JPH0768277A - Highly advanced treatment of sewage - Google Patents

Highly advanced treatment of sewage

Info

Publication number
JPH0768277A
JPH0768277A JP21955093A JP21955093A JPH0768277A JP H0768277 A JPH0768277 A JP H0768277A JP 21955093 A JP21955093 A JP 21955093A JP 21955093 A JP21955093 A JP 21955093A JP H0768277 A JPH0768277 A JP H0768277A
Authority
JP
Japan
Prior art keywords
manganese dioxide
treatment
water
granular
sewage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21955093A
Other languages
Japanese (ja)
Other versions
JP2740623B2 (en
Inventor
Kiwamu Matsubara
極 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP5219550A priority Critical patent/JP2740623B2/en
Publication of JPH0768277A publication Critical patent/JPH0768277A/en
Application granted granted Critical
Publication of JP2740623B2 publication Critical patent/JP2740623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide highly advanced treatment method of sewage by which not only color, organic substances such as COD, and SS but also NH4-N, pathogenic bacteria, etc., which are difficult to removed by a conventional method, are removed and whose treatment cost is low. CONSTITUTION:After the pH of raw water is adjusted to at 5-7, the water is led to a treatment tank 2 to which an oxidant is added and which is filled with granular manganese dioxide and the resulting oxidized liquid is aerated in an aeration and water treatment tank 3. At the time of the clogging of the treatment tank, the layer of granular manganese dioxide is back-washed. At the time treatment function lowers, following the back-washing, the activated liquid is brought into contact with the layer of the granular manganese dioxide to activate the granular manganese dioxide. Further, as a part of an oxidizing agent, the drawn-out activated waste liquid may be added to raw water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、下水の二次処理水のよ
うに色度、COD 、NH4-N、SSの他に、病原菌等の生物を
も含有する有機性排水の浄化に使用される下水の高度処
理方法に関するものである。
INDUSTRIAL APPLICABILITY The present invention is used for purification of organic wastewater containing not only chromaticity, COD, NH 4 -N, SS, but also organisms such as pathogens as secondary treated water of sewage. The present invention relates to advanced sewage treatment methods.

【0002】[0002]

【従来の技術】下水の高度処理方法としては、図8に示
すように粒状活性炭51を充填した処理槽52に、通水速度
100 〜200m/dayで下水を通水し、下水中の汚濁成分を粒
状活性炭51に吸着させる方法が知られている。ところが
この方法は、色度、COD 、SS等はよく除去することがで
きるものの、病原菌等の除去率はあまりよくなく、更に
NH4-N は全く除去できないという欠点があった。またこ
こで使用される粒状活性炭51は高価であるばかりでな
く、下水のようなダーティな水の処理に使用すると寿命
が短いため、処理費用が高くつくという欠点があった。
2. Description of the Related Art As an advanced treatment method for sewage, a treatment tank 52 filled with granular activated carbon 51 as shown in FIG.
A method is known in which sewage is passed at 100 to 200 m / day and the polluted components in the sewage are adsorbed on the granular activated carbon 51. However, this method can remove chromaticity, COD, SS, etc. well, but the removal rate of pathogenic bacteria is not so good.
There was a drawback that NH 4 -N could not be removed at all. Further, the granular activated carbon 51 used here is not only expensive, but also has a drawback that the treatment cost is high because it has a short life when used for treating dirty water such as sewage.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決して、色度、COD 等の有機物とSSについ
ては従来法による処理性能を維持しつつ、従来法では除
去が困難であったNH4-N や病原菌等をも除去することが
でき、しかもその処理費用を従来よりも大幅に低減させ
ることができる下水の高度処理方法を提供するためにな
されたものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and it is difficult to remove the organic matter such as chromaticity and COD and SS by the conventional method while maintaining the processing performance by the conventional method. The purpose of the present invention is to provide an advanced sewage treatment method capable of removing NH 4 -N, pathogenic bacteria, and the like, which have been previously mentioned, and further significantly reducing the treatment cost as compared with the conventional method.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明は、原水のpHを5〜7に調整した
後、酸化剤を加えて粒状二酸化マンガンを充填した処理
槽に通水し、得られた酸化液を曝気して高度処理水を得
ることを特徴とするものである。なお、粒状二酸化マン
ガンは電解二酸化マンガンを使用し、処理槽の目詰まり
時には空気洗浄、同時逆洗、水逆洗の順で粒状二酸化マ
ンガンの層を逆洗する方法を取ることができる。また、
処理性能が低下した時には上記の逆洗に引続き、処理槽
内水を全量引き抜いた後、賦活液を粒状二酸化マンガン
の層と接触させて粒状二酸化マンガンを賦活したうえ、
賦活廃液を全量引き抜くことができる。更に、引き抜い
た賦活廃液を酸化剤の一部として原水に加えることがで
きる。
The present invention, which has been made to solve the above problems, adjusts the pH of raw water to 5 to 7 and then passes it through a treatment tank filled with granular manganese dioxide by adding an oxidizing agent. It is characterized in that it is watered and the obtained oxidizing solution is aerated to obtain highly treated water. Incidentally, electrolytic manganese dioxide is used as the granular manganese dioxide, and when the treatment tank is clogged, a method of backwashing the granular manganese dioxide layer in the order of air washing, simultaneous backwashing, and water backwashing can be adopted. Also,
When the treatment performance deteriorates, following the above backwashing, after extracting the total amount of water in the treatment tank, the activation liquid is contacted with the layer of granular manganese dioxide to activate the granular manganese dioxide,
The entire activated waste liquid can be withdrawn. Further, the extracted activation waste liquid can be added to the raw water as a part of the oxidizing agent.

【0005】[0005]

【作用】本発明によれば、下水中の色度、COD 等の有機
物及びNH4-N は粒状二酸化マンガンの酸化作用によって
除去することができ、SSは粒状二酸化マンガン層の濾過
作用によって除去される。また下水中の病原菌は共存す
る酸化剤の殺菌作用によって死滅する。なお、二酸化マ
ンガンは有機物等を酸化するとMnO に変化するが、酸化
剤によって再び二酸化マンガンに戻るので、処理性能が
低下することがない。このため、高価な活性炭を使用す
ることなく、色度、COD 等の有機物、SS、NH4-N 、病原
菌等を除去することができる。
According to the present invention, chromaticity in sewage, organic matter such as COD and NH 4 -N can be removed by the oxidizing action of granular manganese dioxide, and SS can be removed by the filtering action of the granular manganese dioxide layer. It The pathogenic bacteria in the sewage are killed by the bactericidal action of the coexisting oxidizing agent. It should be noted that manganese dioxide changes to MnO 2 when an organic substance or the like is oxidized, but since it returns to manganese dioxide again by the oxidizing agent, the treatment performance does not deteriorate. Therefore, chromaticity, organic matter such as COD, SS, NH 4 —N, and pathogenic bacteria can be removed without using expensive activated carbon.

【0006】[0006]

【実施例】以下に本発明を図1のフローシートに従っ
て、更に詳細に説明する。図1において、1はpH調整
槽、2は電解二酸化マンガンまたはパラジウム含浸電解
二酸化マンガンからなる粒状二酸化マンガン層を備えた
処理槽、3は曝気槽兼処理水槽、4は酸貯槽、5は酸化
剤貯槽、6は賦活廃液貯槽である。また、7はポンプ、
8はブロワ、9はpH指示調節計、10は攪拌機、11はレベ
ル調節装置である。原水は酸貯槽4から供給される酸と
ともにpH調整槽1で攪拌され、pH5〜7に調整される。
COD 等の有機物を除去するためにはpHは低い方がよい
が、処理水pHから見るとpHを高めに調整することが好ま
しく、有機物除去を高率に維持しつつ、処理水pHを5.8
〜8.6 におさめるためには、図2に示すように原水をpH
5〜7に調整する。
The present invention will be described in more detail below with reference to the flow sheet of FIG. In FIG. 1, 1 is a pH adjusting tank, 2 is a treatment tank having a granular manganese dioxide layer made of electrolytic manganese dioxide or palladium-impregnated electrolytic manganese dioxide, 3 is an aeration tank and a treatment water tank, 4 is an acid storage tank, and 5 is an oxidizing agent. Storage tank 6 is an activated waste liquid storage tank. Also, 7 is a pump,
8 is a blower, 9 is a pH indicator controller, 10 is a stirrer, and 11 is a level controller. The raw water is stirred with the acid supplied from the acid storage tank 4 in the pH adjusting tank 1 and adjusted to pH 5 to 7.
To remove organic substances such as COD, it is better to have a low pH, but it is preferable to adjust the pH to a higher value from the viewpoint of treated water pH, and the treated water pH should be 5.8 while maintaining a high rate of organic matter removal.
To reduce the pH to ~ 8.6, adjust the pH of the raw water as shown in Fig.2.
Adjust to 5-7.

【0007】このようにpH調整された原水は次に酸化剤
が添加され、処理槽2に供給される。添加する酸化剤の
種類としては、NaClO 等の塩素系酸化剤の他、過マンガ
ン酸塩、過酸化水素水が使用できるが、オゾンは二酸化
マンガンを過マンガン酸塩にまで酸化するため、粒状二
酸化マンガンの目減りが激しく使用できない。また、過
マンガン酸塩は酸化液中にMn++が混入するため、別途処
理が必要である。
The raw water whose pH has been adjusted in this way is then added with an oxidizing agent and supplied to the treatment tank 2. In addition to chlorine-based oxidizers such as NaClO, permanganate and hydrogen peroxide can be used as the type of oxidizer to be added, but since ozone oxidizes manganese dioxide to permanganate, granular dioxide is used. The manganese is heavily worn and cannot be used. In addition, since permanganate is mixed with Mn ++ in the oxidizing solution, a separate treatment is required.

【0008】酸化剤の添加率としては、COD を完全分解
する酸化剤必要量の20〜50%がよい。図3はNaClO を酸
化剤としたときの例を示すが、酸化剤必要量(理論値)
の20%を下回るとCOD の除去率が低下し、50%を越えて
もCOD の除去率がそれ以上向上しないばかりか、処理水
中に添加酸化剤に由来する残留塩素(R-Cl)が増加し、酸
化剤が無駄になる。
The addition rate of the oxidizing agent is preferably 20 to 50% of the required amount of the oxidizing agent which completely decomposes COD. Figure 3 shows an example of using NaClO as the oxidant, but the required amount of oxidant (theoretical value)
The COD removal rate decreases below 20% of CO2, and the COD removal rate does not improve further above 50%, but the residual chlorine (R-Cl) derived from the added oxidant in the treated water increases. However, the oxidizer is wasted.

【0009】このようにpHを5〜7に調整し、酸化剤が
加えられた原水が処理槽2に供給されると、粒状二酸化
マンガンの酸化作用によって原水中の色度、COD等の有
機物、及びNH4-N は分解されて除去される。またSSは粒
状二酸化マンガン層のろ過作用によって除かれ、病原菌
は共存する酸化剤の殺菌作用によって死滅する。
When the raw water having the pH adjusted to 5 to 7 and the oxidizing agent added thereto is supplied to the treatment tank 2 as described above, the chromaticity in the raw water, organic matter such as COD, etc. are caused by the oxidizing action of the granular manganese dioxide. And NH 4 —N are decomposed and removed. In addition, SS is removed by the filtering action of the granular manganese dioxide layer, and the pathogenic bacteria are killed by the bactericidal action of the coexisting oxidizing agent.

【0010】粒状二酸化マンガンは通常電解二酸化マン
ガンが使用されるが、この場合電解二酸化マンガンが有
機物等を酸化分解すると、MnO が粒状二酸化マンガンの
表面に生成し、共存する酸化剤によってMnO +NaClO →
MnO2+NaClのように反応して、再び二酸化マンガンに戻
る。ここで生成したMnO の量に比較して共存する酸化剤
の量が少ないとMnO が二酸化マンガンに戻らない部分が
できて、徐々に処理性能が低下することとなる。
As the granular manganese dioxide, electrolytic manganese dioxide is usually used. In this case, when the electrolytic manganese dioxide oxidizes and decomposes organic substances, MnO is produced on the surface of the granular manganese dioxide, and the coexisting oxidizing agent causes MnO + NaClO →
It reacts like MnO 2 + NaCl and returns to manganese dioxide again. If the amount of the coexisting oxidant is smaller than the amount of MnO 2 generated here, a portion where MnO 2 does not return to manganese dioxide is formed, and the treatment performance gradually decreases.

【0011】また、粒状二酸化マンガンは電解二酸化マ
ンガンのほか、パラジウム含浸電解二酸化マンガンが使
用される。パラジウム含浸電解二酸化マンガンを使用す
ると、前記した電解二酸化マンガンによる反応ととも
に、添加した酸化剤が電解二酸化マンガンの作用により
活性酵素となり、これがパラジウムに吸着された後、原
水中の有機物等を酸化分解する反応も同時に起こるの
で、図4に示すように効果は一層高まる。ここでパラジ
ウム含浸電解二酸化マンガンの場合、パラジウム自身は
吸着した活性酵素量に見合うだけの処理しかしないの
で、経時的な処理性能の低下はないが、電解二酸化マン
ガン部分は前記したように処理に伴ってMnO が生成する
ので、生成したMnO の量に比較して共存する酸化剤の量
が少ないと、MnO が二酸化マンガンに戻らない部分がで
きて、徐々に処理性能が低下することとなる。
As the granular manganese dioxide, in addition to electrolytic manganese dioxide, palladium-impregnated electrolytic manganese dioxide is used. When palladium-impregnated electrolytic manganese dioxide is used, the added oxidizing agent becomes an active enzyme by the action of electrolytic manganese dioxide along with the reaction by electrolytic manganese dioxide, and after this is adsorbed by palladium, it oxidatively decomposes organic substances and the like in raw water. Since the reaction also occurs at the same time, the effect is further enhanced as shown in FIG. Here, in the case of palladium-impregnated electrolytic manganese dioxide, since the palladium itself only undergoes a treatment commensurate with the amount of the active enzyme adsorbed, there is no deterioration in treatment performance over time, but the electrolytic manganese dioxide portion is accompanied by the treatment as described above. Since MnO 2 is produced as a result, when the amount of coexisting oxidant is smaller than the amount of MnO 2 produced, there is a portion where MnO 2 does not return to manganese dioxide, and the treatment performance gradually declines.

【0012】処理槽2における通水速度は、図5に示す
ようにLV=300m/day以下がよい。通水速度がこれを越え
ると粒状二酸化マンガンへのCOD 等の汚濁物質の拡散が
伴わなくなり処理性能が低下する。また、原水と粒状二
酸化マンガンとの接触時間はSV=6/hr以下がよい。但し
あまりSVが小さいと処理槽2が大きくなり必要な粒状二
酸化マンガンも多くなるので、これらを勘案すればSV=
1/hr〜6/hrが好ましい。
The water flow rate in the treatment tank 2 is preferably LV = 300 m / day or less as shown in FIG. If the water flow rate exceeds this value, the diffusion of pollutants such as COD into granular manganese dioxide will not be accompanied and the treatment performance will decline. The contact time between raw water and granular manganese dioxide should be SV = 6 / hr or less. However, if the SV is too small, the treatment tank 2 will become large and the required amount of granular manganese dioxide will increase, so if these are taken into consideration, SV =
1 / hr to 6 / hr is preferable.

【0013】このようにして処理を継続すると、粒状二
酸化マンガン層の目詰まりによって徐々に処理槽2の水
位が上昇し、また先に述べたようにMnO2に戻ることがで
きなかったMnO が増加して処理能力が低下してくる。ま
ず、粒状二酸化マンガン層の目詰まりが進行したときに
は、空気洗浄→同時逆洗→水逆洗の順で粒状二酸化マン
ガン層の逆洗を行う。逆洗速度は通常の0.5 〜1.5m/min
でよく、時間は空気洗浄0.5 分、同時逆洗1分、水逆洗
1〜5分とする。この操作を1〜3回繰り返すことによ
り、SSを系外に排出し、目詰まりを解消する。このと
き、処理性能が低下しておれば、逆洗に引き続いて賦活
処理を行う。
When the treatment is continued in this manner, the water level in the treatment tank 2 gradually rises due to the clogging of the granular manganese dioxide layer, and as described above, the amount of MnO that cannot return to MnO 2 increases. Then the processing capacity will decrease. First, when the granular manganese dioxide layer is clogged, the granular manganese dioxide layer is backwashed in the order of air washing → simultaneous backwashing → water backwashing. Backwash speed is usually 0.5 to 1.5 m / min
The time is 0.5 minutes for air washing, 1 minute for simultaneous backwashing, and 1 to 5 minutes for water backwashing. By repeating this operation 1 to 3 times, SS is discharged out of the system and the clogging is eliminated. At this time, if the processing performance is reduced, the backwashing is followed by the activation treatment.

【0014】賦活は、逆洗の終了した段階で処理槽2内
に満たされている水を逆洗ドレンとして引抜き、酸化剤
を含有する賦活液を供給して粒状二酸化マンガン層と一
定時間接触させる。この賦活操作により処理途中でMnO2
に戻ることができなかったMnO が処理途中の賦活の反応
と同様にMnO2に戻り、再び酸化力を発揮するようにな
る。
In the activation, the water filled in the treatment tank 2 is drawn out as a backwash drain after the backwashing is completed, and an activating solution containing an oxidant is supplied to bring it into contact with the granular manganese dioxide layer for a certain period of time. . Due to this activation operation, MnO 2
MnO 2 which could not be returned to MnO 2 returns to MnO 2 in the same way as the activation reaction in the middle of the treatment, and the oxidizing power is exerted again.

【0015】賦活液を粒状二酸化マンガン層と接触させ
る時間は、賦活液が含有する酸化剤の濃度と賦活の必要
程度によって異なるが、通常は5〜20分程度が必要にな
る。また、賦活液の含有する酸化剤の濃度は、賦活後の
賦活廃液に酸化剤が初期濃度の10%程度が残留すれば賦
活に関しては問題がないが、後述するように賦活廃液中
の酸化剤を更に利用するためには、0.2 %以上の酸化剤
が必要である。図6に示すように、酸化剤がNaClO の場
合、賦活液の含有する酸化剤濃度は有効塩素として0.5
%以上が好ましい。
The time for contacting the activation liquid with the granular manganese dioxide layer varies depending on the concentration of the oxidizing agent contained in the activation liquid and the required degree of activation, but it is usually about 5 to 20 minutes. Further, the concentration of the oxidant contained in the activation liquid is such that there is no problem with the activation if about 10% of the initial concentration of the oxidant remains in the activation waste liquid after activation, but as described below, the oxidizer in the activation waste liquid In order to further utilize the above, an oxidizer of 0.2% or more is required. As shown in Fig. 6, when the oxidizing agent is NaClO, the concentration of the oxidizing agent contained in the activator solution is 0.5 as available chlorine.
% Or more is preferable.

【0016】このようにして賦活が終了したら、賦活廃
液は全量引抜いて賦活廃液貯槽6に貯え、処理の際の酸
化剤の一部として原水に添加する。上述の逆洗と賦活の
操作は必要時に実施すればよいが、特に賦活操作は維持
すべきCOD 等の除去率あるいは目的とする高度処理水の
水質によって決定する必要がある。
When the activation is completed in this way, the entire activation waste liquid is drawn out and stored in the activation waste liquid storage tank 6 and added to the raw water as a part of the oxidizing agent during the treatment. The above-mentioned backwashing and activation operations may be carried out when necessary, but in particular the activation operation needs to be determined according to the removal rate of COD, etc. to be maintained or the desired quality of the treated water.

【0017】処理槽2で処理された水は、酸化液として
曝気槽兼処理水槽3に入る。ここで酸化液は曝気され、
高度処理水として排出される。このように酸化液の曝気
が必要であるのは、処理槽2における処理性能を向上さ
せるために原水のpHを5〜7に調整しているために酸化
液のpHも低いことが多く、曝気によって酸化液のpHを高
めて水質基準値の5.8 〜8.6 に合致させるためである。
曝気によって酸化液のpHが上昇するのは、処理槽2で酸
化により生成した炭酸又は重炭酸が脱炭酸されるためと
思われる。曝気量は通常の活性汚泥処理における曝気量
と同じく0.5 〜1m3air /m3槽・Hr程度でよく、曝気時
間は図7に示すように15〜30分で十分基準値に合致す
る。
The water treated in the treatment tank 2 enters the aeration tank / treatment water tank 3 as an oxidizing solution. Here the oxidant is aerated,
It is discharged as highly treated water. As described above, the aeration of the oxidizing liquid is necessary because the pH of the oxidizing liquid is often low because the pH of the raw water is adjusted to 5 to 7 in order to improve the treatment performance in the treatment tank 2. This is to increase the pH of the oxidizing solution to meet the water quality standard value of 5.8 to 8.6.
The increase in the pH of the oxidizing solution due to the aeration is considered to be due to the decarbonation of the carbonic acid or bicarbonate generated by the oxidation in the treatment tank 2. The amount of aeration may be about 0.5 to 1 m 3 air / m 3 tank · Hr, which is the same as the amount of aeration in ordinary activated sludge treatment, and the aeration time is 15 to 30 minutes as shown in FIG.

【0018】次に表1と表2に、同一の原水を本発明の
処理方法と従来法の活性炭処理方法とによって処理した
結果を示す。本発明の電解二酸化マンガンを使用した例
を従来法と比較すると、SS、COD 、BOD 、色度等につい
ては従来法と同等の結果となり、NH4-N 及び一般細菌、
大腸菌については従来法よりも大幅に優れた結果となっ
ている。また、処理費用は従来法の1/17と大幅に節減で
きることが判る。更に、パラジウム含浸電解二酸化マン
ガンを使用した例では、処理費用は電解二酸化マンガン
を使用したものと同等に維持しつつ、COD 、BOD 、色度
等の水質を更に向上させることができる。
Next, Tables 1 and 2 show the results of treating the same raw water with the treatment method of the present invention and the conventional activated carbon treatment method. Comparing the example using the electrolytic manganese dioxide of the present invention with the conventional method, SS, COD, BOD, chromaticity, etc. are the same results as the conventional method, NH 4 -N and general bacteria,
For E. coli, the results are significantly superior to the conventional method. Also, it can be seen that the processing cost can be greatly reduced to 1/17 of the conventional method. Further, in the case of using the palladium-impregnated electrolytic manganese dioxide, the treatment cost can be kept the same as that of using the electrolytic manganese dioxide, and the water quality such as COD, BOD, and chromaticity can be further improved.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】以上に説明したところから明らかなよう
に、本発明の下水の高度処理方法は、色度、COD 、BOD
の除去性は従来法と同率であり、NH4-N 、一般細菌、大
腸菌の除去性は従来法よりも大幅に優れている。従っ
て、最近の傾向であるCOD や窒素の排出規制にも十分に
対応することができる。また処理費用が従来法の1/17と
大幅に低減でき、下水処理等の大量処理を必要とする系
に対して適用することができる。
As is apparent from the above description, the advanced sewage treatment method according to the present invention can be applied to chromaticity, COD, BOD
The removability of NH 4 -N, general bacteria and E. coli is much better than that of the conventional method. Therefore, it is possible to fully comply with the recent trends of COD and nitrogen emission regulations. In addition, the treatment cost can be greatly reduced to 1/17 of the conventional method, and it can be applied to systems that require large-scale treatment such as sewage treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のフローシートである。FIG. 1 is a flow sheet of the present invention.

【図2】原水調整pHと、COD 除去率及び処理水pHの関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between the adjusted pH of raw water, the COD removal rate, and the pH of treated water.

【図3】酸化剤添加比率と、COD 除去率及び処理水R-Cl
の関係を示すグラフである。
[Figure 3] Oxidant addition ratio, COD removal rate and treated water R-Cl
It is a graph which shows the relationship of.

【図4】電解二酸化マンガンとパラジウム含浸電解二酸
化マンガンを使用したときのCOD 除去率を比較するグラ
フである。
FIG. 4 is a graph comparing COD removal rates when electrolytic manganese dioxide and palladium-impregnated electrolytic manganese dioxide are used.

【図5】COD 除去率とLV及びSVの関係を示すグラフであ
る。
FIG. 5 is a graph showing the relationship between COD removal rate and LV and SV.

【図6】接触時間とCOD 除去率の回復性及び賦活廃液R-
Clの関係を示すグラフである。
[Fig.6] Recovery time of contact time and COD removal rate and activation waste liquid R-
It is a graph which shows the relationship of Cl.

【図7】酸化液の曝気時間と高度処理水pHの関係を示す
グラフである。
FIG. 7 is a graph showing the relationship between the aeration time of an oxidizing solution and the pH of highly treated water.

【図8】従来法のフローシートである。FIG. 8 is a flow sheet of a conventional method.

【符号の説明】[Explanation of symbols]

1 pH調整槽、2 電解二酸化マンガン又はパラジウム
含浸電解二酸化マンガンからなる粒状二酸化マンガン層
を備えた処理槽、3 曝気槽兼処理水槽、4酸貯槽、5
酸化剤貯槽、6 賦活廃液貯槽、7 ポンプ、8 ブ
ロワ、9 レベル調整装置、10 攪拌機、11 pH指示調
節計
1 pH adjusting tank, 2 treatment tank with granular manganese dioxide layer consisting of electrolytic manganese dioxide or palladium-impregnated electrolytic manganese dioxide, 3 aeration tank and treated water tank, 4 acid storage tank, 5
Oxidizer storage tank, 6 activation waste liquid storage tank, 7 pump, 8 blower, 9 level adjuster, 10 stirrer, 11 pH indicator controller

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】原水のpHを5〜7に調整した後、酸化剤を
加えて粒状二酸化マンガンを充填した処理槽に通水し、
得られた酸化液を曝気して高度処理水を得ることを特徴
とする下水の高度処理方法。
1. After adjusting the pH of raw water to 5 to 7, water is passed through a treatment tank filled with granular manganese dioxide by adding an oxidizing agent,
A method for advanced treatment of sewage, which comprises aerating the obtained oxidizing solution to obtain highly treated water.
【請求項2】粒状二酸化マンガンが電解二酸化マンガン
である請求項1に記載の下水の高度処理方法。
2. The advanced sewage treatment method according to claim 1, wherein the granular manganese dioxide is electrolytic manganese dioxide.
【請求項3】処理槽の目詰まり時には空気洗浄、同時逆
洗、水逆洗の順で粒状二酸化マンガンの層を逆洗する請
求項1に記載の下水の高度処理方法。
3. The advanced sewage treatment method according to claim 1, wherein the granular manganese dioxide layer is backwashed in the order of air washing, simultaneous backwashing, and water backwashing when the treatment tank is clogged.
【請求項4】処理性能が低下した時には請求項3の逆洗
に引続き、処理槽内水を全量引き抜いた後、賦活液を粒
状二酸化マンガンの層と接触させて粒状二酸化マンガン
を賦活したうえ、賦活廃液を全量引き抜く請求項3に記
載の下水の高度処理方法。
4. When the treatment performance deteriorates, following the backwashing of claim 3, the total amount of water in the treatment tank is withdrawn, and then the activation liquid is brought into contact with the layer of granular manganese dioxide to activate the granular manganese dioxide. The advanced treatment method for sewage according to claim 3, wherein all the activated waste liquid is drawn out.
【請求項5】引き抜いた賦活廃液を酸化剤の一部として
原水に加える請求項4に記載の下水の高度処理方法。
5. The advanced sewage treatment method according to claim 4, wherein the extracted activation waste liquid is added to raw water as a part of an oxidizing agent.
JP5219550A 1993-09-03 1993-09-03 Advanced sewage treatment method Expired - Fee Related JP2740623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5219550A JP2740623B2 (en) 1993-09-03 1993-09-03 Advanced sewage treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5219550A JP2740623B2 (en) 1993-09-03 1993-09-03 Advanced sewage treatment method

Publications (2)

Publication Number Publication Date
JPH0768277A true JPH0768277A (en) 1995-03-14
JP2740623B2 JP2740623B2 (en) 1998-04-15

Family

ID=16737265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5219550A Expired - Fee Related JP2740623B2 (en) 1993-09-03 1993-09-03 Advanced sewage treatment method

Country Status (1)

Country Link
JP (1) JP2740623B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305266A (en) * 2004-04-20 2005-11-04 Victor Co Of Japan Ltd Treatment method and treatment apparatus for organic waste water
JP4786771B2 (en) * 2009-03-24 2011-10-05 株式会社アサカ理研 Water treatment method and water treatment system
US9938168B2 (en) 2015-03-13 2018-04-10 Korea Institute Of Science And Technology Apparatus and method for water treatment using in-situ activation of manganese dioxide catalyst
CN109336292A (en) * 2018-11-20 2019-02-15 湖北省黄麦岭磷化工有限责任公司 A kind of processing method of Mn-bearing waste water

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435714A (en) * 1987-07-31 1989-02-06 Nippon Denki Home Electronics Magnetic head
JPH0199689A (en) * 1987-10-09 1989-04-18 Suido Kiko Kk Method for removing organic matter in water
JPH03278883A (en) * 1990-03-08 1991-12-10 Ngk Insulators Ltd Method and apparatus for treating waste water containing hardly decomposable cod
JPH04131187A (en) * 1990-09-21 1992-05-01 Ngk Insulators Ltd Treatment of difficultly decomposable cod-containing waste water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435714A (en) * 1987-07-31 1989-02-06 Nippon Denki Home Electronics Magnetic head
JPH0199689A (en) * 1987-10-09 1989-04-18 Suido Kiko Kk Method for removing organic matter in water
JPH03278883A (en) * 1990-03-08 1991-12-10 Ngk Insulators Ltd Method and apparatus for treating waste water containing hardly decomposable cod
JPH04131187A (en) * 1990-09-21 1992-05-01 Ngk Insulators Ltd Treatment of difficultly decomposable cod-containing waste water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305266A (en) * 2004-04-20 2005-11-04 Victor Co Of Japan Ltd Treatment method and treatment apparatus for organic waste water
JP4617099B2 (en) * 2004-04-20 2011-01-19 株式会社メイコー Organic wastewater treatment method and treatment apparatus
JP4786771B2 (en) * 2009-03-24 2011-10-05 株式会社アサカ理研 Water treatment method and water treatment system
US9938168B2 (en) 2015-03-13 2018-04-10 Korea Institute Of Science And Technology Apparatus and method for water treatment using in-situ activation of manganese dioxide catalyst
CN109336292A (en) * 2018-11-20 2019-02-15 湖北省黄麦岭磷化工有限责任公司 A kind of processing method of Mn-bearing waste water

Also Published As

Publication number Publication date
JP2740623B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
WO1997014657A1 (en) Advanced oxidation of water using catalytic ozonation
JP2740623B2 (en) Advanced sewage treatment method
JP5259311B2 (en) Water treatment method and water treatment system used therefor
JPH09150165A (en) Water treating method and device therefor
JPH10277568A (en) Treatment of organic matter-containing waste water
JP2003024987A (en) Nitrification method for ammonia nitrogen-containing water
JP2749256B2 (en) Advanced water treatment method
JP2002177981A (en) Waste water treatment method and equipment
JP3461514B2 (en) Advanced water treatment system and method of starting advanced water treatment system
JP3403348B2 (en) Treatment method for nitrogen-containing wastewater
KR100470350B1 (en) Method for disposing of livestock waste water
JP2861045B2 (en) Treatment of water containing organic matter
JP3414820B2 (en) Advanced wastewater treatment method and treatment equipment
JPH0564782A (en) Treatment of water with activated carbon
JP2946163B2 (en) Wastewater treatment method
JP2006088057A (en) Method for treating ammonia-containing water
JP2001259688A (en) Waste liquid treating method
JPH05277475A (en) Treatment method for water containing organic substance
JP3178975B2 (en) Water treatment method
JPH0929285A (en) Advanced treatment method for wastewater and device therefor
JP3467234B2 (en) How to remove nitrate nitrogen from tap water
JP2007069190A (en) Method and apparatus for treating nitrite nitrogen-containing water
JPH05192672A (en) Method for operating water treating equipment and the same
JP2509099B2 (en) Method for acclimatizing and growing microorganisms that oxidatively decompose reducing sulfur compounds, and method for biological treatment of wastewater containing reducing sulfur compounds
JPH06154786A (en) Device for removing nitrogen in oxidized state in water

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 11

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees