JPH076764B2 - Electromagnetic induction type plate thickness measuring method and its measuring device - Google Patents

Electromagnetic induction type plate thickness measuring method and its measuring device

Info

Publication number
JPH076764B2
JPH076764B2 JP1124788A JP1124788A JPH076764B2 JP H076764 B2 JPH076764 B2 JP H076764B2 JP 1124788 A JP1124788 A JP 1124788A JP 1124788 A JP1124788 A JP 1124788A JP H076764 B2 JPH076764 B2 JP H076764B2
Authority
JP
Japan
Prior art keywords
plate thickness
measured
measuring
coil
harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1124788A
Other languages
Japanese (ja)
Other versions
JPH01185403A (en
Inventor
功 鈴木
孝行 山田
健 辻村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1124788A priority Critical patent/JPH076764B2/en
Publication of JPH01185403A publication Critical patent/JPH01185403A/en
Publication of JPH076764B2 publication Critical patent/JPH076764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、屋外作業において例えば平板な導電性金属材
料の中央部等の板厚を測定する方法及びその測定装置に
関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for measuring the plate thickness of, for example, the central portion of a flat conductive metal material in outdoor work, and a measuring apparatus therefor.

[従来の技術] 金属平板の中央部あるいは円筒形の長尺金属管における
板厚測定は、ノギスなどのいわゆるメカニカルな計測器
では困難である。そこで、これらの被測定物の計測に対
して非破壊で且つ表面に形成される塗覆層あるいはサビ
層を除去せずに板厚測定を可能とする方法の例として電
磁誘導法(特願昭61−169882,特願昭61−286068)が提
案されている。
[Prior Art] It is difficult to measure the plate thickness of a central portion of a metal flat plate or a cylindrical long metal tube with a so-called mechanical measuring instrument such as a caliper. Therefore, as an example of a method that is nondestructive to the measurement of these objects to be measured and enables the thickness measurement without removing the coating layer or the rust layer formed on the surface, the electromagnetic induction method (Japanese Patent Application No. 61-169882, Japanese Patent Application No. 61-286068) have been proposed.

この提案された手法では、まず金属導体に低周波数域正
弦波交流を印加した励磁用コイルを近づける。励磁用コ
イルから発生した交番磁界は、その金属導体と鎖交しそ
の金属導体中に渦電流を発生する。この渦電流は、励磁
用コイルの磁界変化に対して妨げる方向に磁界を発生さ
せる。これら2つの磁界は互いに重畳し、被測定物側に
励磁用コイルを介して被測定物に対向するように設置さ
れ且つ励磁用コイルと鉄心を共有する検出用コイルのイ
ンピーダンス(実効インダクタンス)を変化させる。こ
のインピーダンス変化は、被測定物とする金属導体の板
厚変化に対して有意性を示すことから、検出用コイルに
発生する誘起電圧を測定することにより被測定物の板厚
値を得ることができる。
In the proposed method, first, the exciting coil to which a low frequency sine wave alternating current is applied is brought close to the metal conductor. The alternating magnetic field generated from the exciting coil interlinks with the metal conductor and generates an eddy current in the metal conductor. This eddy current generates a magnetic field in a direction that hinders a change in the magnetic field of the exciting coil. These two magnetic fields are superimposed on each other, and the impedance (effective inductance) of the detection coil, which is installed on the DUT side so as to face the DUT via the exciting coil and shares the iron core with the exciting coil, is changed. Let This impedance change is significant with respect to the change in the plate thickness of the metal conductor to be measured. Therefore, it is possible to obtain the plate thickness value of the measured object by measuring the induced voltage generated in the detection coil. it can.

[発明が解決しようとする課題] しかしながら、上記従来の技術の電磁誘導法における板
厚測定用の検出信号の処理方法では、可変周波数交流電
源より低周波数域正弦波交流を励磁用コイルに印加し、
励磁用コイルから発生する交番磁界が被測定物側を介し
て検出用コイルに誘起する出力電圧の波形情報の中で、
励磁用コイル→対象物→検出用コイルの一連のループで
構成される磁気回路の非線形効果によって生じた高調波
成分と入力基本波成分が重畳した歪波形の振幅値(Peek
to Peek値)をオシロ・スコープによる観測、あるい
は歪波形を整流することによって得られる直流電圧値
(積分値)を検出信号としていた。
[Problems to be Solved by the Invention] However, in the processing method of the detection signal for plate thickness measurement in the above-mentioned conventional electromagnetic induction method, a low frequency sine wave alternating current is applied to the exciting coil from the variable frequency alternating current power source. ,
In the waveform information of the output voltage that the alternating magnetic field generated from the excitation coil induces in the detection coil via the DUT side,
Amplitude value of a distorted waveform in which the harmonic component and the input fundamental wave component are superimposed due to the nonlinear effect of the magnetic circuit composed of a series of loops of excitation coil → target object → detection coil (Peek
The direct current voltage value (integral value) obtained by observing the to Peek value) with an oscilloscope or rectifying the distorted waveform was used as the detection signal.

以上説明した様に出力電圧値は、基本波成分と高周波成
分との和により与えられるが、第5図の出力電圧特性図
に示す様に試料板厚の比較的薄い領域(本例では2mm以
下の領域)では試料板厚が増加するにつれて基本波成分
は増加するが、ヒステリシス現象や磁気飽和等の磁気回
路特有の非線形効果によって高調波成分(本例では第3,
5,7高調波)は逆に減少する。言い換えれば、この領域
において、基本波成分と高調波成分は板厚変化に対して
互いに相反する特性を持ち、この両者が重畳した波形を
検出する従来手法では、板厚変化に対する基本波の変化
度合いに較べて低い変化率を示す電圧を検出していたこ
とになる。本発明が取り扱う技術である電磁誘導法を用
いた板厚測定技術において、板厚変化に対してより変化
する度合いの大きい信号を測定する方が基本的に有利で
ある。その理由は、 (1)電圧測定用として用いるセンサ(一般的には電圧
計)の精度を低くすることができ、測定装置全体のコス
トを低減することが出来る。
As described above, the output voltage value is given by the sum of the fundamental wave component and the high frequency component, but as shown in the output voltage characteristic diagram of FIG. 5, the sample plate thickness is relatively thin (2 mm or less in this example). Region), the fundamental wave component increases as the sample plate thickness increases, but the harmonic component (in this example, the third, in this example, due to the nonlinear effect peculiar to the magnetic circuit such as hysteresis phenomenon and magnetic saturation).
5 and 7 harmonics) decrease on the contrary. In other words, in this region, the fundamental wave component and the higher harmonic wave component have characteristics that are opposite to each other with respect to the plate thickness change, and in the conventional method of detecting the waveform in which both are superimposed, the degree of change of the fundamental wave with respect to the plate thickness change It means that the voltage that shows a lower rate of change is detected as compared with. In the plate thickness measuring technique using the electromagnetic induction method, which is a technique handled by the present invention, it is basically advantageous to measure a signal having a greater degree of change with respect to the plate thickness change. The reasons are: (1) The accuracy of a sensor (generally a voltmeter) used for voltage measurement can be lowered, and the cost of the entire measuring device can be reduced.

(2)本技術は基本的に屋外での使用を考慮する必要が
あり、屋外での電磁誘導ノイズの混入を考慮する必要が
ある。この場合、変化率が大きい方がノイズとの分離が
容易であり、より電磁誘導ノイズの大きな環境において
測定が可能になると考えられる。
(2) The present technology basically needs to be considered for outdoor use, and it is necessary to consider mixing of electromagnetic induction noise outdoors. In this case, it is considered that the larger the rate of change, the easier it is to separate from the noise, and the measurement becomes possible in an environment where the electromagnetic induction noise is larger.

以上説明した様に従来技術では、基本波成分に較べ、板
厚変化に対する変化度合いの低い検出信号を用いた測定
を行っており、本来検出信号の持つ測定精度及び耐ノイ
ズ特性を十分に利用していないという欠点があった。
As described above, in the conventional technology, the measurement is performed using the detection signal whose degree of change with respect to the plate thickness change is lower than that of the fundamental wave component, and the measurement accuracy and noise resistance characteristic of the original detection signal are fully utilized. There was a drawback that not.

本発明は、上記欠点を解決するために提案されたもの
で、検出用コイルに誘起される電圧を測定するのではな
く、信号処理を施すことにより先の電圧中の基本波成分
と高調波成分を分離し、検出信号が本来持っている測定
精度及び耐ノイズ特性を電磁誘導法を用いた板厚測定技
術に付加することを目的としている。
The present invention has been proposed in order to solve the above-mentioned drawbacks. Instead of measuring the voltage induced in the detection coil, signal processing is performed to obtain the fundamental wave component and the harmonic wave component in the previous voltage. The purpose is to add the measurement accuracy and noise resistance that the detection signal originally has to the plate thickness measurement technology using the electromagnetic induction method.

[課題を解決するための手段] 上記の目的を達成するための本発明の電磁誘導形板厚測
定方法およびその測定装置の構成は、 所定の低周波数正弦波並びに予め設定した一定の励磁電
流値にて励磁用コイルを励磁し、被測定物である金属導
体中に誘起された渦電流により検出用コイルに発生する
誘起電圧から被測定物の板厚を測定する方法において、
該誘起電圧の周波数成分から板厚変化に対して有意性を
示す励磁用コイルの入力正弦波の基本波または第3高調
波を検出し、その出力値を用いて被測定物の板厚測定を
行うことを特徴とする。
[Means for Solving the Problems] An electromagnetic induction type plate thickness measuring method and a measuring apparatus therefor according to the present invention for achieving the above-mentioned object have a predetermined low frequency sine wave and a preset constant exciting current value. In the method of exciting the exciting coil in, the method of measuring the plate thickness of the measured object from the induced voltage generated in the detection coil by the eddy current induced in the metal conductor which is the measured object,
From the frequency component of the induced voltage, the fundamental wave or the third harmonic of the input sine wave of the exciting coil, which is significant to the change in plate thickness, is detected, and the plate value of the object to be measured is measured using the output value. It is characterized by performing.

また、上記において基本波と第3高調波の両方を検出可
能とし、基本波出力値による板厚測定範囲の上限値から
は第3高調波出力値を用いて被測定物の板厚測定を行う
のが測定範囲をより一層拡大する上で好適である。
Further, in the above, both the fundamental wave and the third harmonic can be detected, and the plate thickness of the object to be measured is measured using the third harmonic output value from the upper limit of the plate thickness measurement range based on the fundamental wave output value. Is suitable for further expanding the measurement range.

これらの方法を用いる電磁誘導形板厚測定装置は、励磁
用コイルと検出用コイルから成る測定用プローブと、前
記励磁用コイルに予め設定した電流値にて低周波数の正
弦波交流を送出する交流電源と、該測定用プローブを被
測定物である金属導体に一定の力で加圧する押し付け機
構部と、該金属導体中に誘起された渦電流により生ずる
誘起電圧を検出する検出部とを備え被測定物の板厚を測
定する測定装置において、検出用コイルに誘起される出
力電圧から板厚測定用の入力正弦波の基本波および/ま
たは第3高調波を検出する検出回路部を備えることを特
徴とする。
An electromagnetic induction type plate thickness measuring apparatus using these methods is a measuring probe including an exciting coil and a detecting coil, and an alternating current for sending a low frequency sine wave alternating current at a preset current value in the exciting coil. A power source, a pressing mechanism section that presses the measurement probe against a metal conductor as an object to be measured with a constant force, and a detection section that detects an induced voltage generated by an eddy current induced in the metal conductor. A measuring device for measuring the plate thickness of a measurement object is provided with a detection circuit section for detecting a fundamental wave and / or a third harmonic of an input sine wave for plate thickness measurement from an output voltage induced in a detection coil. Characterize.

[作用] 被測定物に励磁用コイルにより交番磁界を印加して、被
測定物である金属導体中に発生させた渦電流によって検
出コイルには磁気回路の非線形効果による歪波形の誘起
電圧が得られる。この歪波形は周波数成分として基本波
と主に奇数次の高調波を含む。このような誘起電圧の周
波数成分における基本波出力電圧値およびその基本波の
各高調波出力電圧値は、励磁コイルに印加する電流値の
大きさ(磁界の強さ)によって被測定物の板厚変化に対
し異なる有意差(ここで述べる有意差とは励磁コイルに
印加する励磁電流値に対して変化する特性のことを指
す。以下同じ)を示す。特に高次の高調波成分はほとん
ど有意差を示さない。
[Operation] An alternating magnetic field is applied to the object to be measured by an exciting coil, and an eddy current generated in the metal conductor, which is the object to be measured, produces an induced voltage of a distorted waveform due to the nonlinear effect of the magnetic circuit in the detection coil. To be This distorted waveform contains a fundamental wave and mainly odd-order harmonics as frequency components. The fundamental wave output voltage value and each harmonic output voltage value of the fundamental wave in the frequency component of such an induced voltage depend on the magnitude of the current value applied to the exciting coil (the strength of the magnetic field). A different significant difference with respect to the change (the significant difference described here means a characteristic that changes with respect to the exciting current value applied to the exciting coil. The same applies hereinafter). Especially, the higher harmonic components show almost no significant difference.

本発明は、これらの有意差の異なる信号成分および有意
差を示さない信号成分が雑音となって被測定物の板厚測
定範囲を狭める結果となっていることに着目し、測定条
件(主に励磁用コイルの励磁電流値)に対して最も有意
差を示す周波数成分(基本波または第3高調波)のみを
検出することにより、上記雑音となる周波数成分を除い
て測定範囲と分解能の向上を図る。この検出のとき同時
に、外来雑音を除くようにも作用し、その悪影響を軽減
する。
The present invention focuses on the fact that the signal components having different significant differences and the signal components that do not show significant differences become noises and result in narrowing the plate thickness measurement range of the object to be measured. By detecting only the frequency component (fundamental wave or third harmonic) that shows the most significant difference with respect to the excitation coil excitation current value), the measurement range and resolution can be improved by eliminating the frequency component that causes noise. Try. At the same time as this detection, it also acts to remove extraneous noise and reduces its adverse effects.

[実施例] 以下、本発明の実施例を図面に基づいて詳細に説明す
る。
Embodiments Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例を示す電磁誘導形板厚測定装
置の構成図である。本実施例は、励磁コイルと検出コイ
ルを有するプローブ1と、プローブ1の励磁コイルに励
磁電流を供給する可変周波数交流電源2と、検出コイル
の誘起電圧から板厚測定用の検出信号を作成する検出装
置3と、プローブ1を被測定物4に一定の力で加圧する
押し付け機構部5と、この押し付け機構部5の制御およ
び検出信号を基に板厚値を求めるマイクロコンピュータ
6から構成される。
FIG. 1 is a block diagram of an electromagnetic induction type plate thickness measuring device showing an embodiment of the present invention. In the present embodiment, a probe 1 having an exciting coil and a detecting coil, a variable frequency AC power supply 2 for supplying an exciting current to the exciting coil of the probe 1, and a detection signal for plate thickness measurement are created from an induced voltage of the detecting coil. It is composed of a detection device 3, a pressing mechanism unit 5 for pressing the probe 1 against the object to be measured 4 with a constant force, and a microcomputer 6 for obtaining a plate thickness value based on control and detection signals of the pressing mechanism unit 5. .

プローブ1は、第2図(イ)の正面図と(ロ)の側面図
示される概略構成図のように構成される。励磁用コイル
11は被測定物4へ交番磁界を励磁させ、検出用コイル12
は励磁用コイル11から発生した交番磁界が鉄心13を通し
て被測定物4と鎖交することによって、該被測定物4に
誘起した渦電流により発生する磁界と重畳した磁界を検
出する。外部磁極14は重畳した磁界を励磁用コイル11並
びに検出用コイル12へ効率よく戻す為に構成される磁気
的閉回路である。検出用コイル12は被測定物4側である
金属導体に励磁用コイル11を介して被測定物4に対向す
るように設置される。
The probe 1 is configured as shown in the front view of FIG. 2 (a) and the schematic configuration diagram shown in the side view of (b). Excitation coil
11 is a coil for detection 12 which excites an alternating magnetic field to the DUT 4
Detects the magnetic field superposed on the magnetic field generated by the eddy current induced in the DUT 4 by the alternating magnetic field generated from the exciting coil 11 interlinking with the DUT 4 through the iron core 13. The external magnetic pole 14 is a magnetically closed circuit configured to efficiently return the superimposed magnetic field to the exciting coil 11 and the detecting coil 12. The detection coil 12 is installed on the metal conductor on the side of the DUT 4 so as to face the DUT 4 via the exciting coil 11.

表1,表2は、後記する実験に使用した測定用プローブの
諸量を示したもので、表1はプローブ構成上の諸量、表
2は電気的特性を示したものである。
Tables 1 and 2 show various amounts of the measurement probe used in the experiments described later, Table 1 shows various amounts in the probe configuration, and Table 2 shows electrical characteristics.

第1図に戻って、可変周波数交流電源2は、周波数発振
器21により低周波数域あるいは高周波数域の正弦波交流
を発生させ、低域通過濾波器(Low Pass Filter)22
により発振周波数の基本波に対する高調波成分をカット
し、また可変周波数交流電源2の負荷変動に対して常に
一定の電流値に制御する定電流回路23により、励磁用コ
イルに予め設定した一定の励磁電流を供給するものであ
る。検出装置3はプローブ1内の検出用コイルにより励
起された検出信号を検出用負荷抵抗31により出力電圧と
し、例えば分圧比が10:1の分圧器32を介して帯域通過濾
波器(Band Pass Filter)あるいはスペクトラム・ア
ナライザ(FFT)33にて、該可変周波数交流電源2によ
り供給した正弦波交流の基本波または第3高調波をもし
くはそのいずれをも検出し、A/Dコンバータ61を介して
マイクロ・コンピュータ6へ測定出力電圧値(検出信
号)として入力する。押し付け機構部5は、プローブ1
の加圧駆動部51と、その加圧状態を検出する加圧センサ
52と、加圧駆動部51を駆動するサーボアンプ53から成
り、マイクロ・コンピュータ6→D/Aコンバータ62→サ
ーボアンプ53→加圧駆動部51→圧力センサ52→A/Dコン
バータ63の一連のループは、被測定物4とプローブ1の
測定条件(接触状態)を一定とする為に、予め設定した
加圧力時における測定値を得る為の一自由度力制御系を
構成する。
Returning to FIG. 1, the variable frequency AC power supply 2 generates a sine wave AC in a low frequency range or a high frequency range by a frequency oscillator 21, and a low pass filter (Low Pass Filter) 22
The harmonic component with respect to the fundamental wave of the oscillating frequency is cut by the constant current circuit 23 that always controls the current value to a constant value with respect to the load fluctuation of the variable frequency AC power supply 2 by the constant excitation preset in the excitation coil. It supplies electric current. The detection device 3 uses the detection signal excited by the detection coil in the probe 1 as an output voltage by the detection load resistor 31, and, for example, through a voltage divider 32 having a division ratio of 10: 1, a band pass filter (Band Pass Filter). ) Or a spectrum analyzer (FFT) 33 detects the fundamental wave or the third harmonic of the sinusoidal wave AC supplied by the variable frequency AC power supply 2 and detects the micro wave through the A / D converter 61. -Input as a measured output voltage value (detection signal) to the computer 6. The pressing mechanism unit 5 includes the probe 1
Pressure drive unit 51 and pressure sensor for detecting the pressure state
52 and a servo amplifier 53 for driving the pressurizing drive unit 51. The microcomputer 6 → D / A converter 62 → servo amplifier 53 → pressurizing drive unit 51 → pressure sensor 52 → A / D converter 63 The loop constitutes a one-degree-of-freedom force control system for obtaining a measured value at the time of preset pressing force in order to keep the measurement condition (contact state) of the DUT 4 and the probe 1 constant.

以下に上記構成の測定装置を用いて被測定物の板厚の測
定方法を述べる。最初にプローブ1を押し付け機構部5
により被測定物4である金属導体に一定の力で加圧し、
被測定物4とプローブ1の接触状態を一定の測定条件に
合致させる。続いて、可変周波数交流電源2により、予
め設定した所定の低周波数正弦波(例えば1〜7Hz)を
測定条件により予め設定した一定電流値にてプローブ1
の励磁用コイル11を励磁する。この励磁によって被測定
物である金属導体の中に誘起された渦電流により検出用
コイル12には磁気回路の非線形効果による歪波形電圧が
誘起される。この歪波形電圧には上記入力正弦波の基本
波の他に高調波成分を含んでいる。このように基本波で
ある正弦波で励磁したのに対し、検出コイルに高調波成
分が検出される理由を以下説明する。励磁コイルにより
誘起された磁界は測定対象物及びコイルのコア,シール
ドにより構成される磁気回路を通過する。この磁界強度
は励磁コイルに印加された電流値に比例する。一般的に
測定対象物及びコイルのコア,シールドの透磁率は内部
を通過する磁界強度に対してヒステリシス特性及び飽和
特性を持つ。このヒステリシス特性及び飽和特性の為に
磁気回路内の磁束密度は、例え磁界強度が正弦波状に変
化したとしても飽和特性を持つことになる。検出コイル
に誘起する電圧は磁束密度に比例するため、印加電圧を
正常波状に変化させたとしても先の透磁率に起因する歪
み波形となる。この歪み波形をフーリエ変換すると、印
加電流と同一の周波数を持つ基本波と高調波成分に分離
され、高調波成分は零にはならない。以上、まとめると
基本波で励磁したとしても、透磁率のヒステリシス特性
及び飽和特性のために、検出電圧には基本波と高調波成
分が測定されることになる。
The method for measuring the plate thickness of the object to be measured using the measuring device having the above configuration will be described below. First, the probe 1 is pressed and the mechanical unit 5 is pressed.
To press the metal conductor, which is the object to be measured 4, with a constant force,
The contact state between the DUT 4 and the probe 1 is made to match a certain measurement condition. Subsequently, the variable frequency AC power supply 2 is used to generate a predetermined low frequency sine wave (for example, 1 to 7 Hz) which is set in advance at a constant current value which is set in advance according to the measurement conditions.
Excitation coil 11 is excited. Due to this excitation, an eddy current induced in the metal conductor which is the object to be measured induces a distorted waveform voltage in the detection coil 12 due to the non-linear effect of the magnetic circuit. This distorted waveform voltage contains a harmonic component in addition to the fundamental wave of the input sine wave. The reason why the harmonic component is detected in the detection coil while the excitation is performed with the sine wave that is the fundamental wave will be described below. The magnetic field induced by the exciting coil passes through the magnetic circuit composed of the object to be measured, the coil core, and the shield. This magnetic field strength is proportional to the current value applied to the exciting coil. In general, the magnetic permeability of the object to be measured, the core of the coil, and the shield has a hysteresis characteristic and a saturation characteristic with respect to the strength of the magnetic field passing inside. Due to the hysteresis characteristic and the saturation characteristic, the magnetic flux density in the magnetic circuit has the saturation characteristic even if the magnetic field strength changes sinusoidally. Since the voltage induced in the detection coil is proportional to the magnetic flux density, even if the applied voltage is changed to have a normal wave shape, it has a distorted waveform due to the magnetic permeability. When this distorted waveform is Fourier transformed, it is separated into a fundamental wave and a harmonic component having the same frequency as the applied current, and the harmonic component does not become zero. In summary, even if excitation is performed with the fundamental wave, the fundamental wave and the harmonic component are measured in the detection voltage due to the hysteresis characteristic and the saturation characteristic of the magnetic permeability.

後記するように、これらの各周波数成分は被測定物の板
厚変化に対し同じ測定条件のときに異なった特性の有意
差を示し、特に高次の高調波成分は有意差を示さない。
そこで、その有意差を示す信号成分のみを検出装置3の
帯域通過濾波器(Band Pass Filter)あるいはスペク
トラム・アナライザ(FFT)を用いて分離・検出し、以
下のように3つの測定方法によって被測定物4の板厚を
測定する。
As will be described later, each of these frequency components shows a significant difference in different characteristics with respect to the change in the plate thickness of the measured object under the same measurement conditions, and particularly, a higher harmonic component does not show a significant difference.
Therefore, only the signal component showing the significant difference is separated / detected by using the band pass filter (Band Pass Filter) or the spectrum analyzer (FFT) of the detector 3, and the measured object is measured by the following three measuring methods. The plate thickness of the object 4 is measured.

第1の測定方法は、検出装置3で基本波成分のみを取り
出し、その板厚対出力電圧値特性から板厚を求める方法
である。この方法では、出力電圧値が大きく取れる特徴
がある。
The first measuring method is a method in which only the fundamental wave component is extracted by the detection device 3 and the plate thickness is obtained from the plate thickness vs. output voltage value characteristic. This method has a feature that a large output voltage value can be obtained.

第2の測定方法は、検出装置3において、可変周波数交
流電源2より励磁用コイル11に印加する低周波数正弦波
交流の基本波及び第3高調波の2値を検出し、まず第1
の方法と同様に基本波出力値によって被測定物の板値を
測定し、次いで基本波出力値による板厚測定範囲上限値
からは該励磁電流値の条件によって発生した第3高調波
出力値を用いて被測定物の板厚を補足測定する。この方
法はトータルとして板厚測定範囲を拡大できる特徴があ
る。
In the second measuring method, the detecting device 3 detects the binary values of the fundamental wave and the third harmonic of the low frequency sine wave alternating current applied to the exciting coil 11 from the variable frequency alternating current power source 2, and first detects the first value.
The plate value of the object to be measured is measured by the fundamental wave output value in the same manner as in the above method, and then the third harmonic output value generated by the condition of the exciting current value is determined from the plate thickness measurement range upper limit value by the fundamental wave output value. It is used to supplementally measure the plate thickness of the object to be measured. This method has a feature that the plate thickness measurement range can be expanded as a whole.

第3の測定方法は、上記で説明した第1,第2の方法にお
ける比較的大きな励磁電流値を用いた測定条件に比較し
て小さな励磁電流値の測定条件により、励磁用コイルに
印加する低周波数域正弦波交流の第3高調波を検出し、
この第3高調波出力値によって低電力にて被測定物の板
厚測定を行う方法である。
The third measuring method is a method of applying a low exciting current value to the exciting coil under a measuring condition of a small exciting current value as compared with the measuring condition using a relatively large exciting current value in the above-described first and second methods. Detects the third harmonic of frequency range sine wave AC,
This is a method of measuring the plate thickness of the object to be measured with low power by the output value of the third harmonic.

以上のように構成した実施例の作用を種々の条件で実験
した結果により説明する。
The operation of the embodiment configured as described above will be described based on the results of experiments conducted under various conditions.

第3図(イ),(ロ),(ハ),(ニ)は、本発明であ
る電磁誘導形板厚測定装置により、被測定物として板厚
0.5(mm)の鉄平板(JIS規格,SS−41)にて低周波数域
正弦波交流7(Hz),励磁電流10(mA)とする測定条件
において、入力信号及び出力信号の波形と周波数スペク
トルを示したものである。(イ)は可変周波数交流電源
よりプローブ内の励磁用コイルに印加する低周波数域正
弦波交流7(Hz)の入力波形であり、(ロ)は入力波形
の周波数スペクトルを示したものである。また、(ハ)
はプローブ内の検出用コイルにて検出した出力波形であ
り、(ニ)は出力波形の周波数スペクトルを示したもの
である。第4図(イ),(ロ),(ハ),(ニ)は、第
3図で示した測定条件において励磁電流値の条件のみを
70(mA)としたもので、(イ)は入力波形、(ロ)は入
力波形の周波数スペクトルを示し、(ハ)は出力波形、
(ニ)は出力波形の周波数スペクトルを示したものであ
る。第3図および第4図の(ニ)より明らかなように、
測定用プローブと被測定物により形成される磁気回路の
非線形効果により、低励磁電流値(10mA)から高励磁電
流値(70mA)の各励磁電流値条件においても出力信号に
高調波成分を含むことが分かる。
FIGS. 3 (a), (b), (c), and (d) show the plate thickness as an object to be measured by the electromagnetic induction type plate thickness measuring device of the present invention.
Waveform and frequency spectrum of input and output signals under the measurement conditions of 0.5 (mm) iron flat plate (JIS standard, SS-41) with low frequency sine wave AC 7 (Hz) and exciting current 10 (mA) Is shown. (A) is an input waveform of a low frequency sine wave AC 7 (Hz) applied to the excitation coil in the probe from the variable frequency AC power source, and (B) is a frequency spectrum of the input waveform. Also, (C)
Is the output waveform detected by the detection coil in the probe, and (d) is the frequency spectrum of the output waveform. 4 (a), (b), (c), and (d) show only the excitation current value condition in the measurement conditions shown in FIG.
70 (mA), (a) shows the input waveform, (b) shows the frequency spectrum of the input waveform, (c) shows the output waveform,
(D) shows the frequency spectrum of the output waveform. As is clear from (d) of FIGS. 3 and 4,
Due to the non-linear effect of the magnetic circuit formed by the measurement probe and the DUT, the output signal should contain harmonic components even under each exciting current value condition from low exciting current value (10mA) to high exciting current value (70mA). I understand.

第5図〜10図は、第1図で示した測定装置を用いて被測
定物の板厚変化に対する出力電圧特性を示したもので、
被測定物の材質は鉄平板(JIS規格,SS−41)であり、板
厚0.5〜8(mm),0.5(mm)刻み,枚数16枚である。
FIGS. 5 to 10 show the output voltage characteristics with respect to the change in the plate thickness of the object to be measured using the measuring device shown in FIG.
The material to be measured is a flat iron plate (JIS standard, SS-41), and the plate thickness is 0.5 to 8 (mm), 0.5 (mm) increments, and the number is 16.

第5図は、励磁用コイルに試験周波数7(Hz),励磁電
流50(mA)を印加したとき、検出用コイルに誘起する検
出信号の周波数成分をスペクトル・アナライザを用いて
帯域幅726(mHz)における基本周波数及び奇数高調波出
力値を各周波数成分の最大出力値で正規化した出力電圧
を示したものである。図における○印の実線は基本周波
数、△印の破線は第3高調波、□印の1点鎖線は第5高
調波、×印の2点鎖線は第7高調波を示したものであ
る。この図より、励磁電流値が比較的大きい場合は○印
の実線で示した基本周波数のみが被測定物の板厚測定に
使用できる可能性を示している。これに対し、比較的大
きな励磁電流値(50mA)の測定条件下における奇数高調
波では、板厚に対し傾向が一定しないことから、各高調
波成分において単一の出力値を用いた測定方法の可能性
はない。
Fig. 5 shows the frequency component of the detection signal induced in the detection coil when a test frequency of 7 (Hz) and an excitation current of 50 (mA) were applied to the excitation coil, and a bandwidth of 726 (mHz) using a spectrum analyzer. 4) shows the output voltage obtained by normalizing the fundamental frequency and the odd harmonic output value in () with the maximum output value of each frequency component. In the figure, the solid line with a circle shows the fundamental frequency, the broken line with a triangle shows the third harmonic, the one-dot chain line with a square shows the fifth harmonic, and the two-dot chain line with a cross shows the seventh harmonic. From this figure, when the excitation current value is relatively large, only the fundamental frequency indicated by the solid line with a circle indicates that it can be used to measure the plate thickness of the object to be measured. On the other hand, in the case of odd harmonics under a relatively large excitation current value (50mA), the tendency is not constant with respect to the plate thickness, so the measurement method using a single output value for each harmonic component There is no possibility.

第6図は、試験周波数1(Hz),励磁電流10(mA),ス
ペクトル・アナライザ帯域幅72.6(mHz)の測定条件に
おいて、横軸に被測定物の板厚,縦軸に各周波数スペク
トル別の最大出力値にて正規化した出力電圧を示したも
のである。○印の実線は基本周波数、△印の破線は第3
次高調波である。図より、比較的小さい励磁電流値条件
下(10mA)では基本周波数出力値に比較して第3高調波
出力電圧値が、被測定物の板厚変化を幅広く測定できる
ことが分かる。またFFTにより帯域幅を極度に狭めてい
る為、外来雑音を概ねカットし精度の高い測定が可能と
なる。第5図、第6図で述べた事実を更に詳しく検討し
た結果を第7図、第8図に示す。
Figure 6 shows the test frequency of 1 (Hz), the exciting current of 10 (mA), and the spectrum analyzer bandwidth of 72.6 (mHz) under the measurement conditions. The output voltage normalized by the maximum output value of is shown. The solid line with a circle is the fundamental frequency, and the broken line with a triangle is the third frequency.
It is the next harmonic. From the figure, it can be seen that the third harmonic output voltage value can widely measure the plate thickness change of the object under measurement as compared with the fundamental frequency output value under a relatively small exciting current value condition (10 mA). In addition, since the bandwidth is extremely narrowed by FFT, external noise is almost cut, and highly accurate measurement becomes possible. The results of a more detailed examination of the facts described in FIGS. 5 and 6 are shown in FIGS.

第7図は、第6図で示した測定条件のうち励磁電流を変
化させたときの基本周波数出力値の出力電圧特性を示し
たものである。この図より、板厚に対する出力電圧特性
が励磁電流値に依存性があり、また基本周波数出力値を
用いる場合には板厚5(mm)まで測定しようとすると50
(mA)以上の大きな励磁電流を必要とし、第6図に示し
た第3高調波に比較して大きな励磁電流値を必要とする
ことが分かる。
FIG. 7 shows the output voltage characteristic of the fundamental frequency output value when the exciting current is changed among the measurement conditions shown in FIG. From this figure, the output voltage characteristic with respect to the plate thickness has a dependency on the exciting current value, and when using the fundamental frequency output value, when trying to measure the plate thickness up to 5 (mm) 50
It can be seen that a large exciting current of (mA) or more is required and a large exciting current value is required as compared with the third harmonic wave shown in FIG.

第8図は、第6図で示した測定条件のうち、励磁電流値
を変化させたときの第3高調波出力値(3Hz)の出力電
圧特性を示したものである。この図より、板厚に対する
出力電圧特性が励磁電流値に依存性があり、また第3高
調波出力値は比較的小さな励磁電流値において被測定物
の板厚変化に対して有意性を示す傾向があることが分か
る。
FIG. 8 shows the output voltage characteristic of the third harmonic output value (3 Hz) when the exciting current value is changed among the measurement conditions shown in FIG. From this figure, the output voltage characteristic with respect to the plate thickness has a dependency on the exciting current value, and the third harmonic output value tends to be significant with respect to the change in the plate thickness of the DUT at a relatively small exciting current value. I understand that there is.

第9図は、試験周波数7(Hz),励磁電流値70(mA)の
測定条件にいおて、○印の実線は従来の検出方法による
ものであり、検出用コイルに誘起される出力電圧におい
て励磁用コイルに印加される低周波数域正弦波交流を基
本波とし、該基本波の高調波成分も含めた歪出力波形の
Peek To Peek値をオシロスコープにて測定したもので
ある。△印の破線は、スペクトル・アナライザ(FFT)
により低周波数域正弦波交流基本波7(Hz),帯域幅72
6(mHz)における出力値を示したものである。横軸は被
測定物の板厚,縦軸は各出力値にて正規化した出力電圧
である。図より、従来の方法に比較して被測定物の板厚
変化に対する出力電圧の飽和点が遅れ、また板厚変化に
対する出力電圧の傾きが大きくとれる(分解能の向上)
ことが分かる。ここで、印加電流値によって試料の厚板
に対する出力電圧が異なる理由を以下説明する。測定対
象物の板厚が一定だとすると励磁コイルに印加する電流
値が大きくなると励磁コイルの発生する磁界が強くな
る。測定対象物、コイルのコア、シールドにより構成さ
れる磁気回路は一定であるから、この励磁回路内での渦
電流による反磁界(励磁コイルにより誘起される磁界と
反対方向の磁界)は一定である。よって、励磁コイルに
印加する電流値が大きくなると検出コイルと鎖交する磁
界が強くなり、検出コイルに誘起する出力電圧も大きく
なる。この現象は各板厚について起こるため第7図,第
8図に示した様に、各板厚について印加電流値が大きく
なるにつれて各板厚について検出電圧が大きくなる。
Fig. 9 shows the measurement conditions of test frequency 7 (Hz) and exciting current value 70 (mA). The solid line with ○ mark is based on the conventional detection method, and the output voltage induced in the detection coil is shown. In the low frequency range sine wave alternating current applied to the excitation coil at the fundamental wave, the distortion output waveform including the harmonic component of the fundamental wave
Peek To Peek value is measured with an oscilloscope. The broken line with triangles is the spectrum analyzer (FFT)
Low frequency range sine wave AC fundamental wave 7 (Hz), bandwidth 72
It shows the output value at 6 (mHz). The horizontal axis is the plate thickness of the DUT, and the vertical axis is the output voltage normalized by each output value. From the figure, compared with the conventional method, the saturation point of the output voltage with respect to the change in the thickness of the DUT is delayed, and the slope of the output voltage with respect to the change in the thickness can be increased (improved resolution).
I understand. Here, the reason why the output voltage with respect to the thick plate of the sample differs depending on the applied current value will be described below. If the plate thickness of the object to be measured is constant, the magnetic field generated by the exciting coil becomes stronger as the current value applied to the exciting coil becomes larger. Since the magnetic circuit formed by the object to be measured, the coil core, and the shield is constant, the demagnetizing field (the magnetic field in the direction opposite to the magnetic field induced by the exciting coil) due to the eddy current in this exciting circuit is constant. . Therefore, when the value of the current applied to the exciting coil becomes large, the magnetic field interlinking with the detecting coil becomes strong and the output voltage induced in the detecting coil also becomes large. Since this phenomenon occurs for each plate thickness, as shown in FIGS. 7 and 8, the detected voltage increases for each plate thickness as the applied current value increases for each plate thickness.

第10図は、試験周波数5(Hz),励磁電流70(mA)の測
定条件において、○印の実線は基本周波数、△印の破線
は第3高調波であり、スペクトル・アナライザ帯域幅72
6(mHz)における出力電圧を示したものである。図よ
り、被測定物の板厚変化に対して基本波の出力電圧が飽
和する板厚値(4mm)であるが、比較的大きな励磁電流
値を与えることによって第3高調波の出力値が基本周波
数の飽和点付近より被測定物の板厚変化に対する有意差
を示す傾向にあることから、基本周波数と第3高調波数
の出力値(比較的大きな励磁電流値による測定方法)や
第3高調波の出力値(比較的小さな励磁電流値による測
定方法)に比較し、測定可能範囲が大きくとれることが
分かる。
Fig. 10 shows that, under the measurement conditions of test frequency 5 (Hz) and exciting current 70 (mA), the solid line with a circle is the fundamental frequency, the broken line with a triangle is the third harmonic, and the spectrum analyzer bandwidth 72
It shows the output voltage at 6 (mHz). From the figure, it can be seen that the output voltage of the fundamental wave is saturated (4 mm) with respect to the change in the thickness of the DUT, but the output value of the third harmonic becomes the basic value by giving a relatively large exciting current value. Since there is a tendency to show a significant difference with respect to the change in the plate thickness of the measured object from near the saturation point of the frequency, the output value of the fundamental frequency and the third harmonic number (measurement method by a relatively large exciting current value) and the third harmonic It can be seen that the measurable range can be wide compared with the output value of (measurement method using a relatively small exciting current value).

第8図、第10図において、第3高調波が特に有意差を示
す理由は、磁性体のヒステリシス現象や磁気飽和等の非
線形効果によって生ずる波形歪によるものであり、試料
によっては異なるものと考えられるが、これらはフーリ
エ解析等により説明されるものである。
In FIGS. 8 and 10, the reason why the third harmonic shows a particularly significant difference is due to waveform distortion caused by a nonlinear effect such as hysteresis phenomenon or magnetic saturation of the magnetic substance, and it is considered that it differs depending on the sample. However, these are explained by Fourier analysis or the like.

以上の結果から検出用コイルに誘起される基本波の高調
波が重畳した歪出力電圧の周波数成分における基本波出
力電圧値及び該基本波の各高調波出力電圧値は、励磁用
コイルに印加する励磁電流値の大きさ(磁界の強さ)に
応じて被測定物の板厚変化に対し出力電圧特性が変化す
る。これは試験周波数を一定にすると、被測定物の板厚
変化に対する出力電圧特性が励磁電流に依存性を示す為
である。測定条件において、比較的大きな励磁電流値の
場合では被測定物の板厚変化に対し該歪出力電圧周波数
成分の基本波出力電圧値が大きな有意差を示し、測定条
件において比較的小さい励磁電流値の場合では被測定物
の板厚変化対し第3高調波出力電圧値が基本波出力電圧
値に比して大きな有意差を示す傾向にある。すなわち、
励磁用コイルに印加する電流値の大きさ(磁界の強さ)
によって、検出用コイル誘起される歪出力電圧の周波数
成分は、被測定物の板厚変化に対し異なる特性の有意差
を示す信号成分と有意差を示さない信号成分(主に高次
の高調波成分)を重畳した検出信号であることから、異
なる特性の有意差を示す信号成分や有意差を示さない信
号成分が雑音となり被測定物の板厚測定範囲を狭める結
果となる。さらに、その有意差を示さなくなる飽和点
は、基本波よりも第3高調波の場合が厚い板厚値となっ
ている。
From the above results, the fundamental wave output voltage value in the frequency component of the distortion output voltage in which the higher harmonic wave of the fundamental wave induced in the detection coil is superimposed and each harmonic wave output voltage value of the fundamental wave are applied to the exciting coil. The output voltage characteristic changes according to the plate thickness of the object to be measured according to the magnitude of the exciting current value (magnetic field strength). This is because when the test frequency is kept constant, the output voltage characteristics with respect to the change in the plate thickness of the object to be measured show the dependence on the exciting current. In the measurement conditions, when the excitation current value is relatively large, the fundamental wave output voltage value of the distortion output voltage frequency component shows a large significant difference with respect to the plate thickness change of the DUT, and the excitation current value is relatively small under the measurement conditions. In the case of, the third harmonic output voltage value tends to show a significant difference with respect to the change in the plate thickness of the measured object as compared with the fundamental wave output voltage value. That is,
Magnitude of current value applied to excitation coil (magnetic field strength)
The frequency component of the distortion output voltage induced by the detection coil depends on the change in the thickness of the object to be measured. Since it is a detection signal in which the (component) is superimposed, the signal component showing a significant difference of different characteristics and the signal component showing no significant difference become noise, resulting in narrowing the plate thickness measurement range of the object to be measured. Further, the saturation point at which the significant difference is not shown has a thicker plate thickness value in the case of the third harmonic than the fundamental wave.

そこで、本実施例の測定方法においては、有意差を示す
1つの周波数成分(基本波または第3高調波)のみを分
離・検出して板厚測定範囲を狭めている要因を取り除く
とともに、測定の分解能を向上させる。上記のようにフ
ィルタリングを行う結果、商用電源雑音等の外来雑音を
除去されるため、その影響が軽減される。また、第2の
測定方法により、より一層の測定範囲の拡大が可能とな
る。さらに、第3の測定方法では第3高調波を用いるこ
とにより比較的低い励磁電流値においても被測定物の板
厚測定を可能としている。
Therefore, in the measurement method of the present embodiment, only one frequency component (fundamental wave or third harmonic) showing a significant difference is separated and detected to eliminate the factor that narrows the plate thickness measurement range, and Improve the resolution. As a result of performing the filtering as described above, external noise such as commercial power supply noise is removed, and the influence thereof is reduced. In addition, the second measurement method makes it possible to further expand the measurement range. Further, in the third measuring method, the third harmonic wave is used to enable the plate thickness of the object to be measured to be measured even at a relatively low exciting current value.

[発明の効果] 以上説明したように、本発明の電磁誘導形板厚測定方法
およびその測定装置を用いれば、従来技術の最大の特徴
である屋外作業におけるサビの発生した金属性導体の板
厚測定を表面処理なしに測定できるというメリットを生
かしたまま測定範囲の拡大及び分解能の向上、あるいは
外来雑音に影響されない高精度な測定を可能とし、更に
第3高調波を用いれば測定電流の大巾低下が可能となり
電源部の小型・軽量化による携帯性に優れたセンサ・シ
ステムが実現できる。
[Effects of the Invention] As described above, when the electromagnetic induction type plate thickness measuring method and the measuring apparatus of the present invention are used, the plate thickness of the rusted metal conductor in outdoor work, which is the greatest feature of the prior art. The measurement range can be expanded and the resolution can be improved while taking advantage of the fact that measurement can be performed without surface treatment, or highly accurate measurement that is not affected by external noise can be performed. It is possible to reduce the size of the power supply and realize a sensor system with excellent portability by making the power supply smaller and lighter.

すなわち、第1に予め設定した低周波数正弦波及び励磁
電流値において磁気回路の非線形効果により検出用コイ
ルに発生した歪出力波形の周波数成分を、検出回路部に
よりフィルタリングまたはフーリェ解析し、励磁用コイ
ルに印加する励磁電流値に応じて被測定物の板厚変化に
有意差を示す基本波出力電圧値を用いた測定方法。第2
に予め設定した励磁電流値において磁気回路の非線形効
果により検出用コイルに発生した歪出力波形の周波数成
分を、検出回路によりフィルタリングまたはフーリェ解
析し、励磁用コイルに印加する励磁電流値に応じて被測
定物の板厚変化に有意差を示す基本波出力値及び第3高
調波出力値の2値を用いて、まず基本波出力値にて被測
定物の板厚を測定し、次いで基本波出力値による板厚測
定範囲上限値からは該励磁電流値の条件によって発生し
た第3高調波出力値を用いて被測定物の板厚を補足測定
する測定方法。これら2つの測定方法によって測定範囲
の拡大及び分解能の向上、あるいは外来電磁雑音の影響
を軽減できる。第3に、前記した2つの測定方法、ある
いは従来技術である電磁誘導法(特願昭61−169882,特
願昭61−286068)における磁気回路の非線形効果により
検出用コイルに発生する歪波形の振幅値(Peek To Pe
ek)または整流することによって得られる直流電圧値
(積分値)を用いた測定方法に比較して、小さい励磁電
流値条件において、被測定物の板厚変化に対し有意差を
示す第3高調波出力電圧値を用いて被測定物の板厚を測
定する測定方法により、低電力にて被測定物の板厚を測
定できることから携帯性に優れたセンサ・システムが可
能となる利点を有することができる。
That is, first, the frequency component of the distortion output waveform generated in the detection coil due to the non-linear effect of the magnetic circuit at the preset low-frequency sine wave and excitation current value is filtered or Fourier-analyzed by the detection circuit unit to obtain the excitation coil. A measurement method using a fundamental wave output voltage value that shows a significant difference in the plate thickness change of the object to be measured according to the exciting current value applied to. Second
The frequency component of the distortion output waveform generated in the detection coil due to the non-linear effect of the magnetic circuit at the preset excitation current value is filtered or Fourier-analyzed by the detection circuit, and the excitation current value applied to the excitation coil is adjusted according to the excitation current value. Using the two values of the fundamental wave output value and the third harmonic output value that show a significant difference in the plate thickness change of the measured object, first measure the plate thickness of the measured object with the fundamental wave output value, and then the fundamental wave output A measurement method for supplementally measuring the plate thickness of the object to be measured from the upper limit of the plate thickness measurement range based on the value using the third harmonic output value generated under the conditions of the exciting current value. By these two measuring methods, the measuring range can be expanded and the resolution can be improved, or the influence of external electromagnetic noise can be reduced. Thirdly, the distortion waveform generated in the detection coil due to the non-linear effect of the magnetic circuit in the above-mentioned two measuring methods or the conventional electromagnetic induction method (Japanese Patent Application Nos. 61-169882 and 61-286068). Amplitude value (Peek To Pe
ek) or the third harmonic showing a significant difference with respect to the change in the plate thickness of the DUT under a small exciting current value condition as compared with the measuring method using the DC voltage value (integral value) obtained by rectifying. With the measurement method of measuring the plate thickness of the DUT using the output voltage value, it is possible to measure the plate thickness of the DUT with low power, which has the advantage of enabling a sensor system with excellent portability. it can.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の電磁誘導形板厚測定装置の一実施例を
示すブロック構成図、第2図(イ),(ロ)は本発明で
ある電磁誘導形板厚測定装置に用いたプローブの概略構
成図、第3図(イ),(ロ),(ハ),(ニ)は比較的
小さい励磁電流値(10mA)における測定用プローブの入
力信号波形と周波数スペクトルおよび出力信号波形と周
波数スペクトルを示す図、第4図(イ),(ロ),
(ハ),(ニ)は比較的大きな励磁電流値(70mA)にお
ける測定用プローブの入力信号波形と周波数スペクトル
および出力信号波形と周波数スペクトルを示す図、第5
図は比較的大きい励磁電流値(50mA)の条件における被
測定物の板厚変化に対する基本波(7Hz)及び各奇数高
調波(21Hz,35Hz,49Hz)の出力電圧特性図、第6図は比
較的小さい励磁電流値(10mA)における被測定物の板厚
変化に対する基本波(1Hz)および第3高調波(3Hz)の
出力電圧特性図、第7図は基本波(1Hz)における被測
定物の板厚変化に対する各励磁電流値の出力電圧特性
図、第8図は第3高調波(3Hz)における被測定物の板
厚変化に対する各励磁電流値の出力電圧特性図、第9図
は被測定物の板厚変化に対する従来の電磁誘導法(特願
昭61−286068号)による出力電圧特性と本発明である基
本波出力電圧特性の比較図、第10図は被測定物の板厚変
化に対する基本波(5Hz)及び第3高調波(15Hz)の出
力電圧特性により各出力値の2値を用いた測定方法の説
明図である。 1……プローブ、2……可変周波数電源、3……検出装
置、4……被測定物、5……押し付け機構部、6……マ
イクロコンピュータ、11……励磁用コイル、12……検出
用コイル。
FIG. 1 is a block diagram showing an embodiment of an electromagnetic induction type plate thickness measuring apparatus of the present invention, and FIGS. 2 (a) and 2 (b) are probes used in the electromagnetic induction type plate thickness measuring apparatus of the present invention. Figure 3, (a), (b), (c), and (d) show the input signal waveform and frequency spectrum and output signal waveform and frequency of the measuring probe at a relatively small excitation current value (10 mA). Figure showing spectrum, Fig. 4 (a), (b),
(C) and (d) are diagrams showing the input signal waveform and the frequency spectrum and the output signal waveform and the frequency spectrum of the measuring probe at a relatively large exciting current value (70 mA).
The figure shows the output voltage characteristic diagram of the fundamental wave (7Hz) and each odd harmonic (21Hz, 35Hz, 49Hz) against the change of the thickness of the DUT under the condition of relatively large exciting current value (50mA). Output voltage characteristic diagram of the fundamental wave (1Hz) and the third harmonic (3Hz) with respect to the change in the thickness of the DUT at a relatively small exciting current value (10mA). Fig. 7 shows the DUT at the fundamental wave (1Hz). Output voltage characteristic diagram of each excitation current value with respect to plate thickness change, Fig. 8 is an output voltage characteristic diagram of each excitation current value with respect to plate thickness change of the measured object at the 3rd harmonic (3Hz), and Fig. 9 is the measured value. Comparison of output voltage characteristics by the conventional electromagnetic induction method (Japanese Patent Application No. 61-286068) and fundamental wave output voltage characteristics of the present invention against changes in the plate thickness of an object. Based on the output voltage characteristics of the fundamental wave (5Hz) and the third harmonic (15Hz), measurement using two values of each output value It is an explanatory view of a method. 1 ... probe, 2 ... variable frequency power supply, 3 ... detector, 4 ... measurement object, 5 ... pressing mechanism part, 6 ... microcomputer, 11 ... excitation coil, 12 ... detection coil.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】所定の低周波数正弦波並びに予め設定した
一定の励磁電流値にて励磁用コイルを励磁し、被測定物
である金属導体中に誘起された渦電流により検出用コイ
ルに発生する誘起電圧から該被測定物の板厚を測定する
方法において、 該誘起電圧の周波数成分から励磁用コイルに印加する入
力正弦波周波数の基本周波数成分を検出し、基本周波数
出力値によって被測定物の板厚を測定することを特徴と
する電磁誘導形板厚測定方法。
1. An exciting coil is excited with a predetermined low frequency sine wave and a preset constant exciting current value, and is generated in the detecting coil by an eddy current induced in a metal conductor as an object to be measured. In the method of measuring the plate thickness of the object to be measured from the induced voltage, the fundamental frequency component of the input sine wave frequency applied to the exciting coil is detected from the frequency component of the induced voltage, and the object to be measured is determined by the fundamental frequency output value. An electromagnetic induction type plate thickness measuring method characterized by measuring a plate thickness.
【請求項2】所定の低周波数正弦波並びに予め設定した
一定の励磁電流値にて励磁用コイルを励磁し、被測定物
である金属導体中に誘起された渦電流により検出用コイ
ルに発生する誘起電圧から該被測定物の板厚を測定する
方法において、 該誘起電圧の周波数成分から励磁用コイルに印加する入
力正弦波の基本波及び第3高調波成分を検出し、まず基
本波出力値を用いて被測定物の板厚を測定し、次いで基
本波出力値による被測定物の板厚測定範囲の上限値から
は第3高調波出力値を用いて被測定物の板厚測定を行う
ことを特徴とする電磁誘導形板厚測定方法。
2. An exciting coil is excited with a predetermined low frequency sine wave and a preset constant exciting current value, and is generated in the detecting coil by an eddy current induced in a metal conductor as an object to be measured. In the method for measuring the plate thickness of the object to be measured from the induced voltage, the fundamental wave and the third harmonic component of the input sine wave applied to the exciting coil are detected from the frequency component of the induced voltage, and the fundamental wave output value is first detected. To measure the plate thickness of the measured object, and then from the upper limit of the measured thickness range of the measured object based on the fundamental wave output value, measure the plate thickness of the measured object using the third harmonic output value. An electromagnetic induction type plate thickness measuring method characterized by the above.
【請求項3】所定の低周波数正弦波並びに予め設定した
一定の励磁電流値にて励磁用コイルを励磁し、被測定物
である金属導体中に誘起された渦電流により検出用コイ
ルに発生する誘起電圧から該被測定物の板厚を測定する
方法において、 該誘起電圧の周波数成分から励磁用コイルに印加する入
力正弦波の第3高調波成分を検出し、第3高調波出力値
によって測定物の板厚を測定することを特徴とする電磁
誘導形板厚測定方法。
3. An exciting coil is excited with a predetermined low-frequency sine wave and a preset constant exciting current value, and is generated in the detecting coil by an eddy current induced in a metal conductor as an object to be measured. In the method of measuring the plate thickness of the object to be measured from the induced voltage, the third harmonic component of the input sine wave applied to the exciting coil is detected from the frequency component of the induced voltage, and measured by the third harmonic output value. An electromagnetic induction type plate thickness measuring method characterized by measuring the plate thickness of an object.
【請求項4】励磁用コイルと検出用コイルから成る測定
用プローブと、前記励磁用コイルに予め設定した電流値
にて低周波数の正弦波交流を送出する交流電源と、該測
定用プローブを被測定物である金属導体に一定の力で加
圧する押し付け機構部と、該金属導体中に誘起された渦
電流により生ずる誘起電圧を検出する検出部とを備え被
測定物の板厚を測定する測定装置において、 検出用コイルに誘起される出力電圧から板厚測定用の入
力正弦波の基本波および/または第3高調波を検出する
検出回路部を備えることを特徴とする電磁誘導形板厚測
定装置。
4. A measuring probe comprising an exciting coil and a detecting coil, an AC power source for sending a low frequency sine wave AC at a preset current value to the exciting coil, and the measuring probe. Measurement for measuring the plate thickness of an object to be measured, which includes a pressing mechanism section for pressing a metal conductor as a measurement object with a constant force and a detection section for detecting an induced voltage generated by an eddy current induced in the metal conductor An electromagnetic induction type plate thickness measurement, characterized in that the device is provided with a detection circuit section for detecting an input sine wave fundamental wave and / or third harmonic wave for plate thickness measurement from an output voltage induced in a detection coil. apparatus.
JP1124788A 1988-01-21 1988-01-21 Electromagnetic induction type plate thickness measuring method and its measuring device Expired - Fee Related JPH076764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1124788A JPH076764B2 (en) 1988-01-21 1988-01-21 Electromagnetic induction type plate thickness measuring method and its measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1124788A JPH076764B2 (en) 1988-01-21 1988-01-21 Electromagnetic induction type plate thickness measuring method and its measuring device

Publications (2)

Publication Number Publication Date
JPH01185403A JPH01185403A (en) 1989-07-25
JPH076764B2 true JPH076764B2 (en) 1995-01-30

Family

ID=11772612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1124788A Expired - Fee Related JPH076764B2 (en) 1988-01-21 1988-01-21 Electromagnetic induction type plate thickness measuring method and its measuring device

Country Status (1)

Country Link
JP (1) JPH076764B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4551035B2 (en) * 2001-08-22 2010-09-22 新日本製鐵株式会社 Conductor thickness measuring device
JP2009206237A (en) * 2008-02-27 2009-09-10 Tokyo Electric Power Co Inc:The Quenching detection apparatus

Also Published As

Publication number Publication date
JPH01185403A (en) 1989-07-25

Similar Documents

Publication Publication Date Title
US5689183A (en) Electromagnetic-induction type inspection device employing two induction coils connected in opposite phase relation
US5028869A (en) Process and apparatus for the nondestructive measuring of magnetic properties of a test body, by detecting a tangential magnetic field and deriving harmonic components thereof
CA1070766A (en) Process and apparatus for non-destructive eddy current testing
KR20140033395A (en) Surface property inspection device and surface property inspection method
KR930010556A (en) Electromagnetic Induction Tester and Inspection Method
US4215310A (en) Magnetic testing method and apparatus having provision for eliminating inaccuracies caused by gaps between probe and test piece
US4237419A (en) Method and apparatus for non-destructive testing using a plurality of frequencies
JPH05149923A (en) Apparatus and method for electromagnetic induction inspection by use of change in frequency phase
JPS62273447A (en) Method and apparatus for measuring deterioration degree of material
US3611119A (en) Method for measuring the ferrite content of a material
JPH076764B2 (en) Electromagnetic induction type plate thickness measuring method and its measuring device
JPH07128295A (en) Method for measuring crystal grain size of steel plate
JPWO2006059497A1 (en) Method and device for measuring critical current density of superconductor
JPH08248004A (en) Apparatus for measuring extent of fatigue
KR20080070292A (en) Defective detector of metal object using an alternating magnetic field
JPS63139202A (en) Method and apparatus for measuring electromagnetic induction type thickness
JPS59112257A (en) Method and device for nondestructive inspection of ferromagnetic material
Mesquita et al. Development of an Electronic Instrument for Eddy Current Testing
KR920002179B1 (en) Method and apparatus for detecting flaw with eddy current
Vigness et al. Eddy Current Type Flaw Detectors for Non‐Magnetic Metals
GB2187558A (en) Determining the magnetic flux density within a specimen during magnetic particle inspection techniques
Wincheski et al. New eddy current probe for thickness gauging of conductive materials
Wolframm et al. PCB Coil Enables In Situ Calibration of Magnetoelectric Sensor Systems
JPS6021445A (en) Eddy current detecting apparatus
JPH05203629A (en) Electromagnetic flaw detection and device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees