JPH0765775A - Detector of charged-corpuscular beam device - Google Patents

Detector of charged-corpuscular beam device

Info

Publication number
JPH0765775A
JPH0765775A JP5216004A JP21600493A JPH0765775A JP H0765775 A JPH0765775 A JP H0765775A JP 5216004 A JP5216004 A JP 5216004A JP 21600493 A JP21600493 A JP 21600493A JP H0765775 A JPH0765775 A JP H0765775A
Authority
JP
Japan
Prior art keywords
sample
signal
image
detector
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5216004A
Other languages
Japanese (ja)
Inventor
Jirou Toumatsu
治郎 等松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP5216004A priority Critical patent/JPH0765775A/en
Publication of JPH0765775A publication Critical patent/JPH0765775A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an image having a three-dimemsional feeling including the uneven surface of a sample, by grasping a reflected electron near the electron beam so as to obtain a good quality of composition image of the sample surface, in the case of a sample having a plain surface, while grasping the reflected electron discharged from the periphery of a reflected electron detector so as to obtain an image having a three-dimensional feeling including the uneven surface of the sample, in the case of a normal sample having an uneven surface. CONSTITUTION:A detector 10 of a charged corpuscular beam device is formed of at least two or more circular plate bodies 12 to 14, and at least two or more detecting elements 11 are provided to each circular plate body 12 to 14. And each detecting element 11 has an independent signal amplifier 20, and the output from the signal amplifier 20 is fed to a signal adder and a signal subtructor, and the signal added or subtracted by the adder or the subtractor is output to an image displayed means selectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電子顕微鏡などの電
子線装置において、反射電子の検出を有効に行うための
反射電子検出器を有する荷電粒子線装置の検出器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a detector of a charged particle beam apparatus having a backscattered electron detector for effectively detecting backscattered electrons in an electron beam apparatus such as an electron microscope.

【0002】[0002]

【従来の技術】従来の、反射電子検出器を備えた走査型
電子顕微鏡としては、例えば、図4に示すようなものが
ある。試料1と対物レンズ2との間に反射電子検出器3
を配置し、電子線4を試料1の平面上で、二次元的に走
査・照射し、試料1から得られる反射電子を、試料1の
上方に配置した反射電子検出器3により検出し、その検
出信号を用いて試料像を表示するようにしている。
2. Description of the Related Art A conventional scanning electron microscope equipped with a backscattered electron detector is shown in FIG. A backscattered electron detector 3 is provided between the sample 1 and the objective lens 2.
Is arranged, the electron beam 4 is two-dimensionally scanned and irradiated on the plane of the sample 1, and the backscattered electrons obtained from the sample 1 are detected by the backscattered electron detector 3 arranged above the sample 1, The sample image is displayed using the detection signal.

【0003】この場合の反射電子検出器3は、図5に示
すように円盤形状をなし、その中心には試料を照射する
電子線を通過させるため、直径3mm程度の孔5を有
し、その周囲に、図5(a)に示すように2個に分割さ
れ、または図5(b)に示すように4個に分割された半
導体の検出素子3a,3b……等を配置して、反射電子
の検出を行う。この複数個に分割された検出素子は、そ
れぞれ独立した信号増幅器6に接続され、それぞれの信
号を加算または減算することにより、その結果が選択ス
イッチ7により切換えられ、画像情報として表示され
る。
The backscattered electron detector 3 in this case has a disk shape as shown in FIG. 5, and has a hole 5 having a diameter of about 3 mm at the center thereof for passing an electron beam for irradiating the sample. Around the periphery, semiconductor detection elements 3a, 3b, etc., which are divided into two as shown in FIG. 5A or divided into four as shown in FIG. Detects electrons. The detection elements divided into a plurality of parts are connected to independent signal amplifiers 6, respectively, and by adding or subtracting the respective signals, the result is switched by the selection switch 7 and displayed as image information.

【0004】この反射電子検出器3の半導体の検出素子
3a,3b……は、素子の製造上の制約から、ある程度
以上の大きさとすることはできず、また形状が大きいと
応答速度の低下を来すため、その大きさが限定されて、
直径20mm〜25mm程度が一般的なサイズとなって
いる。
The semiconductor detecting elements 3a, 3b ... Of the backscattered electron detector 3 cannot be made larger than a certain size due to the restrictions in manufacturing the elements, and if the shape is large, the response speed is lowered. Because it comes, its size is limited,
A diameter of 20 mm to 25 mm is a general size.

【0005】このような反射電子検出器3を用いて検出
できる反射電子について考察する。図6に示すように、
試料1と検出素子3a,3b……との間隔dをある一定
値にした状態で、試料1の電子線照射点8と反射電子検
出器3の孔5とで形成される円錐の半頂角をθ1 ,試料
1の電子線照射点8と反射電子検出器3の外周部とで形
成される円錐の半頂角をθ2 とすると、試料1の電子線
照射点8から放射される反射電子で、反射電子検出器3
で検出される領域は、照射電子線4となす角度が、角度
(θ2 −θ1 )で指定される逆円錐形状の領域となる。
即ち角θ1 の内側と角θ2 の外側は、反射電子検出器3
によって検出できない領域である。
Consider backscattered electrons that can be detected using such a backscattered electron detector 3. As shown in FIG.
The half-vertical angle of the cone formed by the electron beam irradiation point 8 of the sample 1 and the hole 5 of the backscattered electron detector 3 with the distance d between the sample 1 and the detection elements 3a, 3b. Is θ 1 and the half apex angle of the cone formed by the electron beam irradiation point 8 of the sample 1 and the outer periphery of the backscattered electron detector 3 is θ 2 , the reflection emitted from the electron beam irradiation point 8 of the sample 1 Electron backscattered electron detector 3
The area detected by is an inverted conical area whose angle with the irradiation electron beam 4 is designated by the angle (θ 2 −θ 1 ).
That is, the inside of the angle θ 1 and the outside of the angle θ 2 are the backscattered electron detector 3
This is an area that cannot be detected by.

【0006】角度(θ2 −θ1 )で指定される領域は、
試料1と検出素子3a,3b……との間隔dを増減させ
ることによって変化する。即ち、間隔dを小さくする
と、反射電子検出器3の外周部で形成される角θ2 が増
大するが、同時に角θ1 も増大して、照射電子線4の近
傍の信号電子を失ってしまう。一方、間隔dを大きくす
ると、角θ1 が小さくなって、照射電子線4の近傍の信
号電子の検出量は増すが、角θ2 も減少するため、大き
な角度で散乱した信号電子の検出量が激減することにな
る。
The area specified by the angle (θ 2 −θ 1 ) is
It is changed by increasing or decreasing the distance d between the sample 1 and the detecting elements 3a, 3b .... That is, when the distance d is reduced, the angle θ 2 formed on the outer peripheral portion of the backscattered electron detector 3 increases, but at the same time, the angle θ 1 also increases and the signal electrons near the irradiation electron beam 4 are lost. . On the other hand, when the distance d is increased, the angle θ 1 is decreased and the detection amount of the signal electrons near the irradiation electron beam 4 is increased, but the angle θ 2 is also decreased, and therefore the detection amount of the signal electrons scattered at a large angle is increased. Will be drastically reduced.

【0007】電子線を試料に照射した際に発生する反射
電子の特徴としては、 試料の組成(原子番号)により反射電子の発生効率
が大きく依存する。 反射電子の放射方向分布は、試料表面に対する照射
電子線の入射角によって変化し、入射角の鏡面反射の方
向に最大値を有する。これによって、平らに研磨された
試料に対し電子線を照射した際には、試料の組成(原子
番号)により反射電子放出率が大きく変るが、試料が平
面であるために照射電子線に近い領域の反射電子が多
く、図6の間隔dを大きくして角θ1 を小さくし、照射
電子線に近い領域の反射電子を多く検出できるようにす
る。こうして検出される反射電子が多くなれば、試料の
組成の特定も容易になり、元素成分の違いにより大きな
信号量の変化を生じ、試料表面の良質な組成像、即ち画
像コントラストで形成される元素成分の分布像を得るこ
とができる。
As a characteristic of the backscattered electrons generated when the sample is irradiated with the electron beam, the generation efficiency of the backscattered electrons largely depends on the composition (atomic number) of the sample. The radiation direction distribution of the reflected electrons changes depending on the incident angle of the irradiation electron beam with respect to the sample surface, and has the maximum value in the direction of specular reflection of the incident angle. As a result, when a flatly polished sample is irradiated with an electron beam, the backscattered electron emission rate greatly changes depending on the composition (atomic number) of the sample, but since the sample is flat, the area close to the irradiated electron beam 6 is large and the angle d 1 in FIG. 6 is increased to decrease the angle θ 1 , so that many reflected electrons in a region close to the irradiation electron beam can be detected. If the number of backscattered electrons detected in this way increases, it becomes easier to specify the composition of the sample, and a large change in the signal amount occurs due to the difference in the elemental components, and a high-quality composition image of the sample surface, that is, an element formed with an image contrast. A distribution image of components can be obtained.

【0008】しかし、表面に激しい凹凸がある一般的な
試料の場合は、反射電子の放射方向分布が入射角によっ
て変化し、入射角の鏡面反射の方向に分布の最大値を有
することから、反射電子の放出方向は試料表面の凹凸に
より、反射電子の反射角度が反射電子検出器3の外周部
の角θ2 に近い領域、またはθ2 を超える領域への放出
が増大して、反射電子検出器3に入射しない反射電子が
増加する。そして、間隔dを大きくしてθ1 ,θ2 を小
さくした元素分析の組成像優先の条件下では、角θ2
近い領域または角θ2 を超える領域への反射電子が、試
料表面の凹凸情報を持っているので、試料の凹凸を含む
情報、即ち立体像を得ることができず、立体感の低下し
た画像しか得られないことになる。
However, in the case of a general sample whose surface has severe irregularities, the radiation direction distribution of reflected electrons changes depending on the incident angle, and the maximum value of the distribution occurs in the specular reflection direction of the incident angle. In the electron emission direction, due to the unevenness of the sample surface, the emission angle of the backscattered electrons increases to a region close to the angle θ 2 of the outer periphery of the backscattered electron detector 3 or a region exceeding θ 2 to detect backscattered electrons. The number of reflected electrons that do not enter the container 3 increases. Then, theta 1 by increasing the distance d, under the conditions of the composition image priority theta 2 Decrease the elemental analysis, the reflected electrons to the region beyond the region or angle theta 2 closer to the corner theta 2, the sample surface irregularity Since it has information, it is not possible to obtain information including unevenness of the sample, that is, a stereoscopic image, and only an image with a reduced stereoscopic effect can be obtained.

【0009】[0009]

【発明が解決しようとする課題】そこで従来は、図7に
示すように、反射電子検出器3を照射電子線4と直交す
る平面内で移動させ、角θ2 を超える領域の反射電子を
捕捉する手段が採られていた。しかし反射電子検出器を
平面内で移動させるといっても、移動できるのは直線移
動であるから、一定の方向にしか移動できず、1/2ま
たは1/4に分割された検出素子を用いて、それらを放
射方向に移動させたとしても、360°の方向に発散す
る全ての領域において、角θ2 を超える反射電子を捕捉
することは困難で、立体感のある画像を得るには不充分
であった。
Therefore, conventionally, as shown in FIG. 7, the backscattered electron detector 3 is moved in a plane orthogonal to the irradiation electron beam 4 to capture backscattered electrons in an area exceeding the angle θ 2. The means to do was adopted. However, even if the backscattered electron detector is moved in a plane, since it can move only in a linear direction, it can move only in a fixed direction, and a detection element divided into ½ or ¼ is used. Therefore, even if they are moved in the radial direction, it is difficult to capture the backscattered electrons exceeding the angle θ 2 in all the regions diverging in the direction of 360 °, which is not suitable for obtaining a stereoscopic image. It was enough.

【0010】この発明はこのような従来の課題に着目し
てなされたもので、電子線照射点と反射電子検出器の孔
とで形成される円錐の半頂角θ1 を小さな角度として電
子線近傍の反射電子を捕捉し、平らに研磨された試料で
は、試料表面の良質な組成像を得るようにすると共に、
試料表面に凹凸がある場合には、反射電子検出器の外周
部に発散する反射電子をも捕捉して、立体的な画像を得
ることができるようにした荷電粒子線装置の検出器を提
供することを目的とする。
The present invention has been made by paying attention to such a conventional problem as described above, and the half apex angle θ 1 of the cone formed by the electron beam irradiation point and the hole of the backscattered electron detector is set to a small angle. In the case of a sample flattened by capturing backscattered electrons in the vicinity, a high-quality composition image of the sample surface is obtained, and
Provided is a detector for a charged particle beam device capable of capturing a three-dimensional image by trapping backscattered electrons diverging to the outer periphery of the backscattered electron detector when the sample surface has irregularities. The purpose is to

【0011】[0011]

【課題を解決するための手段】本発明は、上記の課題を
解決するための手段として、その構成を、試料上に荷電
粒子線を走査し、該走査に伴って試料より発生する反射
電子を反射電子検出器により検出し、該反射電子検出器
の出力信号に基づいて試料像を表示する荷電粒子線装置
において、前記検出器は、半径が異なる同心円からなる
少なくとも2つ以上の円環状板体で形成され、かつ各円
環状板体に少なくとも2個以上の検出素子を有すること
とした。
As a means for solving the above-mentioned problems, the present invention has a constitution in which a sample is scanned with a charged particle beam, and reflected electrons generated from the sample in association with the scanning are generated. In a charged particle beam device that detects a backscattered electron detector and displays a sample image based on an output signal of the backscattered electron detector, the detector comprises at least two or more annular plate members each having a concentric circle with a different radius. And each annular plate member has at least two or more detection elements.

【0012】また、前記検出素子は各々独立した信号増
幅器を有し、該信号増幅器からの出力は信号加算器およ
び信号減算器に接続され、該信号加算器および信号減算
器により加算または減算された信号は、選択的に、画像
表示手段に出力されることとした。
Further, each of the detection elements has an independent signal amplifier, and an output from the signal amplifier is connected to a signal adder and a signal subtractor, and added or subtracted by the signal adder and the signal subtractor. The signal is selectively output to the image display means.

【0013】[0013]

【作用】荷電粒子線装置の検出器は、半径が異なる同心
円からなる少なくとも2つ以上の円環状板体で形成さ
れ、かつ各円環状板体に少なくとも2個以上の検出素子
を有するので、検出器によって捕捉される反射電子の領
域が拡大し、試料と反射電子検出器との間隔を大きくし
て、試料の電子線照射点と反射電子検出器の孔とで形成
される円錐の半頂角を小さくし、照射電子線に近い領域
の反射電子を検出できるようにし、また、反射電子検出
器でカバーできる面積が増大するため、表面に激しい凹
凸がある一般的な試料の場合にも、試料の凹凸を含む情
報、即ち立体像を得ることができ、立体感のある画像が
得られるようになる。
The detector of the charged particle beam device is formed by at least two or more annular plate members each having concentric circles with different radii, and each annular plate member has at least two or more detection elements. The area of the backscattered electrons captured by the instrument expands, the distance between the sample and the backscattered electron detector is increased, and the half-vertical angle of the cone formed by the electron beam irradiation point of the sample and the hole of the backscattered electron detector To make it possible to detect backscattered electrons in the region close to the irradiation electron beam, and to increase the area that can be covered by the backscattered electron detector. It is possible to obtain information including the unevenness of, that is, a stereoscopic image, and an image having a stereoscopic effect can be obtained.

【0014】更に、前記検出素子は各々独立した信号増
幅器を有し、該信号増幅器からの出力は信号加算器およ
び信号減算器に接続され、該信号加算器および信号減算
器により加算または減算された信号は、選択的に、画像
表示手段に出力するので、さらに明確な原子番号のコン
トラスト(組成像)と凹凸のコントラスト(凹凸像)を
得ることができる。
Further, each of the detection elements has an independent signal amplifier, and the output from the signal amplifier is connected to a signal adder and a signal subtractor, and added or subtracted by the signal adder and the signal subtractor. Since the signal is selectively output to the image display means, a clearer atomic number contrast (composition image) and unevenness contrast (unevenness image) can be obtained.

【0015】[0015]

【実施例】以下、この発明を図面に基づいて説明する。
図4の場合と同様に、荷電粒子線装置において、試料1
と対物レンズ2との間に反射電子検出器を配置し、電子
線4を試料1の平面上で、二次元的に走査・照射し、そ
の走査・照射に伴って試料1から得られる反射電子を、
試料1の上方に配置した反射電子検出器により検出し、
その反射電子検出器の出力信号に基づいて試料像を表示
するが、この点は従来技術と同様で、同一部材は同一符
号を以て示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.
As in the case of FIG. 4, in the charged particle beam device, the sample 1
A backscattered electron detector is arranged between the objective lens 2 and the objective lens 2, the electron beam 4 is two-dimensionally scanned / irradiated on the plane of the sample 1, and the backscattered electrons obtained from the sample 1 along with the scanning / irradiation. To
Detected by a backscattered electron detector arranged above the sample 1,
The sample image is displayed based on the output signal of the backscattered electron detector. This point is the same as in the prior art, and the same members are denoted by the same reference numerals.

【0016】図1は本発明の構成図で、図1(a)は反
射電子検出器10を真下から見た平面図を示しており、
反射電子検出器10の検出素子11は、半径が異なる同
心円からなる3個の円環状板体12,13,14で形成
されている。そして、一番内側の円環状板体12は、円
周方向で2個に分割され、検出素子12a,12bとな
っており、その外側の円環状板体13は、円周方向で4
個に分割されて、検出素子13a,13b,13c,1
3dとなっている。一番外側の円環状板体14は、円周
方向で8個に分割されて、検出素子14a,14b,…
…14hとなっている。
FIG. 1 is a block diagram of the present invention, and FIG. 1A shows a plan view of the backscattered electron detector 10 as seen from directly below,
The detection element 11 of the backscattered electron detector 10 is formed by three annular plate bodies 12, 13, 14 which are concentric circles having different radii. The innermost annular plate body 12 is divided into two in the circumferential direction to form the detection elements 12a and 12b, and the outer annular plate body 13 is divided into four in the circumferential direction.
The detection elements 13a, 13b, 13c, 1 are divided into individual pieces.
It is 3d. The outermost annular plate 14 is divided into eight pieces in the circumferential direction, and the detection elements 14a, 14b, ...
… It has been 14 hours.

【0017】一番内側の円環状板体12の中心には、照
射荷電粒子線が通過するための通孔15があけられてお
り、その直径は約3mmである。図1(b)は反射電子
検出器10の検出素子11全体と、試料1との位置関係
を示す側面図である。こゝで試料1と検出素子11との
間隔dをある一定値としたとき、試料1の荷電粒子線照
射点8と円環状板体12の通孔15とで形成される円錐
の半頂角をθ1 、試料1の荷電粒子線線照射点8と円環
状板体12,13,14の外周部とで形成される円錐の
半頂角をそれぞれθ2 , θ3 , θ4 とする。なお、検出
素子11は基板16の上に張り付けられた構造で、基板
16の中央部にも、一番内側の円環状板体12の孔15
に相当する孔17があけられている。
At the center of the innermost annular plate body 12, there is formed a through hole 15 for the irradiation charged particle beam to pass through, and its diameter is about 3 mm. FIG. 1B is a side view showing the positional relationship between the entire detection element 11 of the backscattered electron detector 10 and the sample 1. Here, when the distance d between the sample 1 and the detection element 11 is set to a constant value, the half-vertical angle of the cone formed by the charged particle beam irradiation point 8 of the sample 1 and the through hole 15 of the annular plate 12 Is θ 1 , and the half apex angles of the cone formed by the charged particle beam irradiation point 8 of the sample 1 and the outer peripheral portions of the annular plate bodies 12, 13, 14 are θ 2 , θ 3 , and θ 4 , respectively. The detection element 11 has a structure in which it is attached onto the substrate 16, and the hole 15 of the innermost annular plate body 12 is also formed in the central portion of the substrate 16.
A hole 17 corresponding to is formed.

【0018】そうすると、試料1と検出素子11との間
隔dを大きくして通孔15で形成される角θ1 を小さく
し、照射電子線に近い領域の反射電子を検出できるよう
にして、平らな試料表面の良質な組成像を得るようにし
ても、角θ3 , θ4 が大きい値となるので、反射電子検
出器10の検出素子11全体でカバーできる面積が増大
し、検出できない反射電子の数が減少する。よって、表
面に激しい凹凸がある一般的な試料の場合でも、試料の
凹凸を含む情報、即ち立体像を得ることができ、立体感
のある画像が得られる。
Then, the distance d between the sample 1 and the detection element 11 is increased to decrease the angle θ 1 formed by the through hole 15 so that the backscattered electrons in the region close to the irradiation electron beam can be detected, and the flatness can be obtained. Even if a high quality composition image of the sample surface is obtained, the angles θ 3 and θ 4 have large values, so that the area that can be covered by the entire detection element 11 of the backscattered electron detector 10 increases, and backscattered electrons that cannot be detected are detected. The number of is reduced. Therefore, even in the case of a general sample having a rough surface, the information including the unevenness of the sample, that is, the stereoscopic image can be obtained, and an image having a stereoscopic effect can be obtained.

【0019】また、図2に示すように、上記の各検出素
子12a,12b……13a,………14hは各々独立
した信号増幅器20を有して増幅される。こゝで、一番
内側の円環状板体12を第1トラック、その外側の円環
状板体13を第2トラック、一番外側の円環状板体14
を第3トラックと呼ぶことにする。
Further, as shown in FIG. 2, each of the detection elements 12a, 12b ... 13a, ... 14h has an independent signal amplifier 20 and is amplified. Here, the innermost circular plate member 12 is the first track, the outer circular plate member 13 is the second track, and the outermost circular plate member 14 is the second track.
Will be referred to as the third track.

【0020】第1トラックにおいては、検出素子12
a,12bからの信号を、各信号増幅器20で増幅する
が、第1トラックの検出素子同士では差し当たり加算し
ない。第2トラックにおいては、検出素子13a……1
3dからの信号を、各信号増幅器20で増幅し、その出
力を加算器22,22’に入力して加算し、その出力を
検出素子12a,12bからの信号と共に加算器23,
23’に入力する。第3トラックにおいては、検出素子
14a…………14hからの信号を、各信号増幅器20
で増幅し、その出力を加算器21,21’に入力して加
算し、さらに加算器23,23’の出力と共に加算器2
4,24’に入力する。
In the first track, the detecting element 12
The signals from a and 12b are amplified by the respective signal amplifiers 20, but the detection elements of the first track do not add at the moment. In the second track, the detecting elements 13a ... 1
The signal from 3d is amplified by each signal amplifier 20, the output is input to the adders 22 and 22 'and added, and the output is added together with the signals from the detection elements 12a and 12b to the adder 23,
23 '. In the third track, the signals from the detection elements 14a ...
The output is input to the adders 21 and 21 'for addition, and the outputs from the adders 23 and 23' are added together with the adder 2
Input in 4, 24 '.

【0021】加算器23,23’に入力された図面上で
の左右の半円状の第1トラック及び第2トラックの検出
情報は、各々減算器33に入力されて、第1トラック及
び第2トラックでの左右のブロックの検出差の情報が出
力され、また、加算器24,24’に入力された図面上
での左右の半円状の第1トラック、第2トラック及び第
3トラックの検出情報は、各々減算器34に入力され
て、第1トラック、第2トラック及び第3トラックでの
左右のブロックの検出差の情報が出力される。
The detection information of the left and right semicircular first and second tracks on the drawing, which are input to the adders 23 and 23 ', are input to the subtractor 33, and the first and second tracks are input. Information on the detection difference between the left and right blocks on the track is output, and the left and right semi-circular first track, second track, and third track on the drawing which are input to the adders 24 and 24 'are detected. The information is input to the subtractor 34, and the information on the detection difference between the left and right blocks on the first track, the second track, and the third track is output.

【0022】さらに、第1トラックにおいて、検出素子
12a,12bからの信号を、各信号増幅器20で増幅
し、その出力を加算器25、減算器28にそれぞれ入力
し、第2トラックにおいて、検出素子13a……13d
からの信号を、各信号増幅器20で増幅して加算器2
2,22’で加算し、その各々の出力を加算器26、減
算器29にそれぞれ入力する。さらに第3トラックにお
いて、検出素子14a…………14hからの信号を、各
信号増幅器20で増幅して加算器22,22’で加算
し、その出力を加算器27、減算器30にそれぞれ入力
する。
Further, in the first track, the signals from the detection elements 12a and 12b are amplified by the respective signal amplifiers 20, and the outputs are input to the adder 25 and the subtractor 28, respectively, and in the second track, the detection elements are detected. 13a ... 13d
The signal from is amplified by each signal amplifier 20 and added by the adder 2
2, 22 'are added, and the respective outputs are input to the adder 26 and the subtractor 29, respectively. Further, in the third track, the signals from the detection elements 14a ... 14h are amplified by the signal amplifiers 20 and added by the adders 22 and 22 ', and the outputs are input to the adder 27 and the subtractor 30, respectively. To do.

【0023】加算器25,26,27からの出力とし
て、第1トラック、第2トラック及び第3トラックのそ
れぞれの環状に配置された検出素子からの検出情報が得
られ、減算器28,29,30からの出力として、第1
トラック、第2トラック及び第3トラックでの左右の半
円状のブロックの検出差の情報が得られる。そして、加
算器25,26からの出力は加算器31に入力され、加
算器31の出力として、第1トラック及び第2トラック
の合計の環状に配置された検出素子からの検出情報が得
られ、加算器31及び加算器27の出力は加算器32に
入力され、加算器32の出力として、第1トラック、第
2トラック及び第3トラックの全部の合計の、環状に配
置された検出素子からの検出情報が得られる。
As the outputs from the adders 25, 26 and 27, the detection information from the detection elements arranged in the respective loops of the first track, the second track and the third track is obtained, and the subtractors 28, 29, As the output from 30, the first
Information on the detection difference between the left and right semicircular blocks on the track, the second track, and the third track can be obtained. Then, the outputs from the adders 25 and 26 are input to the adder 31, and as the output of the adder 31, the detection information from the detection elements arranged in the annular shape of the total of the first track and the second track is obtained, The outputs of the adder 31 and the adder 27 are input to the adder 32, and the output of the adder 32 is the total of the first track, the second track, and the third track from the detection elements arranged in a ring. Detection information is obtained.

【0024】そして、環状形状の各トラックごとの検出
情報は、加算器25,26,27からの信号を、信号選
択スイッチ35により選択されて、CRT40に画像表
示され、また、第1トラック及び第2トラックの出力和
の検出情報は、加算器31からの信号を、信号選択スイ
ッチ35により選択されて画像表示される。更に、第1
トラック、第2トラック及び第3トラックの出力和の検
出情報は、加算器32からの信号を、信号選択スイッチ
35により選択されて画像表示され、これらの画像表示
により試料の組成像を得ることができる。
The detection information of each track of the annular shape is selected from the signals from the adders 25, 26 and 27 by the signal selection switch 35 and displayed on the CRT 40 as an image. As the detection information of the output sum of the two tracks, the signal from the adder 31 is selected by the signal selection switch 35 and displayed as an image. Furthermore, the first
The detection information of the output sum of the track, the second track, and the third track is displayed by displaying the image from the signal from the adder 32 by the signal selection switch 35, and the composition image of the sample can be obtained by these image displays. it can.

【0025】また、第1トラック、第2トラック及び第
3トラックのそれぞれにおける左右の半円状のブロック
の検出情報の出力差は、減算器28,29,30からの
信号を、信号選択スイッチ35により選択されてCRT
40に画像表示され、第1トラック及び第2トラックを
合わせた、左右の半円状のブロックにおける検出情報の
出力差は、減算器33からの信号を、信号選択スイッチ
35により選択されて画像表示される。さらに、第1ト
ラック、第2トラック及び第3トラックとを合わせた、
左右の半円状のブロックにおける検出情報の出力差は、
減算器34からの信号を、信号選択スイッチ35により
選択されて画像表示され、これらの画像表示により試料
の凹凸のコントラスト(凹凸像)を得ることができる。
Further, the output difference of the detection information of the left and right semi-circular blocks on each of the first track, the second track and the third track, the signals from the subtracters 28, 29 and 30 are changed to the signal selection switch 35. Selected by CRT
The output difference of the detection information in the left and right semi-circular blocks in which the first track and the second track are combined is displayed on the image 40, and the signal from the subtractor 33 is selected by the signal selection switch 35 to display the image. To be done. Furthermore, combining the first track, the second track, and the third track,
The output difference of the detection information in the left and right semicircular blocks is
The signal from the subtractor 34 is selected by the signal selection switch 35 and displayed as an image, and the contrast of the unevenness of the sample (unevenness image) can be obtained by these image displays.

【0026】また、反射電子がもたらす試料に関する情
報は、照射電子線と反射電子の放出方向とがなす角(散
乱角)αにより異なり、αが小さい場合は元素の組成情
報を多く持ち、αが大きい場合は試料表面の凹凸情報を
多くもたらす。よって、上記のような構成の反射電子検
出器と付帯回路を設けた場合には、反射電子検出器をト
ラック毎に使用することで、散乱角αにより反射電子信
号を選択使用できるという特徴がある。
Further, the information about the sample brought by the reflected electrons depends on the angle (scattering angle) α formed by the irradiation electron beam and the emission direction of the reflected electrons. When α is small, there is a lot of information on the composition of the element, and α is If it is large, it gives a lot of information about the surface roughness of the sample. Therefore, when the backscattered electron detector and the auxiliary circuit having the above-described configuration are provided, the backscattered electron detector is used for each track, and thus the backscattered electron signal can be selectively used according to the scattering angle α. .

【0027】即ち、 第1トラックのみを使用した場合には、散乱角の小
さい反射電子のみによる画像が得られ、良質の組成像が
得られる。 第2トラックのみを使用した場合には、散乱角が中
程度の反射電子により、組成情報と立体情報を持つ画像
が得られる。 第3トラックのみを使用した場合には、散乱角の大
きい反射電子による画像が得られ、組成情報を抑制し、
立体情報に富んだ表示が得られる。 また複数のトラックを同時に使用して、情報量の多い良
質の画像を選択的に観察することが可能となる。
That is, when only the first track is used, an image can be obtained only by backscattered electrons having a small scattering angle, and a high-quality composition image can be obtained. When only the second track is used, an image having composition information and stereoscopic information can be obtained by the reflected electrons having a medium scattering angle. When only the third track is used, an image by backscattered electrons with a large scattering angle is obtained, composition information is suppressed,
A display rich in three-dimensional information can be obtained. Further, it becomes possible to selectively observe a high-quality image having a large amount of information by using a plurality of tracks at the same time.

【0028】更に、上記の構成により、素子性能、応答
速度を低下させない素子の最適サイズを使用することが
できる。また電気的に信号を加算することにより、検出
素子の検出面積を大きくすることができ、同時に検出面
積を広げたことによる応答速度の低下を防ぐことができ
るという利点もある。
Further, with the above configuration, it is possible to use the optimum size of the element which does not deteriorate the element performance and the response speed. Further, there is an advantage that the detection area of the detection element can be increased by electrically adding the signals, and at the same time, the reduction of the response speed due to the increase of the detection area can be prevented.

【0029】その他、検出信号を減算処理することによ
り、凹凸表示も可能になり、トラック毎、あるいは全素
子、または複数の特定トラックのみによる凹凸像の表示
もできる。また、応用として、第1トラックの左右の素
子の出力を減算した凹凸像信号と、第2または第3、あ
るいは第2と第3を加えた立体像信号とを、さらに加算
することも可能で、試料面上の大きな立体構造画像に、
微細な凹凸を強調して重ね合わせることもできる。
In addition, by performing subtraction processing on the detection signal, it is possible to display unevenness, and it is also possible to display unevenness image for each track, all elements, or only a plurality of specific tracks. Further, as an application, it is possible to further add the uneven image signal obtained by subtracting the outputs of the left and right elements of the first track and the stereoscopic image signal obtained by adding the second or the third or the second and the third. , A large three-dimensional structure image on the sample surface,
It is also possible to emphasize fine irregularities and superimpose them.

【0030】また本発明の特徴は、立体的な画像を得る
ために、反射電子検出器の位置を移動する必要がなく、
検出器は位置固定のまゝで、組成像から立体像までを信
号選択スイッチの切換えのみにより、容易に観察を行う
ことができることである。
The feature of the present invention is that it is not necessary to move the position of the backscattered electron detector to obtain a stereoscopic image,
The position of the detector is fixed, and the composition image to the stereoscopic image can be easily observed only by switching the signal selection switch.

【0031】なお、上記の実施例では円環状板体が3個
の場合について述べたが、円環状板体は3個に限らず、
図3に示すように、2個以上であれば、第1トラック3
1、第2トラック32、第3トラック33……第nトラ
ックNなどを設けて、2個、4個以上どのような数でも
よいことは勿論であり、周方向の分割も、図1の実施例
のような、内側から2,4,8分割にしたものに限定さ
れず、どのように分割したものでもよい。
In the above embodiment, the case where the number of annular plate members is three has been described, but the number of annular plate members is not limited to three,
As shown in FIG. 3, if there are two or more tracks, the first track 3
It is needless to say that the first track, the second track 32, the third track 33, ..., The n-th track N, etc. may be provided and any number of two, four or more may be provided. The example is not limited to the one divided into 2, 4, and 8 from the inside, and any division may be used.

【0032】[0032]

【発明の効果】以上説明したように、この発明によれ
ば、荷電粒子線装置の検出器を、半径が異なる同心円か
らなる少なくとも2つ以上の円環状板体で形成され、か
つ各円環状板体に少なくとも2個以上の検出素子を有す
ることとしたので、平らに研磨された試料では、電子線
近傍の反射電子を捕捉して、試料表面の良質な組成像、
つまり元素成分の違いにより信号量の変化を生じ、これ
による画像コントラストで形成される元素成分の分布像
を得ることができ、しかも、試料表面の凹凸のある一般
的な試料では、反射電子検出器の外周部に発散する反射
電子を捕捉することができて、試料の凹凸を含む情報、
即ち立体像を得ることができ、立体感のある画像が得ら
れるという効果を有する。
As described above, according to the present invention, the detector of the charged particle beam device is formed by at least two or more annular plate members each having a concentric circle with a different radius, and each annular plate. Since the body has at least two detection elements, the flatly polished sample captures the backscattered electrons in the vicinity of the electron beam to obtain a high-quality composition image of the sample surface,
In other words, the difference in the signal component occurs due to the difference in the elemental component, and the distribution image of the elemental component formed by the image contrast due to this can be obtained. It is possible to capture the backscattered electrons diverging to the outer peripheral part of the
That is, there is an effect that a stereoscopic image can be obtained and an image having a stereoscopic effect can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a)は反射電子検出器を真下から見た平
面図、図1(b)は反射電子検出器の検出素子全体と試
料との位置関係を示す側面図である。
FIG. 1 (a) is a plan view of a backscattered electron detector as seen from directly below, and FIG. 1 (b) is a side view showing the positional relationship between the entire detection element of the backscattered electron detector and a sample.

【図2】本発明の反射電子検出器の検出素子に、増幅
器、加減算器等と画像表示手段を付加したものの回路図
である。
FIG. 2 is a circuit diagram of a detection element of the backscattered electron detector of the present invention to which an amplifier, an adder / subtractor and the like and an image display means are added.

【図3】本発明の他の実施例の反射電子検出器の平面図
である。
FIG. 3 is a plan view of a backscattered electron detector according to another embodiment of the present invention.

【図4】従来の、反射電子検出器を備えた荷電粒子線装
置の試料と反射電子検出器の部分の側面図である。
FIG. 4 is a side view of a sample and a backscattered electron detector of a conventional charged particle beam apparatus including a backscattered electron detector.

【図5】従来の、反射電子検出器の検出素子と該検出素
子に連接する機器の回路図で、図5(a)は素子を2分
割した場合、図5(b)は4分割した場合である。
5A and 5B are circuit diagrams of a conventional detection element of a backscattered electron detector and a device connected to the detection element. FIG. 5A shows a case where the element is divided into two, and FIG. 5B shows a case where the element is divided into four. Is.

【図6】従来の、反射電子検出器と試料との位置関係を
示す側面図である。
FIG. 6 is a side view showing a conventional positional relationship between a backscattered electron detector and a sample.

【図7】従来の反射電子検出器の検出素子を、荷電粒子
線と直交する平面内で移動させる場合で、図7(a)は
側面図、図7(b)は平面図である。
FIG. 7A is a side view and FIG. 7B is a plan view when a detection element of a conventional backscattered electron detector is moved in a plane orthogonal to a charged particle beam.

【符号の説明】[Explanation of symbols]

1 試料 10 反射電子検出器 11 検出素子 12,13,14 円環状板体 20 信号増幅器 21,21’,22,22’,23,23’,24,2
4’,25,26,27,31,32 信号加算器 28,29,30,33,34 信号減算器 40 CRT(画像表示手段)
DESCRIPTION OF SYMBOLS 1 sample 10 backscattered electron detector 11 detection element 12, 13, 14 annular plate body 20 signal amplifier 21, 21 ', 22, 22', 23, 23 ', 24, 2
4 ', 25,26,27,31,32 signal adder 28,29,30,33,34 signal subtractor 40 CRT (image display means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 試料上に荷電粒子線を走査し、該走査に
伴って試料より発生する反射電子を反射電子検出器によ
り検出し、該反射電子検出器の出力信号に基づいて試料
像を表示する荷電粒子線装置において、 前記検出器は、半径が異なる同心円からなる少なくとも
2つ以上の円環状板体で形成され、かつ各円環状板体に
少なくとも2個以上の検出素子を有することを特徴とす
る荷電粒子線装置の検出器。
1. A sample is scanned with a charged particle beam, backscattered electrons generated from the sample in association with the scanning are detected by a backscattered electron detector, and a sample image is displayed based on an output signal of the backscattered electron detector. In the charged particle beam device, the detector is formed of at least two or more annular plate bodies formed of concentric circles having different radii, and each annular ring plate body has at least two or more detection elements. And a detector of the charged particle beam device.
【請求項2】 請求項1において、前記検出素子は各々
独立した信号増幅器を有し、該信号増幅器からの出力は
信号加算器および信号減算器に接続され、該信号加算器
および信号減算器により加算または減算された信号は、
選択的に、画像表示手段に出力されることを特徴とする
荷電粒子線装置の検出器。
2. The detection element according to claim 1, wherein each of the detection elements has an independent signal amplifier, and the output from the signal amplifier is connected to a signal adder and a signal subtractor, and the signal adder and the signal subtractor are used. The added or subtracted signal is
A detector of a charged particle beam device, which is selectively output to an image display means.
JP5216004A 1993-08-31 1993-08-31 Detector of charged-corpuscular beam device Pending JPH0765775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5216004A JPH0765775A (en) 1993-08-31 1993-08-31 Detector of charged-corpuscular beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5216004A JPH0765775A (en) 1993-08-31 1993-08-31 Detector of charged-corpuscular beam device

Publications (1)

Publication Number Publication Date
JPH0765775A true JPH0765775A (en) 1995-03-10

Family

ID=16681805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5216004A Pending JPH0765775A (en) 1993-08-31 1993-08-31 Detector of charged-corpuscular beam device

Country Status (1)

Country Link
JP (1) JPH0765775A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259516A (en) * 2003-02-25 2004-09-16 Fujitsu Ltd Scanning transmission electron microscope
JP2007220317A (en) * 2006-02-14 2007-08-30 Jeol Ltd Electron beam inspection method and device
JP2009105037A (en) * 2007-10-04 2009-05-14 Jeol Ltd Pin type detector, charged particle beam device provided with pin type detector
JP2011243516A (en) * 2010-05-21 2011-12-01 Univ Of Tokyo Adjustment method of multiple division stem detector
WO2015053262A1 (en) * 2013-10-08 2015-04-16 株式会社日立ハイテクノロジーズ Charged particle beam device and charged particle beam device control method
JP2016109600A (en) * 2014-12-09 2016-06-20 パルステック工業株式会社 X-ray diffraction measurement system
EP3573086A1 (en) 2018-05-24 2019-11-27 Jeol Ltd. Charged particle beam apparatus and image acquisition method
JP2019204704A (en) * 2018-05-24 2019-11-28 日本電子株式会社 Charged particle beam device and image acquisition method
WO2019224896A1 (en) * 2018-05-22 2019-11-28 株式会社日立ハイテクノロジーズ Charged particle beam device and detector position adjustment method for charged particle beam device
KR20200042525A (en) * 2017-09-26 2020-04-23 에이에스엠엘 네델란즈 비.브이. Detection of buried features by backscattering particles

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259516A (en) * 2003-02-25 2004-09-16 Fujitsu Ltd Scanning transmission electron microscope
JP2007220317A (en) * 2006-02-14 2007-08-30 Jeol Ltd Electron beam inspection method and device
JP2009105037A (en) * 2007-10-04 2009-05-14 Jeol Ltd Pin type detector, charged particle beam device provided with pin type detector
JP2011243516A (en) * 2010-05-21 2011-12-01 Univ Of Tokyo Adjustment method of multiple division stem detector
WO2015053262A1 (en) * 2013-10-08 2015-04-16 株式会社日立ハイテクノロジーズ Charged particle beam device and charged particle beam device control method
CN105593966A (en) * 2013-10-08 2016-05-18 株式会社日立高新技术 Charged particle beam device and charged particle beam device control method
US20160203947A1 (en) * 2013-10-08 2016-07-14 Hitachi High-Technologies Corporation Charged Particle Beam Device and Charged Particle Beam Device Control Method
JPWO2015053262A1 (en) * 2013-10-08 2017-03-09 株式会社日立ハイテクノロジーズ Charged particle beam device and control method of charged particle beam device
US9881769B2 (en) 2013-10-08 2018-01-30 Hitachi High-Technologies Corporation Charged particle beam device and charged particle beam device control method
JP2016109600A (en) * 2014-12-09 2016-06-20 パルステック工業株式会社 X-ray diffraction measurement system
KR20200042525A (en) * 2017-09-26 2020-04-23 에이에스엠엘 네델란즈 비.브이. Detection of buried features by backscattering particles
JP2020535584A (en) * 2017-09-26 2020-12-03 エーエスエムエル ネザーランズ ビー.ブイ. Detection of embedded features by backscattered particles
JP2022069444A (en) * 2017-09-26 2022-05-11 エーエスエムエル ネザーランズ ビー.ブイ. Detection of buried features by backscattered particles
US11443915B2 (en) 2017-09-26 2022-09-13 Asml Netherlands B.V. Detection of buried features by backscattered particles
WO2019224896A1 (en) * 2018-05-22 2019-11-28 株式会社日立ハイテクノロジーズ Charged particle beam device and detector position adjustment method for charged particle beam device
JPWO2019224896A1 (en) * 2018-05-22 2021-05-20 株式会社日立ハイテク Charged particle beam device and detector position adjustment method for charged particle beam device
US11342155B2 (en) 2018-05-22 2022-05-24 Hitachi High-Tech Corporation Charged particle beam device and method for adjusting position of detector of charged particle beam device
JP2019204704A (en) * 2018-05-24 2019-11-28 日本電子株式会社 Charged particle beam device and image acquisition method
JP2019204706A (en) * 2018-05-24 2019-11-28 日本電子株式会社 Charged particle beam device and image acquisition method
EP3588532A1 (en) 2018-05-24 2020-01-01 Jeol Ltd. Charged particle beam apparatus and image acquisition method
EP3573086A1 (en) 2018-05-24 2019-11-27 Jeol Ltd. Charged particle beam apparatus and image acquisition method
US10720304B2 (en) 2018-05-24 2020-07-21 Jeol Ltd. Charged particle beam apparatus and image acquisition method
US10763077B2 (en) 2018-05-24 2020-09-01 Jeol Ltd. Charged particle beam apparatus and image acquisition method

Similar Documents

Publication Publication Date Title
US20170074810A1 (en) Method and apparatus for inspecting a substrate
JPH0765775A (en) Detector of charged-corpuscular beam device
JPS62121340A (en) Method and device for displaying target body to be observed in dark field by scanning type optical microscope
EP0669538B1 (en) Method of measuring magnetic field and charged particle beam apparatus using the same method
TWI696846B (en) Multi-beam dark field imaging
JP4084580B2 (en) Surface defect inspection equipment
JP3987208B2 (en) Scanning transmission electron microscope
JPH0234149B2 (en)
JP4372339B2 (en) Irregular image forming apparatus and electron beam analyzer
US20030102430A1 (en) Scanning electron microscope system
JPH09311112A (en) Defect inspection device
JP2004251674A (en) Projection/recess determining method on specimen and charged particle beam device
JP2675335B2 (en) Backscattered electron detector
JP4783338B2 (en) Charged particle beam apparatus and method for inspecting a sample
JPH06181045A (en) Image observation method and transmitted electron microscope apparatus
JPH01253143A (en) Secondary electron detecting device
JPS58225306A (en) Recording and display of geometrical information of sample surface by irradiation of electron beam
JPH10325713A (en) Method and instrument for inspecting surface defect
KR20200109246A (en) Method and system for zone axis alignment
JP2019204706A (en) Charged particle beam device and image acquisition method
JP4187544B2 (en) Scanning transmission electron microscope
JP2000123774A (en) Scanning tunneling electron microscope
JP3421522B2 (en) Pattern inspection apparatus, pattern inspection apparatus using electron beam, and method therefor
US20220392738A1 (en) Charged Particle Beam Apparatus and Image Acquiring Method
US20210358712A1 (en) Generating three dimensional information regarding structural elements of a specimen