JPH0765229B2 - Method for forming porous layer on metal surface - Google Patents

Method for forming porous layer on metal surface

Info

Publication number
JPH0765229B2
JPH0765229B2 JP61221064A JP22106486A JPH0765229B2 JP H0765229 B2 JPH0765229 B2 JP H0765229B2 JP 61221064 A JP61221064 A JP 61221064A JP 22106486 A JP22106486 A JP 22106486A JP H0765229 B2 JPH0765229 B2 JP H0765229B2
Authority
JP
Japan
Prior art keywords
porous layer
metal
heat transfer
plating solution
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61221064A
Other languages
Japanese (ja)
Other versions
JPS6376894A (en
Inventor
保夫 増田
務 高橋
与司夫 滝沢
尚一 吉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP61221064A priority Critical patent/JPH0765229B2/en
Priority to FI864554A priority patent/FI85060C/en
Priority to DE8686115606T priority patent/DE3677338D1/en
Priority to EP86115606A priority patent/EP0224761B1/en
Publication of JPS6376894A publication Critical patent/JPS6376894A/en
Priority to US07/221,999 priority patent/US4826578A/en
Priority to US07/221,990 priority patent/US4879185A/en
Publication of JPH0765229B2 publication Critical patent/JPH0765229B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/623Porosity of the layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2200/00Prediction; Simulation; Testing
    • F28F2200/005Testing heat pipes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、金属表面における多孔質層の形成方法に係わ
り、特に、熱交換器の伝熱面やヒートパイプのウィック
を形成する際に用いて好適な金属表面における多孔質層
の形成方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for forming a porous layer on a metal surface, and is particularly used for forming a heat transfer surface of a heat exchanger or a wick of a heat pipe. The present invention relates to a method for forming a porous layer on a suitable metal surface.

「従来の技術」 一般に、熱交換器等においては、加熱流体と被加熱流体
とを金属壁によって分離し、該金属壁を介して加熱流体
と被加熱流体との熱交換を行うようにしている。
"Prior Art" Generally, in a heat exchanger or the like, a heating fluid and a fluid to be heated are separated by a metal wall, and heat exchange between the heating fluid and the fluid to be heated is performed via the metal wall. .

一方、このような熱交換を行う場合に、その熱交換効率
を高めるための有効な手段として、以下に示す方法が挙
げられている。
On the other hand, when performing such heat exchange, the following method is mentioned as an effective means for increasing the heat exchange efficiency.

(1)壁の伝熱面積を大きくする。(1) Increase the heat transfer area of the wall.

(2)流体の核沸騰を起こしやすくする。(2) Nucleate boiling of the fluid is easily caused.

(3)流体に乱流を発生させやすいようにする。(3) Make turbulence easily generated in the fluid.

そして、これらの方法のうち、前記(2)の核沸騰を積
極的に利用することが最も効果的であるとされている。
And, among these methods, it is said that positively utilizing the nucleate boiling of the above (2) is the most effective.

そこで従来では、核沸騰の核を生成しやすくするため
に、前記壁の表面、特に、加熱流体が接触させられる側
の面に、焼結あるいは鑞付け等により多孔質層を形成す
ることが行われている。
Therefore, conventionally, in order to easily generate nucleate boiling nuclei, a porous layer is formed by sintering or brazing on the surface of the wall, particularly on the surface on the side where the heated fluid is brought into contact. It is being appreciated.

「発明が解決しようとする問題点」 本発明は、前述した従来の技術における次のような問題
点を解決せんとするものである。
"Problems to be Solved by the Invention" The present invention is intended to solve the following problems in the above-described conventional techniques.

すなわち、金属壁の表面に、鑞付けや焼結によって多孔
質層を形成するに際して、前記金属壁の表面が平面であ
る場合には比較的容易に実施可能であるが、例えば、伝
熱管の内面のように小径な管状物の表面への適用が困難
であり、したがって、適用可能な範囲が制限されてしま
うといった問題点である。
That is, when the porous layer is formed on the surface of the metal wall by brazing or sintering, it can be relatively easily carried out when the surface of the metal wall is a flat surface, for example, the inner surface of the heat transfer tube. As described above, it is difficult to apply it to the surface of a tubular article having a small diameter, and thus the applicable range is limited.

「問題点を解決するための手段」 本発明は、前述した従来の技術における問題点を有効に
解消し得る金属表面における多孔質層の形成方法を提供
せんとするもので、該多孔質層の形成方法は、特に、疎
水性を有する薄膜が形成された金属製基体の表面を鍍金
液中に浸すとともに、該金属製基体の表面近傍に微細気
泡を供給しつつ、前記金属製基体を陰極として、前記鍍
金液中に配設した陽極との間で電気鍍金を行うことを特
徴とする。
"Means for Solving Problems" The present invention is intended to provide a method for forming a porous layer on a metal surface, which can effectively solve the above-mentioned problems in the prior art. The forming method is particularly performed by immersing the surface of the metal base on which a thin film having hydrophobicity is formed in a plating solution and supplying fine bubbles to the vicinity of the surface of the metal base while using the metal base as a cathode. The electroplating is performed between the anode and the anode disposed in the plating solution.

「作用」 本発明に係わる方法によって金属表面に多孔質層が形成
される機構は、次のように考えられる。
"Function" The mechanism by which the porous layer is formed on the metal surface by the method according to the present invention is considered as follows.

金属製基体は、その表面に形成された疎水性の薄膜によ
り鍍金液に対する濡れ性が悪くなっていることから、該
金属製基体の近傍に供給された微細気泡が金属製基体の
表面に付着する。そして、電気鍍金の進行に伴って、金
属製基体の表面に電析金属が成長するが、前述したよう
に金属製基体の表面に気泡が付着しているために、前記
電折金属は気泡を包み込むように成長し、これによって
金属製基体の表面に均一かつ微細な狭口空孔が形成され
る。
Since the metal base has poor wettability with the plating solution due to the hydrophobic thin film formed on the surface thereof, the fine bubbles supplied in the vicinity of the metal base adhere to the surface of the metal base. . Then, as the electroplating progresses, the electrodeposited metal grows on the surface of the metal base, but since the air bubbles adhere to the surface of the metal base as described above, the electro-deposited metal has no bubbles. It grows so as to wrap around, and as a result, uniform and fine narrow pores are formed on the surface of the metal base.

「実施例」 以下、本発明を伝熱管に適用した一実施例に基づき説明
する。
[Example] Hereinafter, an example in which the present invention is applied to a heat transfer tube will be described.

まず、本発明を実施するための装置について説明する。First, an apparatus for carrying out the present invention will be described.

該装置は、第1図に示すように、鍍金液貯蔵容器1と、
伝熱管2の両端部に液密状態で取り付けられるととも
に、該伝熱管2の内部に連通させられたチャンバ3・4
と、該両チャンバ3・4と前記鍍金液貯蔵容器1とを連
絡する鍍金液供給管5および鍍金液回収管6と、前記鍍
金液供給管5に取り付けられた圧送ポンプ7と、該圧送
ポンプ7の下流側に設けられたフィルタ8およびフロー
メータ9と、該フローメータ9の下流側に設けられた気
泡供給装置10と、前記伝熱管2の内部に配設された電極
棒11と、該電極棒11と電極管2とに電気的に接続された
直流電源12とを備えている。
As shown in FIG. 1, the apparatus comprises a plating liquid storage container 1,
Chambers 3 and 4 which are attached to both ends of the heat transfer tube 2 in a liquid-tight state and communicate with the inside of the heat transfer tube 2.
A plating liquid supply pipe 5 and a plating liquid recovery pipe 6 that connect the chambers 3 and 4 to the plating liquid storage container 1, a pressure feed pump 7 attached to the plating liquid feed pipe 5, and the pressure feed pump. 7, a filter 8 and a flow meter 9 provided on the downstream side, a bubble supply device 10 provided on the downstream side of the flow meter 9, an electrode rod 11 disposed inside the heat transfer tube 2, The electrode rod 11 and the DC power source 12 electrically connected to the electrode tube 2 are provided.

前記鍍金貯蔵容器1には、内部の鍍金液(本硫酸銅溶液
が用いられている)を撹拌する撹拌装置13が設けられて
いる。
The plating storage container 1 is provided with a stirrer 13 that stirs a plating solution (the present copper sulfate solution is used) inside.

前記気泡供給装置10は、加圧ガスボンベ14と、該加圧ガ
スボンベ14から送り出されるガスを微細化する微細孔フ
ィルタ15とによって構成されている。そして、本実施例
では前記ガスとして、窒素ガスが用いられている。
The bubble supply device 10 is composed of a pressurized gas cylinder 14 and a micropore filter 15 that miniaturizes the gas sent from the pressurized gas cylinder 14. Then, in this embodiment, nitrogen gas is used as the gas.

前記電極棒11は、本実施例ではTi−Pt等の不溶性電極が
用いられ、前記伝熱管2の中心軸線上に配設されてい
る。また、図示してないが、前記電極棒11は、伝熱管2
の内面との間に、電気絶縁材料によって形成されたスペ
ーサを介装することにより、あるいは、両端部に張力を
加えることにより前述した位置に保持される。
In this embodiment, an insoluble electrode such as Ti-Pt is used as the electrode rod 11, and it is arranged on the central axis of the heat transfer tube 2. Although not shown, the electrode rod 11 is connected to the heat transfer tube 2
It is held at the above-mentioned position by interposing a spacer made of an electrically insulating material between the inner surface of and and the inner surface thereof or by applying tension to both ends.

前記直流電源12は、前記伝熱管2を陰極とし、かつ、前
記電極棒11を陽極とするように電流を供給するようにな
っている。
The DC power supply 12 supplies current so that the heat transfer tube 2 serves as a cathode and the electrode rod 11 serves as an anode.

次いで、前述した構成を有する装置の作用とともに、本
発明方法を説明する。
Next, the method of the present invention will be described together with the operation of the apparatus having the above-described configuration.

まず、伝熱管2の内面に、油、塗料等の疎水性物質を溶
媒に分散あるいは溶解させて形成した溶液を全面に付着
させて疎水性の薄膜を形成したのちに、該伝熱管2の内
部に電極棒11を挿入位置決めし、また、伝熱管2の両端
部に、鍍金液供給管5および鍍金液回収管6が取り付け
られたチャンバ3・4を取り付け、さらに、伝熱管2と
電極棒11とに、伝熱管2を陰極とするように直流電源12
を接続する。前記疎水性の薄膜の厚さは疎水性物質の種
類によっても異なるが、好適な範囲は0.1μm〜5μm
である。この範囲以下であると後述する空孔の生成率が
低下し、以上であると絶縁性が高くなって均一な鍍金層
が得られなくなるおそれがある。
First, a solution formed by dispersing or dissolving a hydrophobic substance such as oil or paint in a solvent is attached to the entire inner surface of the heat transfer tube 2 to form a hydrophobic thin film, and then the inside of the heat transfer tube 2 is formed. The electrode rod 11 is inserted and positioned in the heat transfer tube 2, and chambers 3 and 4 to which the plating solution supply pipe 5 and the plating solution recovery tube 6 are attached are attached to both ends of the heat transfer tube 2, and the heat transfer tube 2 and the electrode rod 11 are attached. In addition, the DC power supply 12 so that the heat transfer tube 2 serves as the cathode
Connect. The thickness of the hydrophobic thin film varies depending on the kind of the hydrophobic substance, but a preferable range is 0.1 μm to 5 μm.
Is. If it is below this range, the rate of formation of pores described below will decrease, and if it is above this range, the insulating property will increase and it may not be possible to obtain a uniform plating layer.

これより、鍍金液貯蔵容器1内の鍍金液を撹拌装置13に
よって均一に撹拌したのちに、該鍍金液を圧送ポンプ7
によって一方のチャンバ3へ向けて送り出して、第1図
に矢印(イ)で示すように、鍍金液を、鍍金液貯蔵容器
1から、鍍金供給管5、一方のチャンバ3、伝熱管2内
部、他方のチャンバ4、鍍金液回収管6を経て、再度鍍
金液貯蔵容器1に戻るように循環させる。
From this, after the plating solution in the plating solution storage container 1 is uniformly stirred by the stirring device 13, the plating solution is pumped by a pump 7
1 toward one of the chambers 3, and as shown by the arrow (a) in FIG. 1, the plating solution is supplied from the plating solution storage container 1 to the plating supply pipe 5, one chamber 3, the inside of the heat transfer tube 2, It is circulated through the other chamber 4 and the plating solution recovery pipe 6 so as to return to the plating solution storage container 1 again.

この操作とともに、循環させられている鍍金液中に、前
記気泡供給装置10から窒素ガスを供給する。
Along with this operation, nitrogen gas is supplied from the bubble supply device 10 into the circulating plating solution.

この際に、気泡供給装置10から送り出される窒素ガス
は、微細フィルタ15を通過させられる間に微細気泡とな
されて、前記鍍金液中に混入され、また、鍍金液ととも
に伝熱管2の内部に運ばれて、その一部が伝熱管2の内
面に均一に付着する。
At this time, the nitrogen gas sent from the bubble supply device 10 is made into fine bubbles while being passed through the fine filter 15, is mixed into the plating liquid, and is carried into the heat transfer tube 2 together with the plating liquid. A part of the flakes sticks evenly to the inner surface of the heat transfer tube 2.

前記フィルタの口径としては、0.05〜100μ程度のもの
が好ましい。0.05μ以下では、通気性が悪く充分なガス
の供給が難しく、100μ以上ではガス径が大きく、鍍金
でとらえることが難しくなる。
The diameter of the filter is preferably about 0.05 to 100 μm. If it is less than 0.05μ, the gas permeability is poor and it is difficult to supply sufficient gas. If it is more than 100μ, the gas diameter is large and it is difficult to catch it by plating.

こののちに、あるいは若干早めに、前記直流電源12によ
って伝熱管2を陰極として電極棒11との間に電流を印加
する。
After this, or slightly earlier, a current is applied by the DC power supply 12 between the heat transfer tube 2 and the electrode rod 11 as a cathode.

この印加電流は、陰極電流密度が15A/dm2以上に設定す
ることが好ましく、また、単純な直流電流よりも、断続
電流、通常のパルス電流、さらに、PR電流を用いること
が好ましい。このPR電流は、伝熱管2を陰極とする正電
流と伝熱管2を陽極とする逆電流を交互に印加するもの
であるが、正電流の印加時間を逆電流のそれに比して大
きくして、全体として伝熱管2を陰極に保持するような
電流である。断続電流やパルス電流を用いると、単純な
直流電流に比して、伝熱管2の内面に形成される空孔内
への金属イオンの搬送を容易なものとすることができ、
これによって、電析速度を大きくすることが期待できる
とともに、局部的な析出を抑制して均一な電析膜の形成
を可能にする。また、PR電流を用いると逆電流が周期的
に印加されることによって、前述した電析膜の均一化が
一層促進される。
The applied current is preferably set to have a cathode current density of 15 A / dm 2 or more, and it is preferable to use an intermittent current, a normal pulse current, or a PR current rather than a simple direct current. This PR current alternately applies a positive current using the heat transfer tube 2 as a cathode and a reverse current using the heat transfer tube 2 as an anode, but the positive current application time is made larger than that of the reverse current. The current is such that the heat transfer tube 2 is held at the cathode as a whole. When the intermittent current or the pulsed current is used, it is possible to facilitate the transport of metal ions into the holes formed on the inner surface of the heat transfer tube 2, as compared with a simple direct current.
As a result, it is expected that the deposition rate can be increased, and local deposition can be suppressed to form a uniform deposition film. Further, when the PR current is used, the reverse current is periodically applied to further promote the homogenization of the electrodeposited film.

このように、電流が印加されると、前記伝熱管2の内面
で電析金属が成長させられるが、前述したように、伝熱
管2の内面には微細気泡が付着していることから、電気
金属の成長が前記微細気泡を包み込むように行われ、こ
の結果、伝熱管2の内面に、狭口空孔が形成されて、多
孔質層が形成される。
As described above, when an electric current is applied, the electrodeposited metal grows on the inner surface of the heat transfer tube 2. However, as described above, the fine bubbles adhere to the inner surface of the heat transfer tube 2, and The metal is grown so as to enclose the fine bubbles, and as a result, narrow holes are formed in the inner surface of the heat transfer tube 2 to form a porous layer.

また、本実施例では、陽極として、不溶性陽極を用いて
いることから、鍍金液中の水分が電気分解されて酸素ガ
スが陽極において発生させられ、該酸素ガスの一部が、
気泡を形成して、前述したように供給される窒素ガスの
気泡とともに伝熱管2の内面に付着させられるから、鍍
金液中の気泡密度が高められて、狭口空孔が一層容易に
形成される。
Further, in the present embodiment, since the insoluble anode is used as the anode, the water in the plating solution is electrolyzed to generate oxygen gas in the anode, and a part of the oxygen gas is
Since the bubbles are formed and are attached to the inner surface of the heat transfer tube 2 together with the bubbles of the nitrogen gas supplied as described above, the bubble density in the plating solution is increased, and the narrow holes are more easily formed. It

次いで、以下に具体例を示す。Next, specific examples will be shown below.

(具体例) 外径9.52mm、肉厚0.35mm、長さ1000mmの銅管を、抽伸に
より形成し、この銅管にトリクレン洗浄を施して内面を
清浄化し、シリコンオイルをエタノールで3倍に希釈し
た溶液を銅管の内部に通したのち、エタノールを蒸発さ
せて除去して、銅管の内面に、疎水性薄膜を形成し、さ
らに、この銅管の内部に、樹脂製のスペーサを取り付け
るとともに、該スペーサによって、前記銅管の内部にTi
−Ptからなる電極棒11を位置決めして陽極を取り付け
る。
(Specific example) A copper tube with an outer diameter of 9.52 mm, a wall thickness of 0.35 mm, and a length of 1000 mm is formed by drawing, and the copper tube is subjected to trichlene cleaning to clean the inner surface and silicon oil is diluted three times with ethanol. After passing the solution through the inside of the copper tube, the ethanol is evaporated and removed to form a hydrophobic thin film on the inner surface of the copper tube.In addition, a resin spacer is attached inside the copper tube. , The spacer allows Ti inside the copper tube.
-Position the electrode rod 11 made of Pt and attach the anode.

そして、硫酸銅200g/、硫酸50g/の割合で混入され
た硫酸銅溶液からなる鍍金液を流速2m/sにて強制循環さ
せ、この鍍金液中に、窒素ガスを0.2μの微細孔フィル
タ15を通過させながら流量2/minで混入し、前記銅管
を陰極として、陰極電流密度50A/dm2の条件で、約10分
間電気鍍金を施した。
Then, copper sulfate 200 g /, a plating solution consisting of a copper sulfate solution mixed at a rate of 50 g / sulfuric acid was forcedly circulated at a flow rate of 2 m / s, and nitrogen gas in this plating solution was 0.2 μm micropore filter 15 Was mixed at a flow rate of 2 / min, and electroplating was performed for about 10 minutes under the conditions of a cathode current density of 50 A / dm 2 using the copper tube as a cathode.

この結果、孔径100μ〜150μの均質な空孔が、空孔率で
30%形成された、厚さ150μの多孔質層が得られた。
As a result, uniform pores with a pore size of 100 μ to 150 μ are
A porous layer having a thickness of 150 μ and formed by 30% was obtained.

そして、前記多孔質層の比表面積率を画像解析により測
定し、陰極電流との関係を見てみたところ、第2図にa
で示すような結果が得られた。
Then, the specific surface area ratio of the porous layer was measured by image analysis, and the relationship with the cathode current was examined. As shown in FIG.
The results shown in are obtained.

一方、比較のために、前述した鍍金処理過程において気
泡供給装置10からの気泡の供給を停止した状態で、鍍金
液中の水分の分解によって形成される気泡のみにより多
孔質層を形成した場合の比表面積率を測定したところ、
第2図にbで示す結果が得られた。
On the other hand, for comparison, in the case where the supply of bubbles from the bubble supply device 10 is stopped in the plating process described above, in the case where the porous layer is formed only by the bubbles formed by the decomposition of water in the plating solution. When the specific surface area ratio was measured,
The result indicated by b in FIG. 2 was obtained.

この結果から明らかなように、本実施例に示す方法によ
って形成された多孔質層は、比表面積率において、例え
ば、陰極電流密度50A/dm2で、比較例に対し30%以上の
向上が図られる。
As is clear from these results, the porous layer formed by the method shown in this example has a specific surface area ratio of, for example, a cathode current density of 50 A / dm 2, which is improved by 30% or more as compared with the comparative example. To be

さらに、前述したように製作した銅管について、第3図
に示す熱特性試験装置により、熱特性を測定した。
Further, the thermal characteristics of the copper tube manufactured as described above were measured by the thermal characteristics test device shown in FIG.

第3図中、Tは温度センサ、Pは圧力計、PDは差圧計、
16はポンプ、17はバルブ、18は流量計、19は膨張弁、20
はコンプレッサ、21はサブコンデンサ、22はサブエバポ
レータ、23は恒温水槽であり、24は試供管としての銅管
である。
In FIG. 3, T is a temperature sensor, P is a pressure gauge, PD is a differential pressure gauge,
16 is a pump, 17 is a valve, 18 is a flow meter, 19 is an expansion valve, 20
Is a compressor, 21 is a sub-condenser, 22 is a sub-evaporator, 23 is a constant temperature water tank, and 24 is a copper tube as a test tube.

該熱特性試験装置においては、銅管24の内部にコンプレ
ッサ20から供給される冷媒が流され、外部には恒温水槽
23からの温水が、前記冷媒に対向して流されるようにな
っている。また、恒温水の温度は、各冷媒流量に対応し
て、冷媒系が安定するように制御されている。
In the thermal characteristic test device, the coolant supplied from the compressor 20 is flown inside the copper pipe 24 and the constant temperature water tank is placed outside.
The warm water from 23 is made to flow in opposition to the refrigerant. Further, the temperature of the constant temperature water is controlled so that the refrigerant system is stable, corresponding to each refrigerant flow rate.

なお、第3図中、矢印A、A′は、それぞれ、蒸発試験
の場合の冷媒および水の流れの方向を示し、矢印B、
B′は、凝縮試験の場合の冷媒および水の流れの方向を
示している。
In FIG. 3, arrows A and A'represent the directions of the refrigerant and water flows in the evaporation test, respectively.
B'shows the directions of the refrigerant and water flows in the case of the condensation test.

そして、試験条件は次表のとおりとした。The test conditions are shown in the table below.

この試験結果、本実施例に示す方法によって多孔質層が
形成された銅管の沸騰熱伝達率は、第4図にcで示す値
となり、同図にdで示す未処理の銅管のそれに対して6
倍以上の大幅な向上が見られた。
As a result of this test, the boiling heat transfer coefficient of the copper tube on which the porous layer was formed by the method shown in this example was the value shown by c in FIG. 4, and that of the untreated copper tube shown by d in the same figure. To 6
Greatly more than doubled.

なお、前記実施例では、不溶性陽極を用いた例について
示したが、これに代えて、可溶性の陽極を用いることも
できる。
In addition, although an example using an insoluble anode is shown in the above-mentioned embodiment, a soluble anode may be used instead of this.

このように、可溶性の陽極を用いて銅管の内面に多孔質
層を形成し、その沸騰熱伝達率を、前述した条件と同一
条件のもとで測定したところ、第4図のeで示す結果が
得られた。この結果からも分かるように、不溶性の陽極
を用いて多孔質層を形成した銅管に比して、沸騰熱伝達
率が落ちるものの、未処理の銅管に比して高い値を示
す。
As described above, when a porous layer was formed on the inner surface of the copper tube using the soluble anode and the boiling heat transfer coefficient thereof was measured under the same conditions as described above, it is shown by e in FIG. Results were obtained. As can be seen from these results, the boiling heat transfer coefficient is lower than that of the copper tube in which the porous layer is formed by using the insoluble anode, but it is higher than that of the untreated copper tube.

また、前述したように、管体への摘要のみならず、平板
への摘要も当然可能である。
Further, as described above, not only the tubular body but also the flat plate can be naturally used.

さらに、気泡を供給するに際して、鍍金液と反応して気
泡を発生する物質を、鍍金液中に混入することによって
行うことも可能である。
Further, when supplying the bubbles, it is possible to mix the plating liquid with a substance that reacts with the plating liquid to generate bubbles.

「発明の効果」 以上説明したように、本発明に係わる金属表面における
多孔質層の形成方法は、疎水性を有する薄膜が形成され
た金属製基体の表面を鍍金液中に浸すとともに、該金属
製基体の表面金傍に微細気泡を供給しつつ、前記金属製
基体を陰極として、前記鍍金液中に配設した陽極との間
で電気鍍金を行うことを特徴とするもので、平板のみな
らず、管状の金属の内面にも均一な狭口空孔を有する多
孔質層を容易に形成することができ、したがって、核沸
騰を利用した伝熱特製の良好な伝熱体を効率よく製造す
ることができるとともに、製造装置の繁雑化を抑制し
て、製造コストの低減を図ることができる等の優れた効
果を奏する。
"Effects of the Invention" As described above, the method for forming a porous layer on a metal surface according to the present invention involves immersing the surface of a metal substrate on which a hydrophobic thin film is formed in a plating solution and While supplying fine bubbles to the surface of the substrate made of metal, the metal substrate is used as a cathode to perform electroplating with an anode arranged in the plating solution. In addition, it is possible to easily form a porous layer having uniform narrow pores on the inner surface of a tubular metal, and therefore efficiently produce a special heat transfer body using nucleate boiling. In addition to the above, it is possible to suppress the complication of the manufacturing apparatus and reduce the manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を実施するための装置を示す
概略図、第2図は本発明の一実施例によって製造された
銅管の比表面積率と陰極電流密度との関係を示す図、第
3図は伝熱特性の試験を行うための装置の一例を示す概
略図、第4図は本発明の一実施例によって製造された銅
管の伝熱特性を示す沸騰熱伝達率と冷媒循環量との関係
を示す図である。 2……伝熱管(金属製基体)、 10……気泡供給装置、11……電極棒(陽極)、 12……直流電源、14……加圧ボンベ、 15……微細フィルタ。
FIG. 1 is a schematic view showing an apparatus for carrying out an embodiment of the present invention, and FIG. 2 shows a relationship between a specific surface area ratio and a cathode current density of a copper tube manufactured according to an embodiment of the present invention. FIG. 3 is a schematic view showing an example of an apparatus for testing heat transfer characteristics, and FIG. 4 is a boiling heat transfer coefficient showing heat transfer characteristics of a copper tube manufactured according to an embodiment of the present invention. It is a figure which shows the relationship with a refrigerant | coolant circulation amount. 2 ... Heat transfer tube (metal base), 10 ... Bubble supply device, 11 ... Electrode rod (anode), 12 ... DC power supply, 14 ... Pressurized cylinder, 15 ... Fine filter.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉木 尚一 埼玉県北本市下石戸上1975番地2 三菱金 属株式会社北本製作所内 (56)参考文献 特開 昭62−10296(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shoichi Yoshiki, 1975, Shimoishi Togami, Kitamoto City, Saitama Prefecture Mitsubishi Metals Corporation Kitamoto Works (56) References JP 62-10296 (JP, A)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】疎水性を有する薄膜が形成された金属製基
体の表面を鍍金液中に浸すとともに、該金属製基体の表
面近傍に微細気泡を供給しつつ、前記金属製基体を陰極
として、前記鍍金液中に配設した陽極との間で電気鍍金
を行うことを特徴とする金属表面における多孔質層の形
成方法。
1. A surface of a metal base on which a hydrophobic thin film is formed is immersed in a plating solution, and fine bubbles are supplied to the vicinity of the surface of the metal base while using the metal base as a cathode. A method for forming a porous layer on a metal surface, characterized in that electroplating is performed with an anode provided in the plating solution.
【請求項2】電気鍍金をパルス電流によって行うことを
特徴とする特許請求の範囲第1項記載の金属表面におけ
る多孔質層の形成方法。
2. The method for forming a porous layer on a metal surface according to claim 1, wherein the electroplating is performed by a pulse current.
【請求項3】前記金属製基体が銅製であり、かつ、前記
鍍金液が硫酸銅溶液であることを特徴とする特許請求の
範囲第1項および第2項記載の金属表面における多孔質
層の形成方法。
3. The porous layer on the metal surface according to claim 1 or 2, wherein the metallic substrate is made of copper, and the plating solution is a copper sulfate solution. Forming method.
【請求項4】前記金属製基体が管体であることを特徴と
する特許請求の範囲第1項ないし第3項記載の金属表面
における多孔質層の形成方法。
4. The method for forming a porous layer on a metal surface according to any one of claims 1 to 3, wherein the metal base is a tubular body.
【請求項5】前記金属製基体と鍍金液とを相対移動させ
ることを特徴とする特許請求の範囲第1項ないし第4項
記載の金属表面における多孔質層の形成方法。
5. The method for forming a porous layer on a metal surface according to any one of claims 1 to 4, wherein the metal base and the plating solution are moved relative to each other.
【請求項6】前記陽極が不溶性金属であることを特徴と
する特許請求の範囲第1項ないし第5項記載の金属表面
における多孔質層の形成方法。
6. The method for forming a porous layer on a metal surface according to any one of claims 1 to 5, wherein the anode is an insoluble metal.
JP61221064A 1985-11-11 1986-09-19 Method for forming porous layer on metal surface Expired - Lifetime JPH0765229B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP61221064A JPH0765229B2 (en) 1986-09-19 1986-09-19 Method for forming porous layer on metal surface
FI864554A FI85060C (en) 1985-11-11 1986-11-10 Heat transfer material and process for making the same
DE8686115606T DE3677338D1 (en) 1985-11-11 1986-11-11 HEAT TRANSFER MATERIAL AND METHOD FOR THE PRODUCTION THEREOF.
EP86115606A EP0224761B1 (en) 1985-11-11 1986-11-11 Heat-transfer material and method of producing same
US07/221,999 US4826578A (en) 1985-11-11 1988-07-20 Method of producing heat-transfer material
US07/221,990 US4879185A (en) 1985-11-11 1988-07-20 Heat transfer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61221064A JPH0765229B2 (en) 1986-09-19 1986-09-19 Method for forming porous layer on metal surface

Publications (2)

Publication Number Publication Date
JPS6376894A JPS6376894A (en) 1988-04-07
JPH0765229B2 true JPH0765229B2 (en) 1995-07-12

Family

ID=16760924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61221064A Expired - Lifetime JPH0765229B2 (en) 1985-11-11 1986-09-19 Method for forming porous layer on metal surface

Country Status (1)

Country Link
JP (1) JPH0765229B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031800A1 (en) * 2007-09-03 2009-03-12 Metrigen Co., Ltd. Method of metal plating of fine tube inside and metal plating device of that and the fine tube metal plated inside and cannula gilded inside

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106290A (en) * 2006-10-23 2008-05-08 Ricoh Co Ltd Electrical contact member
WO2008109113A1 (en) * 2007-03-06 2008-09-12 U.S. Chrome Corporation Tubular members with hard coating and method for making same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210296A (en) * 1985-07-08 1987-01-19 Matsushita Refrig Co Production of heat-transfer pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031800A1 (en) * 2007-09-03 2009-03-12 Metrigen Co., Ltd. Method of metal plating of fine tube inside and metal plating device of that and the fine tube metal plated inside and cannula gilded inside

Also Published As

Publication number Publication date
JPS6376894A (en) 1988-04-07

Similar Documents

Publication Publication Date Title
JPH0765230B2 (en) Method for forming porous layer on metal surface
KR101475979B1 (en) Microfine structure
EP0224761B1 (en) Heat-transfer material and method of producing same
US4120994A (en) Method of preparing heat-transfer members
US4136428A (en) Method for producing improved heat transfer surface
US3884772A (en) Method for producing a heat exchanger element
JPH0765229B2 (en) Method for forming porous layer on metal surface
Bilal et al. Fast fabrication of localized porous alumina patterns with 3D printed microdroplet cell
Jagminienė et al. The influence of the alumina barrier-layer thickness on the subsequent AC growth of copper nanowires
CN112054000B (en) Gallium-based liquid metal high-speed flowing capillary aluminum pipe capable of containing oxide layer and preparation method thereof
US4311733A (en) Method of preparing a capillary heat-pipe wicking structure
US4136427A (en) Method for producing improved heat transfer surface
JP2006265603A (en) Electrochemical surface treatment device and electrochemical surface treatment method
EP0226861A1 (en) Heat-transfer material and method of producing same
JPH0213038B2 (en)
Haak et al. Evaluation of agitation within circuit board through—holes
JPS63243297A (en) Production of heat transfer tube
JPS6210296A (en) Production of heat-transfer pipe
JP2004149867A (en) Gas diffusion electrode and manufacturing method therefor
RU2793671C2 (en) Heat transfer wall of a heat exchanger and method for forming of the coating to intensify heat transfer of a heat transfer wall of a heat exchanger
JPH0240752B2 (en)
JPH0565789B2 (en)
CN1333108C (en) Method and apparatus for preparing nano-silicon particle by anodic oxidation process
JPH03230094A (en) Heat transfer medium
JPS61190087A (en) Manufacture of heat transfer pipe