JPH03263550A - 2-propanol/acetone-hydrogen type chemical heat pump and dehydrogenation catalyst used for same heat pump - Google Patents

2-propanol/acetone-hydrogen type chemical heat pump and dehydrogenation catalyst used for same heat pump

Info

Publication number
JPH03263550A
JPH03263550A JP2063529A JP6352990A JPH03263550A JP H03263550 A JPH03263550 A JP H03263550A JP 2063529 A JP2063529 A JP 2063529A JP 6352990 A JP6352990 A JP 6352990A JP H03263550 A JPH03263550 A JP H03263550A
Authority
JP
Japan
Prior art keywords
propanol
heat
heat pump
acetone
dehydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2063529A
Other languages
Japanese (ja)
Other versions
JPH0765820B2 (en
Inventor
Eri Itou
伊藤 えり
Masaru Yamashita
勝 山下
Yuji Ichinohe
裕司 一戸
Michitaka Ootaki
倫卓 大瀧
Naoki Toshima
直樹 戸嶋
Yasukazu Saito
斉藤 泰和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2063529A priority Critical patent/JPH0765820B2/en
Publication of JPH03263550A publication Critical patent/JPH03263550A/en
Publication of JPH0765820B2 publication Critical patent/JPH0765820B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Abstract

PURPOSE:To make low temperature, low grade waste heat usable by using a catalyst of a particular noble metal carried on activated carbon. CONSTITUTION:A chemical heat pump uses 2-propanol/acetone.hydrogen system and a dehydrogenation catalyst of a nobel metal selected from Ru, Rh and Pt and carried on activated carbon at 0.1-20wt.% of activated carbon is applied to the heat pump. Thereby, 2-propanol dehydrogenation process of the heat pump quickly proceeds, resulting in an improvement of the economy and in use of low temperature heat sources, lower than 80 deg.C, for example. Therefore, heat energy recovered from low grade solar heat, terrestrial heat, industrial waste heat, waste heat from refuse incineration process and others can be effectively used.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、2−プロパノール/アセトン・水素の系を利
用したケミカル上−1〜ポンプの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to improvements in chemical pumps using a 2-propanol/acetone/hydrogen system.

[従来の技術1 可逆的な化学反応に際して起る発熱および吸熱を利用し
て熱エネルギーを回収し、その利用をはかる手段として
、ケミカルヒートポンプが注目を集めている。 発明者
らの一人は、さきに、(第一工程) 熱エネルギーを与
えて脱水素触媒の存在下に有機化合物の液相脱水素吸熱
反応を行なう。
[Prior Art 1] Chemical heat pumps are attracting attention as a means of recovering and utilizing heat energy by utilizing heat generation and heat absorption that occur during reversible chemical reactions. One of the inventors first (first step) performs a liquid phase dehydrogenation endothermic reaction of an organic compound in the presence of a dehydrogenation catalyst by applying thermal energy.

(第二工程) 生成した有機不飽和化合物と水素とを未
反応物から分離する。
(Second step) The generated organic unsaturated compound and hydrogen are separated from unreacted substances.

(第三工程) 有機不飽和化合物と水素とを水素化触媒
の存在下に反応させて発生するエネルギーを回収すると
ともに、反応生成物を第一工程に循環する。
(Third step) Energy generated by reacting an organic unsaturated compound and hydrogen in the presence of a hydrogenation catalyst is recovered, and the reaction product is recycled to the first step.

の諸工程から成るケミカルヒートポンプを提案し(特公
平1−25972号)、作動物質となる有機化合物とし
て2−プロパノールを用い、その脱水素によりアセトン
を生成する系がとくに有利であることを明らかにした。
proposed a chemical heat pump consisting of various steps (Japanese Patent Publication No. 1-25972), and clarified that a system in which 2-propanol is used as an organic compound and dehydrogenates it to produce acetone is particularly advantageous. did.

 2−プロパノールは比較的低い加熱温度で脱水素反応
が進行するため、これを用いたケミカルヒートポンプは
、地熱、太陽熱、工場廃熱あるいは廃棄物焼却処理廃熱
などの低品位熱を利用することができる。
Since the dehydrogenation reaction of 2-propanol proceeds at a relatively low heating temperature, chemical heat pumps using 2-propanol can utilize low-grade heat such as geothermal heat, solar heat, factory waste heat, or waste heat from waste incineration. can.

2−プロパノール/アセトン・水素の系を利用するケミ
カルヒートポンプは、全体として第1図に示す構成を有
する。 すなわち、脱水素反応器(1)において温度T
、の加熱源から熱エネルギーQ、を供給して2−プロパ
ノールの液相接触的脱水素を行ない、反応混合物を蒸留
塔く2)およびコンデンサ(3)で2−プロパノールの
沸点(82,4℃〉とアセトンの沸点(56,3℃)の
差を利用して分離し、未反応物を反応器(1)に戻し、
生成したアセトンと水素とを、熱交換器(4)をへて水
素化反応器(5)へ送る。 ここでは水素化触媒の存在
下に、気相でアセトンの水素化反応が行なわれ、反応熱
によって、熱エネルギーQHを、加熱源の温度T、より
高い温度THで取り出すことができる。
A chemical heat pump that utilizes a 2-propanol/acetone/hydrogen system has the overall configuration shown in FIG. That is, the temperature T in the dehydrogenation reactor (1)
Thermal energy Q is supplied from the heating source of 2-propanol to carry out liquid-phase catalytic dehydrogenation of 2-propanol, and the reaction mixture is passed through a distillation column 2) and a condenser 3 to the boiling point of 2-propanol (82.4°C). 〉 and acetone using the difference in boiling point (56.3°C) to separate them, and return unreacted substances to the reactor (1).
The generated acetone and hydrogen are sent to the hydrogenation reactor (5) via the heat exchanger (4). Here, the hydrogenation reaction of acetone is carried out in the gas phase in the presence of a hydrogenation catalyst, and thermal energy QH can be extracted from the heat of reaction at the temperature T of the heating source and at a higher temperature TH.

この系を工業的に実施するポイントは、■副反応がなく
、作動物質である2−プロパノールを循環使用できるこ
と、■蒸留塔で消費する熱を最少限に抑えること、およ
び■低温で脱水素反応を速やかに進行させること、であ
る。 第3点に関しては、脱水素触媒の性能が重要であ
る。
The key points for implementing this system industrially are: (1) no side reactions and the ability to recycle the working substance 2-propanol, (2) minimizing the heat consumed in the distillation column, and (2) dehydrogenation at low temperatures. The goal is to move forward quickly. Regarding the third point, the performance of the dehydrogenation catalyst is important.

前掲の発明の実施例においては、2−プロパノール脱水
素触媒として、微粒金属ニッケル、または微粒金属ニッ
ケルの表面に少量の金属白金を沈着させた触媒を使用し
た。 より高性能の脱水素触媒を求めて研究の結果、今
回、特定の貴金属を活性炭に担持した触媒が、2−プロ
パノールの脱水素にとくに有効であることを見出した。
In the above-mentioned embodiments of the invention, as the 2-propanol dehydrogenation catalyst, fine metallic nickel or a catalyst in which a small amount of metallic platinum was deposited on the surface of fine metallic nickel was used. As a result of research in search of a higher-performance dehydrogenation catalyst, we have now discovered that a catalyst in which a specific noble metal is supported on activated carbon is particularly effective for the dehydrogenation of 2-propanol.

[発明が解決しようとする課題] 本発明の目的は、この新知見にもとづき、2−プロパノ
ール/アセトン・水素の系を利用したケミカルヒートポ
ンプの性能を高めること、とくに、従来利用が困難と考
えられていた低い温度(たとえば50〜60℃)の、低
品位の廃熱を利用できるケミカルヒートポンプを提供す
ることにある。
[Problems to be Solved by the Invention] Based on this new knowledge, the purpose of the present invention is to improve the performance of chemical heat pumps that utilize the 2-propanol/acetone/hydrogen system, and in particular to improve the performance of chemical heat pumps that are conventionally considered difficult to use. The object of the present invention is to provide a chemical heat pump that can utilize low-grade waste heat at a low temperature (for example, 50 to 60°C).

これを可能にする2−プロパノール脱水素触媒の提供も
また、本発明の目的に含まれる。
The provision of a 2-propanol dehydrogenation catalyst that makes this possible is also within the scope of the present invention.

[課題を解決するための手段1 本発明のケミカルヒートポンプは、2−プロパノール/
アセトン・水素の系を利用したケミカルヒートポンプに
おいて、2−プロパノール脱水素触媒として、Ru、R
hおよびPtからえらんだ貴金属を活性炭に担持してな
る触媒を使用することを特徴とする。
[Means for Solving the Problems 1] The chemical heat pump of the present invention includes 2-propanol/2-propanol/
In chemical heat pumps using acetone/hydrogen system, Ru, R are used as 2-propanol dehydrogenation catalysts.
The present invention is characterized by using a catalyst in which a noble metal selected from H and Pt is supported on activated carbon.

本発明のケミカルヒートポンプ用の脱水素触媒は、Ru
、RhおよびPtからえらんだ貴金属を、活性炭に対し
0.1〜20重量%担持させてなる触媒である。 この
触媒の製造は、既知の技術により行なうことができる。
The dehydrogenation catalyst for chemical heat pumps of the present invention comprises Ru
, Rh and Pt are supported in an amount of 0.1 to 20% by weight on activated carbon. The production of this catalyst can be carried out by known techniques.

【作 用] ケミカルヒートポンプ用の2−プロパノール脱水素触媒
の性能にとって第一に問題になるのは、脱水素活性でお
る。 これらをしらべるため、Ru、RhまたはPtを
、粉末状活性炭にいずれも5重量%担持させた触媒と、
微粒Ni触媒について、つぎの実験を行なった。
[Function] The primary problem with the performance of the 2-propanol dehydrogenation catalyst for chemical heat pumps is the dehydrogenation activity. In order to investigate these, a catalyst in which 5% by weight of Ru, Rh or Pt was supported on powdered activated carbon;
The following experiment was conducted using a fine Ni catalyst.

触媒1oom’iを反応容器にとり、2−プロパノール
100dを加えて数分間超音波分散して懸濁状態にした
のち、気相をN2ガス置換した。 油浴で加熱して還流
条件下に脱水素反応を起させ、還流冷却器を通じて出て
くる町ガスの容積を、ガスビユレットで2時間にわたり
追跡した。 その結果は、第2図のグラフに示すとおり
である。
One ounce of the catalyst was placed in a reaction vessel, 100 d of 2-propanol was added, and the mixture was ultrasonically dispersed for several minutes to form a suspension, and the gas phase was replaced with N2 gas. It was heated in an oil bath to cause a dehydrogenation reaction under reflux conditions, and the volume of town gas coming out through the reflux condenser was monitored over 2 hours using a gas billet. The results are as shown in the graph of FIG.

反応中、適宜に気相成分および液相成分をガスクロマト
グラフで分析し、生成物がアセトンと水素だけであるこ
とを確認した。 測定開始後10〜20分にお(ブる水
素生成速度をもって、初期反応速度とした。 82.4
°Cにあける反応速度定数(mmol/ h−Ij>は
、それぞれRu  (4580)。
During the reaction, gas phase components and liquid phase components were analyzed by gas chromatography as appropriate, and it was confirmed that the products were only acetone and hydrogen. The hydrogen production rate that occurred 10 to 20 minutes after the start of the measurement was defined as the initial reaction rate. 82.4
The reaction rate constant (mmol/h-Ij> in °C is Ru (4580), respectively.

Rh  (1780)、Pt  (390)、微粒N(
24,4)であった。
Rh (1780), Pt (390), fine N (
24,4).

どの触媒についても、反応速度は時間の経過とともにゆ
るやかに低下した。 活性炭担持Pt触媒については、
反応の進行に伴って生成し蓄積したアセトンがこの反応
を阻害する原因であり、それはつどのような反応速度式
であられされることがわかっている。
For all catalysts, the reaction rate decreased slowly over time. Regarding activated carbon supported Pt catalyst,
It is known that acetone, which is generated and accumulated as the reaction progresses, is the cause of inhibiting this reaction, and that this is caused by various reaction rate equations.

v=に/(1+K(アセトン〕) (ここで、k:反応速度定数、K:アセトン吸着阻害定
数〉 上記の触媒に対するアセトンの影響をみるため、あらか
じめ2−プロパノールに所定量のアセトンを加えておい
て初期反応速度をしらべたところ、Pt触媒と同様の関
係が、Ru触媒、Rh触媒についても成立することがわ
かった。 第3図のグラフは、これをポす。
v=to/(1+K(acetone)) (where, k: reaction rate constant, K: acetone adsorption inhibition constant) In order to see the effect of acetone on the above catalyst, a predetermined amount of acetone was added to 2-propanol in advance. When the initial reaction rate was investigated, it was found that the same relationship as that for the Pt catalyst also holds true for the Ru and Rh catalysts. The graph in Figure 3 shows this.

Ru 、 Rhおよびpt触媒について、反応速度定数
にとアセトン吸着阻害定数Kを求め、比較のため用いた
微粒金属N1およびpt賦活微粒金属Ni触媒の値とと
もに下に示す。
The reaction rate constant and acetone adsorption inhibition constant K were determined for Ru, Rh and PT catalysts, and are shown below along with the values for the fine metal N1 and PT activated fine metal Ni catalysts used for comparison.

上記の反応速度定数には反応速度式から求めたものであ
って、その値は第2図のグラフから求めた値とほぼ一致
している。 脱水素活性は、ptに対してRuで約10
倍、Rhで約4倍あるが、Ptはアセトン阻害効果が低
いという特徴がある。
The above reaction rate constant was determined from the reaction rate equation, and its value almost coincides with the value determined from the graph in FIG. The dehydrogenation activity is about 10 for Ru compared to pt.
However, Pt is characterized by a low acetone inhibitory effect.

全体として、ケミカルヒートポンプへの適性は活性炭担
持Ru触媒が最も高いという結論を得た。
Overall, it was concluded that the Ru catalyst supported on activated carbon has the highest suitability for chemical heat pumps.

[実施例I N、E、ケムキャット社製の活性炭担持5重量%Ru触
媒〔炭素粉末(ドライ)標準品)100■を反応容器に
入れ、2−プロパノール100m1中に分散させた。 
反応溶液を沸騰状態にして脱水素反応を起させ、2時間
にわたって生成するH2ガスの量を測定した。 溶液の
沸点は、ヘキサンを添加することによって調節した。 
反応停止後、液相の生成物をガスクロマトグラフィーに
より分析し、等モルのアセトンが生成していることを確
認した。 各温度における2−プロパノールの脱水素反
応速度は、つぎのように求められた。
[Example I N, E, 100 μm of activated carbon-supported 5 wt % Ru catalyst manufactured by Chemcat [carbon powder (dry) standard product] was placed in a reaction vessel and dispersed in 100 ml of 2-propanol.
The reaction solution was brought to a boil to cause a dehydrogenation reaction, and the amount of H2 gas produced over 2 hours was measured. The boiling point of the solution was adjusted by adding hexane.
After the reaction was stopped, the product in the liquid phase was analyzed by gas chromatography, and it was confirmed that equimolar amounts of acetone were produced. The dehydrogenation reaction rate of 2-propanol at each temperature was determined as follows.

50’           69.460’    
      268 70’          964 80’       3,178 上記実施例は本発明の脱水素触媒を2−プロパノール液
中に懸濁させて使用する例であるが、触媒は固定床の形
でも使用できること、また、温度、圧力などの反応条件
を種々変えて2−プロパノールの脱水素反応を実施でき
ることはもちろんである。
50'69.460'
268 70' 964 80' 3,178 Although the above example uses the dehydrogenation catalyst of the present invention suspended in 2-propanol solution, it is noted that the catalyst can also be used in the form of a fixed bed, and that the temperature Of course, the dehydrogenation reaction of 2-propanol can be carried out by changing reaction conditions such as pressure and pressure.

[発明の効果] 本発明によれば、2−プロパノール/アセトン・水素の
系を利用したケミカルヒートポンプの2−プロパノール
脱水素工程が速やかに進行し、その経済性が高められる
とともに、従来より低温の、たとえば80℃以下の熱源
が利用できるようになる。 従って、これまで低品位の
熱エネルギーで利用困難とされていた太陽熱、地熱、工
場廃熱、開棄物焼却処理の廃熱などから熱エネルギーを
回収して、有効に利用することが可能になる。
[Effects of the Invention] According to the present invention, the 2-propanol dehydrogenation process of a chemical heat pump using a 2-propanol/acetone/hydrogen system progresses rapidly, its economic efficiency is improved, and it can be performed at a lower temperature than before. For example, a heat source of 80° C. or lower can be used. Therefore, it will become possible to recover and effectively use thermal energy from sources such as solar heat, geothermal heat, factory waste heat, and waste heat from waste incineration, which were previously considered difficult to utilize due to low-grade thermal energy. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のケミカルヒートポンプの構成を示す
フローチャートである。 第2図および第3図は、種々の貴金属触媒の2プロパツ
一ル脱水素反応の活性および反応阻害のデータに関する
グラフであって、第2図は経過時間と水素ガス発生量の
関係、第3図は反応剤に加えたアセトンの量と2−プロ
パノール脱水素反応速度との関係をそれぞれ示す。 1・・・2−プロパノール脱水素反応器2・・・蒸留塔 3・・・コンデンサ 4・・・熱交換器 5・・・アセトン水素化反応器 王、・・・低温側(熱源)温度 TH・・・高温側(熱回収)温度 Q、、QH・・・熱エネルギー
FIG. 1 is a flowchart showing the configuration of the chemical heat pump of the present invention. Figures 2 and 3 are graphs relating to data on the activity and reaction inhibition of the 2-propyl dehydrogenation reaction of various precious metal catalysts; Figure 2 shows the relationship between the elapsed time and the amount of hydrogen gas generated; The figures each show the relationship between the amount of acetone added to the reactant and the 2-propanol dehydrogenation reaction rate. 1... 2-Propanol dehydrogenation reactor 2... Distillation column 3... Condenser 4... Heat exchanger 5... Acetone hydrogenation reactor king... Low temperature side (heat source) temperature TH ...High temperature side (heat recovery) temperature Q,,QH...Thermal energy

Claims (2)

【特許請求の範囲】[Claims] (1)2−プロパノール/アセトン・水素の系を利用し
たケミカルヒートポンプにおいて、2−プロパノール脱
水素触媒として、Ru、RhおよびPtからえらんだ貴
金属を活性炭に担持してなる触媒を使用することを特徴
とするケミカルヒートポンプ。
(1) A chemical heat pump using a 2-propanol/acetone/hydrogen system is characterized by using a catalyst in which a noble metal selected from Ru, Rh, and Pt is supported on activated carbon as a 2-propanol dehydrogenation catalyst. chemical heat pump.
(2)Ru、RhおよびPtからえらんだ貴金属を活性
炭に対し0.1〜20重量%担持させた2−プロパノー
ル脱水素用触媒。
(2) A catalyst for 2-propanol dehydrogenation, in which 0.1 to 20% by weight of a noble metal selected from Ru, Rh and Pt is supported on activated carbon.
JP2063529A 1990-03-14 1990-03-14 2-propanol / acetone / hydrogen chemical heat pump and dehydrogenation catalyst used therefor Expired - Lifetime JPH0765820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2063529A JPH0765820B2 (en) 1990-03-14 1990-03-14 2-propanol / acetone / hydrogen chemical heat pump and dehydrogenation catalyst used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2063529A JPH0765820B2 (en) 1990-03-14 1990-03-14 2-propanol / acetone / hydrogen chemical heat pump and dehydrogenation catalyst used therefor

Publications (2)

Publication Number Publication Date
JPH03263550A true JPH03263550A (en) 1991-11-25
JPH0765820B2 JPH0765820B2 (en) 1995-07-19

Family

ID=13231838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2063529A Expired - Lifetime JPH0765820B2 (en) 1990-03-14 1990-03-14 2-propanol / acetone / hydrogen chemical heat pump and dehydrogenation catalyst used therefor

Country Status (1)

Country Link
JP (1) JPH0765820B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787526A2 (en) * 1996-02-02 1997-08-06 United Technologies Corporation Catalytic reaction rate enhancement at low temperatures
KR20010079302A (en) * 2001-07-06 2001-08-22 홍순걸 A handling equipement of food waste as well as organic refuse matter
JP2006143507A (en) * 2004-11-18 2006-06-08 Jfe Engineering Kk Method for selectively recovering hydrogen from hydrogen-containing mixed gas
CN104266397A (en) * 2014-10-20 2015-01-07 宜宾丝丽雅股份有限公司 Thermal energy comprehensive recycling method applied to viscose staple fibre waste water
CN104372424A (en) * 2014-10-20 2015-02-25 宜宾丝丽雅股份有限公司 Thermal energy recycling method suitable for plasticizing overflowing water
CN111902986A (en) * 2018-02-19 2020-11-06 艾默生环境优化技术有限公司 Heat dissipation system for electrochemical climate control system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787526A2 (en) * 1996-02-02 1997-08-06 United Technologies Corporation Catalytic reaction rate enhancement at low temperatures
EP0787526A3 (en) * 1996-02-02 1997-11-19 United Technologies Corporation Catalytic reaction rate enhancement at low temperatures
KR20010079302A (en) * 2001-07-06 2001-08-22 홍순걸 A handling equipement of food waste as well as organic refuse matter
JP2006143507A (en) * 2004-11-18 2006-06-08 Jfe Engineering Kk Method for selectively recovering hydrogen from hydrogen-containing mixed gas
CN104266397A (en) * 2014-10-20 2015-01-07 宜宾丝丽雅股份有限公司 Thermal energy comprehensive recycling method applied to viscose staple fibre waste water
CN104372424A (en) * 2014-10-20 2015-02-25 宜宾丝丽雅股份有限公司 Thermal energy recycling method suitable for plasticizing overflowing water
CN111902986A (en) * 2018-02-19 2020-11-06 艾默生环境优化技术有限公司 Heat dissipation system for electrochemical climate control system
CN111902986B (en) * 2018-02-19 2023-10-20 艾默生环境优化技术有限公司 Heat dissipation system for electrochemical climate control system

Also Published As

Publication number Publication date
JPH0765820B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
Fábos et al. Selective conversion of levulinic and formic acids to γ-valerolactone with the shvo catalyst
Saito et al. Catalyst‐assisted chemical heat pump with reaction couple of acetone hydrogenation/2–propanol dehydrogenation for upgrading low‐level thermal energy: Proposal and evaluation
Meng et al. Improvements on thermal efficiency of chemical heat pump involving the reaction couple of 2-propanol dehydrogenation and acetone hydrogenation
Bond et al. Studies in heterogeneous catalysis. Part 1.—The hydrogenation of methylacetylene
Kashid et al. Microwave-assisted copper (I) catalyzed A3-coupling reaction: Reactivity, substrate scope and the structural characterization of two coupling products
JPH03263550A (en) 2-propanol/acetone-hydrogen type chemical heat pump and dehydrogenation catalyst used for same heat pump
CN104974016A (en) Method for preparing cinnamyl alcohol through cinnamaldehyde hydrogenation
Ilic et al. Biomimetic metal-free hydride donor catalysts for CO2 reduction
Gassman et al. An electrochemical switch for starting and stopping the energy-releasing conversion of quadricyclanes to norbornadienes
Mandler et al. Photohydrogenation of acetylenes in water-oil two-phase systems: application of novel metal colloids and mechanistic aspects of the process
Liu et al. High performance of nitrogen-doped carbon-supported cobalt catalyst for the mild and selective synthesis of primary amines
JPH0120134B2 (en)
Jun et al. Chelation-assisted carbon–carbon bond activation by Rh (I) catalysts
Kalenchuk et al. Hydrogenation of anthracene and dehydrogenation of perhydroanthracene on Pt/C catalysts
JPS584750A (en) Preparation of high purity aniline
US5478548A (en) Methods for the synthesis of chemical compounds
Savchenko et al. Harnessing the unique properties of iridium
JPH08511034A (en) How to dispose of hydrazine propellant
Ram Bajya et al. Sulfonamide as Photoinduced Hydrogen Atom Transfer Catalyst for Organophotoredox Hydrosilylation and Hydrogermylation of Activated Alkenes
US3206498A (en) Hydrodimerization of acrylonitriles
JPH0498054A (en) 2-propanol/aceton.hydrogen chemical heat pump and dedhydrogen catalyst used in heat pump
JPH02279657A (en) Production of aniline
Zazybin et al. Addition of tetrachloromethane to alkenes catalyzed by copper (I) complexes with N-thioacylamidothiophosphate ligands
US2708208A (en) Production of phenols
Selvaraj et al. A suitable modified high-rate cobalt immobilized on acid supported ionic liquid catalysed transfer hydrogenation of nitroarenes