JPH0768623B2 - Surface coated cemented carbide - Google Patents

Surface coated cemented carbide

Info

Publication number
JPH0768623B2
JPH0768623B2 JP60240136A JP24013685A JPH0768623B2 JP H0768623 B2 JPH0768623 B2 JP H0768623B2 JP 60240136 A JP60240136 A JP 60240136A JP 24013685 A JP24013685 A JP 24013685A JP H0768623 B2 JPH0768623 B2 JP H0768623B2
Authority
JP
Japan
Prior art keywords
cemented carbide
cutting
coating
resistance
coated cemented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60240136A
Other languages
Japanese (ja)
Other versions
JPS6299467A (en
Inventor
仁 堀江
晴彦 本田
秀人 野口
利尚 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP60240136A priority Critical patent/JPH0768623B2/en
Publication of JPS6299467A publication Critical patent/JPS6299467A/en
Publication of JPH0768623B2 publication Critical patent/JPH0768623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特にフライス工具として用いた場合、優れた
切削性能を示す表面被覆超硬合金に関する。
TECHNICAL FIELD The present invention relates to a surface-coated cemented carbide that exhibits excellent cutting performance particularly when used as a milling tool.

〔従来の技術〕 一般に鋼・鋳物などのフライス切削に際して高速切削及
び高能率切削化に対応するため、工具材料としては超硬
合金のWC粒度をより粗粒にし強度を向上させ、(W,Ti,T
a,Nb)C相を微細に分散させ耐衝撃性を向上し、さらに
これらにTiCNやTiN等の硬質物質を被覆した表面被覆超
硬合金が形成されている。表面被覆超硬合金において
は、切り刃の食い付き時の機械的衝撃によるチッピン
グ、欠損、皮膜の剥離などにより使用する条件が制限さ
れている。
[Prior art] Generally, in order to support high-speed cutting and high-efficiency cutting when milling steel and castings, etc., as a tool material, the WC grain size of cemented carbide is made coarser to improve the strength (W, Ti , T
Surface-coated cemented carbide is formed in which a, Nb) C phase is finely dispersed to improve impact resistance, and a hard substance such as TiCN or TiN is coated on these. In the case of surface-coated cemented carbide, the conditions for use are limited due to chipping, damage, film peeling, etc. due to mechanical impact when the cutting edge bites.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

超硬合金への被覆は従来、化学蒸着法(以下、CVD法と
称する。)・物理蒸着法(以下、PVD法と称する。)が
行われている。CVD法は主として旋削用として、PVD法は
主としてエンドミル等のフライス工具に用いられてい
る。
Conventionally, the coating on the cemented carbide is performed by chemical vapor deposition (hereinafter referred to as CVD method) or physical vapor deposition (hereinafter referred to as PVD method). The CVD method is mainly used for turning, and the PVD method is mainly used for milling tools such as end mills.

両者はその特徴を生かした用途に実用化されているが、
その反面、CVD法には脱炭相による強度の低下、PVD法に
は密着性、長寿命化に効果が少ない等の問題がある。そ
のため、表面被覆超硬合金によるフライス切削では食い
付き、離脱に伴う機械的衝撃のため十分満足する切削性
能を有するまで至っていない。
Both have been put into practical use for their applications,
On the other hand, the CVD method has problems such as a decrease in strength due to the decarburizing phase, and the PVD method has little effect on adhesion and long life. Therefore, in the milling cutting with the surface-coated cemented carbide, it is not possible to have sufficiently satisfactory cutting performance due to the mechanical impact caused by biting and separation.

表面被覆超硬合金の切削領域、用途の拡大には皮膜の安
定性(特に耐剥離性)を向上させる必要性がある。
In order to expand the cutting area and applications of surface-coated cemented carbide, it is necessary to improve the stability of the coating (especially peel resistance).

〔課題を解決するための手段〕[Means for Solving the Problems]

以上の点より本発明は、Co及び/又はNiの1種または2
種、及びWを含有し、その比が、W/(W+Co+Ni)=5/
100〜25/100で構成された結合相:5〜16wt%、硬質相と
して炭化タングステン及びB1型の結晶構造を有する(W,
Ti,Ta,Nb)C固溶体及び不可避不純物:残りからなる組
成を有し、TiCN及び/またはTiNを0.5〜5μm被覆した
超硬合金において、その被覆層の粒子径が0.5μm以下
であることを特徴とする表面被覆超硬合金であり、従来
の表面被覆超硬合金より安定した切削性能を発揮させる
ため、被覆層に着目し、特に皮膜の耐剥離性・密着性・
微粒化、脱炭相の軽減を計ったものである。
From the above points, the present invention is one or two of Co and / or Ni.
Seed and W, the ratio of which is W / (W + Co + Ni) = 5 /
Binder phase composed of 100 to 25/100: 5 to 16 wt%, having tungsten carbide as a hard phase and B1 type crystal structure (W,
Ti, Ta, Nb) C solid solution and unavoidable impurities: In a cemented carbide having the composition of the rest and coated with TiCN and / or TiN in an amount of 0.5 to 5 μm, the particle diameter of the coating layer is 0.5 μm or less. It is a characteristic surface-coated cemented carbide, and in order to exhibit more stable cutting performance than conventional surface-coated cemented carbide, pay attention to the coating layer, especially the peeling resistance and adhesion of the coating.
This is to reduce atomization and decarburization phase.

また、本発明は達成するために、機械的衝撃に優れ、CV
D法と同程度の密着性を有する被覆法を検討した結果、7
00〜900℃で蒸着するCVD法により行うことができた。
In addition, the present invention achieves excellent mechanical impact and CV
As a result of examining a coating method having the same degree of adhesion as the D method, 7
It could be performed by the CVD method of vapor deposition at 00 to 900 ° C.

以下、数値限定した理由について説明する。The reason for limiting the numerical values will be described below.

1)結合相の含有量 結合相の含有量が5%未満では、所望の優れた強度を合
金に付与することができず、一方16%を越えると相対的
にWCなどの硬質相の含有量が低下し、WCなどのもつ優れ
た耐摩耗性、耐塑性変形性が減少するため、その含有量
を5〜16%とした。
1) Content of binder phase If the content of binder phase is less than 5%, desired excellent strength cannot be imparted to the alloy, while if it exceeds 16%, the content of hard phase such as WC is relatively large. Content decreases and the excellent wear resistance and plastic deformation resistance of WC and the like decrease, so the content was made 5 to 16%.

2)結合相中のWの含有量 W/(W+Co+Ni)=5/100〜25/100とした理由は、5/100
未満では、所望の優れた耐熱性、耐酸化性、耐塑性変形
性、耐溶着性を合金に付与することができず、25/100を
越えると硬質相がM6Cタイプの複炭化物を生成し、靭性
を低下させるためである。
2) The content of W in the binder phase W / (W + Co + Ni) = 5/100 to 25/100 is because 5/100
If it is less than 25, the desired excellent heat resistance, oxidation resistance, plastic deformation resistance, and welding resistance cannot be imparted to the alloy, and if it exceeds 25/100, the hard phase forms M 6 C type double carbide. However, the toughness is reduced.

3)硬質相の被覆及び膜厚 本発明の表面被覆超硬合金への被覆は、有機CN化合物を
反応ガスとするCVD法が適用される。本方法は蒸着温度
が700〜900℃と従来のCVD法に比較して低く、 拡散速度が遅いため脱炭相の生成が少ない 膜質が微細 従来のCVD法との併用が可能なこと などのメリットを有する。
3) Coating of hard phase and film thickness For the coating of the surface-coated cemented carbide of the present invention, a CVD method using an organic CN compound as a reaction gas is applied. This method has a vapor deposition temperature of 700 to 900 ° C, which is lower than that of the conventional CVD method, and the diffusion rate is slow, so there is little decarburization phase formation. The film quality is fine. It can be used in combination with the conventional CVD method. Have.

膜厚を0.5〜5μmとしたのは、0.5μm未満では充分な
耐摩耗性を付与することができず、一方5μmを越えて
厚くすると密着性が劣化するためである。
The reason why the film thickness is 0.5 to 5 μm is that if it is less than 0.5 μm, sufficient abrasion resistance cannot be imparted, while if it exceeds 5 μm, the adhesion is deteriorated.

さらに皮膜の粒子径を0.5μm以下としたのは、耐衝撃
性、耐摩耗性を向上させ、かつフライス切削における機
械的衝撃による皮膜の剥離、脱落などを少なくするため
である。
Further, the reason why the particle size of the coating is 0.5 μm or less is to improve the impact resistance and wear resistance and to reduce the peeling and dropping of the coating due to the mechanical impact in milling.

以下、実施例に基づいて詳細に説明する。Hereinafter, a detailed description will be given based on examples.

〔実施例〕〔Example〕

実施例1 JIS P30相当の合金を製造するため、(W,Ti)C(平均
粒度1.0〜1.5μm)、(Ta,Nb)C粉末(同1.2μm)、
WC粉末(同4μm)、及びCo粉末(同1.0μm)、Ni粉
末(同1μm)を用意し、これらを第1表に示す組成に
配合し、ボールミル中で湿式粉砕、混合を96時間行い、
乾燥処理後、1Ton/cm3の圧力でプレス成形した。次に、
真空中1400℃で焼結し、本発明の超硬合金を製造した。
これらの硬さ及び抗折力を測定した結果も第1表に合わ
せて記入する。
Example 1 In order to produce an alloy equivalent to JIS P30, (W, Ti) C (average particle size 1.0 to 1.5 μm), (Ta, Nb) C powder (1.2 μm),
WC powder (4 μm in the same), Co powder (1.0 μm in the same), Ni powder (1 μm in the same) were prepared, and these were blended in the composition shown in Table 1, wet-ground in a ball mill and mixed for 96 hours,
After the drying treatment, press molding was performed at a pressure of 1 Ton / cm 3 . next,
The cemented carbide of the present invention was manufactured by sintering in vacuum at 1400 ° C.
The results of measuring the hardness and the transverse rupture strength are also shown in Table 1.

次に、上記合金へ有機CN化合物を反応ガスとするCVD法
によりTiCNを2μmを被覆した。まず前記チップをCVD
反応炉中に設置し、水素ガスを流しながら800℃まで昇
温し、TiCl42%、CH3CN2%、H2残、からなる混合気体を
流量7リッター/min、圧力40mmHgの条件で供給し、30mi
n反応させて所定の膜厚を製作した。
Next, the above alloy was coated with TiCN to a thickness of 2 μm by the CVD method using an organic CN compound as a reaction gas. First, CVD of the chip
Installed in a reactor, heated to 800 ° C while flowing hydrogen gas, and supplied a mixed gas consisting of TiCl 4 2%, CH 3 CN 2 % and H 2 residue at a flow rate of 7 liters / min and a pressure of 40 mmHg. And then 30mi
A predetermined film thickness was produced by reacting n.

次に被覆後の抗折力を測定するため、3面を研削し被覆
層を抗折力試験片の引張応力にセットし、測定した。そ
の結果も第1表に併記する。
Next, in order to measure the transverse rupture strength after coating, three surfaces were ground and the coating layer was set to the tensile stress of the transverse rupture strength test piece and measured. The results are also shown in Table 1.

第1表より、従来のCVD法に比較し、膜厚が同一の場
合、被覆後の抗折力は向上し、強度低下の少ないことが
分かる。
It can be seen from Table 1 that when the film thickness is the same as in the conventional CVD method, the transverse rupture strength after coating is improved and the decrease in strength is small.

さらに、第1図に示すように本被覆法によれば極めて微
細な皮膜が得られる。第1図は3000倍でSEM観察したも
のであり、最表面の粒度は0.2〜0.3μmと細かいが、比
較例である第2図は、最表面が1.0〜1.5μmとなってい
る。また、断面を研磨しラップした後、村上試薬でエッ
チングし観察した結果、第3図に示すように脱炭相(M6
C)は観察されなかった。
Furthermore, as shown in FIG. 1, according to this coating method, an extremely fine film can be obtained. FIG. 1 shows the result of SEM observation at 3000 times, and the grain size of the outermost surface is as fine as 0.2 to 0.3 μm, but in FIG. 2 which is a comparative example, the outermost surface is 1.0 to 1.5 μm. Further, after wrapping polished cross-section, as a result of etching was observed with Murakami reagent, as shown in FIG. 3 Datsusumisho (M 6
C) was not observed.

なお、脱炭相は皮膜と超硬合金の界面に生成し、村上試
薬でエッチングした場合には、第4図のように黒色とし
て観察される。
The decarburized phase is generated at the interface between the film and the cemented carbide, and when etching with Murakami reagent, it is observed as black as shown in FIG.

実施例2 実施例1の合金を用いて、下記の条件で切削試験を行
い、その性能を評価した。まず、正面フライスによる一
定時間切削後、逃げ面摩耗を測定し、耐摩耗性を評価し
た。その結果を第2表に示す。
Example 2 Using the alloy of Example 1, a cutting test was performed under the following conditions to evaluate the performance. First, after cutting with a face mill for a certain period of time, flank wear was measured to evaluate wear resistance. The results are shown in Table 2.

寿命試験 被削材 SCM440 チップ SPGN422 切削速度 200m/min 送り量 0.2mm/刃 切削時間 10min 第2表より、本発明合金はWC基超硬合金の靭性を保ちな
がらより高速切削、高送り切削に優れた性能を示すこと
が明らかである。
Life test Work material SCM440 Tip SPGN422 Cutting speed 200m / min Feed rate 0.2mm / blade Cutting time 10min It is clear from Table 2 that the alloys of the present invention exhibit excellent performance in high speed cutting and high feed cutting while maintaining the toughness of the WC-based cemented carbide.

実施例3 実施例1と同様の工程で試料番号8の合金を用いて、こ
れに実施例1で用いたCVD法によりTiCN及び/またはTiN
を単層、多層に被覆した。その膜厚、膜質及び抗折力を
測定した結果も第3表に合わせて記載した。
Example 3 The alloy of sample No. 8 was used in the same process as in Example 1 and TiCN and / or TiN was formed by the CVD method used in Example 1.
Was coated in a single layer or multiple layers. The results of measuring the film thickness, film quality and transverse rupture strength are also shown in Table 3.

尚、TiCN膜は実施例1と同様に被覆し、CH3CNガスをN2
に切り換え、所定時間反応させてTiNを被覆し、これら
の操作を繰り返して第3表のような膜質−膜厚の試料を
制作した。
The TiCN film was coated as in Example 1, and CH 3 CN gas was added to N 2
The sample was made to have a film quality-film thickness as shown in Table 3 by repeating these operations by coating the TiN film by reacting for a predetermined time.

さらに、耐熱性、耐衝撃性を評価するため、 被削材 SKD61 チップ SPCN42TR−A3 切削速度 100m/min 送り量 0.15mm/刃 切削時間 10min の条件で正面フライスによる切削試験を行い、一定時間
切削後、逃げ面摩耗量を測定した。その結果も第3表に
併記する。
Furthermore, in order to evaluate the heat resistance and impact resistance, the work material SKD61 chip SPCN42TR-A3 cutting speed 100m / min cutting rate 0.15mm / blade cutting time 10min. The flank wear amount was measured. The results are also shown in Table 3.

第3表から明らかなように被覆層の微細化、脱炭相の低
減などの相乗効果により耐熱性、耐摩耗性、耐溶着性に
優れ高速切削に対応した優れた性能を示した。さらに実
施例3により、本発明が広い汎用性を持っていることも
明らかである。
As is clear from Table 3, due to the synergistic effects such as miniaturization of the coating layer and reduction of the decarburization phase, the heat resistance, wear resistance and welding resistance were excellent and excellent performance corresponding to high speed cutting was exhibited. Further, it is apparent from Example 3 that the present invention has wide versatility.

上記実施例では、被覆層としてTiC、TiCN等の炭化物、
炭窒化物を使用しているが、さらに金属ハロゲンガス、
H2ガス、炭化水素ガス又は酸化物のガスを反応性ガスと
するCVD法との組み合わせによりTiC、Al2O3などとの多
層被覆した場合でも優れた効果が得られる。
In the above examples, as the coating layer TiC, carbide such as TiCN,
Carbonitride is used, but metal halogen gas,
An excellent effect can be obtained even when a multi-layer coating with TiC, Al 2 O 3 or the like is performed by combination with the CVD method using H 2 gas, hydrocarbon gas or oxide gas as a reactive gas.

〔発明の効果〕〔The invention's effect〕

本願表面被覆超硬合金は、従来の鋼切削用のJIS P
系、M系(WC−TiC−TaC−Co−Ni系)の超硬合金を基体
とし、有機CN化合物を反応ガスとするCVD法で被覆する
ことにより、従来不十分であった耐衝撃性、耐剥離性、
耐溶着性が大巾に向上し、そのため機械的衝撃を伴うフ
ライス切削工具材料として好適なものである。
The surface-coated cemented carbide of the present application is JIS P for conventional steel cutting.
Impact resistance, which has been insufficient until now, by coating with a CVD method using a C-type or M-type (WC-TiC-TaC-Co-Ni type) cemented carbide as a substrate and an organic CN compound as a reaction gas, Peel resistance,
Since the welding resistance is greatly improved, it is suitable as a milling tool material with mechanical impact.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の皮膜最外層のSEM観察結果(倍率×3
000)を示す。 第2図は、ハロゲンガス使用のCVD法の皮膜最外層のSEM
観察結果を示す。第3図は、第1図の断面観察(倍率×
1500)を示す。第4図は、第2図の断面観察を示す。
FIG. 1 is a SEM observation result (magnification × 3
000) is shown. Figure 2 shows the SEM of the outermost layer of the CVD method using halogen gas.
The observation results are shown. FIG. 3 is a cross-sectional view of FIG. 1 (magnification ×
1500). FIG. 4 shows a cross-sectional view of FIG.

───────────────────────────────────────────────────── フロントページの続き 審判の合議体 審判長 日野 あけみ 審判官 徳永 英男 審判官 胡田 尚則 (56)参考文献 特開 昭57−174402(JP,A) 特開 昭57−210970(JP,A) 特開 昭55−131172(JP,A) 特開 昭59−85860(JP,A) ─────────────────────────────────────────────────── ───Continuation of the front page Judgment panel Judge Chair Akemi Hino Judge Judge Hideo Tokunaga Judge Naori Kota (56) References JP 57-174402 (JP, A) JP 57-210970 (JP, A) ) JP-A-55-131172 (JP, A) JP-A-59-85860 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Co及び/又はNiの1種または2種、及びW
を含有し、その重量比が W/(W+Co+Ni)=5/100〜25/100 で構成された結合相:5〜16重量%、硬質相として炭化タ
ングステン及びB1型の結晶構造を有する(W,Ti,Ta,Nb)
C固溶体及び不可避不純物:残り、からなる組成を有
し、TiCN及び/またはTiNを0.5〜5μm被覆した超硬合
金において、その被覆層の粒子径が0.5μm以下である
ことを特徴とする表面被覆超硬合金。
1. One or two kinds of Co and / or Ni, and W
Binder containing 5% to 16% by weight of W / (W + Co + Ni) = 5/100 to 25/100, containing tungsten carbide as a hard phase and a B1 type crystal structure (W, Ti, Ta, Nb)
C solid solution and unavoidable impurities: the remainder, a cemented carbide having TiCN and / or TiN coated in an amount of 0.5 to 5 μm, the coating layer having a particle diameter of 0.5 μm or less. Cemented carbide.
JP60240136A 1985-10-25 1985-10-25 Surface coated cemented carbide Expired - Fee Related JPH0768623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60240136A JPH0768623B2 (en) 1985-10-25 1985-10-25 Surface coated cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60240136A JPH0768623B2 (en) 1985-10-25 1985-10-25 Surface coated cemented carbide

Publications (2)

Publication Number Publication Date
JPS6299467A JPS6299467A (en) 1987-05-08
JPH0768623B2 true JPH0768623B2 (en) 1995-07-26

Family

ID=17055034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60240136A Expired - Fee Related JPH0768623B2 (en) 1985-10-25 1985-10-25 Surface coated cemented carbide

Country Status (1)

Country Link
JP (1) JPH0768623B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2828512B2 (en) * 1990-12-27 1998-11-25 京セラ株式会社 Coated TiCN-based cermet
JP2828511B2 (en) * 1990-12-27 1998-11-25 京セラ株式会社 Surface coated TiCN based cermet
SE9202838D0 (en) * 1992-09-30 1992-09-30 Sandvik Ab Full radius TOOLS
GB9304839D0 (en) * 1993-03-09 1993-04-28 Hydra Tools Int Plc Rotary cutter
KR20020019888A (en) * 2000-09-07 2002-03-13 오카무라 가네오 Cutting tool
JP2002154001A (en) * 2000-09-07 2002-05-28 Ngk Spark Plug Co Ltd Cutting tool
CN107916357A (en) * 2017-10-31 2018-04-17 自贡硬质合金有限责任公司 A kind of gradient hard alloy of heterogeneous texture and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55131172A (en) * 1979-03-29 1980-10-11 Mitsubishi Metal Corp Tool steel component having multilayer coating and manufacture thereof
JPS57210970A (en) * 1981-06-22 1982-12-24 Mitsubishi Metal Corp Surface coated sintered hard alloy member
JPS6056428B2 (en) * 1981-07-11 1985-12-10 住友電気工業株式会社 Coated cemented carbide member and its manufacturing method
JPS5985860A (en) * 1982-11-09 1984-05-17 Sumitomo Electric Ind Ltd Parts of cutting tool

Also Published As

Publication number Publication date
JPS6299467A (en) 1987-05-08

Similar Documents

Publication Publication Date Title
US8043729B2 (en) Coated cutting tool insert
USRE39814E1 (en) Cemented carbide insert and method of making same
JP3402146B2 (en) Surface-coated cemented carbide end mill with a hard coating layer with excellent adhesion
JPH0372715B2 (en)
EP1548154A2 (en) Surface-coated cermet cutting tool with hard coating layer having excellend chipping resistance
JPH0768623B2 (en) Surface coated cemented carbide
JP3250414B2 (en) Method for producing cutting tool coated with titanium carbonitride layer surface
JP2556101B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool
JP3236899B2 (en) Manufacturing method of surface coated tungsten carbide based cemented carbide cutting tool with excellent wear and fracture resistance
JP4351521B2 (en) Surface coated cutting tool
JP3419140B2 (en) Surface coated cutting tool
JP3460571B2 (en) Milling tool with excellent wear resistance
JP2800571B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
JP3460565B2 (en) Milling tool with excellent wear resistance
JP4484500B2 (en) Surface coated cutting tool
JP3887812B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JP3994591B2 (en) Surface coated cemented carbide cutting tool with excellent surface lubricity against chips
JP2000246509A (en) Throw-awy cutting tip made of surface sheathed super hard alloy exhibiting excellent initial tipping resistant property at its hard coated layer
JP3255041B2 (en) Surface-coated cermet cutting tools with excellent fracture resistance
JP3236908B2 (en) Surface coated WC based cemented carbide cutting tool
JP3994592B2 (en) Surface coated cemented carbide cutting tool with excellent surface lubricity against chips
JPS62278267A (en) Surface-coated ticn cermet
JP4867572B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JPH058103A (en) Cutting tool member made of surface-coated tungsten carbide base sintered alloy
JPS5935675A (en) Surface-coated sintered alloy member for cutting tool

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees