JP4250776B2 - Carbohydrate-protein complex and process for producing the same - Google Patents

Carbohydrate-protein complex and process for producing the same Download PDF

Info

Publication number
JP4250776B2
JP4250776B2 JP32510496A JP32510496A JP4250776B2 JP 4250776 B2 JP4250776 B2 JP 4250776B2 JP 32510496 A JP32510496 A JP 32510496A JP 32510496 A JP32510496 A JP 32510496A JP 4250776 B2 JP4250776 B2 JP 4250776B2
Authority
JP
Japan
Prior art keywords
protein
pectin
heated
mixture
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32510496A
Other languages
Japanese (ja)
Other versions
JPH10168097A (en
Inventor
太郎 高橋
彰宏 中村
裕一 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Original Assignee
Fuji Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd filed Critical Fuji Oil Co Ltd
Priority to JP32510496A priority Critical patent/JP4250776B2/en
Publication of JPH10168097A publication Critical patent/JPH10168097A/en
Application granted granted Critical
Publication of JP4250776B2 publication Critical patent/JP4250776B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、カルボキシル基を有する酸性糖を構成糖として含む糖質と蛋白質とを水中で反応させて生成する糖質−蛋白質複合体およびその製造法に関する。
【0002】
【従来の技術】
糖質と蛋白質とを複合体化する為に一般に利用されている化学反応としては、糖質中のカルボニル基と蛋白質中のアミノ基とを結合させるアミノカルボニル反応が知られており、味噌、醤油等食品の着色、着香、着味あるいは特開平3−215498号公報に開示されているような機能性新素材の開発に応用されている。
【0003】
【発明が解決しようとする課題】
アミノカルボニル反応については、これまでにも反応条件等の検討が種々なされているが、当該反応は生成化合物に不都合な色、香、味等が付く場合があり、また反応に時間がかかったり、反応が制御しにくい等、簡単に短時間で目的とする生成物が得られないという問題があり必ずしも満足できるものではなかった。
【0004】
【課題を解決するための手段】
本発明者らは、如上の点に鑑み鋭意研究した結果、カルボキシル基を有する酸性糖を構成糖として含む糖質と蛋白質とを水中で混合して100℃以上の加熱を行うという、非常に簡便な方法によって容易に(酸性糖含有)糖質−蛋白質複合体を生成するという知見を得た。本発明は、かかる知見に基づいて完成されたものである。
【0005】
即ち本発明は、カルボキシル基を有する酸性糖を構成糖として含む糖質と蛋白質との加熱混合物からなる糖質−蛋白質複合体、およびカルボキシル基を有する酸性糖を含む糖質と蛋白質とを水中で混合して100℃以上の加熱反応を行うことを特徴とする糖質−蛋白質複合体の製造法、である。
【0006】
本発明によれば、カルボキシル基を有する酸性糖としては、ガラクツロン酸、グルクロン酸、マンヌロン酸等のウロン酸類、カルボキシメチルエーテル化グルコース等のカルボン酸エーテル化糖等が挙げられる。これらを構成糖として含む糖質としては、例えばペクチン、アルギン酸、アラビアガム等の天然多糖類、ジェランガム等の発酵多糖類、カルボキシメチルセルロース、アルギン酸プロピレングリコールエステル等の合成多糖類、ペクチン分解物、アルギン酸分解物等の酸性オリゴ糖類等が挙げられる。
【0007】
カルボキシル基はメチルアルコール等のアルコール類がエステル結合している状態であっても良いが、遊離または塩の状態で存在するものが好ましい。また、糖質中の酸性糖含有量は多い程良いが、望ましくは10重量%以上、より望ましくは20重量%、さらに望ましくは30重量%以上含有するのが好ましい。
【0008】
一方、蛋白質としては、大豆蛋白質、トウモロコシ蛋白質、小麦蛋白質、エンドウ豆蛋白質等の植物由来の蛋白質はもちろん卵白アルブミン、乳清蛋白質、ゼラチン、アクチン、ミオシン、絹蛋白質等の動物性蛋白質でも良く、さらにポリペプチド、ペプチドおよびアミノ酸等、蛋白質であればなんでも使用できる。
【0009】
糖質と蛋白質との加熱は、水系下に100℃以上の温度にすることが必要である。一般的には水中に溶解ないし分散状態で、または湿潤状態、あるいはペースト状態で加圧下に加熱すればよい。加熱温度が100℃未満では時間がかかる上、酸性糖含有糖質−蛋白質間の複合体化が良好に行われず、目的とする複合体を得難い。
【0010】
カルボキシル基を有する酸性糖を構成糖として含む糖質ならびに蛋白質は、いずれも水に可溶な状態あるいは不溶な状態のどちらでも良い。水に不溶な場合は、抽出と同時に複合体化を行うとより効率が良い。
【0011】
酸性糖含有糖質と蛋白質との複合体化を得るための両者の適当な比率は、酸性糖:蛋白質が100:1〜1:100、好ましくは50:1〜1:50、さらに好ましくは10:1〜1:10である。
【0012】
複合体は、前述の如く、カルボキシル基を有する酸性糖を構成糖として含む糖質と蛋白質とを水系下に混合した後に100℃以上の加熱を行うことにより製造されるが、製造条件の一例を示すと以下の通りである。
【0013】
先ず、原料を水溶液あるいは水に懸濁状態にして、pHはどのようなpHでも良いが、好ましくはpH2〜11、さらに好ましくはpH4〜9に調整し100℃以上で加熱処理を行い、水溶性画分を分取した後に、そのまま乾燥するか、例えば中和後、透析処理、活性炭処理、樹脂吸着処理あるいはエタノール沈澱処理等を行うことにより無機塩類、疎水性物質あるいは低分子物質を除去精製後に乾燥することによって、目的とする酸性糖含有の糖質−蛋白質複合体を得ることができる。
【0014】
なお、複合体の生成は反応物をゲルろ過の高速液体クロマトグラフィーで分析することにより容易に確認することができる。すなわち、酸性糖と蛋白質との混合物を加熱した反応物をゲルろ過の高速液体クロマトグラフィーで分析すると、酸性糖あるいは蛋白質のみを加熱分解した場合よりも高分子量の位置に紫外吸収(OD280nm)が認められることにより、酸性糖と蛋白質とが複合体化した事が容易に確認できる。
【0015】
本発明における酸性糖含有の糖質−蛋白質複合体は、反応前の個々の酸性糖含有糖質および蛋白質とは異なる新規な機能を有している。例えば、反応前の個々の糖質あるいは蛋白質では認められない乳化力、乳化安定化能、小麦粉製品の物性改良能、分散安定化能、起泡力、気泡安定化能、保水能等の機能が、複合体が形成されることにより発現される。
【0016】
【実施例】
以下、実施例により本発明の実施態様を説明するが、これは例示であって本発明の精神がこれらの例示によって制限されるものではない。なお、例中、部および%は何れも重量基準を意味する。
【0017】
実施例1
ローメトキシペクチン(LM−ペクチン)500gと大豆蛋白質100gとを温水5400gに溶解後、pHを6.0に調整し、105℃で2時間加熱してLM−ペクチンと大豆蛋白質の混合加熱物を生成させた。加熱後室温まで冷却して遠心分離し(10000G×30分)、上澄を乾燥して固形物を回収した。この固形物をゲルろ過の高速液体クロマトグラフィーで分析したところ、原料であるローメトキシペクチン及び大豆蛋白質のみを加熱分解した場合よりも高分子量の位置に紫外吸収が認められ、この固形物が両者の複合体であることを確認した。また、この固型物を10%の水溶液として、当該混合物と等量の大豆油を加え、ホモミキサーにて10000rpmで乳化処理を行ったところ、乳化粒子径0.5μの良好な乳化物が得られ、糖質−蛋白質複合体が形成されていることが傍証できた。
【0018】
さらに、この糖質−蛋白質複合体5部を水75部に添加し、これに市販のミルクフレーバー0.1部を添加した精製ヤシ油20部を加え、70℃でホモミキサーにて予備乳化後、高圧ホモゲナイザーにて300kgf/cm2 で本乳化を行い、コーヒーホワイトナーを調製した。このコーヒーホワイトナーは安定な乳化状態を示し、1ケ月間保存しても凝集、油分分離等の乳化破壊は観察されなかった。
【0019】
また、当該コーヒーホワイトナーを砂糖を5%含むレギュラーコーヒー(80℃、pH5.3)に加えたところ、フェザリング等の乳化破壊も起こさず、耐熱性および耐酸性を有するものであった。さらに、当該コーヒーホワイトナーを重曹にてpH6.8に調整したレギュラーコーヒーに加え、121℃、15分間のレトルト殺菌を行ったが、油分分離等の乳化破壊は起こさず、レトルト耐性を有するものであった。
【0020】
比較例1
LM−ペクチン500gと大豆蛋白質100gとを温水5400gに溶解後、pHを6.0に調整し、80℃で2時間加熱した。加熱後室温まで冷却して遠心分離し(10000G×30分)、上澄を乾燥してLM−ペクチンと大豆蛋白質の混合加熱物を回収した。この混合加熱物を使用して実施例1と同様に乳化処理を行ったが、乳化粒子径は5.3μまでしかならず、なおかつ、調製された乳化物を暫く放置すると油分が分離した。
【0021】
比較例2
LM−ペクチン500gを、温水4500gに溶解後、pHを6.0に調整し、120℃で30分間加熱した。加熱後室温まで冷却して遠心分離し(10000G×30分)、上澄を乾燥してLM−ペクチン加熱物を回収した。この加熱物を使用して実施例1と同様に乳化処理を行ったが、全く乳化しなかった。
【0022】
比較例3
大豆蛋白質100gを、温水900gに溶解後、pHを6.0に調整し、120℃で30分間加熱した。加熱後室温まで冷却して遠心分離し(10000G×30分)、上澄を乾燥して大豆蛋白質加熱物を回収した。この加熱物を使用した実施例1と同様に乳化処理を行ったが、乳化粒子径は4.2μまでしかならず、なおかつ、調製された乳化物を暫く放置すると油分が分離した。
【0023】
比較例4
LM−ペクチン500gと大豆蛋白質100gとを、別々に水に溶解させて各々10%溶液を調製後、両者の溶液をpH6.0に調整し、120℃で30分間加熱した。加熱後室温まで冷却して遠心分離し(10000g×30分)、上澄を乾燥して、各々のLM−ペクチン加熱物と大豆蛋白質加熱物を回収した。これらの加熱物を混合してから実施例1と同様に乳化処理を行ったが、乳化粒子径は3.0μまでしかならず、なおかつ、調製された乳化物を暫く放置すると油分が分離した。
【0024】
実施例2
ハイメトキシペクチン(HM−ペクチン)500gと大豆蛋白質100gとを温水5400gに溶解後、pHを6.0に調整し、120℃で30分間加熱してHM−ペクチンと大豆蛋白質の混合加熱物を形成させた。加熱後室温まで冷却して遠心分離し(10000g×30分)、上澄を乾燥して固形物を回収した。この固形物をゲルろ過の高速液体クロマトグラフィーで分析したところ、原料であるハイメトキシペクチン及び大豆蛋白質のみを加熱分解した場合よりも高分子量の位置に紫外吸収が認められ、この固形物が両者の複合体であることを確認した。また、この固型物を使用して実施例1と同様に乳化処理を行ったところ、乳化粒子径0.6μの良好な乳化物が得られ、糖質−蛋白質複合体が形成されていることが傍証できた。
【0025】
この複合体を使用して以下に示す配合によりスポンジケーキを試作し、食感および保存における変化を調べた。なお、比較のため対照として複合体無添加のスポンジケーキも試作した。
【0026】

Figure 0004250776
【0027】
以上の結果、実施例2のスポンジケーキは、比較例5のものと比べて組織が滑らかで、シットリとしており非常に良好な食感であった。また、スポンジケーキを密閉容器中で20℃、7日間保存して硬さの変化を測定したが、結果は以下に示す様に、実施例2のスポンジケーキにおいて硬さの上昇が抑制され、老化防止効果が見られた。
【0028】
Figure 0004250776
* 保存日数(日)は、試料を密閉容器中20℃で保存した日数。
**硬さ(g/cm2) は、試料を2/3 まで圧縮したときの応力をレオメーター( 不動工業(株)製) を用い、径40mmのプランジャーを使用し、テーブルスピード50mm/ 分にて測定した値。
【0029】
実施例3
アルギン酸ナトリウム500gと大豆蛋白質100gとを温水11400gに溶解ないし分散後、pHを6.0に調整し、120℃で30分間加熱してアルギン酸ナトリウムと大豆蛋白質の混合加熱物を形成させた。加熱後室温まで冷却して遠心分離し(10000g×30分)、上澄を乾燥して固型物を回収した。この固形物をゲルろ過の高速液体クロマトグラフィーで分析したところ、原料であるアルギン酸ナトリウム及び大豆蛋白質のみを加熱分解した場合よりも高分子量の位置に紫外吸収が認められ、この固形物が両者の複合体であることを確認した。この固型物を使用して実施例1と同様に乳化処理を行ったところ、乳化粒子径0.7μの良好な乳化物が得られ、糖質−蛋白質複合体の形成が傍証された。
【0030】
実施例4
LM−ペクチン500gと大豆蛋白質50gとを温水4950gに溶解後、pHを4.0に調整し、120℃で30分間加熱してLM−ペクチンと大豆蛋白質の混合加熱物を形成させた。加熱後室温まで冷却して遠心分離し(10000g×30分)、上澄を乾燥して固型物を回収した。この固形物をゲルろ過の高速液体クロマトグラフィーで分析したところ、原料であるLMペクチン及び大豆蛋白質のみを加熱分解した場合よりも高分子量の位置に紫外吸収が認められ、この固形物が両者の複合体であることを確認した。また、この固型物を使用して実施例1と同様に乳化処理を行ったところ、乳化粒子径0.6μの良好な乳化物が得られ、糖質−蛋白質複合体の形成が傍証された。
【0031】
実施例5
LM−ペクチン500gと大豆蛋白質500gとを温水9000gに溶解後、pHを9.0に調整し、120℃で30分間加熱してLM−ペクチンと大豆蛋白質の混合加熱物を形成させた。加熱後室温まで冷却して遠心分離し(10000g×30分)、上澄を乾燥して固型物を回収した。この固形物をゲルろ過の高速液体クロマトグラフィーで分析したところ、原料であるLMペクチン及び大豆蛋白質のみを加熱分解した場合よりも高分子量の位置に紫外吸収が認められ、この固形物が両者の複合体であることを確認した。また、この固型物を使用して実施例1と同様に乳化処理を行ったところ、乳化粒子径0.4μの良好な乳化物が得られ、糖質−蛋白質複合体の形成が傍証された。
【0032】
実施例6
LM−ペクチン500gとカゼイン100gとを温水5400gに溶解後、pHを6.0に調整し、120℃で30分間加熱してLM−ペクチンとカゼインの混合加熱物を形成させた。加熱後室温まで冷却して遠心分離し(10000g×30分)、上澄を乾燥して固型物を回収した。この固形物をゲルろ過の高速液体クロマトグラフィーで分析したところ、原料であるLMペクチン及びカゼインのみを加熱分解した場合よりも高分子量の位置に紫外吸収が認められ、この固形物が両者の複合体であることを確認した。また、この固型物を使用して実施例1と同様に乳化処理を行ったところ、乳化粒子径0.8μの良好な乳化物が得られ、糖質−蛋白質複合体の形成が傍証された。
【0033】
実施例7
LM−ペクチン500gと小麦蛋白質100gとを温水5400gに溶解後、pHを6.0に調整し、150℃で2分間加熱してLM−ペクチンと小麦蛋白質の混合加熱物を形成させた。加熱後室温まで冷却して遠心分離し(10000g×30分)、上澄を乾燥して固型物を回収した。この固形物をゲルろ過の高速液体クロマトグラフィーで分析したところ、原料であるLMペクチン及び小麦蛋白質のみを加熱分解した場合よりも高分子量の位置に紫外吸収が認められ、この固形物が両者の複合体であることを確認した。また、この固型物を使用して実施例1と同様に乳化処理を行ったところ、乳化粒子径0.5μの良好な乳化物が得られ、糖質−蛋白質複合体の形成が傍証された。
【0034】
実施例8
温州ミカンの皮1000gと大豆蛋白質100gとを温水4900gに懸濁後、pHを4.0に調整し、120℃で30分間加熱してペクチンの抽出と大豆蛋白質との混合加熱を同時に行った。加熱後室温まで冷却して遠心分離し(10000g×30分)、上澄を乾燥して固型物を回収した。この固形物をゲルろ過の高速液体クロマトグラフィーで分析したところ、原料である温州ミカンの皮及び大豆蛋白質のみを加熱分解した場合よりも高分子量の位置に紫外吸収が認められ、この固形物が両者の複合体であることを確認した。また、この固型物を使用して実施例1と同様に乳化処理を行ったところ、乳化粒子径0.4μの良好な乳化物が得られ、糖質−蛋白質複合体の形成が傍証された。
【0035】
実施例9
ビート粕1000gと大豆蛋白質100gとを温水4900gに懸濁後、pHを5.0に調整し、120℃で30分間加熱してビートペクチンの抽出と大豆蛋白質との混合加熱を同時に行った。加熱後室温まで冷却して遠心分離し(10000g×30分)、上澄を乾燥して固型物を回収した。この固形物をゲルろ過の高速液体クロマトグラフィーで分析したところ、原料であるビート粕及び大豆蛋白質のみを加熱分解した場合よりも高分子量の位置に紫外吸収が認められ、この固形物が両者の複合体であることを確認した。また、この固型物を使用して実施例1と同様に乳化処理を行ったところ、乳化粒子径0.5μの良好な乳化物が得られ、糖質−蛋白質複合体の形成が傍証された。
【0036】
比較例5
構成糖に酸性糖を含まない糖質であるデキストリン(DE=5)500gと大豆蛋白質100gとを温水5400gに溶解後、pHを6.0に調整し、105℃で2時間加熱した。加熱後室温まで冷却して遠心分離し(10000g×30分)、上澄を乾燥してデキストリンと大豆蛋白質の混合加熱物を回収した。この加熱物を使用して実施例1と同様に乳化処理を行ったが、全く乳化しなかった。
【0037】
比較例6
構成糖に酸性糖を含まない糖質であるアラビノガラクタン500gと大豆蛋白質100gとを温水5400gに溶解後、pHを6.0に調整し、120℃で30分間加熱した。加熱後室温まで冷却して遠心分離し(10000g×30分)、上澄を乾燥してアラビノガラクタンと大豆蛋白質の混合加熱物を回収した。この混合加熱物を使用して実施例1と同様に乳化処理を行ったが、全く乳化しなかった。
【0038】
比較例7
カルボキシル基を含まず、硫酸基を有する酸性糖を構成糖として含む糖質であるλ−カラギーナン500gと大豆蛋白質100gとを温水5400gに溶解後、pHを6.0に調整し、120℃で30分間加熱した。加熱後室温まで冷却して遠心分離し(10000g×30分)、上澄を乾燥してλ−カラギーナンと大豆蛋白質の混合加熱物を回収した。この混合加熱物を使用して実施例1と同様に乳化処理を行ったが、全く乳化しなかった。
【0039】
比較例8
温州ミカンの皮1000gを温水5000gに懸濁後、pHを4.0に調整し、120℃で30分間加熱してペクチンの抽出を行った。加熱後室温まで冷却して遠心分離し(10000g×30分)、上澄を乾燥して加熱抽出ペクチンを回収した。このペクチンを使用して実施例1と同様に乳化処理を行ったが、全く乳化しなかった。
【0040】
比較例9
温州ミカンの皮1000gと大豆蛋白質100gとを温水4900gに懸濁後、pHを4.0に調整し、80℃で2時間加熱してペクチンの抽出と大豆蛋白質との混合加熱を行った。加熱後室温まで冷却して遠心分離し(10000g×30分)、上澄を乾燥してペクチンと大豆蛋白質の混合加熱物を回収した。この混合加熱物を使用して実施例1と同様に乳化処理を行ったが、全く乳化しなかった。
【0041】
【発明の効果】
以上のように、カルボキシル基を有する酸性糖を構成糖として含む糖質と蛋白質とを混合後、水系下に100℃以上の加熱を行うことによって、酸性糖含有糖質−蛋白質複合体を容易に得ることができた。かかる複合体は反応前の個々の糖質および蛋白質とは異なる新規な機能を有しており、コーヒーホワイトナー、スポンジケーキの改質剤など種々の用途に使用できる。[0001]
[Industrial application fields]
The present invention relates to a saccharide-protein complex produced by reacting a saccharide containing an acidic saccharide having a carboxyl group as a constituent saccharide with a protein in water and a method for producing the same.
[0002]
[Prior art]
As a chemical reaction generally used for complexing a carbohydrate and a protein, an aminocarbonyl reaction is known in which a carbonyl group in a carbohydrate and an amino group in a protein are combined. It is applied to the development of new functional materials such as those disclosed in JP-A-3-215498.
[0003]
[Problems to be solved by the invention]
Regarding the aminocarbonyl reaction, various studies have been made on the reaction conditions and the like, but the reaction may give an unfavorable color, fragrance, taste, etc. to the product compound, and the reaction takes time, There is a problem that the desired product cannot be easily obtained in a short time, for example, the reaction is difficult to control, and it is not always satisfactory.
[0004]
[Means for Solving the Problems]
As a result of diligent research in view of the above points, the inventors of the present invention are very simple in that a sugar and a protein containing an acidic sugar having a carboxyl group as a constituent sugar are mixed in water and heated at 100 ° C. or higher. The present inventors have found that a carbohydrate-protein complex (containing acidic sugar) can be easily produced by a simple method. The present invention has been completed based on such findings.
[0005]
That is, the present invention provides a saccharide-protein complex comprising a heated mixture of a saccharide and a protein containing an acidic saccharide having a carboxyl group as a constituent saccharide, and a saccharide and a protein containing an acidic saccharide having a carboxyl group in water. A method for producing a carbohydrate-protein complex, comprising mixing and performing a heating reaction at 100 ° C. or higher.
[0006]
According to the present invention, examples of the acidic sugar having a carboxyl group include uronic acids such as galacturonic acid, glucuronic acid, and mannuronic acid, and carboxylic acid etherified sugars such as carboxymethyl etherified glucose. Examples of carbohydrates containing these as saccharides include natural polysaccharides such as pectin, alginic acid, and gum arabic, fermented polysaccharides such as gellan gum, synthetic polysaccharides such as carboxymethylcellulose and propylene glycol alginate, pectin degradation products, and alginic acid degradation. And acidic oligosaccharides such as products.
[0007]
The carboxyl group may be in a state in which alcohols such as methyl alcohol are ester-bonded, but preferably present in a free or salt state. Further, the content of acidic sugar in the saccharide is preferably as high as possible, but it is preferably 10% by weight or more, more preferably 20% by weight, and still more preferably 30% by weight or more.
[0008]
On the other hand, the protein, soy protein, corn protein, wheat protein, proteins of vegetable origin such as pea protein, of course, ovalbumin, whey protein, may gelatin, actin, myosin, even animal proteins such as silk proteins, Furthermore, any protein such as a polypeptide, peptide and amino acid can be used.
[0009]
The heating of the saccharide and protein needs to be performed at a temperature of 100 ° C. or higher in an aqueous system. Generally, it may be heated under pressure in a dissolved or dispersed state in water, in a wet state, or in a paste state. When the heating temperature is less than 100 ° C., it takes time, and the complex between the acidic sugar-containing saccharide and protein is not performed well, and it is difficult to obtain the target complex.
[0010]
The saccharide and protein containing an acidic saccharide having a carboxyl group as a constituent saccharide may be either soluble or insoluble in water. If it is insoluble in water, it is more efficient to perform complexation simultaneously with extraction.
[0011]
An appropriate ratio of both for obtaining a complex of an acidic sugar-containing carbohydrate and protein is 100: 1 to 1: 100 for acidic sugar: protein, preferably 50: 1 to 1:50, more preferably 10 : 1-1: 10.
[0012]
As described above, the complex is produced by mixing a sugar containing an acidic sugar having a carboxyl group as a constituent sugar and a protein in an aqueous system and then heating at 100 ° C. or higher. It is as follows.
[0013]
First, the raw material is suspended in an aqueous solution or water, and the pH may be any pH, but it is preferably adjusted to pH 2-11, more preferably pH 4-9, and heat treatment is performed at 100 ° C. or higher to make it water-soluble. The fraction is collected and then dried as it is, or after neutralization, after removing and purifying inorganic salts, hydrophobic substances or low molecular weight substances by performing dialysis treatment, activated carbon treatment, resin adsorption treatment or ethanol precipitation treatment, etc. By drying, a target acidic sugar-containing carbohydrate-protein complex can be obtained.
[0014]
In addition, the production | generation of a composite_body | complex can be easily confirmed by analyzing a reaction material by the high performance liquid chromatography of gel filtration. That is, when a reaction product obtained by heating a mixture of acidic sugar and protein is analyzed by high performance liquid chromatography using gel filtration, ultraviolet absorption (OD 280 nm) is observed at a higher molecular weight than when only acidic sugar or protein is thermally decomposed. As a result, it can be easily confirmed that the acid sugar and the protein are complexed.
[0015]
The acidic sugar-containing carbohydrate-protein complex in the present invention has a new function different from that of each acidic sugar-containing carbohydrate and protein before the reaction. For example, functions such as emulsifying power, emulsification stabilizing ability, ability to improve physical properties of flour products, dispersion stabilizing ability, foaming ability, bubble stabilizing ability, water retention ability, etc. that are not recognized in individual sugars or proteins before reaction , Expressed as a complex is formed.
[0016]
【Example】
Hereinafter, the embodiments of the present invention will be described by way of examples. However, these are merely examples, and the spirit of the present invention is not limited by these examples. In the examples, both parts and% mean weight basis.
[0017]
Example 1
After dissolving 500 g of low methoxy pectin (LM-pectin) and 100 g of soy protein in 5400 g of warm water, the pH is adjusted to 6.0 and heated at 105 ° C. for 2 hours to produce a mixture of LM-pectin and soy protein. I let you. After heating, the mixture was cooled to room temperature and centrifuged (10000 G × 30 minutes), and the supernatant was dried to recover a solid. When this solid was analyzed by high performance liquid chromatography with gel filtration, ultraviolet absorption was observed at a higher molecular weight position than when only raw material raw methoxy pectin and soybean protein were decomposed by heating. It was confirmed to be a complex. Further, when this solid product was made into a 10% aqueous solution, the same amount of soybean oil as that of the mixture was added, and emulsification treatment was carried out at 10,000 rpm with a homomixer. As a result, a good emulsion with an emulsion particle size of 0.5 μm was obtained. It was proved that a carbohydrate-protein complex was formed.
[0018]
Furthermore, 5 parts of this carbohydrate-protein complex was added to 75 parts of water, and 20 parts of purified coconut oil added with 0.1 part of a commercially available milk flavor was added thereto, and after preliminary emulsification at 70 ° C. with a homomixer. Then, this emulsification was performed with a high-pressure homogenizer at 300 kgf / cm @ 2 to prepare a coffee whitener. This coffee whitener showed a stable emulsified state, and even when stored for 1 month, no emulsion breakage such as aggregation and oil separation was observed.
[0019]
Further, when the coffee whitener was added to regular coffee (80 ° C., pH 5.3) containing 5% sugar, it did not cause emulsion breakage such as feathering and had heat resistance and acid resistance. Furthermore, the coffee whitener was added to regular coffee adjusted to pH 6.8 with sodium bicarbonate, and retort sterilized at 121 ° C. for 15 minutes. However, it did not cause emulsion breakage such as oil separation and had retort resistance. there were.
[0020]
Comparative Example 1
500 g of LM-pectin and 100 g of soy protein were dissolved in 5400 g of warm water, the pH was adjusted to 6.0, and the mixture was heated at 80 ° C. for 2 hours. After heating, the mixture was cooled to room temperature and centrifuged (10000 G × 30 minutes), and the supernatant was dried to recover a mixed heated product of LM-pectin and soybean protein. Using this mixed and heated product, an emulsification treatment was carried out in the same manner as in Example 1. However, the particle size of the emulsified particles was only 5.3 μm, and the oil was separated when the prepared emulsion was allowed to stand for a while.
[0021]
Comparative Example 2
After 500 g of LM-pectin was dissolved in 4500 g of warm water, the pH was adjusted to 6.0 and heated at 120 ° C. for 30 minutes. After heating, the mixture was cooled to room temperature and centrifuged (10000 G × 30 minutes), and the supernatant was dried to recover the heated LM-pectin. Using this heated product, an emulsification treatment was performed in the same manner as in Example 1, but no emulsification was performed.
[0022]
Comparative Example 3
After dissolving 100 g of soy protein in 900 g of warm water, the pH was adjusted to 6.0 and heated at 120 ° C. for 30 minutes. After heating, the mixture was cooled to room temperature and centrifuged (10000 G × 30 minutes), and the supernatant was dried to recover the heated soybean protein. The emulsification treatment was carried out in the same manner as in Example 1 using this heated product, but the emulsified particle size was only up to 4.2 μm, and the oil was separated when the prepared emulsion was allowed to stand for a while.
[0023]
Comparative Example 4
LM-pectin 500 g and soy protein 100 g were separately dissolved in water to prepare 10% solutions, and then both solutions were adjusted to pH 6.0 and heated at 120 ° C. for 30 minutes. After heating, the mixture was cooled to room temperature and centrifuged (10000 g × 30 minutes), and the supernatant was dried to recover each LM-pectin heated product and soybean protein heated product. After mixing these heated products, an emulsification treatment was carried out in the same manner as in Example 1. However, the particle size of the emulsified particles was only 3.0 μm, and the oil separated when the prepared emulsion was allowed to stand for a while.
[0024]
Example 2
After dissolving 500 g of high methoxy pectin (HM-pectin) and 100 g of soy protein in 5400 g of warm water, the pH is adjusted to 6.0 and heated at 120 ° C. for 30 minutes to form a mixture of HM-pectin and soy protein. I let you. After heating, the mixture was cooled to room temperature and centrifuged (10000 g × 30 minutes), and the supernatant was dried to recover a solid. When this solid was analyzed by high-performance liquid chromatography using gel filtration, ultraviolet absorption was observed at a higher molecular weight position than when only the raw material high methoxy pectin and soybean protein were decomposed by heating. It was confirmed to be a complex. Further, when this solid product was used for the emulsification treatment in the same manner as in Example 1, a good emulsion having an emulsified particle size of 0.6 μm was obtained, and a carbohydrate-protein complex was formed. Could be verified.
[0025]
Using this composite, a sponge cake was made according to the formulation shown below, and changes in texture and storage were examined. For comparison, a sponge cake without a composite was also produced as a control.
[0026]
Figure 0004250776
[0027]
As a result, the sponge cake of Example 2 had a smooth texture and a tight texture compared to that of Comparative Example 5, and had a very good texture. Further, the sponge cake was stored in a sealed container at 20 ° C. for 7 days, and the change in hardness was measured. As a result, as shown below, the increase in hardness was suppressed in the sponge cake of Example 2, and aging was observed. The prevention effect was seen.
[0028]
Figure 0004250776
* The number of storage days (days) is the number of days the sample was stored in a sealed container at 20 ° C.
** For hardness (g / cm2), the stress when compressing the sample to 2/3 was measured using a rheometer (manufactured by Fudo Kogyo Co., Ltd.), using a plunger with a diameter of 40 mm, and a table speed of 50 mm / min. The value measured at.
[0029]
Example 3
After dissolving or dispersing 500 g of sodium alginate and 100 g of soy protein in 11400 g of warm water, the pH was adjusted to 6.0 and heated at 120 ° C. for 30 minutes to form a mixed heated product of sodium alginate and soy protein. After heating, the mixture was cooled to room temperature and centrifuged (10000 g × 30 minutes), and the supernatant was dried to recover a solid product. When this solid was analyzed by gel filtration high performance liquid chromatography, ultraviolet absorption was observed at a higher molecular weight position than when only the raw materials sodium alginate and soy protein were thermally decomposed. I confirmed that it was a body. When this solid product was used for emulsification treatment in the same manner as in Example 1, a good emulsion having an emulsified particle size of 0.7 μm was obtained, and the formation of a carbohydrate-protein complex was proved.
[0030]
Example 4
500 g of LM-pectin and 50 g of soy protein were dissolved in 4950 g of warm water, the pH was adjusted to 4.0, and the mixture was heated at 120 ° C. for 30 minutes to form a mixed heated product of LM-pectin and soy protein. After heating, the mixture was cooled to room temperature and centrifuged (10000 g × 30 minutes), and the supernatant was dried to recover a solid product. When this solid was analyzed by high performance liquid chromatography using gel filtration, ultraviolet absorption was observed at a higher molecular weight position than when LM pectin and soybean protein as raw materials alone were decomposed by heating. I confirmed that it was a body. Further, when this solid product was used to carry out an emulsification treatment in the same manner as in Example 1, a good emulsion having an emulsified particle diameter of 0.6 μm was obtained, and the formation of a carbohydrate-protein complex was proved. .
[0031]
Example 5
500 g of LM-pectin and 500 g of soy protein were dissolved in 9000 g of warm water, the pH was adjusted to 9.0, and the mixture was heated at 120 ° C. for 30 minutes to form a mixed heated product of LM-pectin and soy protein. After heating, the mixture was cooled to room temperature and centrifuged (10000 g × 30 minutes), and the supernatant was dried to recover a solid product. When this solid was analyzed by high performance liquid chromatography using gel filtration, ultraviolet absorption was observed at a higher molecular weight position than when LM pectin and soybean protein as raw materials alone were decomposed by heating. I confirmed that it was a body. Further, when this solid product was used to carry out an emulsification treatment in the same manner as in Example 1, a good emulsion having an emulsified particle size of 0.4 μm was obtained, and the formation of a carbohydrate-protein complex was proved. .
[0032]
Example 6
500 g of LM-pectin and 100 g of casein were dissolved in 5400 g of warm water, the pH was adjusted to 6.0, and the mixture was heated at 120 ° C. for 30 minutes to form a mixture of LM-pectin and casein. After heating, the mixture was cooled to room temperature and centrifuged (10000 g × 30 minutes), and the supernatant was dried to recover a solid product. When this solid was analyzed by high performance liquid chromatography using gel filtration, ultraviolet absorption was observed at a higher molecular weight position than when only LM pectin and casein as raw materials were thermally decomposed, and this solid was a complex of both. It was confirmed that. Further, when this solid product was used to carry out an emulsification treatment in the same manner as in Example 1, a good emulsion having an emulsified particle size of 0.8 μm was obtained, and the formation of a saccharide-protein complex was proved. .
[0033]
Example 7
500 g of LM-pectin and 100 g of wheat protein were dissolved in 5400 g of warm water, the pH was adjusted to 6.0, and the mixture was heated at 150 ° C. for 2 minutes to form a mixture of LM-pectin and wheat protein. After heating, the mixture was cooled to room temperature and centrifuged (10000 g × 30 minutes), and the supernatant was dried to recover a solid product. When this solid was analyzed by high performance liquid chromatography using gel filtration, ultraviolet absorption was observed at a higher molecular weight position than when LM pectin and wheat protein as raw materials alone were decomposed by heating. I confirmed that it was a body. Further, when this solid product was used to carry out an emulsification treatment in the same manner as in Example 1, a good emulsion having an emulsified particle size of 0.5 μm was obtained, and the formation of a saccharide-protein complex was proved. .
[0034]
Example 8
After suspending 1000 g of Satsuma mandarin peel and 100 g of soy protein in 4900 g of hot water, the pH was adjusted to 4.0, and the mixture was heated at 120 ° C. for 30 minutes to simultaneously extract pectin and heat with soy protein. After heating, the mixture was cooled to room temperature and centrifuged (10000 g × 30 minutes), and the supernatant was dried to recover a solid product. When this solid was analyzed by high-performance liquid chromatography using gel filtration, ultraviolet absorption was observed at a higher molecular weight position than when only the raw Satsuma mandarin peel and soy protein were thermally decomposed. It was confirmed that this was a complex. Further, when this solid product was used for emulsification treatment in the same manner as in Example 1, a good emulsion having an emulsified particle size of 0.4 μm was obtained, and the formation of a carbohydrate-protein complex was proved. .
[0035]
Example 9
After suspension of 1000 g of beet bran and 100 g of soy protein in 4900 g of warm water, the pH was adjusted to 5.0, and the mixture was heated at 120 ° C. for 30 minutes to simultaneously extract beet pectin and mix and heat soy protein. After heating, the mixture was cooled to room temperature and centrifuged (10000 g × 30 minutes), and the supernatant was dried to recover a solid product. When this solid was analyzed by high-performance liquid chromatography using gel filtration, ultraviolet absorption was observed at a higher molecular weight position than when the raw materials, beet bran and soybean protein alone, were decomposed by heating. I confirmed that it was a body. Further, when this solid product was used to carry out an emulsification treatment in the same manner as in Example 1, a good emulsion having an emulsified particle size of 0.5 μm was obtained, and the formation of a saccharide-protein complex was proved. .
[0036]
Comparative Example 5
After dissolving 500 g of dextrin (DE = 5), which is a saccharide containing no acidic sugar in the constituent sugar, and 100 g of soy protein in 5400 g of warm water, the pH was adjusted to 6.0 and heated at 105 ° C. for 2 hours. After heating, the mixture was cooled to room temperature and centrifuged (10000 g × 30 minutes), and the supernatant was dried to recover a mixed heated product of dextrin and soy protein. Using this heated product, an emulsification treatment was performed in the same manner as in Example 1, but no emulsification was performed.
[0037]
Comparative Example 6
After 500 g of arabinogalactan and 100 g of soy protein, which are sugars that do not contain acidic sugar, were dissolved in 5400 g of warm water, the pH was adjusted to 6.0 and heated at 120 ° C. for 30 minutes. After heating, the mixture was cooled to room temperature and centrifuged (10000 g × 30 minutes), and the supernatant was dried to recover a mixed heated product of arabinogalactan and soybean protein. Using this mixed and heated product, an emulsification treatment was performed in the same manner as in Example 1, but no emulsification was performed.
[0038]
Comparative Example 7
After dissolving 500 g of λ-carrageenan, which is a saccharide containing an acidic sugar having a sulfate group and not containing a carboxyl group, and 100 g of soy protein in 5400 g of warm water, the pH is adjusted to 6.0 and 30 at 120 ° C. Heated for minutes. After heating, the mixture was cooled to room temperature and centrifuged (10000 g × 30 minutes), and the supernatant was dried to recover a mixed heated product of λ-carrageenan and soy protein. Using this mixed and heated product, an emulsification treatment was performed in the same manner as in Example 1, but no emulsification was performed.
[0039]
Comparative Example 8
After suspending 1000 g of Unshu mandarin peel in 5000 g of warm water, the pH was adjusted to 4.0, and the pectin was extracted by heating at 120 ° C. for 30 minutes. After heating, the mixture was cooled to room temperature and centrifuged (10000 g × 30 minutes), and the supernatant was dried to recover the heat-extracted pectin. Using this pectin, an emulsification treatment was performed in the same manner as in Example 1, but no emulsification was performed.
[0040]
Comparative Example 9
After suspending 1000 g of Unshu mandarin peel and 100 g of soy protein in 4900 g of warm water, the pH was adjusted to 4.0, and the mixture was heated at 80 ° C. for 2 hours to extract pectin and mix and heat the soy protein. After heating, the mixture was cooled to room temperature and centrifuged (10000 g × 30 minutes), and the supernatant was dried to recover a mixture of pectin and soy protein. Using this mixed and heated product, an emulsification treatment was performed in the same manner as in Example 1, but no emulsification was performed.
[0041]
【The invention's effect】
As described above, after mixing a saccharide containing an acidic saccharide having a carboxyl group as a constituent saccharide and a protein, heating at 100 ° C. or higher in an aqueous system facilitates the formation of an acidic saccharide-containing saccharide-protein complex. I was able to get it. Such a complex has a novel function different from individual sugars and proteins before the reaction, and can be used for various applications such as a coffee whitener and a sponge cake modifier.

Claims (1)

ペクチン、アルギンサンナトリウム、ビート粕のいずれかから選ばれる原料由来の、カルボキシル基を有する酸性多糖と、大豆蛋白質とを、pH4−6の弱酸性域の水溶液あるいは水への懸濁状態にして100℃以上の加熱反応を行うことを特徴とする、乳化力、乳化安定化能の高い糖質−蛋白質複合体の製造法。A acidic polysaccharide having a carboxyl group derived from a raw material selected from any of pectin, sodium arginsan, and beet lees and soybean protein are suspended in an aqueous solution or water in a weakly acidic region of pH 4-6. A method for producing a carbohydrate-protein complex having a high emulsifying ability and emulsifying stability, characterized by carrying out a heating reaction at a temperature of at least ° C.
JP32510496A 1996-12-05 1996-12-05 Carbohydrate-protein complex and process for producing the same Expired - Lifetime JP4250776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32510496A JP4250776B2 (en) 1996-12-05 1996-12-05 Carbohydrate-protein complex and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32510496A JP4250776B2 (en) 1996-12-05 1996-12-05 Carbohydrate-protein complex and process for producing the same

Publications (2)

Publication Number Publication Date
JPH10168097A JPH10168097A (en) 1998-06-23
JP4250776B2 true JP4250776B2 (en) 2009-04-08

Family

ID=18173178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32510496A Expired - Lifetime JP4250776B2 (en) 1996-12-05 1996-12-05 Carbohydrate-protein complex and process for producing the same

Country Status (1)

Country Link
JP (1) JP4250776B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2817870B1 (en) * 2000-12-08 2006-07-28 Skw Nature Products Holding Fr CONJUGATED POLYMERS BASED ON PECTINES AND THEIR APPLICATION AS EMULSIFIERS
JPWO2004078334A1 (en) * 2003-03-04 2006-06-08 不二製油株式会社 Emulsifier comprising a complex of polysaccharide and protein as active ingredient, production method thereof and emulsified composition
JP5289280B2 (en) * 2009-11-06 2013-09-11 積水メディカル株式会社 Method for producing glycated amino acid and / or glycated peptide
WO2017170505A1 (en) * 2016-03-30 2017-10-05 不二製油グループ本社株式会社 Emulsification stabilizer for imparting high heat resistance, and manufacturing method therefor
CN111163859B (en) * 2017-11-02 2022-10-28 三荣源有限公司 Process for producing water-soluble or water-dispersible fine particles, use of the particles, and method of use of the particles

Also Published As

Publication number Publication date
JPH10168097A (en) 1998-06-23

Similar Documents

Publication Publication Date Title
US5403599A (en) Method for preparing tamarind oligosaccharides
US20020019447A1 (en) Physical forms of clarified hydrocolloids of undiminished properties and method of producing same
CN104774886B (en) A kind of preparation method without anaphylactogen avenabeta glucosan
JP6046779B2 (en) Rice protein composition and method for producing the same
CA2413026C (en) Cold water soluble .beta.-glucan product and process for preparing the same
JPH09502883A (en) Co-treated galactomannan-glucomannan
JPWO2005082156A1 (en) Soy protein-containing solution or gel
JP2009502200A (en) Low sedimentation acidic protein beverage
US20030208064A1 (en) Clarified hydrocolloids of undiminished properties and method of producing same
JP4250776B2 (en) Carbohydrate-protein complex and process for producing the same
JP2950671B2 (en) Foaming and foam stabilizer for food
CN115251365B (en) Starch micro/nano crystal-protein gel and preparation method thereof
CN104207127B (en) A kind of inulin natural juice and preparation method thereof
JPH10158306A (en) Production of fructan as water-soluble dietary fiber
JPWO2004078334A1 (en) Emulsifier comprising a complex of polysaccharide and protein as active ingredient, production method thereof and emulsified composition
HUT68444A (en) Clarified and cold-melt konjac glucomannan
JP4078805B2 (en) Carboxylic acid and amino acid or amino acid condensate reaction product and process for producing the same
JPH0586227A (en) Water-soluble dietary fiber complex and food composition containing the same
US7408057B2 (en) Clarified hydrocolloids of undiminished properties and method of producing same
JP2839690B2 (en) Method for producing thermoset gelled curdlan
JPH0517503A (en) Water-soluble hemicellulose and food containing the same
CN109566850A (en) A kind of brittle processing method of raising fribrillin thermal gels
JP3533708B2 (en) Method for producing Spirulina extract
SHIIBA et al. Preparation and characterization of water-soluble hemicellulose (arabinoxylan) from wheat bran
JP2012016325A (en) Method for producing rice protein composition and food product

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term