JPH0766818B2 - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH0766818B2
JPH0766818B2 JP63153260A JP15326088A JPH0766818B2 JP H0766818 B2 JPH0766818 B2 JP H0766818B2 JP 63153260 A JP63153260 A JP 63153260A JP 15326088 A JP15326088 A JP 15326088A JP H0766818 B2 JPH0766818 B2 JP H0766818B2
Authority
JP
Japan
Prior art keywords
battery
thf
solvent
organic electrolyte
methyltetrahydrofuran
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63153260A
Other languages
Japanese (ja)
Other versions
JPH01320766A (en
Inventor
▲吉▼徳 豊口
純一 山浦
徹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63153260A priority Critical patent/JPH0766818B2/en
Publication of JPH01320766A publication Critical patent/JPH01320766A/en
Publication of JPH0766818B2 publication Critical patent/JPH0766818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極にリチウムなどを用いた有機電解質電池
の改良に関するものであり、特に有機電解質を構成する
有機溶媒の改良に関するものである。
Description: TECHNICAL FIELD The present invention relates to an improvement in an organic electrolyte battery using lithium or the like for a negative electrode, and more particularly to an improvement in an organic solvent constituting an organic electrolyte.

従来の技術 有機電解質電池として、負極にリチウムやマグネシウム
などのアルカリ金属,アルカリ土類金属を用い、正極に
フッ化黒鉛や、二酸化マンガンを用いた電池が研究さ
れ、一部実用化されている。また最近では、負極にリチ
ウム、正極に二硫化チタンを用いたリチウム有機電解質
二次電池の研究を活発に行われている。
2. Description of the Related Art As an organic electrolyte battery, a battery using an alkali metal such as lithium or magnesium or an alkaline earth metal for a negative electrode and fluorinated graphite or manganese dioxide for a positive electrode has been studied and partially put into practical use. Recently, active research has been conducted on a lithium organic electrolyte secondary battery using lithium for the negative electrode and titanium disulfide for the positive electrode.

これら電池の電解質には、溶媒にプロピレンカーボネー
ト(PC)やテトラヒドロフラン(THF)テトラヒドロフ
ラン−3−オン、2−メチルテトラヒドロフラン(2−
Me−THF)を用い、これら溶媒に、過塩素酸リチウム(L
iClO4)やリチウムヘキサフロロアルシネート(LiAs
F6)を溶質として溶解した有機電解質が用いられて来
た。
For the electrolyte of these batteries, propylene carbonate (PC), tetrahydrofuran (THF) tetrahydrofuran-3-one, 2-methyltetrahydrofuran (2-
Me-THF) in these solvents, lithium perchlorate (L
iClO 4 ) and lithium hexafluoroarsinate (LiAs
Organic electrolytes having F 6 ) as a solute have been used.

発明が解決しようとする課題 これらの有機電解質を用いた電池では、高率放電を行っ
た場合、電池の電圧が低下するという問題点があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention A battery using these organic electrolytes has a problem that the voltage of the battery decreases when high-rate discharge is performed.

課題を解決するための手段 本発明では、従来の有機電解質に用いる溶媒に、少なく
とも2−メチルテトラヒドロフラン−4−オンを使用す
ることを特徴としている。
Means for Solving the Problems The present invention is characterized in that at least 2-methyltetrahydrofuran-4-one is used as a solvent used in a conventional organic electrolyte.

作用 従来のPCは、誘電率は大である粘度が大であり、このた
め、電池に使用すると高率放電時に電圧の低下、正極の
利用率の低下が起こる。一方THFや2−Me−THFでは、粘
度は小さいが、誘電率が小さいため、高率放電時には、
正極の利用率は大となるが電池電圧の低下が起こる。し
たがって、THFや2−Me−THFの類で誘電率を大にするこ
とにより、電池に使用した場合、良好な特性が得られる
ことが予想できる。
Function Conventional PC has a high dielectric constant and a high viscosity, and therefore, when used in a battery, the voltage and the utilization factor of the positive electrode decrease when discharged at a high rate. On the other hand, in the case of THF and 2-Me-THF, the viscosity is small, but the dielectric constant is small.
The utilization rate of the positive electrode is large, but the battery voltage drops. Therefore, it can be expected that good characteristics can be obtained when used in a battery by increasing the dielectric constant of THF or 2-Me-THF.

このような考え方で、THFにカルボニル基を導入したテ
トラヒドロフラン−3−オンを溶媒に用いることにより
良好な電池特性が得られることが知られている(特開昭
62−290068号公報)。しかし、この場合においても特に
二次電池の特性としては不十分であった。
Based on this idea, it is known that good battery characteristics can be obtained by using tetrahydrofuran-3-one in which a carbonyl group is introduced into THF as a solvent (Japanese Patent Laid-Open Publication No. Sho.
62-290068). However, even in this case, the characteristics of the secondary battery were particularly insufficient.

本発明は、2−Me−THFを改良し、下に示すように 4の位置にカルボニル基を導入するものである。4の位
置の酸素の電子吸引性と2の位置のメチル基の電子供与
性により、従来のテトラヒドロフラン−3−オンよりさ
らに4の位置の酸素を負に帯電することになり多極子モ
ーメントが大になり溶質に用いるリチウムなどのカチオ
ンと相互作用を大きくして、電池特性の向上を図るもの
である。
The present invention improves on 2-Me-THF, as shown below. A carbonyl group is introduced at position 4. Due to the electron withdrawing property of oxygen at the 4th position and the electron donating property of the methyl group at the 2nd position, oxygen at the 4th position is further negatively charged as compared with the conventional tetrahydrofuran-3-one, resulting in a large multipole moment. It aims to improve the battery characteristics by increasing the interaction with cations such as lithium used as the solute.

実施例 以下、本発明の実施例を説明する。Examples Hereinafter, examples of the present invention will be described.

(実施例1) 負極に直径17.5mm、厚さ0.5mmの円板状リチウムを用い
た。この時の理論充填量は247mAhである。正極には、二
酸化マンガン100重量に導電剤としてのアセチレンブラ
ック10重量部、結着剤としてのポリ四フッ化エチレン樹
脂10重量部を加えた合剤0.4gを、直径17.5mmの円盤状に
圧縮成形したものを用いた。この正極の理論充填容量は
103mAhであった。この正極,負極を用いて第1図に示し
た扁平形電池を構成し、有機電解質の違いによる特性差
を検討した。
(Example 1) Disc-shaped lithium having a diameter of 17.5 mm and a thickness of 0.5 mm was used as the negative electrode. The theoretical filling amount at this time is 247 mAh. For the positive electrode, 0.4 g of a mixture of 100 parts by weight of manganese dioxide, 10 parts by weight of acetylene black as a conductive agent, and 10 parts by weight of polytetrafluoroethylene resin as a binder was compressed into a disk shape with a diameter of 17.5 mm. A molded product was used. The theoretical filling capacity of this positive electrode is
It was 103 mAh. The positive and negative electrodes were used to construct the flat battery shown in FIG. 1, and the difference in characteristics due to the difference in organic electrolyte was examined.

第1図において、1は電池ケース、2は封口板、3は負
極、4はセパレータ、5は正極、6はガスケットであ
る。
In FIG. 1, 1 is a battery case, 2 is a sealing plate, 3 is a negative electrode, 4 is a separator, 5 is a positive electrode, and 6 is a gasket.

有機電解質の溶質として、全て濃度1モル/lのLiClO4
用いた。有機電解質の溶媒として、本発明の2−メチル
テトラヒドロフラン−4−オンを用いた電池をA,従来の
PC,2−Me−THF,2−メチルテトラヒドロフラン−3−オ
ンを用いた電池を各々B,C,Dとする。また従来の混合溶
媒の例として、溶媒に体積比で1:1の割合でPCとTHFとを
混合した溶媒を用いた電池をEとする。また、これらの
電池の有機電解質の量は、全て200μlとした。
LiClO 4 having a concentration of 1 mol / l was used as the solute of the organic electrolyte. A battery using the 2-methyltetrahydrofuran-4-one of the present invention as a solvent for the organic electrolyte is
B, C, and D are batteries using PC, 2-Me-THF, 2-methyltetrahydrofuran-3-one, respectively. As an example of a conventional mixed solvent, a battery using a solvent in which PC and THF are mixed at a volume ratio of 1: 1 to the solvent is designated as E. The amount of organic electrolyte in each of these batteries was 200 μl.

これらの電池を100Ωの負荷で放電させた時の放電特性
を第2図に示す。従来のPCを用いた電池Bでは、放電初
期の電圧は大であるが、利用率が低い。また2−Me−TH
Fなどの低粘度溶媒を用いたCの電池では、利用率は向
上しているが、電圧が低いことがわかる。また、従来の
高誘電率の溶媒と低粘度の溶媒を組み合せたPCとTHFの
混合溶媒を用いた電池Eでは、B,Cに比べ電池特性は向
上している。
Fig. 2 shows the discharge characteristics when these batteries were discharged under a load of 100Ω. In the battery B using the conventional PC, the voltage at the initial stage of discharge is large, but the utilization rate is low. 2-Me-TH
In the battery of C using a low-viscosity solvent such as F, the utilization factor is improved, but the voltage is low. Further, in the battery E using the conventional mixed solvent of PC and THF in which the solvent having a high dielectric constant and the solvent having a low viscosity are combined, the battery characteristics are improved as compared with B and C.

一方、THFにカルボニル基を導入したテトラヒドロフラ
ン−3−オンを用いたDでは、さらに電池特性が向上し
ている。そして本発明の2−メチルテトラヒドロフラン
−4−オンを用いたAでは、カルボニル基とメチル基と
の相互作用により、より高率放電特性が向上している。
On the other hand, in D using tetrahydrofuran-3-one in which a carbonyl group is introduced into THF, the battery characteristics are further improved. And in A using 2-methyltetrahydrofuran-4-one of the present invention, the high rate discharge characteristics are further improved by the interaction between the carbonyl group and the methyl group.

(実施例2) 本実施例では、二次電池に応用した場合について示す。(Example 2) In this example, a case of application to a secondary battery will be described.

実施例1と同様に電池を構成した。ただし、正極の活物
質には、二酸化マンガンの代わりに、二硫化チタンを用
い、合剤配合量、合剤充填量は実施例1と同様である。
したがって正極の理論充填量は80mAhであった。有機電
解質の溶質は、LiClO4の代わりに1モル/lのLiAsF6を用
いた。本発明の2−メチルテトラヒドロフラン−4−オ
ンを溶媒に用いた電池をF,PC,2−Me−THF,テトラヒドロ
フラン−3−オン,体積比で1:1の割合でPCとTHFとを混
合した溶媒を用いた電池を各々G,H,I,Jとする。
A battery was constructed in the same manner as in Example 1. However, titanium disulfide was used as the active material of the positive electrode instead of manganese dioxide, and the mixture mixture amount and mixture mixture amount were the same as in Example 1.
Therefore, the theoretical filling amount of the positive electrode was 80 mAh. As the solute of the organic electrolyte, 1 mol / l LiAsF 6 was used instead of LiClO 4 . The battery using 2-methyltetrahydrofuran-4-one of the present invention as a solvent was F, PC, 2-Me-THF, tetrahydrofuran-3-one, and PC and THF were mixed at a volume ratio of 1: 1. Batteries using a solvent are designated as G, H, I, and J, respectively.

これらの電池を10mAの定電流で充放電をくり返した。放
電は電池電圧が1.2Vになる時点、充電は2.8Vになる時点
でそれぞれ止めるようにした。
These batteries were repeatedly charged and discharged at a constant current of 10 mA. Discharging was stopped when the battery voltage reached 1.2V and charging was stopped at 2.8V.

第3図には、第3サイクルでの放電曲線を示す。これよ
り本発明の溶媒を用いた電池は、従来の溶媒を用いたも
のに比べ、電圧,利用率ともに向上していることがわか
る。
FIG. 3 shows the discharge curve in the third cycle. From this, it is understood that the battery using the solvent of the present invention has improved voltage and utilization rate as compared with the battery using the conventional solvent.

実施例1,2には、本発明の2−メチルテトラヒドロフラ
ン−4−オンを単独溶媒として用いた場合の結果を示し
た。この2−メチルテトラヒドロフラン−4−オンは、
カルボニル基を持つため2−Me−THFに比べ粘度が大と
なる。このため本発明の2−メチルテトラヒドロフラン
−4−オンと低粘度溶媒であるジメトキシエタンやTHF,
2−Me−THFなどの混合溶媒を用いることにより、さらに
高率放電特性を向上させることが可能である。
Examples 1 and 2 show the results when 2-methyltetrahydrofuran-4-one of the present invention was used as the sole solvent. This 2-methyltetrahydrofuran-4-one is
Since it has a carbonyl group, it has a higher viscosity than 2-Me-THF. Therefore, 2-methyltetrahydrofuran-4-one of the present invention and dimethoxyethane or THF, which is a low-viscosity solvent,
By using a mixed solvent such as 2-Me-THF, it is possible to further improve the high rate discharge characteristics.

(実施例3) 実施例2と同様の電池を構成した。有機電解質の溶質に
は、1モル/lのLiAsF6を用いた。有機電解質の溶媒に、
2−メチルテトラヒドロフラン−4−オンを用いた電池
をF、2−メチルテトラヒドロフラン−4−オンとの体
積比で1:1の混合溶媒として、それぞれジメキシエタン,
THF,2−Me−THFとの混合溶媒を用いた電池をK,L,Mとす
る。実施例2と同様の充放電試験を行った。第4図に
は、第3サイクルでの各電池の放電曲線を示す。本発明
の2−メチルテトラヒドロフラン−4−オンの混合溶媒
を用いた場合には、さらに良好な放電特性が得られた。
その中で2−Me−THFが最も良く、次にジメトキシエタ
ン,THFの順であった。2−Me−THF,ジメトキシエタン,T
HFはともに約0.46cpの粘度を持ち、粘度の点からは差は
ない。しかし2−メチルテトラヒドロフラン−4−オン
との混合溶媒として用いた時、その電池特性には、第4
図のように差が出た。
Example 3 A battery similar to that in Example 2 was constructed. As the solute of the organic electrolyte, 1 mol / l LiAsF 6 was used. For organic electrolyte solvent,
A battery using 2-methyltetrahydrofuran-4-one was used as a mixed solvent having a volume ratio of 1: 1 with F and 2-methyltetrahydrofuran-4-one to prepare dimethyethane,
A battery using a mixed solvent of THF, 2-Me-THF is designated as K, L, M. The same charge / discharge test as in Example 2 was performed. FIG. 4 shows the discharge curve of each battery in the third cycle. When the mixed solvent of 2-methyltetrahydrofuran-4-one of the present invention was used, better discharge characteristics were obtained.
Among them, 2-Me-THF was the best, followed by dimethoxyethane and THF. 2-Me-THF, dimethoxyethane, T
Both HF have a viscosity of about 0.46 cp, and there is no difference in terms of viscosity. However, when used as a mixed solvent with 2-methyltetrahydrofuran-4-one, the battery characteristics show that
There was a difference as shown in the figure.

発明の効果 以上のように、本発明により高率放電特性に優れた電池
が得られる。
As described above, according to the present invention, a battery having excellent high rate discharge characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例に用いた電池の縦断面図、第2図は各種
溶媒を用いた一次電池の放電曲線を示す図、第3図は二
次電池の第3サイクル目の放電曲線を示す図、第4図
は、各種混合溶媒を用いた二次電池の第3サイクル目の
放電曲線を示す図である。 3……負極、4……セパレータ、5……正極。
FIG. 1 is a longitudinal sectional view of a battery used in Examples, FIG. 2 is a view showing discharge curves of primary batteries using various solvents, and FIG. 3 is a discharge curve of a secondary battery at the third cycle. FIG. 4 and FIG. 4 are diagrams showing discharge curves at the third cycle of a secondary battery using various mixed solvents. 3 ... Negative electrode, 4 ... Separator, 5 ... Positive electrode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】負極と、正極と、有機電解質とからなり、
有機電解質の溶媒に、少なくとも2−メチルテトラヒド
ロフラン−4−オンを用いたことを特徴とする有機電解
質電池。
1. A negative electrode, a positive electrode, and an organic electrolyte,
An organic electrolyte battery, wherein at least 2-methyltetrahydrofuran-4-one is used as a solvent for the organic electrolyte.
JP63153260A 1988-06-21 1988-06-21 Organic electrolyte battery Expired - Lifetime JPH0766818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63153260A JPH0766818B2 (en) 1988-06-21 1988-06-21 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63153260A JPH0766818B2 (en) 1988-06-21 1988-06-21 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH01320766A JPH01320766A (en) 1989-12-26
JPH0766818B2 true JPH0766818B2 (en) 1995-07-19

Family

ID=15558567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63153260A Expired - Lifetime JPH0766818B2 (en) 1988-06-21 1988-06-21 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPH0766818B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367800B (en) * 2012-04-09 2015-12-02 张家港市国泰华荣化工新材料有限公司 A kind of nonaqueous electrolytic solution of lamellar lithium manganese battery

Also Published As

Publication number Publication date
JPH01320766A (en) 1989-12-26

Similar Documents

Publication Publication Date Title
US5013620A (en) Nonaqueous electrolyte secondary cell
JPH01134873A (en) Organic electrolyte secondary battery
JPH0770326B2 (en) Organic electrolyte battery
JP2797693B2 (en) Non-aqueous electrolyte secondary battery
JPH0766818B2 (en) Organic electrolyte battery
JPH0766820B2 (en) Organic electrolyte battery
JPH03192663A (en) Nonaqueous electrolyte secondary battery
JPH07134986A (en) Nonaqueous electrolyte battery
JPH0763015B2 (en) Organic electrolyte battery
JP3348175B2 (en) Organic electrolyte secondary battery
JPH0763023B2 (en) Organic electrolyte battery
JPH0766819B2 (en) Organic electrolyte battery
JP3273569B2 (en) Lithium battery
JPH0760704B2 (en) Organic electrolyte battery
JP2611265B2 (en) Non-aqueous electrolyte secondary battery
JP2584246B2 (en) Non-aqueous secondary battery
JPH0760701B2 (en) Organic electrolyte battery
JPH01109662A (en) Nonaqueous electrolytic secondary cell
JPH0355770A (en) Lithium secondary battery
JPH01132067A (en) Organic electrolyte secondary cell
JPH084015B2 (en) Organic electrolyte secondary battery
JP2898056B2 (en) Rechargeable battery
JPS647461B2 (en)
JPH0424828B2 (en)
JPH047071B2 (en)