the reinforcing materials 8 on both sides of the solid electrolyte is that not only the mechanical strength of the solid electrolyte 3 is further improved, but also in the unlikely event that the solid electrolyte 3 is damaged, the broken pieces are retained in both the reinforcing materials. That is, it is possible to prevent mixing and dispersion in the active material.
なお、上記本実施例ではチタン系化合物を補強材8にコ
ーテイングしたが、逆にアルミナセラミツク材である固
体電解質側にコーテイングし、接合媒体9を形成するこ
とも可能である。Although the titanium compound is coated on the reinforcing material 8 in the present embodiment, it is also possible to form the bonding medium 9 by coating the titanium compound on the solid electrolyte side which is an alumina ceramic material.
また上記実施例では、補強材8および接合媒体9にはナ
トリウムイオンを通すための貫通孔10を機械的に加工し
たが、補強材8としてポーラスな性状のもの例えば細か
いメツシユあるいは繊維状のステンレス鋼などの金属を
用いてもよい。この場合、機械的な加工を施すことなく
ナトリウムイオン導通が行なわれ、電池としての機能を
確保されるものである。Further, in the above-described embodiment, the reinforcing material 8 and the joining medium 9 are mechanically processed with the through holes 10 for allowing sodium ions to pass through. However, the reinforcing material 8 has a porous property, for example, a fine mesh or fibrous stainless steel. You may use metals, such as. In this case, sodium ion conduction is performed without mechanical processing, and the function as a battery is ensured.
接合媒体9の厚さはコーテイング層または補強材中に含
まれるチタン量に従い大きくなる。また、加熱時間が長
くなるに従って、同様に大きくなる。The thickness of the joining medium 9 increases according to the amount of titanium contained in the coating layer or the reinforcing material. In addition, the longer the heating time, the larger the heating time.
他の実施例としては、第2図に示すように固体電解質3
で補強材8をサンドイツチ状にはさみ込んだものであ
る。その時の接合方法は、補強材8の両側に接合媒体9
を上記において説明したと同様の方法により設けること
により行うものである。As another embodiment, as shown in FIG.
Then, the reinforcing material 8 is sandwiched in the shape of a Saint-Gerache. The joining method at that time is as follows.
Is provided by a method similar to that described above.
本実施例によれば、中心部に補強材8が設けられている
ために、固体電解質3に圧力がかかつた場合、圧力が均
一に分散しつつ、固体電解質3の補強を行うこともでき
る。According to the present embodiment, since the reinforcing material 8 is provided in the central portion, when pressure is applied to the solid electrolyte 3, the solid electrolyte 3 can be reinforced while the pressure is evenly distributed. .
上記した各実施例は、いずれも電池用としてその機能を
持たせ完成された固体電解質3に対し補強材8を接合さ
せたものであつたが、固体電解質3の製造過程で補強材
と接合させることもできる。すなわち、第3図に示すよ
うに、固体電解質3の寸法に合わせて成形した補強材8
の両面に粉砕・造粒したβ系アルミナを塗布・成形後、
約1500℃で焼結させることにより補強材8を内部に設け
た固体電解質3が製造できる。第3図は本製造方法で得
た固体電解質3の部分断面図である。この場合、約1500
℃で焼結させるために上記したステンレス鋼などの金属
を用いることができない。そこで炭化チタンや窒化チタ
ンなどのチタン系セラミツクスそのものを用い、チタン
系セラミツクスそのものがβ系アルミナと第1図で説明
と同様の機構にて接合される。また本実施例において
は、第2図で示したように、固体電解質3における構造
は類似するが、イオン導通孔10内にもβ系アルミナが充
填されることになる。したがつて、第2図に示した方法
で固体電解質3を補強した場合イオン導通孔10にわずか
ながらも混入されるおそれがあるガス状の不純物の存在
が無くなり、イオンの移動速度などへの影響が全く無視
できるようになる。In each of the above-described examples, the reinforcing material 8 is bonded to the completed solid electrolyte 3 having the function for a battery, but it is bonded to the reinforcing material in the manufacturing process of the solid electrolyte 3. You can also That is, as shown in FIG. 3, the reinforcing material 8 formed in accordance with the size of the solid electrolyte 3
After applying and molding β-alumina that has been crushed and granulated on both sides of
By sintering at about 1500 ° C., the solid electrolyte 3 having the reinforcing material 8 therein can be manufactured. FIG. 3 is a partial cross-sectional view of the solid electrolyte 3 obtained by this manufacturing method. In this case, about 1500
It is not possible to use the metals mentioned above, such as stainless steel, for sintering at ° C. Therefore, titanium-based ceramics such as titanium carbide or titanium nitride itself is used, and the titanium-based ceramics itself is joined to β-based alumina by the same mechanism as described in FIG. Further, in the present embodiment, as shown in FIG. 2, the structure of the solid electrolyte 3 is similar, but the β-type alumina is also filled in the ion conducting hole 10. Therefore, when the solid electrolyte 3 is reinforced by the method shown in FIG. 2, the presence of gaseous impurities, which may be mixed in the ion conduction hole 10, even though it is a little, is eliminated, and the influence on the ion migration speed is affected. Can be completely ignored.
第4図、第5図は、本発明にかかるナトリウム−硫黄電
池の二つの実施例を示したものである。第4図は第6図
の従来例で示した板状の固体電解質3に本発明にかかる
補強材8を接合したものを用いたものであり、第5図は
他の固体電解質の形状として円筒状の固体電解質3に本
発明を応用した例を示したものである。4 and 5 show two embodiments of the sodium-sulfur battery according to the present invention. FIG. 4 uses a plate-shaped solid electrolyte 3 shown in the conventional example of FIG. 6 to which a reinforcing material 8 according to the present invention is joined, and FIG. 5 shows another solid electrolyte having a cylindrical shape. 2 shows an example in which the present invention is applied to a solid electrolyte 3 having a shape of a circle.
第5図においては円筒状の固体電解質3の内側に陰極活
物質1を充填してある。また外側には陽極活物質2を充
填してあり、これを耐食性金属板11で補強した陽極室容
器5で保持している。電気は陰極活物質1内に挿入した
陰極棒12と陽極室容器より取り出すものである。いずれ
も電池としての原理は第6図の従来例で示したのと同じ
である。In FIG. 5, the cathode active material 1 is filled inside the cylindrical solid electrolyte 3. Further, the outside is filled with an anode active material 2, which is held by an anode chamber container 5 reinforced by a corrosion-resistant metal plate 11. Electricity is taken out from the cathode rod 12 inserted in the cathode active material 1 and the anode chamber container. The principle as a battery is the same as that shown in the conventional example of FIG.
固体電解質3の破損は、一般に最初局所的なピンホール
あるいはクラツクなどで生じるものと考えられるが、本
発明による固体電解質3と補強材8の接合部は全面接合
でなく、微細な非接合面(第1図のごとくイオン導通孔
10が存在する)を有し、かつその非接合面の周囲を強固
な接合面(第1図の接合媒体9)で囲んだようになつて
いる。このため、万一破損が起つた場合に、反応にあず
かる陰,陽の活物質はこの微細な非接合面のみを通るこ
とになり、その反応量は抑制されてナトリウムと硫黄の
瞬時の反応が抑えられる。また破損の拡大は非接合面を
囲む強固な接合面により、その進展が阻止され、抑制さ
れる。Generally, the damage of the solid electrolyte 3 is considered to occur initially due to local pinholes or cracks. However, the joint portion of the solid electrolyte 3 and the reinforcing material 8 according to the present invention is not a full joint but a fine non-joint surface ( Ion conduction hole as shown in Fig. 1
10 is present), and the periphery of the non-bonding surface is surrounded by a strong bonding surface (bonding medium 9 in FIG. 1). Therefore, in the event of damage, the negative and positive active materials that participate in the reaction pass only through this fine non-bonding surface, the reaction amount is suppressed, and the instantaneous reaction between sodium and sulfur is suppressed. It can be suppressed. Further, the expansion of the breakage is suppressed and prevented by the strong joint surface surrounding the non-joint surface.
以上は、本発明をナトリウム−硫黄電池の封止型固体電
解質に適用した場合について説明したが、特開昭60−17
869号公報に示される流動型用固体電解質としての適用
は勿論、原子力,火力,自動車や航空機あるいはエレク
トロニクスなどの分野におけるアルミナと補強材である
ステンレス鋼の接合材として適用できることは勿論であ
る。また、ナトリウム熱発電装置のNa+透過性固体電解
質およびNa+,K+,Ca+センサーの陽イオン透過性固体電
解質として用いることもできる。The case where the present invention is applied to the sealed solid electrolyte of a sodium-sulfur battery has been described above.
It is needless to say that it can be applied not only as a fluid-type solid electrolyte disclosed in Japanese Patent No. 869, but also as a bonding material between alumina and a stainless steel which is a reinforcing material in the fields of nuclear power, thermal power, automobiles, aircraft, electronics, and the like. It can also be used as a Na + permeable solid electrolyte for sodium thermoelectric generators and as a cation permeable solid electrolyte for Na + , K + , Ca + sensors.
以上説明したように本発明のナトリウム−硫黄電池の固
体電解質は、チタン系化合物からなる層を介して接合さ
れた補強材によって補強されているものであるので、固
体電解質と補強材の接触界面及びアルミナ系セラミック
の固体電解質の表面から内部にかけて拡散、析出、成長
したチタン系化合物からなる層のくぎ打ち効果により、
固体電解質の補強材との接合強度が大きくなると共に、
電池の起動、停止時の温度差、陰極と陽極の活物質の体
積膨張差、電池反応の進行によって生ずる陰極室と陽極
室の間の圧力差などによる固体電解質の破損およびその
破損の伝播を防止することができる。また、ナトリウム
−硫黄電池の反応生成物であるNa2Sxは、腐食性が強い
が、接合媒体であるチタン系化合物は耐食性に優れてお
りナトリウム−硫黄電池の固体電解質と補強材との接合
媒体として最適である。As described above, the solid electrolyte of the sodium-sulfur battery of the present invention is reinforced by the reinforcing material joined through the layer made of the titanium-based compound, and thus the contact interface between the solid electrolyte and the reinforcing material and Due to the nailing effect of the layer composed of the titanium-based compound diffused, precipitated, and grown from the surface to the inside of the solid electrolyte of the alumina-based ceramic,
As the strength of the solid electrolyte reinforcement material increases,
Prevents damage to the solid electrolyte and propagation of the damage due to temperature difference when starting and stopping the battery, difference in volume expansion between the cathode and anode active materials, and pressure difference between the cathode chamber and anode chamber caused by the progress of the battery reaction. can do. In addition, Na 2 Sx, which is a reaction product of sodium-sulfur battery, is highly corrosive, but the titanium-based compound that is the bonding medium is excellent in corrosion resistance, and the bonding medium between the solid electrolyte and the reinforcing material of the sodium-sulfur battery is As is the best.
第1図は、本発明にかかるナトリウム−硫黄電池の一実
施例を示し、固体電解質の一方側に補強材が接合された
状態の断面図、第2図は、本発明にかかるナトリウム−
硫黄電池の他の実施例を示し、補強材が固体電解質でサ
ンドイッチ状にはさみ込まれた状態の断面図、第3図は
さらに他の実施例を示し、補強材が固体電解質の内部に
設けられた状態の断面図、第4図および第5図は、それ
ぞれ本発明にかかるナトリウム−硫黄電池の断面図、第
6図は従来技術にかかるナトリウム−硫黄電池の断面
図、を各々示す。 1……陰極活物質、2……陽極活物質、3……固体電解
質、8……補強材、9……接合媒体、10……イオン導通
孔。FIG. 1 shows an embodiment of a sodium-sulfur battery according to the present invention, a cross-sectional view of a state in which a reinforcing material is joined to one side of a solid electrolyte, and FIG. 2 shows a sodium-sulfur battery according to the present invention.
FIG. 3 is a cross-sectional view showing another embodiment of a sulfur battery in which a reinforcing material is sandwiched between solid electrolytes, and FIG. 3 shows still another embodiment, in which the reinforcing material is provided inside the solid electrolyte. FIG. 4 is a sectional view of the sodium-sulfur battery according to the present invention, and FIG. 6 is a sectional view of the sodium-sulfur battery according to the related art. 1 ... Cathode active material, 2 ... Anode active material, 3 ... Solid electrolyte, 8 ... Reinforcing material, 9 ... Bonding medium, 10 ... Ion conducting hole.
フロントページの続き (72)発明者 相馬 尚志 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 (72)発明者 下屋敷 重広 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 (56)参考文献 特開 昭58−41774(JP,A) 特開 昭60−180658(JP,A) 実開 昭53−8539(JP,U)Front page continuation (72) Inventor Naoshi Soma 1168 Moriyama-cho, Hitachi, Hitachi, Ibaraki Energy Research Institute, Hitachi Ltd. (72) Shigehiro Shimoyashiki, Inventor 1168, Moriyama-cho, Hitachi, Hitachi Energy Research In-house (56) Reference JP-A-58-41774 (JP, A) JP-A-60-180658 (JP, A) Practical application Sho-53-8539 (JP, U)
Claims (5)
融硫黄を用いる陽極活物質と、前記陰極活物質と該陽極
活物質との間に配置され両物質を分離するアルミナ系セ
ラミックの固体電解質とを有するナトリウム−硫黄電池
において、前記固体電解質は、チタン系化合物からなる
層を介して接合された補強材によって補強されているも
のであることを特徴とするナトリウム−硫黄電池。1. A cathode active material using molten sodium, an anode active material using molten sulfur, and a solid electrolyte of an alumina-based ceramic which is disposed between the cathode active material and the anode active material to separate the two materials. In the sodium-sulfur battery, the solid electrolyte is reinforced by a reinforcing material joined via a layer made of a titanium-based compound.
ン系化合物は、窒化チタン(TiN)、炭化チタン(TiC)
であることを特徴とするナトリウム−硫黄電池。2. The titanium compound according to claim 1, wherein the titanium compound is titanium nitride (TiN) or titanium carbide (TiC).
And a sodium-sulfur battery.
て、前記補強材は、チタンと炭素または窒素を含有する
金属であることを特徴とするナトリウム−硫黄電池。3. The sodium-sulfur battery according to claim 1 or 2, wherein the reinforcing material is a metal containing titanium and carbon or nitrogen.
て、前記補強材はチタン−炭素系セラミックであり、前
記固体電解質の表面から内部にかけて拡散した炭化チタ
ンの拡散層を介して接合された前記補強材を備えたもの
であることを特徴とするナトリウム−硫黄電池。4. The reinforcing material according to claim 1 or 2, wherein the reinforcing material is a titanium-carbon based ceramic, and the reinforcing material is joined through a diffusion layer of titanium carbide diffused from the surface to the inside of the solid electrolyte. A sodium-sulfur battery comprising the reinforcing material.
において、前記固体電解質の両面に接合された前記補強
材を備えたものであることを特徴とするナトリウム−硫
黄電池。5. A sodium-sulfur battery according to any one of claims 1 to 4, wherein the solid electrolyte is provided with the reinforcing material bonded to both surfaces of the solid electrolyte.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61224623A JPH0770325B2 (en) | 1986-09-22 | 1986-09-22 | Sodium-sulfur battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61224623A JPH0770325B2 (en) | 1986-09-22 | 1986-09-22 | Sodium-sulfur battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6380483A JPS6380483A (en) | 1988-04-11 |
JPH0770325B2 true JPH0770325B2 (en) | 1995-07-31 |
Family
ID=16816607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61224623A Expired - Fee Related JPH0770325B2 (en) | 1986-09-22 | 1986-09-22 | Sodium-sulfur battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0770325B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5059497A (en) * | 1990-04-20 | 1991-10-22 | Hughes Aircraft Company | Composite ion-conductive electrolyte member |
US5134044A (en) * | 1991-03-11 | 1992-07-28 | Hughes Aircraft Company | Glass-graphite bonding system for sodium-sulphur batteries and batteries made therefrom |
CN104685694A (en) * | 2012-05-23 | 2015-06-03 | 材料和系统研究公司 | Porous metal supported thin film sodium ion conducting solid state electrolyte |
US9356314B2 (en) | 2013-02-25 | 2016-05-31 | Battelle Memorial Institute | Metallization pattern on solid electrolyte or porous support of sodium battery process |
GB201716779D0 (en) * | 2017-10-13 | 2017-11-29 | Univ Lancaster | Electrolyte element and a cell incorporating the electrolyte element |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5841774A (en) * | 1981-09-07 | 1983-03-11 | 大同特殊鋼株式会社 | Manufacture of ceramic-metal composite body |
JPS60180658A (en) * | 1984-02-27 | 1985-09-14 | Daido Steel Co Ltd | Production of ceramic-metal composite body |
-
1986
- 1986-09-22 JP JP61224623A patent/JPH0770325B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS6380483A (en) | 1988-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5162172A (en) | Bipolar battery | |
KR950002959B1 (en) | Composite ion-conductive electrolyte menber | |
US4840859A (en) | Thermal battery | |
EP0645788A2 (en) | Solid state electrochemical capacitors and their preparation | |
JPH0422867B2 (en) | ||
CN111630704B (en) | Electrolyte element and battery incorporating the same | |
JPH0322028B2 (en) | ||
GB2126774A (en) | Method of manufacturing sodium-sulphur batteries | |
CA1242761A (en) | Electrochemical storage cell | |
JPH0770325B2 (en) | Sodium-sulfur battery | |
US20140242471A1 (en) | Metallization pattern on solid electrolyte or porous support of sodium battery process | |
US20120164510A1 (en) | Ceramic-metal sealing structure, and associated method | |
US4968568A (en) | Thermal battery with composite anode | |
CA1149444A (en) | Positive electrode for electrical energy storage device | |
US3201278A (en) | Hermetically sealed fused-electrolyte cell | |
EP0863560A2 (en) | Method of bonding plastic hydrophobic film to metallic sheet and a bipolar rechargeable battery | |
US5482609A (en) | Solid electrolyte gas sensor | |
EP0421159A1 (en) | Sodium-sulfur thermal battery | |
US3262818A (en) | Terminal system for leakproof electrochemical generators | |
JPH0723269B2 (en) | Method of joining metal parts and ceramic parts in sodium-sulfur battery | |
JPH0389469A (en) | Sodium-sulfur battery | |
JPH06349520A (en) | Manufacture of beta alumina solid electrolytic pipe and high temperature type secondary battery using the pipe | |
JP3146684B2 (en) | Sealed secondary battery | |
JP3292994B2 (en) | Sodium-sulfur battery | |
USH661H (en) | Cathode container for sodium-sulfur cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees | ||
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |