JPH0769227A - Power steering device - Google Patents

Power steering device

Info

Publication number
JPH0769227A
JPH0769227A JP21879493A JP21879493A JPH0769227A JP H0769227 A JPH0769227 A JP H0769227A JP 21879493 A JP21879493 A JP 21879493A JP 21879493 A JP21879493 A JP 21879493A JP H0769227 A JPH0769227 A JP H0769227A
Authority
JP
Japan
Prior art keywords
hydraulic
reaction force
valve
pressure
angular displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21879493A
Other languages
Japanese (ja)
Inventor
Yoshifumi Obata
佳史 小幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP21879493A priority Critical patent/JPH0769227A/en
Publication of JPH0769227A publication Critical patent/JPH0769227A/en
Pending legal-status Critical Current

Links

Landscapes

  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

PURPOSE:To stably provide a desirable auxiliary power characteristic in a device wherein operation of an oil pressure control valve for controlling feed oil pressure to a power cylinder is restricted in accordance with car speed, by conducting the restriction by utilizing relative angular displacement between a valve spool and a valve body. CONSTITUTION:An extension part 43 of a valve spool integrated with an input shaft is fitted inside of an extension part 42 of a valve body continuously equipped on an output shaft joined to a steering mechanism. In this fitting part, an O-ring 52 retained by a seal presser 51 projectingly provided on the extension part 42 is made to abut on bottom surfaces of recessed grooves 55, 55 in the outer periphery of the extension part 42, and reaction force chambers A1, A2 are defined on both the sides of the abutting position. Oil pressure corresponding to a car speed and introduced to a hydraulic reaction force part 5 via a lead hole 26 is introduced onto a fitting periphery of the extension part 43 of the valve spool via a lead hole 53, and introduced to a reaction force chamber A1 or A2 via a communication hole 56 or 57 in accordance with relative angular displacement between both the extension parts 42, 43, thereby applying angular moment in the direction restricting the relative angular displacement to the extension part 43.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、舵取機構中に配したパ
ワーシリンダ等の油圧アクチュエータを操舵補助力の発
生源とする油圧式の動力舵取装置に関し、更に詳述すれ
ば、前記油圧アクチュエータへの送給油圧を制御する油
圧制御弁の動作を、車速に応じた力にて制限する油圧反
力部を備えた油圧式の動力舵取装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic power steering apparatus using a hydraulic actuator such as a power cylinder arranged in a steering mechanism as a source of a steering assist force. The present invention relates to a hydraulic power steering apparatus that includes a hydraulic reaction force section that limits the operation of a hydraulic control valve that controls the hydraulic pressure supplied to an actuator with a force that corresponds to the vehicle speed.

【0002】[0002]

【従来の技術】油圧式の動力舵取装置は、自動車の舵取
機構中に配されたパワーシリンダ等の油圧アクチュエー
タと、油圧源たる油圧ポンプ及び作動油を収納する油タ
ンクとの間に、舵輪(ステアリングホィール)の操作に
応じて油圧の給排動作をなす油圧制御弁を配し、該油圧
制御弁から送給される油圧により前記油圧アクチュエー
タが発する油圧力(操舵補助力)を舵取機構に加えて、
舵取りに要する労力負担を軽減しようとするものであ
る。
2. Description of the Related Art A hydraulic power steering system is provided between a hydraulic actuator such as a power cylinder arranged in a steering mechanism of an automobile and an oil tank for accommodating a hydraulic pump and hydraulic oil as a hydraulic source. A hydraulic control valve for supplying / discharging hydraulic pressure according to the operation of the steering wheel is arranged, and the hydraulic pressure (steering assist force) generated by the hydraulic actuator is steered by the hydraulic pressure fed from the hydraulic control valve. In addition to the mechanism,
It is intended to reduce the labor load required for steering.

【0003】前記油圧制御弁としては、舵輪と舵取機構
とを連結する舵輪軸(ステアリングコラム)の中途に構
成された回転式のものが一般的に用いられている。これ
は、舵輪側の入力軸と舵取機構側の出力軸とを、トーシ
ョンバー等の連結部材を介して同軸上に連結し、この連
結部位において、両軸の一方と一体的に形成されたバル
ブスプールを他方に連設された筒形のバルブボディーに
内嵌し、この嵌合周上に複数の絞り部を並設した構成と
なっている。而して、舵輪に操舵トルクが加えられたと
き、前記トーションバーの捩れを伴ってバルブスプール
とバルブボディーとの間に相対角変位が生じ、前記絞り
部の絞り面積が変化して、この面積変化に応じて前記油
圧アクチュエータへの送給油圧が制御される。
As the hydraulic control valve, a rotary type is generally used, which is formed in the middle of a steering wheel shaft (steering column) connecting a steering wheel and a steering mechanism. In this, the input shaft on the side of the steering wheel and the output shaft on the side of the steering mechanism are coaxially connected via a connecting member such as a torsion bar, and is integrally formed with one of the two shafts at this connecting portion. The valve spool is internally fitted into a tubular valve body that is continuous with the other, and a plurality of throttle portions are arranged in parallel on the fitting circumference. Thus, when a steering torque is applied to the steered wheels, a relative angular displacement occurs between the valve spool and the valve body due to the torsion of the torsion bar, and the throttle area of the throttle portion changes, and this area The hydraulic pressure supplied to the hydraulic actuator is controlled according to the change.

【0004】ところが、この種の油圧制御弁を単独に備
えた動力舵取装置においては、舵輪に加えられる操舵ト
ルクと油圧アクチュエータが発生する操舵補助力との間
の対応関係(補助力特性)が、入力軸と出力軸とを連結
するトーションバーの捩れ特性により一義的に決定され
る一方、自動車の舵取りは、操向用の車輪に作用する路
面反力に抗して行われ、路面反力の大小は車速の遅速及
び操舵角度の大小に夫々対応する。従って、前記トーシ
ョンバーの捩れ特性を、停止時及び低速走行時の大なる
路面反力を基準として選定した場合、高速走行時に舵輪
に加わるわずかな力にて舵取りがなされ、直進安定性が
損なわれる一方、高速走行時の小なる路面反力を基準と
して前記トーションバーを選定した場合、多大の力を要
する停止中の舵取り、所謂、据え切りに際して十分な操
舵補助力が得られないという難点がある。
However, in the power steering apparatus having only this type of hydraulic control valve, there is a corresponding relationship (assist force characteristic) between the steering torque applied to the steering wheel and the steering assist force generated by the hydraulic actuator. , Is uniquely determined by the torsional characteristics of the torsion bar that connects the input shaft and the output shaft, while steering the vehicle is performed against the road surface reaction force that acts on the steering wheels. The magnitude of the variable corresponds to the slow speed of the vehicle and the magnitude of the steering angle. Therefore, when the torsional characteristics of the torsion bar are selected with reference to the large road surface reaction force at the time of stopping and low speed traveling, steering is performed with a slight force applied to the steering wheel at high speed traveling, and straight running stability is impaired. On the other hand, when the torsion bar is selected on the basis of a small road surface reaction force during high-speed traveling, there is a drawback that a sufficient steering assist force cannot be obtained when steering while stopping, which requires a large amount of force, so-called stationary steering. .

【0005】そこで従来から、車速の高低に応じて大小
となる油圧反力を発生する油圧反力部を前記油圧制御弁
に並設し、該油圧制御弁の制御動作、具体的には、トー
ションバーの捩れに伴うバルブスプールとバルブボディ
ーとの相対角変位を、前記油圧反力により制限するよう
にした動力舵取装置が実用化されている。
Therefore, conventionally, a hydraulic reaction force portion that generates a hydraulic reaction force that becomes large or small depending on the vehicle speed is provided in parallel with the hydraulic control valve, and the control operation of the hydraulic control valve, specifically, the torsion is performed. A power steering apparatus has been put into practical use in which the relative angular displacement between the valve spool and the valve body due to the twist of the bar is limited by the hydraulic reaction force.

【0006】図7は、特開昭61−200063号公報等に開示
された従来の油圧反力部の一般的な構成を示す横断面図
である。図示の如くこの油圧反力部7は、前記バルブボ
ディーを連設する出力軸3の円筒状をなす延長部分の内
側に、前記バルブスプールを一体的に形成する入力軸2
の延長部分を同軸上にて遊嵌せしめ、出力軸3の延長部
分に、これを半径方向に貫通する複数のシリンダ孔70,
70…を形成し、これらの夫々に半径方向への摺動自在に
プランジャ71,71…を内挿すると共に、出力軸3とこれ
の外側のハウジング20との間に、前記シリンダ孔70,70
…を一括的に連通する導圧室72を周設した構成となって
いる。
FIG. 7 is a cross-sectional view showing a general structure of a conventional hydraulic reaction force portion disclosed in Japanese Patent Laid-Open No. 61-200063. As shown in the figure, the hydraulic reaction force portion 7 has an input shaft 2 integrally forming the valve spool inside a cylindrical extension portion of the output shaft 3 that connects the valve body.
The extension portion of the output shaft 3 is loosely fitted coaxially, and the extension portion of the output shaft 3 has a plurality of cylinder holes 70 radially extending therethrough.
70 are formed, and plungers 71, 71 ... Are inserted into these so as to be slidable in the radial direction, and the cylinder holes 70, 70 are provided between the output shaft 3 and the housing 20 outside thereof.
The pressure guiding chamber 72 that collectively communicates with ... Is provided around.

【0007】図中に矢符により示す如く導圧室72には、
車速に対応する油圧が導入されている。この油圧は、前
記シリンダ孔70,70…を経て各別のプランジャ71,71…
の外側端面に作用し、これらの内側端を入力軸2の外周
に押付けることになり、この押付け力により、出力軸3
に対する入力軸2の相対角変位、即ち、油圧制御弁にお
けるバルブスプールとバルブボディーとの相対角変位が
制限される。
In the pressure guiding chamber 72, as indicated by an arrow in the figure,
The hydraulic pressure corresponding to the vehicle speed is introduced. This hydraulic pressure passes through the cylinder holes 70, 70 ... And the plungers 71, 71.
Acting on the outer end surfaces of the output shaft 3 and pressing these inner ends against the outer periphery of the input shaft 2.
Relative to the input shaft 2, that is, the relative angular displacement between the valve spool and the valve body in the hydraulic control valve is limited.

【0008】而して、舵輪に加わる操舵トルクが所定の
大きさに達し、プランジャ71,71…の押付けに抗してバ
ルブスプールとバルブボディーとの相対角変位が生じ始
めた後に急激に立ち上がる補助力特性が得られ、また前
記押付け力の大小は、導圧室72への導入油圧の高低、即
ち、車速の高低に対応する。従って、停止時及び低速走
行時には、比較的小さい操舵トルクにおいて立上がり点
に達し、以後は大なる操舵補助力の発生により舵輪操作
に要する力が低減されると共に、高速走行時には、舵輪
にかなりの大きさの操舵トルクが加わらない限り操舵補
助が行われず、舵輪に適度の剛性が付与されて直進安定
性が確保されることになり、前述した難点を解消するこ
とができる。
Then, the steering torque applied to the steered wheels reaches a predetermined magnitude, and after the relative angular displacement between the valve spool and the valve body begins to occur against the pressing of the plungers 71, 71 ... A force characteristic is obtained, and the magnitude of the pressing force corresponds to the level of the introduced hydraulic pressure to the pressure guiding chamber 72, that is, the level of the vehicle speed. Therefore, when the vehicle is stopped or traveling at low speed, the vehicle reaches the rising point with a relatively small steering torque, and thereafter, a large steering assist force is generated to reduce the force required for steering wheel operation. As long as the steering torque is not applied, steering assist is not performed, appropriate rigidity is imparted to the steered wheels, and straight running stability is ensured, so that the above-mentioned difficulties can be solved.

【0009】[0009]

【発明が解決しようとする課題】ところが、以上の如き
油圧反力部7を備えた動力舵取装置においては、油圧制
御弁のバルブスプールとバルブボディーとの間に相対角
変位が生じ始めた後もプランジャ71,71…の押付け状態
が継続し、これらのプランジャ71,71…と入力軸2との
間の摩擦が前記相対角変位に対する抵抗として作用する
ことから、油圧制御弁の滑らかな動作が阻害される上、
前記相対角変位の増加方向と減少方向との間にヒステリ
シスが生じ、所望の補助力特性が安定して得られないと
いう難点があった。
However, in the power steering apparatus having the hydraulic reaction force portion 7 as described above, after the relative angular displacement starts to occur between the valve spool and the valve body of the hydraulic control valve. Also, the pressing state of the plungers 71, 71 ... Continues, and the friction between the plungers 71, 71 ... And the input shaft 2 acts as resistance against the relative angular displacement, so that the smooth operation of the hydraulic control valve is achieved. In addition to being hindered
Hysteresis occurs between the increasing direction and the decreasing direction of the relative angular displacement, and there is a problem that a desired assisting force characteristic cannot be stably obtained.

【0010】本発明は斯かる事情に鑑みてなされたもの
であり、摩擦によらずに油圧制御弁の動作を制限する油
圧反力部を実現し、車速に応じた所望の補助力特性を安
定して得ることができる動力舵取装置を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and realizes a hydraulic reaction force portion that limits the operation of the hydraulic control valve regardless of friction, and stabilizes a desired assist force characteristic according to the vehicle speed. It is an object of the present invention to provide a power steering device that can be obtained.

【0011】[0011]

【課題を解決するための手段】本発明に係る動力舵取装
置は、舵輪に連なる入力軸と舵取機構に連なる出力軸と
を同軸上に連結し、両軸の一方に一体的に形成されたバ
ルブスプールを他方に連設された筒形のバルブボディー
に内嵌してなり、舵輪操作に伴って両者間に生じる相対
角変位を利用して操舵補助用の油圧アクチュエータへの
送給油圧を制御する油圧制御弁と、該油圧制御弁に並設
してあり、車速に対応する導入油圧の作用により前記相
対角変位を制限する油圧反力部とを備えた動力舵取装置
において、前記油圧反力部は、前記バルブボディーと前
記バルブスプールとの嵌合周上に形成された圧力室と、
前記バルブボディー又は前記バルブスプールの一方に突
設されて前記圧力室内部の適宜の半径線上にて他方に当
接し、前記圧力室を周方向に2分割して相互に液密をな
す一対の反力室を形成するシール手段と、前記相対角変
位の方向に応じて、前記反力室の一方に前記導入油圧を
選択的に導く導圧路とを具備することを特徴とし、更に
加えて、前記導圧路は、前記相対角変位が生じていない
中立状態において、前記一対の反力室の双方に前記導入
油圧を導く構成としてあることを特徴とする。
A power steering apparatus according to the present invention coaxially connects an input shaft connected to a steering wheel and an output shaft connected to a steering mechanism, and is integrally formed on one of both shafts. The valve spool is fitted inside a cylindrical valve body connected to the other, and the relative angular displacement that occurs between the two when the steering wheel is operated is used to supply hydraulic pressure to the hydraulic actuator for steering assistance. In a power steering apparatus including a hydraulic control valve to be controlled and a hydraulic reaction force portion that is provided in parallel with the hydraulic control valve and limits the relative angular displacement by the action of an introduced hydraulic pressure corresponding to a vehicle speed, The reaction force portion includes a pressure chamber formed on a fitting circumference of the valve body and the valve spool,
A pair of reaction chambers projectingly provided on one of the valve body and the valve spool and abutting against the other on an appropriate radial line of the pressure chamber, and dividing the pressure chamber into two in the circumferential direction to be liquid-tight to each other. A seal means for forming a force chamber, and a pressure guide path that selectively guides the introduced hydraulic pressure to one of the reaction force chambers in accordance with the direction of the relative angular displacement, and in addition, The pressure guiding path is configured to guide the introduced hydraulic pressure to both of the pair of reaction force chambers in a neutral state in which the relative angular displacement has not occurred.

【0012】[0012]

【作用】本発明においては、油圧制御弁のバルブスプー
ルとバルブボディーとの間に相対角変位が生じたとき、
これらの嵌合周上に形成された圧力室をシール手段によ
り周方向に2分割してなる一対の反力室の一方に導圧路
を介して車速に応じた油圧が導入され、他方の反力室と
の間の差圧による回転モーメントが発生し、バルブスプ
ールとバルブボディーとの間の相対角変位、即ち、油圧
制御弁の制御動作を直接的に制限する。
According to the present invention, when a relative angular displacement occurs between the valve spool and the valve body of the hydraulic control valve,
The hydraulic pressure according to the vehicle speed is introduced into one of a pair of reaction force chambers formed by dividing the pressure chambers formed on the fitting circumference in the circumferential direction by the sealing means through the pressure guiding path, and the other reaction force chamber is reacted. A rotational moment is generated due to the pressure difference between the force chamber and the pressure sensor, which directly limits the relative angular displacement between the valve spool and the valve body, that is, the control operation of the hydraulic control valve.

【0013】また前記圧力室は、トーションバー等の連
結部材を介して互いに連結され、この連結に伴って嵌合
状態が変化する虞がある入力軸と出力軸との嵌合周上で
はなく、一方と一体的に形成されたバルブスプールと他
方と別体に連設されたバルブボディーとの嵌合周上に形
成してあり、バルブスプールとバルブボディーとの相対
角変位を阻害することなく前記反力室の両側における液
密状態が維持できる。更に加えて、バルブスプールとバ
ルブボディーとの間に相対角変位が生じていない中立状
態において、導圧路を経て両方の反力室に油圧を導入す
る構成により、中立状態下でのバルブスプール及びバル
ブボディーの剛性を確保する。
The pressure chambers are connected to each other via a connecting member such as a torsion bar, and the fitting state may change due to the connection, not on the fitting circumference of the input shaft and the output shaft. It is formed on the fitting circumference of a valve spool integrally formed with one side and a valve body separately provided from the other side, and the valve spool is prevented from interfering with a relative angular displacement between the valve spool and the valve body. Liquid tightness can be maintained on both sides of the reaction chamber. In addition, in the neutral state where relative angular displacement does not occur between the valve spool and the valve body, the oil pressure is introduced into both reaction force chambers via the pressure guiding path, so that the valve spool in the neutral state and Ensure the rigidity of the valve body.

【0014】[0014]

【実施例】以下本発明をその実施例を示す図面に基づい
て詳述する。図1は、ラック・ピニオン式の舵取機構を
備えた車両に装備された本発明に係る動力舵取装置(以
下本発明装置という)の全体構成を示すブロック図であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings showing the embodiments. FIG. 1 is a block diagram showing the overall configuration of a power steering apparatus according to the present invention (hereinafter referred to as the present invention apparatus) mounted on a vehicle equipped with a rack and pinion type steering mechanism.

【0015】ラック・ピニオン式の舵取機構は、舵輪1
の下側に同軸的に連設された舵輪軸10の下端にピニオン
11を固設し、該ピニオン11を車体の前部に左右方向に延
設されたラック軸12の中途部に噛合せしめ、舵取りのた
めの舵輪1の回転をラック軸12の延設方向の摺動に変換
して、該ラック軸12の両端に各別のナックルアームを介
して連結された左右一対の操向車輪(一般的には前輪)
13,13の向きを変え、舵取りを行わせる構成となってい
る。
The rack and pinion type steering mechanism includes a steering wheel 1
Pinion is attached to the lower end of the steering wheel axle 10 that is coaxially connected to the lower side of
11 is fixed, the pinion 11 is meshed with a middle portion of a rack shaft 12 extending in the left-right direction at the front part of the vehicle body, and rotation of the steering wheel 1 for steering is slid in the extending direction of the rack shaft 12. A pair of left and right steering wheels (generally front wheels) that are converted into motion and are connected to both ends of the rack shaft 12 via separate knuckle arms.
It is configured to change the direction of 13, 13 and steer.

【0016】本発明装置は、以上の如きラック・ピニオ
ン式の舵取機構における舵取り動作を油圧により補助す
るものであり、舵輪1とラック軸12とを連結する舵輪軸
10の中途に構成した油圧制御弁4を、油圧源となる油圧
ポンプP及び作動油を収納する油タンクTとを結ぶ循環
油路の中途に介装し、舵輪1の操作に応じた油圧制御弁
4の後述する動作により、油圧ポンプPの発生油圧をラ
ック軸12の中途に構成された操舵補助用のパワーシリン
ダSに送給し、この送給油圧によりパワーシリンダSが
発生する油圧力(操舵補助力)をラック軸12に直接的に
加える構成となっている。
The device of the present invention assists the steering operation in the rack and pinion type steering mechanism as described above by hydraulic pressure, and connects the steering wheel 1 and the rack shaft 12 to the steering wheel shaft.
The hydraulic control valve 4 configured in the middle of 10 is interposed in the middle of a circulating oil passage that connects the hydraulic pump P serving as a hydraulic pressure source and the oil tank T that stores hydraulic oil, and the hydraulic control according to the operation of the steering wheel 1 is performed. By the operation of the valve 4 which will be described later, the hydraulic pressure generated by the hydraulic pump P is fed to the power cylinder S for steering assistance which is arranged in the middle of the rack shaft 12, and the hydraulic pressure generated by the power cylinder S by this fed hydraulic pressure ( The steering assist force) is directly applied to the rack shaft 12.

【0017】前記油圧制御弁4の一側には、これの動作
を車速に対応する力にて制限する油圧反力部5が並設さ
れている。油圧ポンプPから油圧制御弁4に至る供給油
路14の中途には、油タンクTに分岐連通する分岐油路15
が設けてあり、この分岐油路15には、車速の検出結果に
基づいて相異なる向きに面積変化を生じる一対の可変絞
りS1 ,S2 を備えた調圧弁6が配してあり、油圧反力
部5には、前記調圧弁6における両可変絞りS1 ,S2
間の油圧、即ち、油圧制御弁4への送給油圧を可変絞り
1 での減圧分だけ低下せしめた油圧が導入されてい
る。
On one side of the hydraulic control valve 4, a hydraulic reaction force portion 5 for limiting the operation of the hydraulic control valve 4 with a force corresponding to the vehicle speed is provided in parallel. In the middle of the supply oil passage 14 from the hydraulic pump P to the hydraulic control valve 4, a branch oil passage 15 that branches and communicates with the oil tank T is provided.
The branch oil passage 15 is provided with a pressure regulating valve 6 having a pair of variable throttles S 1 and S 2 that change the area in different directions based on the detection result of the vehicle speed. The reaction force section 5 includes two variable throttles S 1 and S 2 in the pressure regulating valve 6.
A hydraulic pressure between the two, that is, a hydraulic pressure in which the hydraulic pressure to be fed to the hydraulic control valve 4 is reduced by the reduced pressure at the variable throttle S 1 is introduced.

【0018】後述の如く調圧弁6の一方(上流側)の可
変絞りS1 は、車速の増加に応じて絞り面積を増し、他
方の可変絞りS2 は、車速の増加に応じて絞り面積を減
じるようになしてあり、両可変絞りS1 ,S2 間にて得
られる油圧反力部5への導入油圧は、油圧制御弁4への
供給油圧を車速の遅速に応じて減圧した油圧、即ち、車
速の高低に対応する油圧となる。
As will be described later, the variable throttle S 1 on one side (upstream side) of the pressure regulating valve 6 increases the throttle area as the vehicle speed increases, and the other variable throttle S 2 changes the throttle area as the vehicle speed increases. The introduced hydraulic pressure to the hydraulic reaction force portion 5 obtained between the variable throttles S 1 and S 2 is the hydraulic pressure obtained by reducing the hydraulic pressure supplied to the hydraulic control valve 4 according to the slow speed of the vehicle, That is, the hydraulic pressure corresponds to high and low vehicle speeds.

【0019】図2は、油圧制御弁4、油圧反力部5及び
調圧弁6の構成例を示す縦断面図である。図中2は、中
空の入力軸、同じく3は、ピニオン軸(出力軸)であ
る。これらは、筒形をなす共通のハウジング20内に軸心
回りでの回動自在に支承され、入力軸2の中空部に内挿
された細径のトーションバー21の先端をピニオン軸3の
上端部の軸心位置に圧入してスプライン結合することに
より同軸上に連結されている。ピニオン軸3の下半部に
は、前記ピニオン11が形成してあり、該ピニオン11は、
ハウジング20の下部に支承された前記ラック軸12に噛合
させてある。また入力軸2は、ハウジング20の上部に適
長突出させてあり、この突出端は、舵輪1の下側に連設
された前記舵輪軸10に連結されている。
FIG. 2 is a vertical cross-sectional view showing a structural example of the hydraulic control valve 4, the hydraulic reaction force portion 5 and the pressure regulating valve 6. In the figure, 2 is a hollow input shaft, and 3 is a pinion shaft (output shaft). These are rotatably supported around an axis in a common housing 20 having a cylindrical shape, and the tip of a small-diameter torsion bar 21 inserted in the hollow portion of the input shaft 2 is attached to the upper end of the pinion shaft 3. They are coaxially connected by being press-fitted into the shaft center position of the portion and spline-coupled. The pinion 11 is formed in the lower half portion of the pinion shaft 3, and the pinion 11 is
It is meshed with the rack shaft 12 supported on the lower part of the housing 20. The input shaft 2 is made to project above the housing 20 by an appropriate length, and the projecting end is connected to the steering wheel shaft 10 that is continuously provided below the steering wheel 1.

【0020】而して、舵輪1が回動操作された場合、こ
れに伴う舵輪軸10の回転が入力軸2及びトーションバー
21を介してピニオン軸3に伝達され、これの下半部のピ
ニオン11と噛合するラック軸12の軸長方向の摺動に変換
されて舵取りが行われるが、このとき、入力軸2とピニ
オン軸3との間には、トーションバー21の捩れを伴って
舵輪1に加わる操舵トルクに応じた相対角変位が生じ
る。
When the steering wheel 1 is rotated, the rotation of the steering wheel shaft 10 is accompanied by the rotation of the input shaft 2 and the torsion bar.
It is transmitted to the pinion shaft 3 via 21 and is converted into sliding in the axial direction of the rack shaft 12 that meshes with the pinion 11 in the lower half of the pinion shaft 11, and steering is performed. A relative angular displacement corresponding to the steering torque applied to the steered wheels 1 is generated between the shaft 3 and the torsion bar 21 while being twisted.

【0021】油圧制御弁4は、このように生じる相対角
変位を利用して前記パワーシリンダSへの送給油圧を制
御する公知のものであり、前記ハウジング20の内部に同
軸回動自在に内嵌された円筒形のバルブボディー40と、
これの内側に嵌合するバルブスプール41とを備えてな
る。バルブボディー40は、ピニオン軸3の上端に、これ
の外周に打設されたダウエルピン30を介して連結され、
ピニオン軸3と共に回転するようになしてある。またバ
ルブスプール41は、バルブボディー40の内側に嵌合する
入力軸2の中途部外周に一体的に構成されている。これ
により、油圧制御弁4のバルブボディー40とバルブスプ
ール41との間には、舵輪1の操作に伴って入力軸2とピ
ニオン軸3との間に生じる相対角変位、即ち、舵輪1に
加わる操舵トルクの方向及び大きさに応じた相対角変位
が生じる。
The hydraulic control valve 4 is a well-known type which controls the hydraulic pressure fed to the power cylinder S by utilizing the relative angular displacement thus generated, and is coaxially rotatable inside the housing 20. With the cylindrical valve body 40 fitted,
It is provided with a valve spool 41 fitted inside thereof. The valve body 40 is connected to the upper end of the pinion shaft 3 via a dowel pin 30 that is formed on the outer periphery of the pinion shaft 3.
It is adapted to rotate together with the pinion shaft 3. The valve spool 41 is integrally formed on the outer circumference of the middle of the input shaft 2 fitted inside the valve body 40. Thereby, between the valve body 40 of the hydraulic control valve 4 and the valve spool 41, the relative angular displacement between the input shaft 2 and the pinion shaft 3 caused by the operation of the steering wheel 1, that is, the steering wheel 1 is added. Relative angular displacement occurs depending on the direction and magnitude of the steering torque.

【0022】油圧制御弁4には、前記油圧ポンプPから
の送給油圧が、ハウジング20の外側に開口するポンプポ
ート22を経て導入されており、この油圧は、バルブボデ
ィー40とバルブスプール41との間に前述の如く生じる相
対角変位に応じて振り分けられて、パワーシリンダSの
両油室とを夫々接続する送油路 16a,16b(図1参照)の
いずれか、例えば、送油路 16aを経て一方の油室に送給
される。この油圧送給に伴いパワーシリンダSは、他方
の油室との間に生じる圧力差に応じた油圧力を発生し、
前述した如く、この油圧力が操舵補助力として前記ラッ
ク軸12に加えられる。
The feed hydraulic pressure from the hydraulic pump P is introduced into the hydraulic control valve 4 through a pump port 22 opening to the outside of the housing 20, and this hydraulic pressure is transmitted to the valve body 40 and the valve spool 41. Between the oil chambers of the power cylinder S and the oil chambers 16a and 16b (see FIG. 1), which are distributed according to the relative angular displacement occurring as described above, for example, the oil channel 16a. Is sent to one of the oil chambers. With this hydraulic pressure supply, the power cylinder S generates an oil pressure according to the pressure difference between the power cylinder S and the other oil chamber,
As described above, this hydraulic pressure is applied to the rack shaft 12 as a steering assist force.

【0023】ハウジング20内側のバルブボディー40の上
部には、入力軸2内側の中空部に連通する還流室23が形
成され、この還流室23は、ハウジング20の外側に開口す
るタンクポート24を経て前記油タンクTに接続してあ
り、パワーシリンダSの前述した動作に伴って他方の油
室から押し出され、他方の送油路 16bを経て油圧制御弁
4に還流する還流油は、バルブスプール41を半径方向に
貫通する貫通孔を経て入力軸2内側の中空部に導入され
て、前記還流室23及びタンクポート24を経て油タンクT
に還流するようになしてある。
At the upper part of the valve body 40 inside the housing 20, a reflux chamber 23 communicating with the hollow portion inside the input shaft 2 is formed, and the reflux chamber 23 passes through a tank port 24 opening to the outside of the housing 20. The return oil, which is connected to the oil tank T, is pushed out from the other oil chamber in accordance with the above-described operation of the power cylinder S, and is returned to the hydraulic control valve 4 via the other oil feed passage 16b, is returned to the valve spool 41. Is introduced into a hollow portion inside the input shaft 2 through a through hole that radially penetrates the oil tank T through the reflux chamber 23 and the tank port 24.
It is designed to recirculate to.

【0024】本発明装置は、このような油圧制御弁4の
制御動作を車速に対応する力にて制限する油圧反力部5
の構成に特徴を有する。図3は、油圧反力部5周辺の拡
大断面図、図4は、図3のIV−IV線による横断面図であ
る。
The device of the present invention limits the control operation of the hydraulic control valve 4 by a force corresponding to the vehicle speed.
It has a feature in the configuration. 3 is an enlarged cross-sectional view around the hydraulic reaction force portion 5, and FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.

【0025】前記油圧反力部5は、ピニオン軸3との連
結側へのバルブボディー40の延長部42と、バルブスプー
ル41(入力軸2)の同側への延長部43とを利用して構成
されている。図3に示す如くバルブボディー40の延長部
42は、内径側から薄肉化された円筒形状をなし、ピニオ
ン軸3の上端部にその下端を遊嵌され、前記ダウエルピ
ン30にその一部を係合させてある。一方、バルブスプー
ル41の延長部43は、他部よりも大径化されており、バル
ブボディー40側の延長部42の内側に密に嵌合せしめてあ
る。
The hydraulic reaction force portion 5 utilizes an extension portion 42 of the valve body 40 on the side connected to the pinion shaft 3 and an extension portion 43 on the same side of the valve spool 41 (input shaft 2). It is configured. Extension of valve body 40 as shown in FIG.
Reference numeral 42 denotes a cylindrical shape which is thinned from the inner diameter side, the lower end of which is loosely fitted to the upper end of the pinion shaft 3 and a part of which is engaged with the dowel pin 30. On the other hand, the extension portion 43 of the valve spool 41 has a larger diameter than the other portions, and is tightly fitted inside the extension portion 42 on the valve body 40 side.

【0026】バルブボディー40の延長部42には、図4に
示す如く、半径方向に相対向する位置に一対の貫通孔5
0,50が形成されており、これらの夫々にはシール押え5
1,51が内嵌されている。図4に示す如くシール押え51
は、貫通孔50に嵌合する円筒状の本体部の基端側に、外
側に張り出す態様に円板形の鍔部を備えてなる。シール
押え51の先端部は、図3に示す一断面のみが半円形状を
なすように成形されており、この先端部において前記一
断面に直交し、側面に沿って前記鍔部に至るシール溝が
形成されており、このシール溝には、フッ素樹脂製のO
リング52(シール手段)が嵌着保持させてある。
In the extension portion 42 of the valve body 40, as shown in FIG. 4, a pair of through holes 5 are formed at positions facing each other in the radial direction.
0 and 50 are formed, and a seal retainer 5 is attached to each of these.
1, 51 are fitted inside. As shown in FIG. 4, the seal retainer 51
Is provided with a disk-shaped collar portion in a manner of projecting outward, on the base end side of the cylindrical main body portion fitted in the through hole 50. The tip portion of the seal retainer 51 is formed so that only one cross section shown in FIG. 3 has a semicircular shape, and at this tip portion, a seal groove that is orthogonal to the one cross section and extends along the side surface to the collar portion. Is formed in the seal groove.
A ring 52 (sealing means) is fitted and held.

【0027】またバルブボディー40の延長部42には、前
記貫通孔50,50の形成位置と略直交する2か所に、細径
の導圧孔53,53が形成してあり、これらの導圧孔53,53
及び前記貫通孔50,50は、前記延長部42の外側に周設さ
れ、図3に示す如く、ハウジング20との嵌合部位にて上
下両側を液密に封止された導圧室54により相互に連通さ
れている。
Further, in the extension portion 42 of the valve body 40, there are formed pressure guiding holes 53, 53 having small diameters at two positions substantially orthogonal to the positions where the through holes 50, 50 are formed. Pressure holes 53, 53
Also, the through holes 50, 50 are provided around the outside of the extension portion 42, and as shown in FIG. 3, by the pressure guiding chamber 54 which is liquid-tightly sealed on the upper and lower sides at the fitting portion with the housing 20. They are in communication with each other.

【0028】一方、バルブスプール41側の延長部43は、
これの外側の半径方向に相対向する位置に一対の凹溝5
5,55を備えている。これらは、前記シール押え51の先
端部の形状に対応する半円形の底面を有し、バルブスプ
ール41の軸心に直交する方向に延設されており、バルブ
ボディー40とバルブスプール41との間に相対角変位が生
じていない中立状態において、両者の延長部42,43の嵌
合周上の前記シール押え51,51の嵌入位置の内側に、図
4に示す如き弓形の断面形状をなす一対の圧力室を形成
している。シール押え51,51に保持されたOリング52,
52は、適宜の半径線上にて夫々に対応する凹溝55,55の
底面及び側面に当接せしめてあり、これらの凹溝55,55
が形成する夫々の圧力室を周方向に2分割して、図4に
示す如く、時計回りに相互に液密をなす各一対の反力室
1 ,A2 を形成するようになしてある。
On the other hand, the extension portion 43 on the valve spool 41 side is
A pair of recessed grooves 5 are provided on the outer side of this in positions facing each other in the radial direction.
Equipped with 5, 55. These have a semi-circular bottom surface corresponding to the shape of the tip of the seal retainer 51, and extend in the direction orthogonal to the axis of the valve spool 41, and between the valve body 40 and the valve spool 41. In a neutral state in which no relative angular displacement is generated in the pair, a pair of arcuate cross-sectional shapes as shown in FIG. 4 are formed inside the fitting positions of the seal retainers 51, 51 on the fitting circumferences of the extension parts 42, 43 of both. Forming a pressure chamber. Seal retainer 51, O-ring 52 held by 51,
52 is abutted on the bottom surface and the side surface of the corresponding recessed grooves 55, 55 on an appropriate radius line.
Each of the pressure chambers formed by is divided into two in the circumferential direction, and as shown in FIG. 4, a pair of reaction force chambers A 1 and A 2 that are liquid-tight in a clockwise direction are formed. .

【0029】一方、前記中立状態において、バルブボデ
ィー40の延長部42に形成された導圧孔53,53の内側は、
図4に示す如く、バルブスプール41の延長部43における
前記凹溝55,55の非形成部分の略中央に開口しており、
この開口端を挾んだ両側は、前記延長部43に形成された
一対の連通孔56,57により、一方の凹溝55側の反力室A
1 と他方の凹溝55側の反力室A2 とに夫々連通させてあ
る。
On the other hand, in the neutral state, the inside of the pressure guiding holes 53 formed in the extension portion 42 of the valve body 40 is
As shown in FIG. 4, the extended portion 43 of the valve spool 41 has an opening at substantially the center of a portion where the concave grooves 55, 55 are not formed,
The reaction chamber A on one side of the concave groove 55 is formed by the pair of communication holes 56 and 57 formed in the extension portion 43 on both sides of the opening end.
1 and the reaction force chamber A 2 on the other side of the groove 55 are communicated with each other.

【0030】図5は、バルブボディー40とバルブスプー
ル41との間に相対角変位が生じていない中立状態におけ
る導圧孔53,53の内側開口端近傍の拡大図である。本図
に示す如く前記連通孔56,57は、導圧孔53,53の開口端
の両側にわずかな連通部分を有して形成してあり、バル
ブボディー40外側の導圧室54に後述の如く導入される油
圧は、前記中立状態においては、連通孔56,57を介して
反力室A1 ,A2 の双方に均等に導入される一方、バル
ブボディー40とバルブスプール41との間に生じるわずか
な相対角変位により連通孔56,57の一方と導圧孔53,53
との連通が遮断され、導圧室54への導入油圧は、連通状
態を維持する連通孔56又は57を経て、反力室A1 又はA
2 の一方にのみ振り分けられるようになしてある。
FIG. 5 is an enlarged view of the vicinity of the inner open ends of the pressure guiding holes 53, 53 in a neutral state where no relative angular displacement occurs between the valve body 40 and the valve spool 41. As shown in the figure, the communication holes 56, 57 are formed with a slight communication portion on both sides of the open ends of the pressure guiding holes 53, 53, and will be described later in a pressure guiding chamber 54 outside the valve body 40. In the neutral state, the hydraulic pressure thus introduced is evenly introduced into both the reaction force chambers A 1 and A 2 through the communication holes 56 and 57, while it is applied between the valve body 40 and the valve spool 41. Due to the slight relative angular displacement that occurs, one of the communication holes 56, 57 and the pressure guiding holes 53, 53
The communication with the pressure guiding chamber 54 is cut off, and the hydraulic pressure introduced into the pressure guiding chamber 54 passes through the communicating hole 56 or 57 for maintaining the communicating state, and then the reaction force chamber A 1 or A.
It is designed so that only one of the two can be assigned.

【0031】以上の如き導入油圧の振り分けのために
は、前記凹溝55,55の非形成部分において、バルブボデ
ィー40の延長部42とバルブスプール41の延長部43との嵌
合部において液密状態が保たれることが必要であるが、
図3に明らかな如くバルブボディー40は、トーションバ
ー21の圧入により径寸法に影響が生じる出力軸3に遊嵌
され、ダウエルピン30との係合により回転のみを拘束さ
れた状態にあり、前記嵌合部における液密は、延長部42
の内周面及び延長部43の外周面の加工公差の適正な設定
により厳密に管理できる。従って、反力室A1 ,A2
の油圧の振り分けは、相互間での漏洩の虞なく確実に行
われ、また前記嵌合部の影響によりバルブボディー40と
バルブスプール41との相対角変位が阻害される虞もな
い。
In order to distribute the introduced hydraulic pressure as described above, in the portion where the recessed grooves 55, 55 are not formed, a liquid-tight seal is formed at the fitting portion between the extension portion 42 of the valve body 40 and the extension portion 43 of the valve spool 41. It needs to be maintained,
As is apparent from FIG. 3, the valve body 40 is loosely fitted to the output shaft 3 whose diameter is affected by the press-fitting of the torsion bar 21, and is restrained from rotating only by the engagement with the dowel pin 30. Liquid tightness at the joint is
Strict control can be performed by appropriately setting the processing tolerance of the inner peripheral surface of and the outer peripheral surface of the extension 43. Therefore, the distribution of the hydraulic pressure to the reaction force chambers A 1 and A 2 is surely performed without the risk of mutual leakage, and the relative angular displacement between the valve body 40 and the valve spool 41 due to the influence of the fitting portion. There is no risk of being hindered.

【0032】以上の如く構成された油圧反力部5への導
入油圧を発生する調圧弁6は、図2に示す如く、ハウジ
ング20の一側にこれと略平行をなして並設された円形断
面をなすスプール室60に、軸長方向への摺動自在に中空
円筒状をなす絞りスプール61を内挿してなる。絞りスプ
ール61には、車速の検出結果に基づいて駆動される図示
しないステッピングモータの回転が、一側の外周に係合
する係合ピン62を介して伝達されており、スプール室60
の内部において絞りスプール61は、車速の高低に応じて
摺動位置を変化するようになしてある。なお絞りスプー
ル61の駆動手段としては、前記ステッピングモータに限
らず、ソレノイド等、車速の検出結果に基づく通電制御
により動作する如何なる駆動手段を用いてもよい。
As shown in FIG. 2, the pressure regulating valve 6 for generating the introduced hydraulic pressure into the hydraulic reaction force portion 5 configured as described above is circularly arranged on one side of the housing 20 in parallel with the pressure regulating valve 6. A hollow cylindrical throttle spool 61 is slidably inserted in a spool chamber 60 having a cross section in the axial direction. The rotation of a stepping motor (not shown) driven based on the detection result of the vehicle speed is transmitted to the throttle spool 61 via an engagement pin 62 that engages with the outer periphery of one side, and the spool chamber 60
Inside, the throttle spool 61 is adapted to change its sliding position according to the level of the vehicle speed. The driving means for the aperture spool 61 is not limited to the stepping motor, and any driving means that operates by energization control based on the vehicle speed detection result may be used, such as a solenoid.

【0033】前記絞りスプール61は、外周の適長離隔す
る2か所に環状溝63,64を備えており、図示の如く、一
方の環状溝63よりも端部側の部分と他方の環状溝64と
は、絞りスプール61内側の中空部に連通させてある。ス
プール室60には、環状溝63,64間に常時開口する導圧孔
25を経て油圧制御弁4への送給油圧が導入されている。
またスプール室60は、絞りスプール61の摺動位置の如何
に拘わらず一方の環状溝63内に常時開口すべく形成され
た導圧孔26を介して油圧反力部5に連通させてあり、ま
た、他方の環状溝64内に常時開口すべく形成された還流
孔27を介してハウジング20内側の前記還流室23に連通さ
せてある。
The throttle spool 61 is provided with annular grooves 63, 64 at two locations on the outer periphery which are spaced apart by an appropriate length. As shown in the drawing, a portion closer to the end than one annular groove 63 and the other annular groove. 64 is communicated with a hollow portion inside the throttle spool 61. The spool chamber 60 has a pressure guide hole that is always open between the annular grooves 63 and 64.
The feed hydraulic pressure to the hydraulic control valve 4 is introduced via 25.
Further, the spool chamber 60 is communicated with the hydraulic reaction force portion 5 through a pressure guide hole 26 formed so as to be always opened in the one annular groove 63 regardless of the sliding position of the throttle spool 61. Further, it is communicated with the reflux chamber 23 inside the housing 20 through a reflux hole 27 formed so as to be always opened in the other annular groove 64.

【0034】而して、前記導圧孔25を経てスプール室60
に導入される油圧は、一方の環状溝63の両側の隙間、絞
りスプール61の中空部を経て他方の環状溝64に達し、更
に還流孔27及び還流室23を経て油タンクTに還流する。
即ち、前記導圧孔25から還流室23に至るまでの油路は、
図1における分岐油路15に相当し、前記環状溝63両側の
隙間が絞りスプール61の摺動に応じて相異なる向きに絞
り面積を変える可変絞りS1 ,S2 として機能する。そ
してこのとき油圧反力部5には、前記可変絞りS1 ,S
2 間にて調圧された油圧が、環状溝63内に開口する前記
導圧孔26を経て導入される。
Then, the spool chamber 60 is passed through the pressure guiding hole 25.
The hydraulic pressure introduced into the oil reaches the other annular groove 64 through the gaps on both sides of the one annular groove 63, the hollow portion of the throttle spool 61, and further returns to the oil tank T via the return hole 27 and the return chamber 23.
That is, the oil passage from the pressure guiding hole 25 to the reflux chamber 23 is
Corresponding to the branch oil passage 15 in FIG. 1, the gaps on both sides of the annular groove 63 function as variable throttles S 1 and S 2 that change the throttle area in different directions according to the sliding of the throttle spool 61. At this time, the hydraulic reaction force portion 5 is provided with the variable throttles S 1 , S.
The hydraulic pressure regulated between the two is introduced through the pressure guiding hole 26 opening in the annular groove 63.

【0035】図2は、停止時及び低速走行時における絞
りスプール61の摺動位置を示しており、前記駆動手段の
動作による絞りスプール61の摺動は、車速の増加に応じ
て環状溝64側(図の上側)に向けて生じるようになして
ある。而して、上流側の可変絞りS1 は、車速の増加に
伴って絞り面積を増し、下流側の可変絞りS2 は、逆に
絞り面積を減じることになり、両可変絞りS1 ,S2
にて得られる油圧反力部5への導入油圧は、油圧制御弁
4への供給油圧を車速の遅速に応じて減圧した油圧、即
ち、車速の高低に対応する油圧となる。
FIG. 2 shows the sliding position of the throttle spool 61 at the time of stopping and running at a low speed. The sliding of the throttle spool 61 by the operation of the driving means corresponds to the annular groove 64 side as the vehicle speed increases. It is designed to occur toward (the upper side of the figure). Thus, the upstream variable diaphragm S 1 increases the diaphragm area as the vehicle speed increases, and the downstream variable diaphragm S 2 conversely decreases the diaphragm area. Therefore, both variable diaphragms S 1 , S The hydraulic pressure introduced into the hydraulic reaction force section 5 obtained between the two is a hydraulic pressure obtained by reducing the hydraulic pressure supplied to the hydraulic control valve 4 according to the slow speed of the vehicle, that is, a hydraulic pressure corresponding to the high or low of the vehicle speed.

【0036】以上の如く得られる油圧反力部5への導入
油圧は、図4中に矢符により示す如く、前記導圧孔26を
経てバルブボディー40の延長部42の外側に周設された前
記導圧室54に導入される。この導入油圧は、導圧室54に
より連通された導圧孔53,53の内部に導入され、前述の
如く、バルブボディー40とバルブスプール41との相対角
変位に応じて反力室A1 ,A2 に振り分けられる。一方
この導入油圧は、導圧室54により連通された貫通孔50,
50に嵌挿されたシール押え51,51を内向きに押圧し、こ
れらの先端側のOリング52,52を凹溝55,55に押付ける
作用をなし、この作用により反力室A1 ,A2 間の液密
は良好に維持される。
The introduced hydraulic pressure to the hydraulic reaction force portion 5 obtained as described above is provided around the outside of the extension portion 42 of the valve body 40 through the pressure guiding hole 26 as shown by the arrow in FIG. It is introduced into the pressure guiding chamber 54. This introduced hydraulic pressure is introduced into the pressure guiding holes 53, 53 communicated with each other by the pressure guiding chamber 54, and as described above, the reaction force chambers A 1 and A 1 according to the relative angular displacement between the valve body 40 and the valve spool 41. Assigned to A 2 . On the other hand, this introduced hydraulic pressure is applied to the through hole 50, which is communicated by the pressure guiding chamber 54,
The seal retainers 51, 51 fitted in the 50 are pressed inward, and the O-rings 52, 52 on the tip side of these are pressed against the recessed grooves 55, 55. By this action, the reaction force chamber A 1 , The liquid tightness between A 2 is maintained well.

【0037】図4に示す如く、バルブボディー40とバル
ブスプール41とが中立状態にある場合、反力室A1 ,A
2 への油圧の振り分けは均等になされ、この油圧は、反
力室A1 ,A2 の内圧を等しく保ち、前記中立状態を維
持する作用をなす。これに対し、舵輪1に操舵トルクが
加えられ、バルブボディー40とバルブスプール41との間
に相対角変位が生じた場合、前記連通孔56,56又は57,
57のいずれか一方と前記導圧孔53,53との連通が遮断さ
れ、これと共に導圧孔53,53の内部にまで達していた油
圧反力部5への導入油圧は、反力室A1 ,A1 又は
2 ,A2 のいずれかのみに導入される。
As shown in FIG. 4, when the valve body 40 and the valve spool 41 are in the neutral state, the reaction force chambers A 1 , A
The hydraulic pressure is equally distributed to the two , and this hydraulic pressure acts to keep the internal pressures of the reaction force chambers A 1 and A 2 equal and maintain the neutral state. On the other hand, when a steering torque is applied to the steering wheel 1 and a relative angular displacement occurs between the valve body 40 and the valve spool 41, the communication holes 56, 56 or 57,
The communication between either one of the pressure guiding holes 53 and 53 is cut off, and the hydraulic pressure introduced into the hydraulic reaction force portion 5 which has reached the inside of the pressure guiding holes 53 and 53 is the reaction chamber A. It is introduced into either 1 , A 1 or A 2 , A 2 .

【0038】図6は、バルブスプール41の延長部43が、
バルブボディー40の延長部42に対して時計回りに相対角
変位した状態を示している。この場合、シール押え51の
両側に形成された反力室A1 ,A2 の内、一方の反力室
1 の体積が減少し、これと共に、他方の反力室A2
連通する連通孔57と導圧孔53との連通が遮断される。従
って、油圧反力部5への導入油圧は、図中に矢符により
示す如く、導圧孔53との連通状態を維持する連通孔56を
経て反力室A1 にのみ導入されるようになり、この油圧
は、図中に白抜矢符にて示す如く、反力室A1 の体積減
少を防ぐ向きに作用する。
In FIG. 6, the extension portion 43 of the valve spool 41 is
The figure shows a state in which the valve body 40 is angularly displaced relative to the extension portion 42 in the clockwise direction. In this case, of the reaction force chambers A 1 and A 2 formed on both sides of the seal retainer 51, the volume of one reaction force chamber A 1 decreases, and at the same time, the communication that communicates with the other reaction force chamber A 2 The communication between the hole 57 and the pressure guiding hole 53 is blocked. Therefore, the introduced hydraulic pressure to the hydraulic reaction force portion 5 is introduced only into the reaction force chamber A 1 through the communication hole 56 that maintains the communication state with the pressure guiding hole 53, as indicated by the arrow in the figure. This hydraulic pressure acts in a direction to prevent the volume reduction of the reaction force chamber A 1 as shown by the white arrow in the figure.

【0039】即ち油圧反力部5においては、舵輪1に加
わる操舵トルクに応じて、油圧制御弁4のバルブボディ
ー40とバルブスプール41との間に相対角変位が生じよう
とするとき、一方の反力室(図6においては反力室
1 )に車速に対応する油圧が導入され、他方の反力室
(図6においては反力室A2 )との間の差圧による回転
モーメントがバルブスプール41に作用し、バルブボディ
ー40との間の相対角変位、即ち、油圧制御弁4の制御動
作を直接的に制限する。
That is, in the hydraulic reaction force portion 5, when a relative angular displacement is about to occur between the valve body 40 of the hydraulic control valve 4 and the valve spool 41 in accordance with the steering torque applied to the steering wheel 1, one of The hydraulic pressure corresponding to the vehicle speed is introduced into the reaction force chamber (reaction force chamber A 1 in FIG. 6), and the rotational moment due to the differential pressure between the other reaction force chamber (reaction force chamber A 2 in FIG. 6) is generated. It acts on the valve spool 41 and directly limits the relative angular displacement with respect to the valve body 40, that is, the control operation of the hydraulic control valve 4.

【0040】このとき、シール押え51に保持されたOリ
ング52は、バルブスプール41の延長部43に形成された凹
溝55に押付けられた状態にあるが、この押付け位置は前
記延長部43の半径線上であり、バルブボディー40とバル
ブスプール41との間の相対角変位に伴う押し付け位置の
変化は殆どなく、前記相対角変位に伴う油圧制御弁4の
制御動作は、摩擦により阻害されることなく安定して行
われ、舵取り方向の相違に伴うヒステリシスが発生する
虞はない。
At this time, the O-ring 52 held by the seal retainer 51 is in a state of being pressed against the concave groove 55 formed in the extension portion 43 of the valve spool 41. It is on the radius line, and there is almost no change in the pressing position due to the relative angular displacement between the valve body 40 and the valve spool 41, and the control operation of the hydraulic control valve 4 due to the relative angular displacement is obstructed by friction. There is no risk of hysteresis occurring due to the difference in steering direction.

【0041】なお本実施例においては、ラック・ピニオ
ン式の舵取機構における適用例について述べたが、本発
明の適用範囲はこれに限らず、ボールねじ式等、他の形
式の舵取機構においても適用可能であることは言うまで
もない。
In this embodiment, the application example in the rack and pinion type steering mechanism has been described, but the scope of application of the present invention is not limited to this, and in other types of steering mechanisms such as a ball screw type steering mechanism. It goes without saying that is also applicable.

【0042】[0042]

【発明の効果】以上詳述した如く本発明に係る動力舵取
装置においては、入力軸と出力軸の一方に連設されたバ
ルブボディーと他方に一体的に形成されたバルブスプー
ルとの嵌合周上に、両者の一方に突設されて適宜の半径
線上にて他方に当接するシール手段により2分割された
一対の反力室を形成し、バルブボディーとバルブスプー
ルとの間に生じる相対角変位に応じて両反力室の一方に
車速に対応する油圧が導入される構成としたから、前記
導入油圧の直接的な作用により油圧制御弁の制御動作を
制限でき、摩擦の介在に起因する油圧制御弁の動作阻害
が解消され、車速に応じた所望の補助力特性を安定して
得られるようになる等、本発明は優れた効果を奏する。
As described above in detail, in the power steering system according to the present invention, the valve body connected to one of the input shaft and the output shaft and the valve spool integrally formed with the other are fitted together. A pair of reaction chambers, which are divided into two, are formed on the circumference by sealing means protruding from one of the two and abutting the other on an appropriate radial line, and a relative angle formed between the valve body and the valve spool. Since the hydraulic pressure corresponding to the vehicle speed is introduced into one of the two reaction force chambers according to the displacement, the control action of the hydraulic control valve can be limited by the direct action of the introduced hydraulic pressure, which is caused by the frictional intervention. The present invention has excellent effects such that the obstruction of the operation of the hydraulic control valve is eliminated and a desired assist force characteristic corresponding to the vehicle speed can be stably obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の全体構成を示すブロック図であ
る。
FIG. 1 is a block diagram showing an overall configuration of a device of the present invention.

【図2】本発明装置の要部を示す縦断面図である。FIG. 2 is a vertical sectional view showing a main part of the device of the present invention.

【図3】油圧反力部の拡大断面図である。FIG. 3 is an enlarged sectional view of a hydraulic reaction force portion.

【図4】図3のIV−IV線による横断面図である。4 is a cross-sectional view taken along the line IV-IV in FIG.

【図5】油圧反力部への導入油圧を反力室に導く導圧路
の拡大図である。
FIG. 5 is an enlarged view of a pressure guiding path that guides an introduced hydraulic pressure to a hydraulic reaction force section to a reaction force chamber.

【図6】油圧反力部の動作説明図である。FIG. 6 is a diagram for explaining the operation of the hydraulic reaction force section.

【図7】従来の油圧反力部の横断面図である。FIG. 7 is a cross-sectional view of a conventional hydraulic reaction force portion.

【符号の説明】[Explanation of symbols]

1 舵輪 2 入力軸 3 ピニオン軸 4 油圧制御弁 5 油圧反力部 6 調圧弁 11 ピニオン 12 ラック軸 20 ハウジング 21 トーションバー 40 バルブボディー 41 バルブスプール 50 貫通孔 51 シール押え 52 Oリング 53 導圧孔 55 凹溝 56 連通孔 57 連通孔 61 絞りスプール A1 反力室 A2 反力室 P 油圧ポンプ S パワーシリンダ S1 可変絞り S2 可変絞り T 油タンク1 Steering wheel 2 Input shaft 3 Pinion shaft 4 Hydraulic control valve 5 Hydraulic reaction force part 6 Pressure regulating valve 11 Pinion 12 Rack shaft 20 Housing 21 Torsion bar 40 Valve body 41 Valve spool 50 Through hole 51 Seal retainer 52 O ring 53 Conducting hole 55 Groove 56 Communication hole 57 Communication hole 61 Throttle spool A 1 Reaction chamber A 2 Reaction chamber P Hydraulic pump S Power cylinder S 1 Variable throttle S 2 Variable throttle T Oil tank

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 舵輪に連なる入力軸と舵取機構に連なる
出力軸とを同軸上に連結し、両軸の一方に一体的に形成
されたバルブスプールを他方に連設された筒形のバルブ
ボディーに内嵌してなり、舵輪操作に伴って両者間に生
じる相対角変位を利用して操舵補助用の油圧アクチュエ
ータへの送給油圧を制御する油圧制御弁と、該油圧制御
弁に並設してあり、車速に対応する導入油圧の作用によ
り前記相対角変位を制限する油圧反力部とを備えた動力
舵取装置において、前記油圧反力部は、前記バルブボデ
ィーと前記バルブスプールとの嵌合周上に形成された圧
力室と、前記バルブボディー又は前記バルブスプールの
一方に突設されて前記圧力室内部の適宜の半径線上にて
他方に当接し、前記圧力室を周方向に2分割して相互に
液密をなす一対の反力室を形成するシール手段と、前記
相対角変位の方向に応じて、前記反力室の一方に前記導
入油圧を選択的に導く導圧路とを具備することを特徴と
する動力舵取装置。
1. A tubular valve in which an input shaft connected to a steering wheel and an output shaft connected to a steering mechanism are coaxially connected, and a valve spool integrally formed on one of both shafts is connected to the other. A hydraulic control valve that is fitted inside the body and that controls the hydraulic pressure supplied to the hydraulic actuator for steering assistance by using the relative angular displacement that occurs between the steering wheel and the hydraulic control valve In the power steering apparatus including a hydraulic reaction force portion that limits the relative angular displacement by the action of the introduced hydraulic pressure corresponding to the vehicle speed, the hydraulic reaction force portion includes the valve body and the valve spool. The pressure chamber formed on the fitting circumference and one of the valve body and the valve spool are projected and abut on the other on an appropriate radial line inside the pressure chamber, and the pressure chamber is circumferentially divided into two. A pair of halves that are liquid-tight to each other A power steering apparatus comprising: a sealing means that forms a force chamber; and a pressure guiding path that selectively guides the introduced hydraulic pressure to one of the reaction force chambers according to the direction of the relative angular displacement. .
【請求項2】 前記導圧路は、前記相対角変位が生じて
いない中立状態において、前記一対の反力室の双方に前
記導入油圧を導く構成としてある請求項1記載の動力舵
取装置。
2. The power steering apparatus according to claim 1, wherein the pressure guiding path is configured to guide the introduced hydraulic pressure to both of the pair of reaction force chambers in a neutral state in which the relative angular displacement has not occurred.
JP21879493A 1993-09-02 1993-09-02 Power steering device Pending JPH0769227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21879493A JPH0769227A (en) 1993-09-02 1993-09-02 Power steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21879493A JPH0769227A (en) 1993-09-02 1993-09-02 Power steering device

Publications (1)

Publication Number Publication Date
JPH0769227A true JPH0769227A (en) 1995-03-14

Family

ID=16725474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21879493A Pending JPH0769227A (en) 1993-09-02 1993-09-02 Power steering device

Country Status (1)

Country Link
JP (1) JPH0769227A (en)

Similar Documents

Publication Publication Date Title
US5511630A (en) Power steering system
JPH02225179A (en) Power steering device
US4640148A (en) Steering mechanism of rack-and-pinion type
JP2523170Y2 (en) Hydraulic control valve
KR0135019B1 (en) Power steering apparatus
JPH0769227A (en) Power steering device
US20090000855A1 (en) Power steering device
US5538095A (en) Power steering apparatus
JP3952694B2 (en) Variable throttle valve and power steering device
JPH06219295A (en) Power steering device
JP4201362B2 (en) Power steering device
JP2706787B2 (en) Variable steering gear ratio device
JP3634014B2 (en) Hydraulic power steering device
JPH0692249A (en) Power steering gear
JP2005262929A (en) Hydraulic power steering device
JP3824099B2 (en) Steering force control device for hydraulic power steering device
JPS59134064A (en) Rotary operating valve system for power steering
JPH05246343A (en) Power steering device
JP2706786B2 (en) Four-wheel steering system
JP3557486B2 (en) Hydraulic control valve
JP4561638B2 (en) Hydraulic power steering device
JPH0642935Y2 (en) Vehicle power steering device
JPS61146674A (en) Steering-force controller of car in two-pump system
JPH0542882A (en) Power steering
JPH0565074A (en) Power steering device