JPH0765820B2 - 2-propanol / acetone / hydrogen chemical heat pump and dehydrogenation catalyst used therefor - Google Patents

2-propanol / acetone / hydrogen chemical heat pump and dehydrogenation catalyst used therefor

Info

Publication number
JPH0765820B2
JPH0765820B2 JP2063529A JP6352990A JPH0765820B2 JP H0765820 B2 JPH0765820 B2 JP H0765820B2 JP 2063529 A JP2063529 A JP 2063529A JP 6352990 A JP6352990 A JP 6352990A JP H0765820 B2 JPH0765820 B2 JP H0765820B2
Authority
JP
Japan
Prior art keywords
propanol
acetone
catalyst
dehydrogenation
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2063529A
Other languages
Japanese (ja)
Other versions
JPH03263550A (en
Inventor
えり 伊藤
勝 山下
裕司 一戸
倫卓 大瀧
直樹 戸嶋
泰和 斉藤
Original Assignee
泰和 斉藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰和 斉藤 filed Critical 泰和 斉藤
Priority to JP2063529A priority Critical patent/JPH0765820B2/en
Publication of JPH03263550A publication Critical patent/JPH03263550A/en
Publication of JPH0765820B2 publication Critical patent/JPH0765820B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は、2−プロパノール/アセトン・水素の系を利
用したケミカルヒートポンプの改良に関する。
The present invention relates to improvement of a chemical heat pump using a 2-propanol / acetone.hydrogen system.

【従来の技術】[Prior art]

可逆的な化学反応に際して起る発熱および吸熱を利用し
て熱エネルギーを回収し、その利用をはかる手段とし
て、ケミカルヒートポンプが注目を集めている。発明者
らの一人は、さきに、 (第一工程)熱エネルギーを与えて脱水素触媒の存在下
に有機化合物の液相脱水素吸熱反応を行なう。 (第二工程)生成した有機不飽和化合物と水素とを未反
応物から分離する。 (第三工程)有機不飽和化合物と水素とを水素化触媒の
存在下に反応させて発生するエネルギーを回収するとと
もに、反応生成物を第一工程に循環する。 の諸工程から成るケミカルヒートポンプを提案し(特公
平1−25972号)、作動物質となる有機化合物として2
−プロパノールを用い、その脱水素によりアセトンを生
成する系がとくに有利であることを明らかにした。2−
プロパノールは比較的低い加熱温度で脱水素反応が進行
するため、これを用いたケミカルヒートポンプは、地
熱、太陽熱、工場廃熱あるいは廃棄物焼却処理廃熱など
の低品位熱を利用することができる。 2−プロパノール/アセトン・水素の系を利用するケミ
カルヒートポンプは、全体として第1図に示す構成を有
する。すなわち、脱水素反応器(1)において温度TL
加熱源から熱エネルギーQLを供給して2−プロパノール
の液相接触的脱水素を行ない、反応混合物を蒸留塔
(2)およびコンデンサ(3)で2−プロパノールの沸
点(82.4℃)とアセトンの沸点(56.3℃)の差を利用し
て分離し、未反応物を反応器(1)に戻し、生成したア
セトンと水素とを、熱交換器(4)をへて水素化反応器
(5)へ送る。ここでは水素化触媒の存在下に、気相で
アセトンの水素化反応が行なわれ、反応熱によって、熱
エネルギーQHを、加熱源の温度TLより高い温度THで取り
出すことができる。 この系を工業的に実施するポイントは、副反応がな
く、作動物質である2−プロパノールを循環使用できる
こと、蒸留塔で消費する熱を最少限に抑えること、お
よび低温で脱水素反応を速やかに進行させること、で
ある。第3点に関しては、脱水素触媒の性能が重要であ
る。 前掲の発明の実施例においては、2−プロパノール脱水
素触媒として、微粒金属ニッケル、または微粒金属ニッ
ケルの表面に少量の金属白金を沈着させた触媒を使用し
た。より高性能の脱水素触媒を求めて研究の結果、今
回、特定の貴金属を活性炭に担持した触媒が、2−プロ
パノールの脱水素にとくに有効であることを見出した。
A chemical heat pump has been attracting attention as a means for recovering heat energy by utilizing heat generation and heat absorption that occur during a reversible chemical reaction. First, one of the inventors of the present invention gives (first step) heat energy to perform a liquid phase dehydrogenation endothermic reaction of an organic compound in the presence of a dehydrogenation catalyst. (Second step) The produced organic unsaturated compound and hydrogen are separated from unreacted substances. (Third step) The organic unsaturated compound and hydrogen are reacted in the presence of a hydrogenation catalyst to recover the energy generated, and the reaction product is circulated to the first step. We proposed a chemical heat pump consisting of various processes (Japanese Patent Publication No. 1-25972), and used it as an organic compound as a working substance.
-It was revealed that a system using propanol and producing acetone by its dehydrogenation is particularly advantageous. 2-
Since the dehydrogenation reaction of propanol proceeds at a relatively low heating temperature, the chemical heat pump using this can use low-grade heat such as geothermal heat, solar heat, factory waste heat, or waste incineration waste heat. A chemical heat pump that uses a 2-propanol / acetone-hydrogen system has the configuration shown in FIG. 1 as a whole. That is, in the dehydrogenation reactor (1), thermal energy Q L is supplied from a heating source of temperature T L to carry out liquid phase catalytic dehydrogenation of 2-propanol, and the reaction mixture is distilled into a distillation column (2) and a condenser (3). ), Using the difference between the boiling point of 2-propanol (82.4 ° C) and the boiling point of acetone (56.3 ° C), the unreacted substances are returned to the reactor (1), and the generated acetone and hydrogen are heat-exchanged. It is sent to the hydrogenation reactor (5) through the vessel (4). Here, the hydrogenation reaction of acetone is performed in the gas phase in the presence of a hydrogenation catalyst, and the heat energy of reaction Q H can be taken out at a temperature T H higher than the temperature T L of the heating source. The points of industrial implementation of this system are that there is no side reaction, 2-propanol, which is a working substance, can be circulated, that the heat consumed in the distillation column is minimized, and that the dehydrogenation reaction can be carried out quickly at low temperatures. To proceed. Regarding the third point, the performance of the dehydrogenation catalyst is important. In the examples of the invention described above, as the 2-propanol dehydrogenation catalyst, fine metal nickel or a catalyst in which a small amount of metal platinum was deposited on the surface of fine metal nickel was used. As a result of research for a higher performance dehydrogenation catalyst, it was found that a catalyst in which a specific noble metal is supported on activated carbon is particularly effective for dehydrogenation of 2-propanol.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

本発明の目的は、この新知見にもとづき、2−プロパノ
ール/アセトン・水素の系を利用したケミカルヒートポ
ンプの性能を高めること、とくに、従来利用が困難と考
えられていた低い温度(たとえば50〜60℃)の、低品位
の廃熱を利用できるケミカルヒートポンプを提供するこ
とにある。これを可能にする2−プロパノール脱水素触
媒の提供もまた、本発明の目的に含まれる。
Based on this new finding, an object of the present invention is to enhance the performance of a chemical heat pump using a system of 2-propanol / acetone / hydrogen, especially at a low temperature (for example, 50 to 60) which has been considered difficult to use. It is to provide a chemical heat pump capable of utilizing low-grade waste heat of (° C.). Providing a 2-propanol dehydrogenation catalyst that enables this is also included in the object of the present invention.

【課題を解決するための手段】[Means for Solving the Problems]

本発明のケミカルヒートポンプは、2−プロパノール/
アセトン・水素の系を利用したケミカルヒートポンプに
おいて、2−プロパノール脱水素触媒として、Ru,Rhお
よびPtからえらんだ貴金属を活性炭に担持してなる触媒
を使用することを特徴とする。 本発明のケミカルヒートポンプ用の脱水素触媒は、Ru,R
hおよびPtからえらんだ貴金属を、活性炭に対し0.1〜20
重量%担持させてなる触媒である。この触媒の製造は、
既知の技術により行なうことができる。
The chemical heat pump of the present invention comprises 2-propanol /
A chemical heat pump using an acetone-hydrogen system is characterized in that as a 2-propanol dehydrogenation catalyst, a catalyst in which a noble metal selected from Ru, Rh and Pt is supported on activated carbon is used. The dehydrogenation catalyst for the chemical heat pump of the present invention is Ru, R
Precious metals selected from h and Pt are added to activated carbon at 0.1-20
It is a catalyst supported by weight%. The production of this catalyst is
This can be done by known techniques.

【作用】[Action]

ケミカルヒートポンプ用の2−プロパノール脱水素触媒
の性能によって第一に問題になるのは、脱水素活性であ
る。これらをしらべるため、Ru,RhまたはPtを、粉末状
活性炭にいずれも5重量%担持させた触媒と、微粒Ni触
媒について、つぎの実験を行なった。 触媒100mgを反応容器にとり、2−プロパノール100mlを
加えて数分間超音波分散して懸濁状態にしたのち、気相
をN2ガス置換した。油浴で加熱して還流条件下に脱水素
反応を起させ、還流冷却器を通じて出てくるH2ガスの容
積を、ガスビュレットで2時間にわたり追跡した。その
結果は、第2図のグラフに示すとおりである。反応中、
適宜に気相成分および液相成分をガスクロマトグラフで
分析し、生成物がアセトンと水素だけであることを確認
した。測定開始後10〜20分における水素生成速度をもっ
て、初期反応速度とした。82.4℃における反応速度定数
(mmol/h・g)は、それぞれRu(4580),Rh(1780),Pt
(390),微粒Ni(24.4)であった。 どの触媒についても、反応速度は時間の経過とともにゆ
るやかに低下した。活性炭担持Pt触媒については、反応
の進行に伴って生成し蓄積したアセトンがこの反応を阻
害する原因であり、それはつぎのような反応速度式であ
らわされることがわかっている。 V=K/(1+K〔アセトン〕) (ここで、K:反応速度定数、K:アセトン吸着阻害定数) 上記の触媒に対するアセトンの影響をみるため、あらか
じめ2−プロパノールに所定量のアセトンを加えておい
て初期反応速度をしらべたところ、Pt触媒と同様の関係
が、Ru触媒、Rh触媒についても成立することがわかっ
た。第3図のグラフは、これを示す。 Ru、RhおよびPt触媒について、反応速度定数kとアセト
ン吸着阻害定数Kを求め、比較のため用いた微粒金属Ni
およびPt賦活微粒金属Ni触媒の値とともに下に示す。 上記の反応速度定数kは反応速度式から求めたものであ
って、その値は第2図のグラフから求めた値とほぼ一致
している。脱水素活性は、Ptに対してRuで約10倍、Rhで
約4倍あるが、Ptはアセトン阻害効果が低いという特徴
がある。全体として、ケミカルヒートポンプへの適性は
活性炭担持Ru触媒が最も高いという結論を得た。
Dehydrogenation activity is the primary concern with the performance of 2-propanol dehydrogenation catalysts for chemical heat pumps. In order to investigate these, the following experiments were carried out on a catalyst in which Ru, Rh or Pt was supported on powdered activated carbon in an amount of 5% by weight and a fine Ni catalyst. 100 mg of the catalyst was placed in a reaction vessel, 100 ml of 2-propanol was added, and the mixture was ultrasonically dispersed for several minutes to be in a suspended state, and then the gas phase was replaced with N 2 gas. The mixture was heated in an oil bath to cause a dehydrogenation reaction under reflux conditions, and the volume of H 2 gas coming out through a reflux condenser was monitored with a gas buret for 2 hours. The results are shown in the graph of FIG. During the reaction
The gas phase component and the liquid phase component were appropriately analyzed by gas chromatography, and it was confirmed that the products were only acetone and hydrogen. The initial reaction rate was defined as the hydrogen production rate 10 to 20 minutes after the start of measurement. The reaction rate constants (mmol / h ・ g) at 82.4 ℃ are Ru (4580), Rh (1780), and Pt, respectively.
(390) and fine Ni (24.4). For all catalysts, the reaction rate decreased slowly over time. For activated carbon-supported Pt catalysts, it is known that the acetone generated and accumulated with the progress of the reaction inhibits this reaction, which is expressed by the following reaction rate equation. V = K / (1 + K [acetone]) (where K: reaction rate constant, K: acetone adsorption inhibition constant) In order to see the effect of acetone on the above catalyst, a predetermined amount of acetone was added to 2-propanol in advance. By examining the initial reaction rate, it was found that the same relationship as for the Pt catalyst holds for the Ru catalyst and the Rh catalyst. The graph in FIG. 3 shows this. For the Ru, Rh, and Pt catalysts, the reaction rate constant k and the acetone adsorption inhibition constant K were determined, and the fine-grained metal Ni used for comparison was used.
The values are shown below along with the values of Pt-activated fine-grained metal Ni catalyst. The above reaction rate constant k is obtained from the reaction rate equation, and its value is almost the same as the value obtained from the graph of FIG. The dehydrogenation activity of Ru is about 10 times and that of Rh is about 4 times that of Pt. However, Pt is characterized by a low acetone inhibitory effect. Overall, it was concluded that the suitability for chemical heat pumps was highest for the activated carbon-supported Ru catalyst.

【実施例】【Example】

N.E.ケムキャット社製の活性炭担持5重量%Ru触媒〔炭
素粉末(ドライ)標準品〕100mgを反応容器に入れ、2
−プロパノール100ml中に分散させた。反応溶液を沸騰
状態にして脱水素反応を起させ、2時間にわたって生成
するH2ガスの量を測定した。溶液の沸点は、ヘキサンを
添加することによって調節した。反応停止後、液相の生
成物をガスクロマトグラフィーにより分析し、等モルの
アセトンが生成していることを確認した。各温度におけ
る2−プロパノールの脱水素反応速度は、つぎのように
求められた。温度(℃) 反応速度(mmol h1- 50° 69.4 60° 268 70° 964 80° 3,178 上記実施例は本発明の脱水素触媒を2−プロパノール液
中の懸濁させて使用する例であるが、触媒は固定床の形
でも使用できること、また、温度、圧力などの反応条件
を種々変えて2−プロパノールの脱水素反応を実施でき
ることはもちろんである。
NE ChemCat's activated carbon-supported 5 wt% Ru catalyst [carbon powder (dry) standard product] 100 mg was placed in a reaction vessel, and 2
Dispersed in 100 ml of propanol. The reaction solution was brought to a boiling state to cause a dehydrogenation reaction, and the amount of H 2 gas produced was measured for 2 hours. The boiling point of the solution was adjusted by adding hexane. After stopping the reaction, the liquid phase product was analyzed by gas chromatography, and it was confirmed that equimolar acetone was produced. The dehydrogenation reaction rate of 2-propanol at each temperature was obtained as follows. Temperature (° C) Reaction rate (mmol h 1- ) 50 ° 69.4 60 ° 268 70 ° 964 80 ° 3,178 The above example is an example of using the dehydrogenation catalyst of the present invention suspended in a 2-propanol solution. However, it goes without saying that the catalyst can be used in the form of a fixed bed, and the dehydrogenation reaction of 2-propanol can be carried out by variously changing reaction conditions such as temperature and pressure.

【発明の効果】【The invention's effect】

本発明によれば、2−プロパノール/アセトン・水素の
系を利用したケミカルヒートポンプの2−プロパノール
脱水素工程が速やかに進行し、その経済性が高められる
とともに、従来より低温の、たとえば80℃以下の熱源が
利用できるようになる。従って、これまで低品位の熱エ
ネルギーで利用困難とされていた太陽熱、地熱、工場廃
熱、廃棄物焼却処理の廃熱などから熱エネルギーを回収
して、有効に利用することが可能になる。
According to the present invention, the 2-propanol dehydrogenation step of a chemical heat pump that utilizes a system of 2-propanol / acetone-hydrogen rapidly progresses, its economical efficiency is improved, and the temperature is lower than that of the conventional one, for example, 80 ° C or less. The heat source will be available. Therefore, it becomes possible to recover and effectively utilize thermal energy from solar heat, geothermal heat, factory waste heat, waste heat from waste incineration, etc., which have been difficult to use due to low-grade thermal energy.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明のケミカルヒートポンプの構成を示す
フローチャートである。 第2図および第3図は、種々の貴金属触媒の2−プロパ
ノール脱水素反応の活性および反応阻害のデータに関す
るグラフであって、第2図は経過時間と水素ガス発生量
の関係、第3図は反応剤に加えたアセトンの量と2−プ
ロパノール脱水素反応速度との関係をそれぞれ示す。 1…2−プロパノール脱水素反応器 2…蒸留塔 3…コンデンサ 4…熱交換器 5…アセトン水素化反応器 TL…低温側(熱源)温度 TH…高温側(熱回収)温度 QL,QH…熱エネルギー
FIG. 1 is a flow chart showing the configuration of the chemical heat pump of the present invention. 2 and 3 are graphs relating to the activity and reaction inhibition of 2-propanol dehydrogenation reaction of various noble metal catalysts, and FIG. 2 shows the relationship between elapsed time and hydrogen gas generation amount, and FIG. Shows the relationship between the amount of acetone added to the reactant and the 2-propanol dehydrogenation reaction rate, respectively. 1 ... 2-propanol dehydrogenation reactor 2 ... distillation column 3 ... condenser 4 ... heat exchanger 5 ... acetone hydrogenation reactor T L ... low temperature side (heat source) temperature T H ... high temperature side (heat recovery) Temperature Q L, Q H … thermal energy

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大瀧 倫卓 東京都文京区本郷7丁目3番1号 東京大 学工学部工業化学科内 (72)発明者 戸嶋 直樹 東京都文京区本郷7丁目3番1号 東京大 学工学部工業化学科内 (72)発明者 斉藤 泰和 東京都文京区本郷7丁目3番1号 東京大 学工学部工業化学科内 (56)参考文献 特開 昭58−146446(JP,A) 特開 昭60−60902(JP,A) 特開 昭59−116102(JP,A) 特開 昭64−52729(JP,A) 特公 平1−25972(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Rinzoku Otaki 7-3-1, Hongo, Bunkyo-ku, Tokyo Within the Department of Industrial Chemistry, Faculty of Engineering, University of Tokyo (72) Naoki Tojima 7-3-1, Hongo, Bunkyo-ku, Tokyo No. 72 Department of Industrial Chemistry, Faculty of Engineering, University of Tokyo (72) Inventor, Taiwa Saito 7-3-1, Hongo, Bunkyo-ku, Tokyo Department of Industrial Chemistry, Faculty of Engineering, University of Tokyo (56) Reference Japanese Patent Laid-Open No. 146446/58 Kai 60-60902 (JP, A) JP 59-116102 (JP, A) JP 64-52729 (JP, A) JP-B 1-25972 (JP, B2)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】2−プロパノール/アセトン・水素の系を
利用したケミカルヒートポンプにおいて、2−プロパノ
ール脱水素触媒として、Ru,RhおよびPtからえらんだ貴
金属を活性炭に担持してなる触媒を使用することを特徴
とするケミカルヒートポンプ。
1. A chemical heat pump using a system of 2-propanol / acetone-hydrogen, wherein a catalyst comprising a noble metal selected from Ru, Rh and Pt supported on activated carbon is used as a 2-propanol dehydrogenation catalyst. Is a chemical heat pump.
【請求項2】Ru,RhおよびPtからえらんだ貴金属を活性
炭に対し0.1〜20重量%担持させた2−プロパノール脱
水素用触媒。
2. A catalyst for dehydrogenation of 2-propanol, comprising 0.1 to 20% by weight of noble metal selected from Ru, Rh and Pt on activated carbon.
JP2063529A 1990-03-14 1990-03-14 2-propanol / acetone / hydrogen chemical heat pump and dehydrogenation catalyst used therefor Expired - Lifetime JPH0765820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2063529A JPH0765820B2 (en) 1990-03-14 1990-03-14 2-propanol / acetone / hydrogen chemical heat pump and dehydrogenation catalyst used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2063529A JPH0765820B2 (en) 1990-03-14 1990-03-14 2-propanol / acetone / hydrogen chemical heat pump and dehydrogenation catalyst used therefor

Publications (2)

Publication Number Publication Date
JPH03263550A JPH03263550A (en) 1991-11-25
JPH0765820B2 true JPH0765820B2 (en) 1995-07-19

Family

ID=13231838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2063529A Expired - Lifetime JPH0765820B2 (en) 1990-03-14 1990-03-14 2-propanol / acetone / hydrogen chemical heat pump and dehydrogenation catalyst used therefor

Country Status (1)

Country Link
JP (1) JPH0765820B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5689008A (en) * 1996-02-02 1997-11-18 United Technologies Corporation Catalytic reaction rate enhancement at low temperatures
KR20010079302A (en) * 2001-07-06 2001-08-22 홍순걸 A handling equipement of food waste as well as organic refuse matter
JP2006143507A (en) * 2004-11-18 2006-06-08 Jfe Engineering Kk Method for selectively recovering hydrogen from hydrogen-containing mixed gas
CN104372424B (en) * 2014-10-20 2016-08-17 宜宾丝丽雅股份有限公司 Heat energy recycling method suitable for plasticized overflow water
CN104266397B (en) * 2014-10-20 2016-02-10 宜宾丝丽雅股份有限公司 Comprehensive heat energy recycling method suitable for viscose staple fiber wastewater
US10211469B1 (en) * 2018-02-19 2019-02-19 Emerson Climate Technologies, Inc. Heat rejection system for electrochemical climate control system

Also Published As

Publication number Publication date
JPH03263550A (en) 1991-11-25

Similar Documents

Publication Publication Date Title
JP3158440B2 (en) Method for producing 1,1,1,2,3-pentafluoropropene and method for producing 1,1,1,2,3-pentafluoropropane
JP4276067B2 (en) Production of hydrogen from hydrocarbons and oxygen-containing hydrocarbons
JP3130042B2 (en) Catalytic hydrocracking
JP5477290B2 (en) Method for producing hydrogen-containing fluoroolefin compound
JP2652004B2 (en) Material composition useful as Raney-type catalyst for hydrogenating halonitroaromatics to haloaminoaromatics and method of applying the same
Saito et al. Catalyst‐assisted chemical heat pump with reaction couple of acetone hydrogenation/2–propanol dehydrogenation for upgrading low‐level thermal energy: Proposal and evaluation
Meng et al. Improvements on thermal efficiency of chemical heat pump involving the reaction couple of 2-propanol dehydrogenation and acetone hydrogenation
JP4849519B2 (en) Hydrogen generation method
CN1024637C (en) Regeneration or activation of noble metal catalyst using fluorohalocarbons or fluorohalohydrocarbons
JPH0765820B2 (en) 2-propanol / acetone / hydrogen chemical heat pump and dehydrogenation catalyst used therefor
EP1654208A1 (en) Systems and methods for producing fluorocarbons
CN104974016A (en) Method for preparing cinnamyl alcohol through cinnamaldehyde hydrogenation
JPS63146835A (en) Production of alcohol by reducing nitrile
EP1494806A1 (en) Catalyst for removing carbon monoxide in hydrogen rich gas according to water gas shift reaction
WO1996019426A1 (en) Catalytic hydrogenolysis
Liebiediev et al. Reactions of α-oxides: II. Kinetics of reaction of ethylene oxide with acetic and monochloroacetic acids
JPH0765821B2 (en) 2-propanol / acetone / hydrogen chemical heat pump and dehydrogenation catalyst used therefor
JP2653208B2 (en) Method for producing chlorotrifluoroethylene
JPH08239335A (en) Production of perfluoroalkyl iodide telomer
JPH0687771A (en) Production of 1,1,1,2,3-pentafluoropropane
US5053564A (en) Selective hydrogenolysis of perhalogenated ethane derivatives
JPH05213793A (en) Production of 1,1,1,4,4,4-hexafluorobutane
JPH05508160A (en) Improved process and catalyst for producing 2,2'-bipyridyl
JP2932330B2 (en) Method for hydrogenating and reducing nitrogen-containing compounds
Fanelli et al. Use of hydride-forming metals as renewable chemical reagents: the dehydrogenation of isobutane to isobutene