JPH0768284B2 - Method for removing residual water-friendly organic solvent in solid polysaccharides - Google Patents

Method for removing residual water-friendly organic solvent in solid polysaccharides

Info

Publication number
JPH0768284B2
JPH0768284B2 JP63149003A JP14900388A JPH0768284B2 JP H0768284 B2 JPH0768284 B2 JP H0768284B2 JP 63149003 A JP63149003 A JP 63149003A JP 14900388 A JP14900388 A JP 14900388A JP H0768284 B2 JPH0768284 B2 JP H0768284B2
Authority
JP
Japan
Prior art keywords
water
organic solvent
solid
purified
polysaccharide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63149003A
Other languages
Japanese (ja)
Other versions
JPH01318001A (en
Inventor
光雄 森川
晶二 鈴木
弘文 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP63149003A priority Critical patent/JPH0768284B2/en
Publication of JPH01318001A publication Critical patent/JPH01318001A/en
Publication of JPH0768284B2 publication Critical patent/JPH0768284B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 水溶性天然多糖類はその性質により食品分野、工業分野
等の広い範囲に利用されている。本発明は、水溶性天然
多糖類の乾燥工程における固形多糖類中の水親和性有機
溶剤を除去する方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> Water-soluble natural polysaccharides are used in a wide range of fields such as food and industry due to their properties. The present invention provides a method for removing a water-affinitive organic solvent in a solid polysaccharide in a drying step of a water-soluble natural polysaccharide.

〈従来の技術〉 水溶性天然多糖類の不純物を除去した水溶液から精製品
を得る方法としてはゲルプレス法、ドラムドライ法、水
親和性有機溶剤による脱水法等が知られているが、他の
方法に較べて高純度の精製品を得やすいことから水親和
性有機溶剤による脱水法が好ましいとされている。
<Prior Art> As a method for obtaining a purified product from an aqueous solution from which impurities of a water-soluble natural polysaccharide are removed, a gel press method, a drum dry method, a dehydration method using a water-affinitive organic solvent, etc. are known, but other methods are known. It is said that the dehydration method using a water-affinitive organic solvent is preferable because it is easier to obtain a highly purified product as compared with.

従来、水親和性有機溶剤による脱水法を用いた精製品が
食品分野に利用される場合、残留する水親和性有機溶剤
による味への影響、臭いへの影響、人体への影響等が懸
念されるために、できるだけ水親和性有機溶剤が残留し
ないようにすることが好ましい。そのために乾燥初期よ
り目的とする精製品品質の維持可能な温度50〜90℃、湿
度5%RH以下の空気を送風し目的とする固形分になるま
で乾燥し、粉砕したのち精製品としていた。
Conventionally, when purified products using a dehydration method with a water-affinitive organic solvent are used in the food field, there is concern that the residual water-affinitive organic solvent may affect the taste, the odor, or the human body. For this reason, it is preferable that the water-affinitive organic solvent does not remain as much as possible. Therefore, from the initial stage of drying, air having a temperature of 50 to 90 ° C. and a humidity of 5% RH or less that can maintain the desired quality of the refined product is blown, the product is dried to a desired solid content, and the product is pulverized to obtain a purified product.

〈発明が解決しようとする課題〉 しかしながら上記のような従来の乾燥法による水親和性
有機溶剤の除去方法では、水と水親和性有機溶剤の蒸発
速度が大きいために水親和性有機溶剤の固形多糖類内部
から表面への移動速度が表面での蒸発速度よりも遅くな
り、内部が乾燥する前に固形多糖類の表面硬化を誘発し
表面が緻密化するため、それ以後は内部から表面への拡
散が押えられ長時間乾燥しても内部に残存し、したがっ
て水親和性有機溶剤の除去が十分でなく500〜数千ppm程
度精製品中に残留してしまう問題点があった。
<Problems to be Solved by the Invention> However, in the method for removing the water-affinitive organic solvent by the conventional drying method as described above, since the evaporation rate of water and the water-affinitive organic solvent is high, The rate of migration from the inside of the polysaccharide to the surface becomes slower than the evaporation rate on the surface, and the surface hardening of the solid polysaccharide is induced before the inside dries, and the surface becomes dense. Diffusion is suppressed and remains inside even after drying for a long time. Therefore, the removal of the water-affinitive organic solvent is not sufficient and about 500 to several thousand ppm remains in the purified product.

このため、より有効な固形多糖類中の残存水親和性有機
溶剤の除去法が要望されていた。
Therefore, a more effective method for removing the residual water-affinitive organic solvent in the solid polysaccharide has been demanded.

〈課題を解決するための手段〉 本発明者らは前記の状況に鑑み、固形多糖類中の残存水
親和性有機溶剤を除去する方法について鋭意検討を重ね
た結果、本発明に到達した。
<Means for Solving the Problems> In view of the above situation, the present inventors have earnestly studied the method for removing the residual water-affinitive organic solvent in the solid polysaccharide, and as a result, arrived at the present invention.

すなわち本発明の要旨は水溶性天然多糖類の精製にあた
り、該多糖類の水溶液に水親和性有機溶剤を添加して沈
殿回収して得られた固形多糖類を湿度70〜95%RHの空気
で処理することを特徴とする固形多糖類中の残存水親和
性有機溶剤の除去方法にある。
That is, the gist of the present invention is in the purification of water-soluble natural polysaccharides, a solid polysaccharide obtained by adding a water-affinitive organic solvent to an aqueous solution of the polysaccharide and collecting the precipitate by air with a humidity of 70 to 95% RH. It is a method for removing the residual water-affinitive organic solvent in the solid polysaccharide, which is characterized by treatment.

水溶性天然多糖類の水溶液としてはアルギン酸、カラギ
ーナン、フアーセレラン、ペクチン、タマリンドガム、
グアーガム、キサンタンガム、ローカストビーンガム、
タラガム等の原料より種々の方法により抽出した抽出液
を過した液を例示できる。
Aqueous solutions of water-soluble natural polysaccharides include alginic acid, carrageenan, fucereran, pectin, tamarind gum,
Guar gum, xanthan gum, locust bean gum,
An example is a liquid obtained by passing an extraction liquid extracted from a raw material such as tara gum by various methods.

それらの水溶液から沈殿を析出するには水親和性有機溶
剤を適当量添加する。水親和性有機溶剤としてはメチル
アルコール、エチルアルコール、イソプロピルアルコー
ル等のアルコール類、アセトン等のケトン類、テトラヒ
ドロフラン、ジオキサン等のエーテル類を使用すること
ができる。
To deposit a precipitate from these aqueous solutions, an appropriate amount of a water-affinitive organic solvent is added. As the water-affinitive organic solvent, alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol, ketones such as acetone, ethers such as tetrahydrofuran and dioxane can be used.

沈殿物を固液分離するには遠心分離機、振動フルイ機等
による方法が例示できる。
Examples of solid-liquid separation of the precipitate include a method using a centrifuge, a vibrating screener and the like.

このように固液分離されて水親和性有機溶剤が20〜50%
(w/w)が残存した固形多糖類は、次に残存水親和性有
機溶剤の除去処理のために乾燥機に供給され、加湿処理
される。
In this way, solid-liquid separation is performed and the water-affinity organic solvent is 20-50%.
The solid polysaccharide in which (w / w) remains is then supplied to a dryer for humidification treatment for removing the residual water-affinitive organic solvent.

乾燥機としては、通風乾燥機であればどの型式でもよく
固定層型、流動層型のどちらを採用しても何ら差し支え
ない。
As the dryer, any type may be used as long as it is a ventilation dryer, and either fixed bed type or fluidized bed type may be adopted.

加湿処理用の空気湿度・温度を管理する方法としては、
乾燥機の設置してある室内の空気全体を管理する方法や
乾燥機本体の空気取り入れ側部分で管理する方法等が例
示でき、いずれの方法を採用してもよい。
As a method of managing the air humidity and temperature for humidification treatment,
A method of controlling the entire air in the room where the dryer is installed, a method of controlling the air at the air intake side of the dryer body, and the like can be exemplified, and any method may be adopted.

加湿処理用の空気湿度としては、70%RH未満であると水
親和性有機溶剤の固形多糖類内部から表面への移動速度
が表面での蒸発速度よりも遅くなり、固形多糖類の表面
硬化が発生し長時間乾燥しても水親和性有機溶剤の低減
が困難であり好ましくない。95%RHを越えると水溶性天
然多糖類の固形物であるため、空気中の水分により表面
が溶解し固形多糖類同士が融着し固形多糖類内部の水親
和性有機溶剤が充分除去できなくなるために好ましくな
い。これらより、加湿処理用の空気湿度は70%RH〜95%
RHが適している。
As the air humidity for humidification treatment, if it is less than 70% RH, the migration rate of the water-affinitive organic solvent from the inside of the solid polysaccharide to the surface becomes slower than the evaporation rate on the surface, and the surface hardening of the solid polysaccharide does not occur. Even if it is generated and dried for a long time, it is difficult to reduce the water-affinity organic solvent, which is not preferable. When it exceeds 95% RH, it is a solid substance of water-soluble natural polysaccharides, so the surface is dissolved by moisture in the air and the solid polysaccharides are fused to each other, making it impossible to sufficiently remove the water-affinitive organic solvent inside the solid polysaccharides. Not preferred because of From these, the air humidity for humidification is 70% RH to 95%
RH is suitable.

加湿処理用の空気温度としては、50℃を越えると熱によ
り固形多糖類の表面溶解が発生し易く、固形多糖類中の
水親和性有機溶剤が除去し難くなる傾向にあるため好ま
しくない。1℃未満であると、空気中の水分が凍結し加
湿が困難になるために好ましくない。これらより、加湿
処理用の空気温度は1℃〜50℃が適している。
If the air temperature for the humidification treatment exceeds 50 ° C., the solid polysaccharide is likely to dissolve on the surface due to heat, and the water-affinitive organic solvent in the solid polysaccharide tends to be difficult to remove, which is not preferable. When the temperature is lower than 1 ° C, moisture in the air is frozen and humidification becomes difficult, which is not preferable. From these, the air temperature for the humidification treatment is preferably 1 ° C to 50 ° C.

加湿処理用の空気風量としては、50m3/min・m2を越えて
処理を行なっても水親和性有機溶剤の固形多糖類内部か
ら表面への移動速度が律速になるため残存水親和性有機
溶剤の除去効率は向上せず、エネルギーロスが大きく経
済性が悪くなるため50m3/min・m2以下であることが好ま
しく、1〜30m3/min・m2であることがより好ましい。
As the air flow rate for humidification treatment, even if the treatment exceeds 50 m 3 / min ・ m 2 , the rate of movement of the water-affinitive organic solvent from the solid polysaccharide to the surface becomes the rate-determining factor. The removal efficiency of the solvent is not improved, the energy loss is large and the economical efficiency is deteriorated, so that it is preferably 50 m 3 / min · m 2 or less, more preferably 1 to 30 m 3 / min · m 2 .

加湿処理に供する固形多糖類の形状としては1塊の体積
が大きすぎると加湿処理に長時間を要するために、1塊
の体積が20cm3以下であることが好ましく、粒状で細か
いものの方がより好ましい。
As for the shape of the solid polysaccharide to be humidified, if the volume of one lump is too large, it takes a long time for the humidification treatment, so the volume of one lump is preferably 20 cm 3 or less, and the granular and finer ones are more preferable. preferable.

加湿処理する時間については、固形多糖類の仕込み量、
風量などによって必要な時間が変化するために、予め仕
込み量などと残存水親和性有機溶剤の経時的変化を把握
しておき、生産性、経済性等を考慮して決定すればよ
い。
Regarding the time for humidifying treatment, the charged amount of solid polysaccharide,
Since the necessary time changes depending on the air volume and the like, it may be determined in advance by grasping the changes over time of the charged amount and the residual water-affinitive organic solvent, and taking into consideration productivity, economic efficiency, and the like.

以上のような処理により固形多糖類中の残存水親和性有
機溶剤を除去した後、残存している水分を除去するため
に熱風を送り込む。該熱風としては目的とする精製品の
品質維持可能な温度50℃〜90℃、湿度5%RH以下の空気
を用いる。風量については、あまり大きいと表面硬化を
早期に発生しやすく均一な水分除去ができない場合もあ
るが、このような多糖類は使用にあたっては水に溶解し
たり、水を添加したりするのが通常であり、有機溶剤と
異なり水分が残っていても品質に影響はなく、さほどの
支障もないので適宜決定すればよい。熱風を送り込む時
間は固形多糖類の仕込み量、風量などを考慮して目的と
する水分率に到達するように管理すればよい。
After the residual water-affinitive organic solvent in the solid polysaccharide is removed by the treatment as described above, hot air is blown in to remove the remaining water. As the hot air, air having a temperature of 50 ° C. to 90 ° C. and a humidity of 5% RH or less at which the quality of the target purified product can be maintained is used. Regarding the air volume, if it is too large, surface hardening may occur early and uniform water removal may not be possible, but such polysaccharides are usually dissolved in water or added with water before use. Therefore, unlike the organic solvent, even if water remains, it does not affect the quality and does not cause much trouble, so it may be appropriately determined. The time for feeding hot air may be controlled so as to reach the target moisture content in consideration of the amount of solid polysaccharide charged, the amount of air, and the like.

このようにして得られた乾燥物は粉砕し適当な粒度に調
整した後精製品とすることができる。
The dried product thus obtained can be crushed and adjusted to an appropriate particle size to be a purified product.

〈実施例〉 以下実施例に従って本発明を具体的に説明する。<Examples> The present invention will be specifically described below with reference to Examples.

尚、実施例及び比較例における精製品中の水親和性有機
溶剤の残留量の定量はガスクロマトグラフイー法により
行なった。
In addition, the quantitative determination of the residual amount of the water-affinitive organic solvent in the purified products in Examples and Comparative Examples was carried out by a gas chromatography method.

実施例1 粗精製ローカストビーンガム(商品名 ポリガム)3.5k
gと塩化カルシウム50gを300lの水に分散し、85℃で1時
間攪拌溶解した後、過助剤のパーライト3.7kgを添加
混合しフイルタープレスで加圧過した。次に液に同
容積の87%(w/w)イソプロピルアルコール(IPA)を添
加して沈殿を析出させ、遠心分離機で固液分離し、固形
分30.0%(w/w)、水分42.5%(w/w)、IPA分27.5%(w
/w)、1塊の体積が20cm3以下の脱水沈殿物8.3kgを得
た。次にこの脱水沈殿物を流動層型通風乾燥機(ホソカ
ワミクロン製FA-75,乾燥板面積0.28m2)を用いて、第1
表に示す条件で加湿処理を2時間行ない、その後80℃、
50m3/min・m2の熱風乾燥を1時間行ない、粉砕して2.5kg
の精製ローカストビーンガムを得た。この精製ローカス
トビーンガム中の残留IPA量は第1表に示すように低濃
度のものであった。
Example 1 Roughly-purified locust bean gum (trade name: polygum) 3.5k
g and 50 g of calcium chloride were dispersed in 300 liters of water, dissolved by stirring at 85 ° C. for 1 hour, 3.7 kg of a per-auxiliary agent was added and mixed, and the mixture was pressurized with a filter press. Next, the same volume of 87% (w / w) isopropyl alcohol (IPA) was added to the solution to cause precipitation, and solid-liquid separation was performed with a centrifuge, solid content 30.0% (w / w), water content 42.5%. (W / w), IPA 27.5% (w
/ w) 8.3 kg of dehydrated precipitate having a volume of 20 cm 3 or less was obtained. Next, this dehydrated precipitate was subjected to a first drying using a fluidized bed ventilation dryer (FA-75 manufactured by Hosokawa Micron, drying plate area 0.28 m 2 ).
Humidification treatment is performed for 2 hours under the conditions shown in the table, and then 80 ℃,
Drying with hot air of 50m 3 / min ・ m 2 for 1 hour, crushing 2.5kg
To obtain purified locust bean gum. The amount of residual IPA in this purified locust bean gum was low as shown in Table 1.

比較例1 実施例1と同様にして得られたローカストビーンガムの
脱水沈殿物8.3kgを加湿処理しないで、80℃、50m3/min・
m2の熱風乾燥を3時間行ない、粉砕して2.5kgの精製ロ
ーカストビーンガムを得た。この精製ローカストビーン
ガム中の残留IPA量は第1表に示すように、実施例1に
較べ明らかに多く残留していた。
Comparative Example 1 8.3 kg of dehydrated precipitate of locust bean gum obtained in the same manner as in Example 1 was subjected to no humidification treatment at 80 ° C., 50 m 3 / min.
Hot air drying of m 2 was carried out for 3 hours, followed by pulverization to obtain 2.5 kg of purified locust bean gum. As shown in Table 1, the amount of residual IPA in this purified locust bean gum was clearly higher than that in Example 1.

比較例2 実施例1と同様にして得られたローカストビーンガムの
脱水沈殿物8.3kgを第1表に示す条件で加湿処理を2時
間行ない、その後80℃、50m3/min・m2の熱風乾燥を1時
間行ない、粉砕して2.5kgの精製ローカストビーンガム
を得た。この精製ローカストビーンガム中の残留IPAは
第1表に示すように、実施例1に較べ明らかに多く残留
していた。
Comparative Example 2 8.3 kg of dehydrated precipitate of locust bean gum obtained in the same manner as in Example 1 was subjected to a humidification treatment for 2 hours under the conditions shown in Table 1, and then hot air of 80 ° C. and 50 m 3 / min · m 2 . It was dried for 1 hour and pulverized to obtain 2.5 kg of purified locust bean gum. As shown in Table 1, the residual IPA in this purified locust bean gum was clearly higher than that in Example 1.

実施例2 フイリピン産のアルカリ処理したユーキユーマ・コトニ
4.2kgを水洗した後、珪藻土3.0kg及びヘキサメタリン酸
ソーダ200gを添加し300lの85℃温水中で2時間抽出を行
なった。抽出液のpHを8.0〜9.5に、塩酸又は水酸化カリ
ウムで調整した後、フイルタープレスで加圧過した。
次に液に対し2倍量(v/v)の87%(w/w)IPMを添加
して沈殿を析出させ、遠心分離機で固液分離し、固形分
30.0%(w/w)、水分32.0%(w/w)、IPA分38.0%(w/
w)、1塊の体積が20cm3以下の脱水沈殿物8.3kgを得
た。次に実施例1と同じ乾燥機を用いて第2表に示す条
件で加湿処理を2時間行ない、その後80℃、50m3/min・m
2の熱風乾燥を1時間行ない、粉砕して2.5kgの精製カラ
ギーナンを得た。この精製カラギーナン中の残留IPA量
は第2表に示すように低濃度のものであった。
Example 2 Alkali-treated Yukiuma Kotoni from Filipin
After 4.2 kg was washed with water, 3.0 kg of diatomaceous earth and 200 g of sodium hexametaphosphate were added, and extraction was performed for 2 hours in 300 l of warm water at 85 ° C. The pH of the extract was adjusted to 8.0 to 9.5 with hydrochloric acid or potassium hydroxide, and then pressurized with a filter press.
Next, 87% (w / w) IPM of twice the volume (v / v) was added to the solution to precipitate, and a centrifuge was used to perform solid-liquid separation and solid content.
30.0% (w / w), moisture 32.0% (w / w), IPA content 38.0% (w /
w) 8.3 kg of dehydrated precipitate having a volume of 20 cm 3 or less was obtained. Next, using the same dryer as in Example 1, humidification treatment was performed for 2 hours under the conditions shown in Table 2, and then 80 ° C., 50 m 3 / min · m.
Hot air drying of 2 was carried out for 1 hour and crushed to obtain 2.5 kg of purified carrageenan. The amount of residual IPA in this purified carrageenan was low as shown in Table 2.

比較例3 実施例2と同様にして得られたカラギーナンの脱水沈殿
物8.3kgを加湿処理しないで、80℃、50m3/min・m2の熱風
乾燥を3時間行ない、粉砕して2.5kgの精製カラギーナ
ンを得た。この精製カラギーナン中の残留IPA量は第2
表に示すように実施例2に較べ明らかに多く残留してい
た。
Comparative Example 3 8.3 kg of the dehydrated precipitate of carrageenan obtained in the same manner as in Example 2 was subjected to hot air drying at 80 ° C. and 50 m 3 / min · m 2 for 3 hours without being humidified, and crushed to give 2.5 kg. Obtained purified carrageenan. The amount of residual IPA in this purified carrageenan is second
As shown in the table, a large amount remained as compared with Example 2.

比較例4 実施例2と同様にして得られたカラギーナンの脱水沈殿
物8.3kgを第2表に示す条件で加湿処理を2時間行な
い、その後80℃、50m3/min・m2の熱風乾燥を3時間行な
い粉砕して2.5kgの精製カラギーナンを得た。この精製
カラギーナン中の残留IPA量は第2表に示すように実施
例2に較べ明らかに多く残留していた。
Comparative Example 4 8.3 kg of a dehydrated precipitate of carrageenan obtained in the same manner as in Example 2 was subjected to a humidification treatment for 2 hours under the conditions shown in Table 2 and then dried with hot air at 80 ° C. and 50 m 3 / min · m 2. The mixture was crushed for 3 hours to obtain 2.5 kg of purified carrageenan. As shown in Table 2, the amount of residual IPA in this purified carrageenan was clearly higher than that in Example 2.

実施例3 粗精製キサンタンガム(Jung社製 工業用グレード)4.
1kgを400lの水に分散し、80℃で1時間攪拌溶解した
後、過助剤のパーライト6.0kgを添加混合しフイルタ
ープレスで加圧過した。次に液に対して1%(w/
v)の塩化カリウムを添加してから2.5倍量(v/v)の87
%(w/w)IPAを添加して沈殿を析出させ、遠心分離機で
固液分離し、固形分40.0%(w/w)、水分25.0%(w/
w)、IPA分35.0%(w/w)、1塊の体積が20cm3以下の脱
水沈殿物8.3kgを得た。次に実施例1と同じ乾燥機を用
いて第3表に示す条件で加湿処理を2時間行ない、その
後80℃、50m3/min・m2の熱風乾燥を1時間行ない、粉砕
して3.3kgの精製キサンタンガムを得た。この精製キサ
ンタンガム中の残留IPA量は第3表に示すように低濃度
のものであった。
Example 3 Crude purified xanthan gum (Jung industrial grade) 4.
1 kg was dispersed in 400 l of water, dissolved by stirring at 80 ° C. for 1 hour, 6.0 kg of perlite as a super-auxiliary agent was added and mixed, and the mixture was pressurized with a filter press. Next, 1% (w /
v) potassium chloride of 2.5 times the amount (v / v) of 87
% (W / w) IPA is added to form a precipitate, which is subjected to solid-liquid separation by a centrifuge, solid content 40.0% (w / w), water content 25.0% (w / w).
w), IPA content 35.0% (w / w), 8.3 kg of dehydrated precipitate having a volume of 20 cm 3 or less was obtained. Next, using the same dryer as in Example 1, a humidification treatment was carried out for 2 hours under the conditions shown in Table 3, followed by hot air drying at 80 ° C. and 50 m 3 / min · m 2 for 1 hour, and crushing to 3.3 kg. To obtain purified xanthan gum. The amount of residual IPA in this purified xanthan gum was low as shown in Table 3.

比較例5 実施例3と同様にして得られたキサンタンガムの脱水沈
殿物8.3kgを加湿処理しないで80℃、50m3/min・m2の熱風
乾燥を3時間行ない粉砕して3.3kgの精製キサンタンガ
ムを得た。この精製キサンタンガム中の残留IPAは第3
表に示すように実施例3に較べ明らかに多く残留してい
た。
Comparative Example 5 8.3 kg of dehydrated precipitate of xanthan gum obtained in the same manner as in Example 3 was subjected to hot air drying at 80 ° C. and 50 m 3 / min · m 2 for 3 hours without being humidified, and pulverized to obtain 3.3 kg of purified xanthan gum. Got The residual IPA in this purified xanthan gum is the third
As shown in the table, a large amount remained as compared with Example 3.

比較例6 実施例3と同様にして得られたキサンタンガムの脱水沈
殿物8.3kgを第3表に示す条件で加湿処理を2時間行な
い、その後80℃、50m3/min・m2の熱風乾燥を1時間行な
い粉砕して3.3kgの精製キサンタンガムを得た。この精
製キサンタンガムの残留IPA量は第3表に示すように実
施例3に較べ明らかに多く残留していた。
Comparative Example 6 8.3 kg of dehydrated precipitate of xanthan gum obtained in the same manner as in Example 3 was subjected to humidification treatment for 2 hours under the conditions shown in Table 3, and then dried with hot air at 80 ° C. and 50 m 3 / min · m 2. The mixture was crushed for 1 hour to obtain 3.3 kg of purified xanthan gum. As shown in Table 3, the amount of residual IPA of this purified xanthan gum was clearly higher than that of Example 3.

〈発明の効果〉 以上述べたように、本発明の方法によれば多糖類水溶液
の回収に水親和性有機溶剤を用いて高純度の製品を得る
方法で残存水親和性有機溶剤の濃度を大巾に低減せしめ
ることが可能になるという特徴を有する。
<Effects of the Invention> As described above, according to the method of the present invention, the concentration of the residual water-affinity organic solvent is increased by the method of obtaining a highly pure product by using the water-affinity organic solvent for the recovery of the polysaccharide aqueous solution. It has a feature that it can be reduced to a width.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】水溶性天然多糖類の精製にあたり、該多糖
類の水溶液に水親和性有機溶剤を添加して沈殿回収して
得られた固形多糖類を湿度70〜95%RHの空気で処理する
ことを特徴とする固形多糖類中の残存水親和性有機溶剤
の除去方法。
1. When purifying a water-soluble natural polysaccharide, a solid polysaccharide obtained by adding a water-affinitive organic solvent to an aqueous solution of the polysaccharide and recovering the precipitate is treated with air having a humidity of 70 to 95% RH. A method for removing a residual water-affinitive organic solvent in a solid polysaccharide, comprising:
JP63149003A 1988-06-16 1988-06-16 Method for removing residual water-friendly organic solvent in solid polysaccharides Expired - Lifetime JPH0768284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63149003A JPH0768284B2 (en) 1988-06-16 1988-06-16 Method for removing residual water-friendly organic solvent in solid polysaccharides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63149003A JPH0768284B2 (en) 1988-06-16 1988-06-16 Method for removing residual water-friendly organic solvent in solid polysaccharides

Publications (2)

Publication Number Publication Date
JPH01318001A JPH01318001A (en) 1989-12-22
JPH0768284B2 true JPH0768284B2 (en) 1995-07-26

Family

ID=15465536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63149003A Expired - Lifetime JPH0768284B2 (en) 1988-06-16 1988-06-16 Method for removing residual water-friendly organic solvent in solid polysaccharides

Country Status (1)

Country Link
JP (1) JPH0768284B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT392083B (en) * 1989-05-12 1991-01-25 Jungbunzlauer Ag METHOD FOR OBTAINING BY BACTERIA OF THE GENUS XANTHOMONAS OR. ARTHROBACTER-MADE POLYSACCHARID
CN102229678A (en) * 2011-05-17 2011-11-02 内蒙古阜丰生物科技有限公司 Drying method applied to xanthan gum production
JP6795368B2 (en) * 2016-10-07 2020-12-02 株式会社ダイセル Smoke agent composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341245A (en) * 1976-09-27 1978-04-14 Nitto Electric Ind Co Method of processing adhesive polarizer
JPS58103502A (en) * 1981-12-15 1983-06-20 Mitsubishi Acetate Co Ltd Production of polysaccharide

Also Published As

Publication number Publication date
JPH01318001A (en) 1989-12-22

Similar Documents

Publication Publication Date Title
JP6046779B2 (en) Rice protein composition and method for producing the same
JPS5828246A (en) Preparation of stevioside
JPH07505521A (en) tobacco processing
JPH07501216A (en) grain extract
JPH09502883A (en) Co-treated galactomannan-glucomannan
CN102011337B (en) Preparation method of modified bentonite particle retention aid for papermaking
JPH10513437A (en) How to process cheese processing waste
WO1999029190A1 (en) A method for making a reconstituted tobacco sheet using steam exploded tobacco
JPH0768284B2 (en) Method for removing residual water-friendly organic solvent in solid polysaccharides
JP2002114682A (en) Method for loading nicotine into ion exchange resin under anhydrous condition
CN108862330B (en) Method for removing peculiar smell in refined salt production
JPH0546361B2 (en)
JPS6159720B2 (en)
IE67646B1 (en) Process for the production of kappa carrageenans
JPH0195739A (en) Production of readily soluble granular stevia sweetener
JP2003529606A (en) Method for producing coagulant for water treatment
CS248012B2 (en) Production method of the raw material containing heparin with the enriched of active compound
JP4250776B2 (en) Carbohydrate-protein complex and process for producing the same
Metzger et al. A scanning electron microscopy study of the interactions between sludge organic components and clay particles
WO2017169311A1 (en) Method for producing nepodin-rich extract of rumex plant and nepodin-rich extract of rumex plant
JP4149792B2 (en) Production method of carboxymethylcellulose salt
CA2015584C (en) Process for the recovery of polysaccharides
US4518771A (en) Process for the production of heparin-containing particulate products
JPH11180948A (en) Production of s-(1,2-dicarboxyethyl)glutathione
US3709875A (en) Method of preparing dextran and dextran compounds soluble in cold water

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 13

EXPY Cancellation because of completion of term