JPH0765842A - Battery - Google Patents
BatteryInfo
- Publication number
- JPH0765842A JPH0765842A JP5212595A JP21259593A JPH0765842A JP H0765842 A JPH0765842 A JP H0765842A JP 5212595 A JP5212595 A JP 5212595A JP 21259593 A JP21259593 A JP 21259593A JP H0765842 A JPH0765842 A JP H0765842A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- glycol
- electrolyte
- water
- electrolytic solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Primary Cells (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、無公害で且つ低価格化
を実現できるバッテリーに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery which is pollution-free and can be reduced in price.
【0002】[0002]
【従来の技術】従来より、バッテリーしては、マンガン
乾電池,水銀電池等の一次電池や、鉛蓄電池,アルカリ
蓄電池,空気亜鉛蓄電池等の二次電池が知られている。
これらのバッテリーは、いずれも、放電時には正極側で
還元反応が起こり、負極側で酸化反応が起こる。2. Description of the Related Art Conventionally, as batteries, primary batteries such as manganese dry batteries and mercury batteries, and secondary batteries such as lead storage batteries, alkaline storage batteries and zinc-air storage batteries have been known.
In each of these batteries, a reduction reaction occurs on the positive electrode side and an oxidation reaction occurs on the negative electrode side during discharge.
【0003】[0003]
【発明が解決しようとする課題】上記従来のバッテリー
は、いずれも、化学反応(酸化・還元反応)を利用して
電力を発生する構成であるため、バッテリーの組成物に
人体に有害で危険な物質(例えばカドミウム,水銀,硫
酸,強塩基等)を多量に含み、使用済みバッテリーの廃
棄物処理が非常に面倒であると共に、廃棄物が環境の汚
染源となって、公害問題が発生したり、地球環境を破壊
する原因にもなり、社会的に重大な問題となっている。
しかも、組成物に材料コストが高いものを使用するた
め、製品の価格が一般に高価であり、低価格化の要求も
根強い。All of the above conventional batteries are configured to generate electric power by utilizing a chemical reaction (oxidation / reduction reaction). Therefore, the composition of the battery is harmful and harmful to human body. Containing a large amount of substances (such as cadmium, mercury, sulfuric acid, strong base, etc.), it is very troublesome to dispose of used battery waste, and the waste becomes a pollution source of the environment, causing pollution problems. It also causes the destruction of the global environment and is a serious social problem.
Moreover, since a composition having a high material cost is used, the price of the product is generally high, and there is a strong demand for lowering the price.
【0004】本発明はこの様な事情を考慮してなされた
もので、その目的は、人体に無害で安全な組成物でバッ
テリーを構成できて、地球環境保護・無公害という近年
の社会的要求に応えることができると共に、廃棄物処理
の容易化や低価格化をも実現できるバッテリーを提供す
ることにある。The present invention has been made in view of the above circumstances, and its purpose is to construct a battery with a composition that is harmless to the human body and is safe, and to meet the recent social demands of environmental protection and pollution-free. It is to provide a battery that can meet the above requirements, and can also facilitate waste treatment and reduce costs.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明のバッテリーは、グラファイト又はグラファ
イト混合物からなる正極と、金属により形成された負極
と、これら正負両極を浸す電解液とから成り、前記電解
液は、グリコール系有機物に水を混合した溶液を主成分
とするものである。この場合、前記電解液に、イオン導
電性を与える塩類を添加することが好ましい。In order to achieve the above object, the battery of the present invention comprises a positive electrode made of graphite or a graphite mixture, a negative electrode made of metal, and an electrolytic solution in which both positive and negative electrodes are immersed. The main component of the electrolytic solution is a solution in which water is mixed with a glycol organic material. In this case, it is preferable to add salts that give ionic conductivity to the electrolytic solution.
【0006】[0006]
【作用】本発明のバッテリーは、グリコール系有機物−
グラファイト系の発電素子(特願平4−201281
号,特願平4−278623号,特願平5−14326
8号等)を開発する過程で生まれたものである。先に特
許出願した発電素子は、金属(負極)とグラファイト
(正極)とをグリコール系有機物に浸した構成となって
いる。この発電素子は、100℃前後の熱エネルギーを
電気エネルギーに変換するのに適しているが、常温でも
起電力と電流を発生することから、組成を改良すること
によってバッテリー(一次電池又は二次電池)としても
使用できるものと考えられる。The battery of the present invention is a glycol-based organic substance-
Graphite power generation element (Japanese Patent Application No. 4-201281)
Japanese Patent Application No. 4-278623, Japanese Patent Application No. 5-14326
It was born in the process of developing No. 8). The power generation element previously applied for a patent has a structure in which a metal (negative electrode) and graphite (positive electrode) are immersed in a glycol-based organic substance. This power generation element is suitable for converting thermal energy around 100 ° C. into electric energy, but since it generates electromotive force and current even at room temperature, the composition of the battery (primary battery or secondary battery) is improved. It is thought that it can also be used as.
【0007】従来の化学電池においては、正極側で還元
反応が起こり、負極側で酸化反応が起こる。これに対
し、上記発電素子(バッテリー)によれば、負極側では
電極が酸化され、金属イオンとなってグリコール系有機
物中に溶出するが、正極側ではグラファイトからグリコ
ール系有機物への電子移動が起こるのみである(この原
理については特願平4−201281号の明細書に詳述
されている)。正極のグラファイトには、この電子移動
に伴い正孔が形成されるが、負極側で発生した電子が外
部回路を流れて正極に到達して正孔を埋めるので、正極
のグラファイトは、見掛上、何の変化も見られない。こ
の点が従来の化学電池と大きく異なっている。以上のこ
とから、グリコール系有機物は、単なる電解質のみなら
ず、電子の受容体として重要な役割を演じているものと
推定される。In a conventional chemical battery, a reduction reaction occurs on the positive electrode side and an oxidation reaction occurs on the negative electrode side. On the other hand, according to the power generating element (battery), the electrode is oxidized on the negative electrode side and becomes metal ions to be eluted into the glycol-based organic substance, but electron transfer from graphite to the glycol-based organic substance occurs on the positive electrode side. (This principle is described in detail in the specification of Japanese Patent Application No. 4-201281). Holes are formed in graphite of the positive electrode due to this electron transfer, but since electrons generated on the negative electrode side flow through the external circuit to reach the positive electrode and fill the holes, the graphite of the positive electrode is apparently , I see no change. This point is greatly different from the conventional chemical battery. From the above, it is presumed that the glycol-based organic matter plays an important role not only as an electrolyte but also as an electron acceptor.
【0008】本発明者は、上記発電素子について実験を
重ねるうちに、空気中の湿度によって発生電力が変化
し、湿度が高いほど、発生電力が大きくなる傾向がある
ことを発見した。この性質を利用して、これまでに知ら
れていない新規の充電可能なバッテリーを開発したもの
である。The inventors of the present invention have conducted experiments on the above-mentioned power generating element and have found that the generated power changes depending on the humidity in the air, and the generated power tends to increase as the humidity increases. Utilizing this property, we have developed a new rechargeable battery that has not been known so far.
【0009】本発明のバッテリーは、グリコール系有機
物に水を混合した溶液を主成分とする電解液中に、グラ
ファイト又はグラファイト混合物からなる正極と、金属
により形成された負極とを浸した構成となっている。The battery of the present invention has a structure in which a positive electrode made of graphite or a graphite mixture and a negative electrode made of metal are immersed in an electrolytic solution whose main component is a solution of a glycol organic material mixed with water. ing.
【0010】このバッテリーにおける電力発生機構につ
いては、現在も研究継続中であるが、後述する実験結果
によれば、水が上述した電極反応を促進する役割を果た
し、十分に大きな電力を発生させることができる。更
に、本発明のバッテリーは電解液中のグリコール系有機
物が充電を可能にする役割を果たし、二次電池として使
用可能である。この場合、後述する実施例で詳細に説明
するが、電解液に、イオン導電性を与える塩類を加えれ
ば、上述した電極反応をさらに促進することができる。Regarding the power generation mechanism in this battery, research is still ongoing, but according to the experimental results described later, water plays a role of promoting the above-mentioned electrode reaction and generates sufficiently large power. You can Furthermore, the battery of the present invention can be used as a secondary battery because the glycol-based organic substance in the electrolytic solution plays a role of enabling charging. In this case, as will be described in detail in Examples to be described later, the electrode reaction described above can be further promoted by adding a salt that imparts ionic conductivity to the electrolytic solution.
【0011】[0011]
【実施例】以下、本発明の一実施例を図面に基づいて説
明する。貯溜器11内に貯溜された電解液12は、グリ
コール系有機物であるトリエチレングリコール(三井東
圧化学株式会社製#150)に水を混合した溶液を主成
分とし、この溶液に、イオン導電性を与える塩類とし
て、例えば塩化リチウム(ナカライテスク試薬特級)が
3〜15重量%程度の割合で添加されている。この電解
液12中の水の混合割合は、好ましくは40%〜80%
である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. The electrolyte solution 12 stored in the reservoir 11 contains a solution of triethylene glycol (# 150 manufactured by Mitsui Toatsu Chemical Co., Inc.), which is a glycol-based organic material, mixed with water as a main component, and this solution has ionic conductivity. For example, lithium chloride (Nacalai Tesque reagent special grade) is added at a rate of about 3 to 15 wt. The mixing ratio of water in the electrolytic solution 12 is preferably 40% to 80%.
Is.
【0012】この電解液12中には、グラファイト板に
より形成された1枚の正極13と、この正極13の両側
面にナイロンネット製のスペーサ14を介して重ね合わ
された2枚の亜鉛板製の負極15とが浸されている。各
負極15の表面は、電解液12に触れる表面積を拡大す
るために、全面に無数の引っ掻き傷(凹凸)が付けられ
ている。In the electrolytic solution 12, one positive electrode 13 formed of a graphite plate and two zinc plates laminated on both side surfaces of the positive electrode 13 via spacers 14 made of nylon net are used. The negative electrode 15 is immersed. The surface of each negative electrode 15 has numerous scratches (irregularities) on its entire surface in order to increase the surface area in contact with the electrolytic solution 12.
【0013】以上のように構成したバッテリーの性能試
験結果を図2に示している。この試験に用いたバッテリ
ーは、正極13と負極15の寸法が共に幅5cm,長さ
11.5cm,厚み0.2mmであり、トリエチレング
リコールに対する塩化リチウムの添加割合は、重量比で
93:7である。このトリエチレングリコール+塩化リ
チウムの混合溶液(570g)を貯溜器11に入れ、こ
の溶液に混合する蒸留水の量を0%,8%,20%,5
0%,75%に徐々に増加していったときの電流を測定
した結果が図2に示されている。この電流測定時の室温
は25℃前後であり、発生する電圧は約1.2V〜1.
3Vであった。図2から明らかなように、電解液12中
の水の混合割合が増加するに従って、電流も増加するの
で、電解液12中の水が電極反応を促進する役割を果た
すものと推定される。この試験結果では、電解液12中
の水の混合割合が50%のときに約100mAの電流が
得られた。この試験では、合計3枚の電極13,15を
電解液12に浸しているが、この電極枚数(又は表面
積)を増加させれば、それに応じて電流も増加させるこ
とができる。FIG. 2 shows the performance test results of the battery constructed as described above. In the battery used in this test, the positive electrode 13 and the negative electrode 15 both had a width of 5 cm, a length of 11.5 cm, and a thickness of 0.2 mm, and the addition ratio of lithium chloride to triethylene glycol was 93: 7 by weight. Is. This triethylene glycol + lithium chloride mixed solution (570 g) was placed in the reservoir 11, and the amount of distilled water mixed with this solution was 0%, 8%, 20%, 5%.
The results of measuring the current when gradually increasing to 0% and 75% are shown in FIG. The room temperature at the time of measuring the current was around 25 ° C., and the generated voltage was about 1.2V to 1.
It was 3V. As is clear from FIG. 2, as the mixing ratio of water in the electrolytic solution 12 increases, the current also increases, and it is presumed that the water in the electrolytic solution 12 plays a role of promoting the electrode reaction. In this test result, a current of about 100 mA was obtained when the mixing ratio of water in the electrolytic solution 12 was 50%. In this test, a total of three electrodes 13 and 15 are immersed in the electrolytic solution 12, but if the number of electrodes (or surface area) is increased, the current can be increased accordingly.
【0014】このバッテリーは充電可能であり、二次電
池として機能する。例えば、水の混合割合が50%のも
のを充電電圧5V,1.4Aで10分間充電すると、充
電後のバッテリーの電圧が2.5Vに上昇し、電流も2
75mAに上昇した。また、水の混合割合が75%のも
のを充電電圧5V,1.6Aで10分間充電すると、充
電後のバッテリーの電圧が2.4Vに上昇し、電流も2
60mAに上昇した。いずれの場合でも、充電により、
バッテリーの電圧が充電前の約2倍となり、電流が充電
前の約2〜3倍となることが確認されている。This battery is rechargeable and functions as a secondary battery. For example, if a battery with a water mixing ratio of 50% is charged at a charging voltage of 5 V and 1.4 A for 10 minutes, the voltage of the battery after charging rises to 2.5 V and the current is 2 as well.
It rose to 75mA. In addition, when a mixture of water with a mixing ratio of 75% is charged at a charging voltage of 5V and 1.6A for 10 minutes, the battery voltage after charging rises to 2.4V and the current is 2
It increased to 60mA. In any case, by charging,
It has been confirmed that the battery voltage is about twice as high as before charging and the current is about 2-3 times as high as before charging.
【0015】ところで、負極15を構成する亜鉛は、イ
オン化傾向が大きいため、水のみの場合(水100%)
でも30mA程度の電流を発生する。また、この水に塩
化リチウム等の塩類を5%〜15%加えれば、90mA
程度の電流を発生する。しかし、これらのものは、溶液
中にグリコール系有機物が含まれていないため、充電は
不可能であることが実験で確認されている。従って、グ
リコール系有機物が充電を可能にする役割を果たすもの
と推定される。By the way, since zinc forming the negative electrode 15 has a large ionization tendency, it is only water (100% of water).
However, a current of about 30 mA is generated. If 5% to 15% of salts such as lithium chloride is added to this water, 90 mA
Generates a current of some degree. However, it has been experimentally confirmed that these products cannot be charged because the glycol-based organic matter is not contained in the solution. Therefore, it is presumed that the glycol-based organic substance plays a role of enabling charging.
【0016】この場合、グリコール系有機物は、トリエ
チレングリコールに限定されず、ポリエチレングリコー
ル,プロピレングリコール,トリメチレングリコール等
の他のグリコール系有機物を用いても良い。In this case, the glycol organic substance is not limited to triethylene glycol, and other glycol organic substances such as polyethylene glycol, propylene glycol and trimethylene glycol may be used.
【0017】また、本実施例のバッテリーは、電解液1
2に外部から熱を加えると、電流が増加する特性があ
り、電解液12の温度が90℃程度になると、電流が常
温(25℃)のときの2倍以上に増加することが実験で
確認されている。このことから、本実施例のバッテリー
は、熱エネルギーを電気エネルギーに変換する熱電変換
機能も備えているものと推定される。この熱電変効率が
高い温度は90℃〜100℃程度であることが確認され
ている。In addition, the battery of this embodiment has the electrolytic solution 1
2 has the characteristic that the current increases when heat is applied from the outside, and when the temperature of the electrolyte solution 12 reaches about 90 ° C., the current increases more than twice as much as at normal temperature (25 ° C.). Has been done. From this, it is presumed that the battery of this example also has a thermoelectric conversion function for converting heat energy into electric energy. It has been confirmed that the temperature at which the thermoelectric conversion efficiency is high is about 90 ° C to 100 ° C.
【0018】尚、本実施例では、電解液12にイオン導
電性を与える塩類として、塩化リチウムを加えているの
で、電極反応を促進して電流を効率良く増加させること
ができる。但し、イオン導電性を与える塩類は、塩化リ
チウムに限られず、NaCl等の他の金属ハロゲン化物
や、無機酸の金属塩(Na2 SO4 、K3 PO4 、Na
NO3 )や過塩素酸金属塩(LiClO4 、NaClO
4 )、或はシュウ酸塩、ギ酸塩、カルボン酸塩等の有機
酸塩類であっても良い。この場合、溶解度の大きな塩ほ
ど有利である。In this embodiment, since lithium chloride is added as a salt that gives ionic conductivity to the electrolytic solution 12, the electrode reaction can be promoted and the current can be increased efficiently. However, the salts that give ionic conductivity are not limited to lithium chloride, and other metal halides such as NaCl and metal salts of inorganic acids (Na2 SO4, K3 PO4, Na).
NO3) and metal salts of perchloric acid (LiClO4, NaClO)
4) or organic acid salts such as oxalate, formate, and carboxylate. In this case, a salt having a higher solubility is more advantageous.
【0019】また、本実施例では、負極15を亜鉛によ
り形成したが、これに限定されず、負極15をイオン化
傾向が銅と同等かそれよりも大きい金属(例えばアルミ
等)で形成したり、鉄で形成するようにしても良い。更
に、電解液12に二酸化マンガン等の賦活剤を添加する
ようにしても良い。この賦活剤は、電極反応を促進して
電流を増加させる効果を期待できる。In this embodiment, the negative electrode 15 is made of zinc, but the present invention is not limited to this. The negative electrode 15 may be made of a metal (for example, aluminum) whose ionization tendency is equal to or larger than that of copper, It may be made of iron. Further, an activator such as manganese dioxide may be added to the electrolytic solution 12. This activator can be expected to have the effect of promoting the electrode reaction and increasing the current.
【0020】また、本実施例では、正極13をグラファ
イト板により形成したが、例えば二酸化マンガン粉末等
の他の成分が混入したグラファイト混合物を板状に成形
して正極を形成するようにしても良い。また、本実施例
では、正極13と負極15との間隔を規制するスペーサ
14としてナイロンネットを用いたが、クラフト紙等の
他の絶縁材料を用いるようにしても良い。In the present embodiment, the positive electrode 13 is formed of a graphite plate, but a graphite mixture containing other components such as manganese dioxide powder may be molded into a plate shape to form the positive electrode. . Further, in the present embodiment, the nylon net is used as the spacer 14 that regulates the distance between the positive electrode 13 and the negative electrode 15, but other insulating material such as kraft paper may be used.
【0021】その他、本発明は、貯溜器11の形状や電
極13,15の形状を適宜変更しても良い等、種々変更
して実施できることは言うまでもない。In addition, it goes without saying that the present invention can be implemented by variously changing the shape of the reservoir 11 and the shapes of the electrodes 13 and 15 as appropriate.
【0022】[0022]
【発明の効果】以上の説明から明らかなように、本発明
のバッテリーは、これまでに知られていない新規の充電
可能なバッテリーであり、鉛蓄電池のように重くはな
い。しかも、本発明のバッテリーは、組成物に人体に有
害な物質を含んでいないので、人体に安全で無公害であ
り、使用済みバッテリーの廃棄物が環境の汚染源となら
ず、地球環境保護という近年の社会的要求に応えること
ができると共に、使用済みバッテリーの廃棄物処理も容
易である。更に、本発明のバッテリーは、組成物の原材
料コストが安価であり、製品価格も低廉化できる。As is apparent from the above description, the battery of the present invention is a novel rechargeable battery which has not been known so far, and is not as heavy as a lead acid battery. Moreover, since the composition of the battery of the present invention does not contain a substance harmful to the human body, it is safe and harmless to the human body, and the waste of used batteries does not become a source of environmental pollution. It is possible to meet the social demands of, and it is easy to dispose of used batteries as waste. Furthermore, the battery of the present invention has a low raw material cost of the composition, and the product price can be reduced.
【図1】本発明の一実施例を示すバッテリーの縦断面図FIG. 1 is a vertical sectional view of a battery showing an embodiment of the present invention.
【図2】電解液中の水の混合割合と電流との関係を示す
図FIG. 2 is a diagram showing a relationship between a mixing ratio of water in an electrolytic solution and an electric current.
【符号の説明】 11…貯溜器、12…電解液、13…正極(グラファイ
ト)、14…スペーサ(ナイロンネット)、15…負極
(亜鉛)。[Explanation of Codes] 11 ... Reservoir, 12 ... Electrolyte, 13 ... Positive electrode (graphite), 14 ... Spacer (nylon net), 15 ... Negative electrode (zinc).
Claims (2)
らなる正極と、金属により形成された負極と、これら正
負両極を浸す電解液とから成り、 前記電解液は、グリコール系有機物に水を混合した溶液
を主成分とすることを特徴とするバッテリー。1. A positive electrode made of graphite or a graphite mixture, a negative electrode made of metal, and an electrolytic solution for immersing the positive and negative electrodes. The electrolytic solution is mainly composed of a solution of a glycol-based organic material mixed with water. A battery characterized by the following.
類を添加したことを特徴とする請求項1記載のバッテリ
ー。2. The battery according to claim 1, wherein a salt that imparts ionic conductivity is added to the electrolytic solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5212595A JPH0765842A (en) | 1993-08-27 | 1993-08-27 | Battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5212595A JPH0765842A (en) | 1993-08-27 | 1993-08-27 | Battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0765842A true JPH0765842A (en) | 1995-03-10 |
Family
ID=16625302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5212595A Pending JPH0765842A (en) | 1993-08-27 | 1993-08-27 | Battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0765842A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016043619A1 (en) * | 2014-09-15 | 2016-03-24 | Общество с ограниченной ответственностью "Литион" | Electrolyte for secondary battery, and battery having metal anode |
KR20180124994A (en) * | 2014-10-06 | 2018-11-21 | 이오에스 에너지 스토리지 엘엘씨 | Electrolytes for rechargeable electrochemical cells |
US11942606B2 (en) | 2016-03-29 | 2024-03-26 | EOS Energy Technology Holdings, LLC | Electrolyte for rechargeable electrochemical cell |
-
1993
- 1993-08-27 JP JP5212595A patent/JPH0765842A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016043619A1 (en) * | 2014-09-15 | 2016-03-24 | Общество с ограниченной ответственностью "Литион" | Electrolyte for secondary battery, and battery having metal anode |
KR20180124994A (en) * | 2014-10-06 | 2018-11-21 | 이오에스 에너지 스토리지 엘엘씨 | Electrolytes for rechargeable electrochemical cells |
CN109155444A (en) * | 2014-10-06 | 2019-01-04 | Eos能源储存有限责任公司 | Electrolyte for rechargeable electrochemical cells |
CN109155444B (en) * | 2014-10-06 | 2022-03-25 | Eos能源储存有限责任公司 | Electrolyte for rechargeable electrochemical cells |
CN114566723A (en) * | 2014-10-06 | 2022-05-31 | Eos能源储存有限责任公司 | Electrolyte for rechargeable electrochemical cells |
US11942606B2 (en) | 2016-03-29 | 2024-03-26 | EOS Energy Technology Holdings, LLC | Electrolyte for rechargeable electrochemical cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11219722A (en) | Lithium secondary battery | |
US4112205A (en) | Battery electrolyte corrosion inhibitor | |
JPH0368507B2 (en) | ||
ATE188808T1 (en) | LITHIUM BATTERY WITH A POSITIVE LI-VA PENTOXIDE ELECTRODE | |
JPH0460304B2 (en) | ||
JPH0765842A (en) | Battery | |
JPS6151382B2 (en) | ||
KR20180043745A (en) | Metal air fuel cell without water supply | |
JPS5963668A (en) | Thermal activating battery | |
US3849199A (en) | Electrochemical generator with a zinc electrode | |
JPH06260685A (en) | Generating element and secondary cell | |
JPS5532391A (en) | Sealed lead storage battery | |
US3532554A (en) | Cell with peroxymonosulfate depolarizer | |
JP2686072B2 (en) | Non-aqueous electrolyte battery | |
JPS59134567A (en) | Organic electrolytic battery | |
US3565696A (en) | Acid additive for rechargeable batteries employing an organic depolarizer | |
JPH06236771A (en) | Secondary battery | |
US3492168A (en) | Reversible electrolytic cells | |
Powers et al. | Assessment of air cathodes for metal/air batteries | |
JPH113708A (en) | Lithium ion secondary battery positive electrode and lithium ion secondary battery | |
JPS61118974A (en) | Secondary cell chargeable with light | |
JPH07105233B2 (en) | Organic electrolyte battery | |
JPS5819876A (en) | Electrolyte | |
Liang et al. | Metal salt depolarizers in solid state batteries | |
JPH076798A (en) | Electrochemical power generating device |