JPH0768694A - Superconductive composite and production thereof - Google Patents

Superconductive composite and production thereof

Info

Publication number
JPH0768694A
JPH0768694A JP5218522A JP21852293A JPH0768694A JP H0768694 A JPH0768694 A JP H0768694A JP 5218522 A JP5218522 A JP 5218522A JP 21852293 A JP21852293 A JP 21852293A JP H0768694 A JPH0768694 A JP H0768694A
Authority
JP
Japan
Prior art keywords
superconductor
layer
noble metal
superconducting
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5218522A
Other languages
Japanese (ja)
Other versions
JP3383799B2 (en
Inventor
Shuichiro Shimoda
修一郎 下田
Shozo Yamana
章三 山名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Research Institute for Metals
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
National Research Institute for Metals
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, National Research Institute for Metals, Research Development Corp of Japan filed Critical Hitachi Chemical Co Ltd
Priority to JP21852293A priority Critical patent/JP3383799B2/en
Publication of JPH0768694A publication Critical patent/JPH0768694A/en
Application granted granted Critical
Publication of JP3383799B2 publication Critical patent/JP3383799B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide a superconductive composite generating no peeling or cracking even at the time of baking or at the time of cooling after the integration due to baking or heat treatment or at the time of cooling from room temp. to the temp. of liquid nitrogen, suppressing the reaction of a metal substrate with a superconductor and not lowered in superconductive characteristics. CONSTITUTION:A mixture layer containing silver and magnesia is formed on the surface of a metal plate (SUS 310S plate 1) by a flame spraying method and a noble metal layer 3 is formed on the surface of the mixture layer. Thereafter, the surface of the noble metal layer 3 is subjected to stretching treatment and, subsequently, a superconductive material is laminated to the surface of the polished noble metal layer 3 to be baked.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は機械的強度が高く、熱衝
撃特性に優れ、磁気シールド体などへの応用が可能な超
電導複合体及びその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting composite having high mechanical strength, excellent thermal shock characteristics, and application to a magnetic shield, and a method for producing the same.

【0002】[0002]

【従来の技術】超電導体、例えばセラミックス超電導体
は、機械的強度や熱衝撃性に劣るという欠点があること
からセラミックス超電導体を金属、セラミックス等の基
材と組み合わせて複合化することが試みられている。こ
のうち金属の方がセラミックスに比較して大きさ、形状
等の制約を受けにくいという利点がある。ところがセラ
ミックス超電導体は、焼成及び熱処理の過程で多くの金
属材料との反応により臨界温度(以下Tcとする)、臨
界電流密度(以下Jcとする)等の超電導特性が低下し
たり又は超電導特性が得られない場合がある。このため
セラミックス超電導体と金属との間に貴金属層を中間層
として用いることが知られている。例えば特開平4−1
99700号公報には、鉄−ニッケル系合金の金属基板
上に、中間層として金、銀等の貴金属を熱間圧延により
拡散接合して複合基材を作製し、この複合基材上にBi
系超電導体を形成する方法が示され、又特開平3−19
2615号公報には、金属基板上に貴金属又はこれらの
合金層からなる中間層を900℃以上の温度で溶融し
て、厚さ30μm以上の被覆層を形成し、次いで該被覆
層上にBi系超電導体を形成する方法が示されている。
銀は上記に示すように基材又は中間層として用いられて
おり、焼成時の低融点化にも寄与している。又セラミッ
クス超電導体の焼成において超電導体を溶融させると、
Tc、Jc等が向上することが一般的に知られており、
銀を用いれば超電導体を均一に溶融させやすい。
2. Description of the Related Art Since a superconductor, for example, a ceramics superconductor, has a drawback of being inferior in mechanical strength and thermal shock resistance, it has been attempted to combine a ceramics superconductor with a base material such as metal or ceramics to form a composite. ing. Among them, metal has an advantage that it is less likely to be restricted by size, shape and the like as compared with ceramics. However, ceramic superconductors have a low superconducting property such as a critical temperature (hereinafter referred to as Tc), a critical current density (hereinafter referred to as Jc), or a superconducting property due to reaction with many metal materials during firing and heat treatment. You may not get it. Therefore, it is known to use a noble metal layer as an intermediate layer between the ceramic superconductor and the metal. For example, Japanese Patent Laid-Open No. 4-1
In Japanese Patent Publication No. 99700, a noble metal such as gold or silver is diffusion-bonded as an intermediate layer on a metal substrate of an iron-nickel alloy by hot rolling to produce a composite base material, and Bi is formed on the composite base material.
A method for forming a superconductor is disclosed, and JP-A-3-19
No. 2615 discloses that an intermediate layer composed of a noble metal or an alloy layer thereof is melted at a temperature of 900 ° C. or higher on a metal substrate to form a coating layer having a thickness of 30 μm or more, and then a Bi-based system is formed on the coating layer. A method of forming a superconductor is shown.
Silver is used as a base material or an intermediate layer as described above, and also contributes to lowering the melting point during firing. Also, when the superconductor is melted during firing of the ceramic superconductor,
It is generally known that Tc, Jc, etc. are improved,
If silver is used, the superconductor can be easily melted uniformly.

【0003】[0003]

【発明が解決しようとする課題】セラミックス超電導体
と金属板とを複合化する場合、問題となるのは、セラミ
ックス超電導体と金属板とを接合一体化することによる
熱膨張係数の不一致、反応による超電導特性の低下であ
る。さらに銀をセラミックス超電導体と金属板との間に
中間層として用いた場合においても、金属板及び/又は
セラミックス超電導体との間に熱膨張係数の不一致が起
こる。熱膨張係数の不一致は、焼成及び熱処理後の冷却
過程、又は超電導状態を発現させるため、室温から液体
窒素温度さらには20K乃至4.2Kに冷却する際にク
ラックの発生をもたらし、形状、大きさなどが制約さ
れ、セラミックス超電導体の実用化、応用の面で妨げと
なっている。セラミックス超電導体を実用化する場合、
例えば磁気シールド体のような用途に利用する場合、大
型で三次元構造の超電導体が要求される。この場合小型
の超電導体を物理的に組み合わせて大型化しただけで
は、接合部から磁気が漏洩する。すなわち、高い磁気シ
ールド性能を得るためには一体化した超電導体が必要と
なる。しかしながら、特開平4−199700号公報に
示されているように鉄−ニッケル系合金の金属基板上
に、中間層として貴金属を熱間圧延により拡散接合する
ためには、還元雰囲気中の高温高圧下で行わなければな
らず、大型で三次元構造の一体化複合基板の作製が困難
なばかりでなく、装置も大型化しなければならない。さ
らに、鉄−ニッケル系合金と貴金属との熱膨張差により
貴金属層にクラックが発生しやすい。又金属複合基材上
に形成されたセラミックス超電導体に組織の不均一な欠
陥等が存在すると、この欠陥部分から磁気が漏洩すると
考えられ、高い磁気シールド性能を得るためには、均一
な超電導特性を有する超電導体の形成が望まれる。しか
しながら、特開平3−192615に示されるように貴
金属又はこれらの合金層からなる中間層を900℃以上
の温度で金属基板上に溶融形成する場合、大型で三次元
構造の一体化複合基材の作製が困難であると共に、貴金
属又はこれらの合金層の厚さも不均一となり、部分的に
貴金属と超電導体とが反応しやすくなり、良好な超電導
特性が得られない可能性がある。また鉄−ニッケル系合
金と貴金属との熱膨張差による剥離又は貴金属のクラッ
クの発生も避けがたい。上記の他に溶射法により鉄−ニ
ッケル系合金表面に貴金属中間層を形成し、複合基材を
作製する方法もあるが、この方法では溶射膜がポーラス
なため、この気孔を通して金属基板と超電導体とが反応
し良好な超電導特性が得られにくい。この反応を抑制す
るために貴金属の中間層を厚くすると、容射膜の剥離等
が生じやすくなると共に超電導特性が低下しやすくな
る。本発明は上記のような問題点のない超電導複合体及
びその製造法を提供するものである。
When compounding a ceramics superconductor and a metal plate, the problem is that the thermal expansion coefficient does not match and the reaction occurs when the ceramics superconductor and the metal plate are joined and integrated. This is the deterioration of superconducting properties. Furthermore, even when silver is used as an intermediate layer between the ceramics superconductor and the metal plate, the thermal expansion coefficient mismatches between the metal plate and / or the ceramics superconductor. The mismatch of the thermal expansion coefficients causes the cooling process after firing and heat treatment, or causes the superconducting state to occur, and thus causes cracks when cooling from room temperature to liquid nitrogen temperature, further 20K to 4.2K, and the shape and size. These restrictions are hindering the practical application and application of ceramics superconductors. When commercializing ceramics superconductors,
For example, when used for a magnetic shield body, a large-sized three-dimensional superconductor is required. In this case, magnetism leaks from the joint just by physically combining small superconductors to increase the size. That is, an integrated superconductor is required to obtain high magnetic shield performance. However, as disclosed in JP-A-4-199700, in order to perform diffusion bonding of a noble metal as an intermediate layer by hot rolling on a metal substrate of an iron-nickel alloy, under high temperature and high pressure in a reducing atmosphere. Therefore, not only is it difficult to fabricate a large-sized integrated composite substrate having a three-dimensional structure, but also the size of the device must be increased. Further, cracks are likely to occur in the noble metal layer due to the difference in thermal expansion between the iron-nickel alloy and the noble metal. In addition, if the ceramic superconductor formed on the metal composite substrate has a non-uniform defect in the structure, it is considered that the magnetism leaks from this defective part, and in order to obtain high magnetic shielding performance, the uniform superconducting property is required. It is desired to form a superconductor having However, as shown in JP-A-3-192615, when an intermediate layer made of a noble metal or an alloy thereof is melt-formed on a metal substrate at a temperature of 900 ° C. or higher, a large-sized three-dimensional integrated composite base material is obtained. In addition to being difficult to manufacture, the thickness of the noble metal or these alloy layers becomes non-uniform, and the noble metal and the superconductor are likely to partially react with each other, so that good superconducting properties may not be obtained. Further, peeling or cracking of the precious metal due to the difference in thermal expansion between the iron-nickel alloy and the precious metal is unavoidable. In addition to the above, there is also a method of forming a noble metal intermediate layer on the surface of an iron-nickel alloy by a thermal spraying method to produce a composite substrate, but since the thermal sprayed film is porous in this method, the metal substrate and the superconductor are passed through these pores. React with and it is difficult to obtain good superconducting properties. If the intermediate layer of the noble metal is thickened to suppress this reaction, the spray film is likely to be peeled off and the superconducting property is likely to be deteriorated. The present invention provides a superconducting composite and a method for producing the same that does not have the above-mentioned problems.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記の欠点
について種々検討した結果、機械的強度に優れる金属板
を用いる場合、該金属板の酸化防止及び該金属板とセラ
ミックス超電導体との反応防止のため、この両者の間に
設ける中間層の熱膨張係数を該金属板及びセラミックス
超電導体の熱膨張係数に近づけることが重要であること
を見い出した。さらに上記金属板と中間層の複合化に
は、中間層を溶射法で形成すれば大型化、一体化に有利
であり、超電導体層を形成する該中間層を緻密にするこ
とが重要であることも確認した。即ち金属板とセラミッ
クス超電導体との間に該金属板及びセラミックス超電導
体の熱膨張係数に近い中間層を設けることで熱歪に起因
するクラックの発生が抑制され、さらには金属板の表面
に銀及びマグネシアを含む混合物を溶射法で形成し、そ
の表面に貴金属層を形成した後、該貴金属層表面を延伸
処理することが貴金属層の緻密化に非常に有効であるこ
とを見い出し、本発明を完成するに至った。本発明は金
属板と超電導体層との間に、金属板側から銀及びマグネ
シアを含む混合物層、その上面に延伸処理された貴金属
層を介在させた超電導複合体並びに金属板の表面に銀及
びマグネシアを含む混合物層を溶射法で形成し、該混合
物層の表面に貴金属層を形成した後、貴金属層の表面を
延伸処理し、次いで延伸処理した貴金属層の表面に超電
導体用材料を積層した後焼成する超電導複合体の製造法
に関する。
As a result of various studies on the above-mentioned drawbacks, the present inventors have found that when a metal plate having excellent mechanical strength is used, the metal plate is prevented from being oxidized and the metal plate and the ceramics superconductor are combined. It has been found that it is important to bring the thermal expansion coefficient of the intermediate layer provided between the two close to the thermal expansion coefficient of the metal plate and the ceramics superconductor in order to prevent the reaction. Further, in forming the composite of the metal plate and the intermediate layer, if the intermediate layer is formed by a thermal spraying method, it is advantageous for size increase and integration, and it is important to make the intermediate layer forming the superconductor layer dense. I also confirmed that. That is, by providing an intermediate layer having a thermal expansion coefficient close to that of the metal plate and the ceramics superconductor between the metal plate and the ceramics superconductor, the generation of cracks due to thermal strain is suppressed, and further, the silver on the surface of the metal plate is suppressed. It was found that it is very effective to densify the noble metal layer after forming a mixture containing magnesia and magnesia by a thermal spraying method, forming a noble metal layer on the surface of the mixture, and stretching the noble metal layer surface. It came to completion. The present invention, between the metal plate and the superconductor layer, a mixture layer containing silver and magnesia from the metal plate side, a superconducting composite having a noble metal layer stretched on the upper surface thereof, and silver on the surface of the metal plate. A mixture layer containing magnesia was formed by a thermal spraying method, a noble metal layer was formed on the surface of the mixture layer, the surface of the noble metal layer was stretched, and then a superconductor material was laminated on the surface of the stretched noble metal layer. The present invention relates to a method for producing a superconducting composite which is post-baked.

【0005】本発明で用いられる超電導体は、酸化物系
が用いられ、その組成については特に制限はないが、イ
ットリウム系超電導体、ビスマス系超電導体、タリウム
系超電導体等を用いれば、Tcが液体窒素温度以上であ
るので好ましい。なお銀及びマグネシアを含む混合物層
と貴金属層は金属板と超電導体層の間に形成するため中
間層と記載したが、これらの中間層は金属板の片面に形
成してもよく、両面に形成してもよく制限はない。又銀
及びマグネシアを含む混合物層を形成する溶射の方法は
ガス式、アーク式、プラズマ式等を用いることができ
る。貴金属層の形成は特に制限はないが溶射法で形成す
ることが好ましい。なお中間層の厚さは特に制限はない
が、薄いと中間層を通して超電導体と金属板が反応し超
電導特性が低下しやすくなるため、50μm以上が好ま
しく、100〜600μmであればさらに好ましい。銀
及びマグネシアを含む混合物層の形成は上記のような溶
射法で形成するものとし、溶射法以外の方法では金属板
から銀及びマグネシアを含む混合物層が剥離し易く、厚
付け(200μm以上)及び立体構造への形成が困難で
ある。金属板は、超電導体を形成する過程で800℃以
上の温度で酸素を含む雰囲気中にさらされるため、耐熱
性及び耐酸化性に優れる鉄−ニッケル合金、例えばSU
S304及び301S、ハステロイ、インコネル等を用
いることが好ましい。貴金属層の延伸処理方法には特に
制限がなく、表面に光沢がでる方法であれば、サンドペ
ーパ、ダイヤモンドホイール、バフ、バイト、金属片等
を用いて延伸することができる。延伸処理後の貴金属層
の表面粗さは、Raで1μm以下であると良好な超電導
特性が得られるので好ましい。貴金属層の延伸処理を省
略すると金属板と超電導体が反応して超電導特性が低下
する。又貴金属層の表面に超電導体用材料を積層する方
法についても制限はないが、溶射法、スクリーン印刷
法、転写法、スプレーコート法、ディップコート法、グ
リーンシート積層法等の方法で積層することができる。
焼成条件については特に制限はなく、従来公知の方法で
行うものとする。又必要に応じ焼成後に熱処理が行われ
る。
The superconductor used in the present invention is an oxide type, and the composition thereof is not particularly limited, but if an yttrium type superconductor, a bismuth type superconductor, a thallium type superconductor or the like is used, the Tc is It is preferable because it is higher than the liquid nitrogen temperature. The mixture layer containing silver and magnesia and the noble metal layer are described as intermediate layers because they are formed between the metal plate and the superconductor layer, but these intermediate layers may be formed on one side of the metal plate or both sides. But there is no limit. Further, as a method of thermal spraying for forming a mixture layer containing silver and magnesia, a gas type, an arc type, a plasma type or the like can be used. The formation of the noble metal layer is not particularly limited, but it is preferably formed by the thermal spraying method. The thickness of the intermediate layer is not particularly limited, but if it is thin, the superconductor and the metal plate react with each other through the intermediate layer, and the superconducting property is likely to deteriorate. Therefore, the thickness is preferably 50 μm or more, and more preferably 100 to 600 μm. The mixture layer containing silver and magnesia is formed by the thermal spraying method as described above, and by a method other than the thermal spraying method, the mixture layer containing silver and magnesia is easily separated from the metal plate, and the thickness (200 μm or more) and It is difficult to form a three-dimensional structure. Since the metal plate is exposed to an atmosphere containing oxygen at a temperature of 800 ° C. or higher in the process of forming a superconductor, an iron-nickel alloy having excellent heat resistance and oxidation resistance, for example, SU.
It is preferable to use S304 and 301S, Hastelloy, Inconel or the like. The method for stretching the noble metal layer is not particularly limited, and can be stretched using sandpaper, a diamond wheel, a buff, a bite, a metal piece or the like as long as the surface has gloss. The surface roughness of the noble metal layer after the stretching treatment is preferably Ra of 1 μm or less because good superconducting properties can be obtained. If the stretching treatment of the noble metal layer is omitted, the metal plate and the superconductor react with each other to deteriorate the superconducting properties. The method for laminating the superconductor material on the surface of the noble metal layer is also not limited, but may be laminated by a method such as a thermal spraying method, a screen printing method, a transfer method, a spray coating method, a dip coating method or a green sheet laminating method. You can
The firing conditions are not particularly limited, and the conventionally known method is used. If necessary, heat treatment is performed after firing.

【0006】[0006]

【実施例】以下に本発明の実施例を説明する。なお本発
明は以下の実施例の範囲に限定されるものではない。 実施例1 銀粉末(レアメタリック製、粒径325〜250メッシ
ュ)及びマグネシア粉末(高純度化学研究所製、重質、
フリーパウダー、純度99.9%)を表1に示す割合に
なるように秤量し、Vブレンダーで1時間乾式混合し
て、銀とマグネシアとの混合粉末a及びbを得た。
EXAMPLES Examples of the present invention will be described below. The present invention is not limited to the scope of the examples below. Example 1 Silver powder (rare metallic, particle size 325-250 mesh) and magnesia powder (manufactured by Kojundo Chemical Laboratory, heavy,
Free powder, purity 99.9%) was weighed so as to have a ratio shown in Table 1 and dry-mixed for 1 hour with a V blender to obtain mixed powders a and b of silver and magnesia.

【0007】[0007]

【表1】 次に金属板として、寸法が縦50mm×横50mm×厚さ1
mmのSUS310S板をサンドブラスト処理した後、図
1に示すようにSUS310S板1の表面全体(上下
面)に公知のプラズマ溶射法によって、上記で得た銀と
マグネシアの混合粉末bを吹き付け、片側の面の厚さが
150μmの銀とマグネシアの混合物層2を形成した。
さらに銀とマグネシアの混合物層2の片側上面に公知の
ガス容射法で、貴金属層として銀粉末(レアメタリック
製、粒径325〜250メッシュ)を100μmの厚さ
に溶射し、この銀溶射膜の表面をサンドペーパーでこす
って延伸処理し、貴金属層3を形成した超電導体形成用
基材を得た。なお、延伸処理後の貴金属層の表面を表面
粗さ計で測定したところ、Raで0.8μmであった。
一方ビスマス、ストロンチウム、カルシウム及び銅の比
率が原子比で2:2:1:2となるように純度99.9
%以上の酸化ビスマス(高純度化学研究所製)913.
29g、炭酸ストロンチウム(レアメタリック製)57
8.71g、炭酸カルシウム(高純度化学研究所製)1
96.17g及び酸化第二銅(高純度化学研究所製)3
11.82gを秤量し、超電導体用原料粉とした。上記
の超電導体用原料粉を樹脂製ポット内に樹脂製ボール及
びイオン交換水と共に充てんし、毎分60回転の条件で
60時間湿式混合した。乾燥後混合物を銀板上に乗せ8
20℃で12時間仮焼して、超電導体用仮焼粉を得た。
該仮焼粉を粗粉砕し、さらに樹脂製ポット内にジルコニ
アボール及び酢酸エチルと共に充てんし、毎分60回転
の条件で24時間湿式粉砕した。これを乾燥して平均粒
径5.5μmのビスマス系超電導体用粉末A(以下超電
導体用粉末Aとする)を得た。得られた超電導体用粉末
A100重量部に有機結合剤としてポリビニルブチラー
ル樹脂(和光純薬工業製、試薬一級)を8重量部、可塑
剤としてフタル酸エステル(和光純薬工業製、試薬一
級)を3重量部及びブタノール(和光純薬工業製、試薬
一級)を50重量部添加し、均一に混合した後、脱気を
行い粘度15Pa・sの超電導体用スラリーを得た。該
超電導体用スラリーをポリエステル製フィルム(東レ
製)上に供給し、ドクターブレード法で厚さ100μm
の超電導体用グリーンシート(以下グリーンシートとす
る)を得た。次に先に得た超電導体形成用基材の貴金属
層3の上面に上記のグリーンシートを60℃、10分
間、20MPaの条件で熱圧着して、超電導体用グリー
ンシート積層基材を得た。上記で得た超電導体用グリー
ンシート積層基材を大気中で500℃までは30℃/時
間の速度で昇温し、次いで100℃/時間の速度で88
5℃まで昇温し、885℃で15分間保持した後、87
0℃まで5℃/時間の速度で降温して1時間保持した
後、800℃までは100℃/時間、800℃から室温
までは300℃/時間の速度で冷却して、膜厚が31μ
mの超電導体層4を形成したビスマス系セラミックス複
合体(以下超電導複合体とする)を得た。得られた超電
導複合体を長さ50mm及び幅5mmの形状に切断し、各試
料について四端子法でTc及びJcを測定した結果、T
cは91.4〜92.6Kで、77Kにおけるゼロ磁場
でのJcは2.9〜3.4(×107A/m2)と良好な
超電導特性を示した。又得られた超電導複合体の外観を
観察した結果、SUS310S板と中間層の間で剥離は
見られなかった。さらに液体窒素温度〜20℃のヒート
サイクル試験を10サイクル行ったがクラック及び剥離
の発生は認められなかった。
[Table 1] Next, as a metal plate, the dimensions are 50 mm length x 50 mm width x thickness 1
After sandblasting a SUS310S plate of mm, as shown in FIG. 1, the entire surface (upper and lower surfaces) of the SUS310S plate 1 was sprayed with the mixed powder b of silver and magnesia obtained above by a known plasma spraying method, A mixture layer 2 of silver and magnesia having a surface thickness of 150 μm was formed.
Further, silver powder (rare metallic, particle size 325 to 250 mesh) was sprayed to a thickness of 100 μm as a noble metal layer on the upper surface of one side of the mixture layer 2 of silver and magnesia by a known gas spraying method, and this silver sprayed film was formed. The surface of was rubbed with sandpaper and stretched to obtain a base material for forming a superconductor on which the noble metal layer 3 was formed. When the surface of the noble metal layer after the stretching treatment was measured with a surface roughness meter, Ra was 0.8 μm.
On the other hand, the purity of 99.9 is set so that the atomic ratio of bismuth, strontium, calcium and copper is 2: 2: 1: 2.
% Or more bismuth oxide (manufactured by Kojundo Chemical Research Institute) 913.
29 g, strontium carbonate (made of rare metallic) 57
8.71 g, calcium carbonate (manufactured by Kojundo Chemical Laboratory) 1
96.17 g and cupric oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) 3
11.82 g was weighed to obtain a raw material powder for superconductor. The raw material powder for superconductor was filled in a resin pot together with a resin ball and ion-exchanged water, and wet mixed for 60 hours under the condition of 60 rpm. After drying, put the mixture on a silver plate 8
It was calcined at 20 ° C. for 12 hours to obtain a calcined powder for superconductor.
The calcined powder was coarsely crushed, and then the resin pot was filled with zirconia balls and ethyl acetate, and wet crushed for 24 hours under the condition of 60 rpm. This was dried to obtain a bismuth-based superconductor powder A having an average particle size of 5.5 μm (hereinafter referred to as superconductor powder A). To 100 parts by weight of the obtained powder A for superconductor, 8 parts by weight of polyvinyl butyral resin (manufactured by Wako Pure Chemical Industries, reagent first grade) as an organic binder, and phthalate ester (manufactured by Wako Pure Chemical Industries, reagent first grade) as a plasticizer. 3 parts by weight and 50 parts by weight of butanol (manufactured by Wako Pure Chemical Industries, reagent first grade) were added and uniformly mixed, and then deaerated to obtain a superconductor slurry having a viscosity of 15 Pa · s. The superconductor slurry is supplied onto a polyester film (manufactured by Toray), and the thickness is 100 μm by the doctor blade method.
A green sheet for superconductor (hereinafter referred to as a green sheet) was obtained. Next, the above green sheet was thermocompression-bonded to the upper surface of the noble metal layer 3 of the previously obtained base material for forming a superconductor under the conditions of 60 ° C. for 10 minutes and 20 MPa to obtain a green sheet laminated base material for a superconductor. . The green sheet laminated base material for a superconductor obtained above is heated up to 500 ° C. in the atmosphere at a rate of 30 ° C./hour, and then at a rate of 100 ° C./hour.
After raising the temperature to 5 ° C. and holding at 885 ° C. for 15 minutes,
After cooling down to 0 ° C at a rate of 5 ° C / hour and holding for 1 hour, cool down to 800 ° C at 100 ° C / hour, and cool from 800 ° C to room temperature at 300 ° C / hour to obtain a film thickness of 31μ.
A bismuth-based ceramics composite (hereinafter referred to as a superconducting composite) having m superconductor layers 4 was obtained. The obtained superconducting composite was cut into a shape having a length of 50 mm and a width of 5 mm, and Tc and Jc of each sample were measured by the four-terminal method.
c was 91.4 to 92.6 K, and Jc at 77 K in a zero magnetic field was 2.9 to 3.4 (× 10 7 A / m 2 ) showing good superconducting properties. As a result of observing the appearance of the obtained superconducting composite, no peeling was observed between the SUS310S plate and the intermediate layer. Further, a heat cycle test was conducted at a liquid nitrogen temperature to 20 ° C. for 10 cycles, but no crack or peeling was observed.

【0008】実施例2 金属板として、実施例1と同寸法のインコネル600板
をサンドブラスト処理した後、図2に示すようにインコ
ネル600板5の片側の面に、公知のプラズマ溶射法に
よって、実施例1で得た銀とマグネシアとの混合粉末a
を吹き付け、厚さが150μmの銀とマグネシアとの混
合物層2を形成した。さらに銀とマグネシアの混合物層
2の上面に公知のアーク溶射法で、貴金属層として実施
例1で用いた銀を100μmの厚さに溶射し、この銀溶
射膜の表面をダヤモンドホイールで延伸処理し、貴金属
層3を形成した超電導体形成用基材を得た。なお、延伸
処理後の貴金属層表面を表面粗さ計で測定したところ、
Raで0.6μmであった。一方、ブタノールの添加量
を80重量部とした以外は実施例1と同様の方法で、粘
度2Pa・sの超電導体用スラリーを得た。次に先に得
た超電導体形成用基材の貴金属層3の上面に上記の超電
導体用スラリーをスプレー塗布して、超電導体用材料積
層基材を得た。上記で得た超電導体用材料積層基材を実
施例1と同様の条件で焼成して、膜厚が27μmの超電
導体層4を形成した超電導複合体を得た。得られた超電
導複合体について実施例1と同様の方法でTc及びJc
の測定並びに外観の観察をした結果、Tcは92.4〜
93.1Kで、77Kにおけるゼロ磁場でのJcは3.
8〜4.4(×107A/m2)であり、金属基板と中間
層の間で剥離は見られなかった。又液体窒素温度〜20
℃のヒートサイクル試験を10サイクル行ったがクラッ
ク及び剥離の発生は認められなかった。
Example 2 As a metal plate, an Inconel 600 plate having the same size as that of Example 1 was sandblasted, and then, as shown in FIG. 2, it was formed on one surface of the Inconel 600 plate 5 by a known plasma spraying method. Mixed powder a of silver and magnesia obtained in Example 1
Was sprayed to form a mixture layer 2 of silver and magnesia having a thickness of 150 μm. Further, the silver used in Example 1 was sprayed to a thickness of 100 μm as a noble metal layer on the upper surface of the mixture layer 2 of silver and magnesia by a known arc spraying method, and the surface of this silver sprayed film was stretched with a diamond wheel. Then, a base material for forming a superconductor on which the noble metal layer 3 was formed was obtained. When the surface of the precious metal layer after the stretching treatment was measured with a surface roughness meter,
Ra was 0.6 μm. On the other hand, a slurry for superconductor having a viscosity of 2 Pa · s was obtained in the same manner as in Example 1 except that the addition amount of butanol was 80 parts by weight. Next, the above superconductor slurry was spray-coated on the upper surface of the precious metal layer 3 of the superconductor-forming base material obtained above to obtain a superconductor material laminated base material. The superconducting material laminated base material obtained above was fired under the same conditions as in Example 1 to obtain a superconducting composite body in which the superconducting layer 4 having a film thickness of 27 μm was formed. For the obtained superconducting composite, Tc and Jc were measured in the same manner as in Example 1.
As a result of measuring and observing the appearance, Tc was 92.4-
At 93.1K, the Jc at 77K in zero magnetic field is 3.
It was 8 to 4.4 (× 10 7 A / m 2 ), and no peeling was observed between the metal substrate and the intermediate layer. Liquid nitrogen temperature ~ 20
A heat cycle test at 0 ° C. was performed for 10 cycles, but no crack or peeling was observed.

【0009】実施例3 実施例2における貴金属層を銀から金に、貴金属層の形
成法を公知のプラズマ溶射法に、熱処理条件の885℃
で15分間の保持を890℃で15分間の保持に変えた
以外は実施例2と同様の方法で膜厚が30μmの超電導
体層を形成した超電導複合体を得た。得られた超電導複
合体を実施例1と同様の方法でTc及びJcの測定並び
に外観の観察をした結果、Tcは90.2〜91.2K
で、77Kにおけるゼロ磁場でのJcは2.3〜2.9
(×107/m2)であり、金属基板と中間層の間で剥離
は見られなかった。又液体窒素温度〜20℃のヒートサ
イクル試験を10サイクル行ったがクラック及び剥離の
発生は認められなかった。
Example 3 The noble metal layer in Example 2 was changed from silver to gold, the method of forming the noble metal layer was a known plasma spraying method, and the heat treatment condition was 885 ° C.
A superconducting composite body having a superconducting layer having a film thickness of 30 μm was obtained in the same manner as in Example 2 except that the holding for 15 minutes was changed to the holding at 890 ° C. for 15 minutes. The obtained superconducting composite was measured for Tc and Jc and observed for appearance in the same manner as in Example 1. As a result, Tc was 90.2 to 91.2K.
Then, the Jc at 77K in the zero magnetic field is 2.3 to 2.9.
(× 10 7 / m 2 ), and no peeling was observed between the metal substrate and the intermediate layer. A heat cycle test was conducted at a liquid nitrogen temperature to 20 ° C. for 10 cycles, but no crack or peeling was observed.

【0010】実施例4 ビスマス、鉛、ストロンチウム、カルシウム及び銅の比
率が原子比で1.8:0.3:1.8:2:3となるよ
うに純度99.9%以上の酸化ビスマス(高純度化学研
究所製)704.3g、一酸化鉛(高純度化学研究所
製)112.46g、炭酸ストロンチウム(レアメタリ
ック製)446.28g、炭酸カルシウム(高純度化学
研究所製)336.18g及び酸化第二銅(高純度化学
研究所製)400.78gを秤量し、超電導体用原料粉
とした。次に上記の超電導体用原料粉を樹脂製ポット内
に樹脂製ボール及びイオン交換水と共に充てんし、毎分
60回転の条件で60時間湿式混合した。乾燥後混合物
を800℃で12時間仮焼して超電導体用仮焼粉を得
た。該仮焼粉を粗粉砕し、さらに樹脂製ポット内にジル
コニアボール及び酢酸エチルと共に充てんし、毎分60
回転の条件で60時間湿式粉砕した。乾燥後、820℃
で20時間熱処理し、次いで該熱処理粉を粗粉砕し、さ
らに樹脂製ポット内にジルコニアボール及び酢酸エチル
と共に充てんし、毎分60回転の条件で24時間湿式粉
砕した。これを乾燥して、平均粒径が4.5μmのビス
マス系超電導体用粉末B(以下超電導体用粉末Bとす
る)を得た。
Example 4 Bismuth oxide having a purity of 99.9% or more (so that the atomic ratio of bismuth, lead, strontium, calcium and copper is 1.8: 0.3: 1.8: 2: 3) 704.3 g of high purity chemical laboratory, 112.46 g of lead monoxide (high purity chemical laboratory), strontium carbonate (made of rare metallic) 446.28 g, calcium carbonate (high purity chemical laboratory) 336.18 g And 400.78 g of cupric oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) was weighed to obtain a raw material powder for a superconductor. Next, the above-mentioned raw material powder for superconductor was filled in a resin pot together with resin balls and ion-exchanged water, and wet mixed for 60 hours under the condition of 60 rpm. After drying, the mixture was calcined at 800 ° C. for 12 hours to obtain a calcined powder for superconductor. The calcined powder is roughly crushed, and the resin pot is filled with zirconia balls and ethyl acetate, and the rate is 60 minutes per minute.
Wet milling was performed for 60 hours under the condition of rotation. After drying, 820 ℃
Was heat-treated for 20 hours, then the heat-treated powder was coarsely pulverized, and then the resin pot was filled with zirconia balls and ethyl acetate, and wet-pulverized for 24 hours under the condition of 60 rpm. This was dried to obtain a bismuth-based superconductor powder B having an average particle diameter of 4.5 μm (hereinafter referred to as superconductor powder B).

【0011】得られた超電導体用粉末B100重量部に
対し、有機結合剤としてエチルセルロース(和光純薬工
業製、45cp)を5重量部及び有機溶剤としてテルピ
ネオール(和光純薬工業製、試薬一級)を30重量部添
加し、均一に混練してビスマス系超電導体用ペースト
(以下超電導体用ペーストとする)を得た。この後実施
例2で得た超電導体形成用基材の貴金属層3の上面に、
上記で得た超電導体用ペーストをディップコート法によ
り塗布し、乾燥後、大気中で300℃までは50℃/時
間の速度で昇温し、次いで100℃/時間の速度で84
0℃まで昇温し、840℃で96時間保持した後、10
0℃/時間の速度で室温まで冷却して、膜厚が100μ
mの超電導体層を形成したビスマス系超電導複合体を得
た。得られた超電導複合体を実施例1と同様の方法でT
c及びJcの測定並びに外観の観察をした結果、Tcは
101.8〜102.7Kで、77Kにおけるゼロ磁場
でのJcは1.5〜1.8(×107A/m2)であり、
金属基板と中間層の間で剥離は見られなかった。又液体
窒素温度〜20℃のヒートサイクル試験を10サイクル
行ったがクラック及び剥離の発生は認められなかった。
To 100 parts by weight of the obtained powder B for superconductor, 5 parts by weight of ethyl cellulose (manufactured by Wako Pure Chemical Industries, 45 cp) as an organic binder and terpineol (manufactured by Wako Pure Chemical Industries, reagent first grade) as an organic solvent. 30 parts by weight was added and uniformly kneaded to obtain a bismuth-based superconductor paste (hereinafter referred to as a superconductor paste). After that, on the upper surface of the noble metal layer 3 of the base material for forming a superconductor obtained in Example 2,
The superconductor paste obtained above is applied by a dip coating method, dried and then heated in air to a temperature of 300 ° C. at a rate of 50 ° C./hour, and then at a rate of 100 ° C./hour for 84
After raising the temperature to 0 ° C and holding it at 840 ° C for 96 hours, 10
Cool down to room temperature at a rate of 0 ° C / hour and the film thickness is 100μ
A bismuth-based superconducting composite having m superconducting layers was obtained. The obtained superconducting composite was treated with T in the same manner as in Example 1.
As a result of measuring c and Jc and observing the appearance, Tc was 101.8 to 102.7K, and Jc at 77K in a zero magnetic field was 1.5 to 1.8 (× 10 7 A / m 2 ). ,
No peeling was observed between the metal substrate and the intermediate layer. A heat cycle test was conducted at a liquid nitrogen temperature to 20 ° C. for 10 cycles, but no crack or peeling was observed.

【0012】比較例1 実施例1において銀の溶射を行わなかった以外は実施例
1と同様の方法で膜厚が28μmの超電導体層を形成し
た超電導複合体を得た。得られた超電導複合体を実施例
1と同様の方法でTc及びJcを測定した結果、Tcは
77K未満で、77Kにおいて超電導特性は得られなか
った。又外観を観察した結果、超電導体層と金属基板が
銀とマグネシアを含む混合層の隙間を通して熱処理中に
反応したため、所々中間層膜が膨れていた。
Comparative Example 1 A superconducting composite having a superconducting layer having a thickness of 28 μm was obtained in the same manner as in Example 1 except that thermal spraying of silver was not performed. The Tc and Jc of the obtained superconducting composite were measured by the same method as in Example 1. As a result, Tc was less than 77K, and superconducting properties were not obtained at 77K. Further, as a result of observing the appearance, the superconductor layer and the metal substrate reacted during the heat treatment through the gap between the mixed layer containing silver and magnesia, so that the intermediate layer film was swollen in some places.

【0013】比較例2 実施例1において銀とマグネシアの混合物層は形成せ
ず、又貴金属層の延伸処理を行わなかった以外は実施例
1と同様の方法で膜厚が25μmの超電導体層を形成し
た超電導複合体を得た。得られた超電導複合体を実施例
1と同様の方法でTc及びJcを測定した結果、Tcは
77K未満で、77Kにおいて超電導特性は得られなか
った。又外観を観察した結果、超電導体層と金属基板が
貴金属層(銀溶射膜)の隙間を通して熱処理中に双方が
反応したため、所々銀溶射膜が膨れていた。
Comparative Example 2 A superconductor layer having a thickness of 25 μm was prepared in the same manner as in Example 1 except that the mixture layer of silver and magnesia was not formed and the noble metal layer was not stretched. The formed superconducting composite was obtained. The Tc and Jc of the obtained superconducting composite were measured by the same method as in Example 1. As a result, Tc was less than 77K, and superconducting properties were not obtained at 77K. As a result of observing the appearance, the superconducting layer and the metal substrate reacted with each other through the gap between the noble metal layer (silver sprayed film) during the heat treatment, so that the silver sprayed film was swollen in some places.

【0014】比較例3 実施例2において貴金属層の延伸処理を行わなかった以
外は実施例2と同様の方法で膜厚が26μmの超電導体
層を形成した超電導複合体を得た。得られた超電導複合
体を実施例1と同様の方法でTc及びJcを測定した結
果、Tcは89.8〜92.0Kであったが、77Kに
おけるゼロ磁場でのJcは0.3〜1.6(×107
/m2)と低くばらつきが見られた。又外観をSEMで
観察し、EDX分析を行った結果、超電導体以外の異相
が多数確認された。
Comparative Example 3 A superconducting composite having a superconducting layer having a thickness of 26 μm was obtained in the same manner as in Example 2 except that the noble metal layer was not stretched. As a result of measuring Tc and Jc of the obtained superconducting composite in the same manner as in Example 1, Tc was 89.8 to 92.0K, but Jc at 77K in a zero magnetic field was 0.3 to 1. .6 (× 10 7 A
/ M 2 ). Further, the appearance was observed by SEM and EDX analysis was performed, and as a result, many different phases other than the superconductor were confirmed.

【0015】[0015]

【発明の効果】本発明になる超電導複合体は、焼成時、
焼成によって一体化した後及び熱処理後の冷却過程又は
室温と液体窒素温度のヒートサイクル試験においても剥
離、クラック等が発生せず、又超電導特性も低下せず、
工業的に極めて好適な超電導複合体である。
The superconducting composite according to the present invention is
Peeling, cracking, etc. do not occur even in the cooling process after being integrated by firing and in the cooling process after heat treatment or in the heat cycle test at room temperature and liquid nitrogen temperature, and the superconducting property does not deteriorate,
It is a superconducting composite which is industrially very suitable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例になる超電導複合体の断面図
である。
FIG. 1 is a sectional view of a superconducting composite according to an embodiment of the present invention.

【図2】本発明の他の一実施例になる超電導複合体の断
面図である。
FIG. 2 is a sectional view of a superconducting composite according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 SUS310S板 2 銀とマグネシアの混合物層 3 貴金属層 4 超電導体層 5 インコネル600板 1 SUS310S plate 2 Mixture layer of silver and magnesia 3 Noble metal layer 4 Superconductor layer 5 Inconel 600 plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山名 章三 茨城県日立市東町四丁目13番1号 日立化 成工業株式会社茨城研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shozo Yamana 4-13-1, Higashimachi, Hitachi-shi, Ibaraki Hitachi Chemical Co., Ltd. Ibaraki Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属板と超電導体層との間に、金属板側
から銀及びマグネシアを含む混合物層、その上面に延伸
処理された貴金属層を介在させた超電導複合体。
1. A superconducting composite in which a mixture layer containing silver and magnesia is interposed between a metal plate and a superconductor layer and a noble metal layer stretched on the upper surface of the mixture layer.
【請求項2】 金属板の表面に銀及びマグネシアを含む
混合物層を溶射法で形成し、該混合物層の表面に貴金属
層を形成した後、貴金属層の表面を延伸処理し、次いで
延伸処理した貴金属層の表面に超電導体用材料を積層し
た後焼成することを特徴とする超電導複合体の製造法。
2. A mixture layer containing silver and magnesia is formed on the surface of a metal plate by a thermal spraying method, a precious metal layer is formed on the surface of the mixture layer, and then the surface of the precious metal layer is stretched and then stretched. A method for producing a superconducting composite, comprising laminating a material for a superconductor on a surface of a noble metal layer and then firing the material.
JP21852293A 1993-09-02 1993-09-02 Superconducting composite and manufacturing method thereof Expired - Lifetime JP3383799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21852293A JP3383799B2 (en) 1993-09-02 1993-09-02 Superconducting composite and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21852293A JP3383799B2 (en) 1993-09-02 1993-09-02 Superconducting composite and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0768694A true JPH0768694A (en) 1995-03-14
JP3383799B2 JP3383799B2 (en) 2003-03-04

Family

ID=16721255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21852293A Expired - Lifetime JP3383799B2 (en) 1993-09-02 1993-09-02 Superconducting composite and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3383799B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154750A (en) * 2005-12-05 2007-06-21 Ishikawajima Harima Heavy Ind Co Ltd Oxygen compressor
JP2011520215A (en) * 2008-03-29 2011-07-14 ゼナジー・パワー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング High temperature superconductor layer arrangement
EP2506324A3 (en) * 2011-03-31 2014-01-15 Korea Electrotechnology Research Institute High-temperature superconducting tape

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154750A (en) * 2005-12-05 2007-06-21 Ishikawajima Harima Heavy Ind Co Ltd Oxygen compressor
JP2011520215A (en) * 2008-03-29 2011-07-14 ゼナジー・パワー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング High temperature superconductor layer arrangement
EP2506324A3 (en) * 2011-03-31 2014-01-15 Korea Electrotechnology Research Institute High-temperature superconducting tape

Also Published As

Publication number Publication date
JP3383799B2 (en) 2003-03-04

Similar Documents

Publication Publication Date Title
EP1485332B1 (en) Method of joining ceramic and metal parts
JP3383799B2 (en) Superconducting composite and manufacturing method thereof
JP3281892B2 (en) Ceramic superconducting composite and manufacturing method thereof
JPH09263971A (en) Superconducting composite body and its production
JP3448597B2 (en) Bismuth-based oxide superconducting composite and method for producing the same
JPH06272021A (en) Bismuth based oxide superconducting conjugated body and its production
JPH087674A (en) Manufacture of oxide superconductive complex
JPH06128050A (en) Superconducting composite material and its production
JPH1012938A (en) Manufacture of high-temperature superconducting composite
JPH05167108A (en) Oxide superconducting current lead and manufacture thereof
JPS63299018A (en) Manufacture of superconductive material
JPH08116098A (en) Oxide superconducting composite and its manufacture
JP2597704B2 (en) Metal-coated superconducting ceramics compact and metal-coated superconducting ceramic-metal joint using the same
JPH08283006A (en) Production of superconducting composite body
JPH07296653A (en) Manufacture of oxide superconductive composite substance
JPH0578183A (en) Oxide superconductor composite material and its production
JPH03192615A (en) Oxide superconducting structural body and manufacture thereof
JPH04317482A (en) Oxide superconductor composite material and its production
JPH09263972A (en) Oxide superconducting laminated body
JPH05294628A (en) Oxide superconducting complex and its production
JPH04314534A (en) Composite material of oxide superconductor and its manufacture
JPH09263447A (en) Superconductive precursor composite powder and manufacture of superconductor therefrom
JPH04349188A (en) Oxide superconductor composite and its manufacture
JPH04349185A (en) Oxide superconductor composite and its manufacture
JPH04104970A (en) Bonding or mending oxide superconductor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350