JPH0763699B2 - Method for treating waste liquid containing heavy metals and organic substances - Google Patents

Method for treating waste liquid containing heavy metals and organic substances

Info

Publication number
JPH0763699B2
JPH0763699B2 JP2175965A JP17596590A JPH0763699B2 JP H0763699 B2 JPH0763699 B2 JP H0763699B2 JP 2175965 A JP2175965 A JP 2175965A JP 17596590 A JP17596590 A JP 17596590A JP H0763699 B2 JPH0763699 B2 JP H0763699B2
Authority
JP
Japan
Prior art keywords
waste liquid
electrolysis
liquid containing
water
heavy metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2175965A
Other languages
Japanese (ja)
Other versions
JPH0466187A (en
Inventor
福蔵 藤堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP2175965A priority Critical patent/JPH0763699B2/en
Publication of JPH0466187A publication Critical patent/JPH0466187A/en
Publication of JPH0763699B2 publication Critical patent/JPH0763699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利倫用分野】[Industrial interest field]

本発明は、重金属および有機物を含有する廃水を、電解
を利用して処理する方法に関する。
The present invention relates to a method for treating wastewater containing heavy metals and organic substances by using electrolysis.

【従来の技術】[Prior art]

原子力発電所から発生する廃液のうち、高電導度廃液と
よばれるものは、蒸発濃縮により減容してから固化処理
する。この廃液は高濃度の塩を含み、放射性物質および
洗剤がその中に濃縮されている。蒸気発生器やタンクの
ような機器の除染を行なったときに発生する除染廃液
は、重金属のイオンとともに、EDTAのようなキレート
剤、ギ酸、シュウ酸、クエン酸のような有機酸あるいは
それらの塩を含有している。この重金属には、放射性核
種が含まれていることが少なくない。 そのほか、重金属で除染された土壌を除染処理したとき
にも、重金属イオンと有機物を含有する除染廃液が発生
する。 放射性廃液は、最終的には蒸発濃縮した残渣を、セメン
ト固化などの手段で固化処理する。ところが、キレート
剤や有機酸が存在すると、固化体が水に接触したときに
放射性核種が溶出しやすく、固化体の地中埋設処分のた
めにそれを防止することが望まれている。 廃液に含有されている有機物を分解する方法として、出
願人は、触媒の存在下に過酸化水素を作用させて酸化分
解する方法を開発し、すでに開示した(特開昭61−1042
99)。この方法は、高価な過酸化水素を消費することが
許されるならば、安全かつ有用な処理方法であるが、廃
液に触媒および酸化剤を加えるため廃棄物の量を増大さ
せるから、後続の蒸発濃縮工程の負荷が大きい。重金属
が含まれている場合には、酸化分解工程の後に不溶化す
る処理が必要である。
Of the waste liquids generated from nuclear power plants, those called high conductivity waste liquids are reduced in volume by evaporative concentration and then solidified. This effluent contains a high concentration of salt, with radioactive material and detergent concentrated therein. Decontamination waste liquid generated when decontaminating equipment such as steam generators and tanks contains heavy metal ions, chelating agents such as EDTA, organic acids such as formic acid, oxalic acid, and citric acid, or those. It contains salt. This heavy metal often contains radionuclides. In addition, when decontaminating soil decontaminated with heavy metals, decontamination waste liquid containing heavy metal ions and organic matter is generated. The radioactive waste liquid is finally solidified by means of cement solidification or the like of the residue obtained by evaporation and concentration. However, when a chelating agent or an organic acid is present, the radionuclide is likely to be eluted when the solidified body comes into contact with water, and it is desired to prevent it for underground disposal of the solidified body. As a method for decomposing the organic matter contained in the waste liquid, the applicant has developed a method of oxidative decomposition by acting hydrogen peroxide in the presence of a catalyst, and has already disclosed it (Japanese Patent Laid-Open No. 61-1042).
99). This method is a safe and useful treatment method if it is allowed to consume expensive hydrogen peroxide, but it increases the amount of waste due to the addition of catalyst and oxidant to the waste liquor, and therefore the subsequent evaporation. The concentration process load is heavy. When heavy metals are contained, a treatment for insolubilization is required after the oxidative decomposition step.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

本発明の目的は、廃液処理に関する上述の問題に対する
ひとつの解決策として、電解を利用して、重金属の不溶
化と有機物の酸化分解とを同時に行ない、廃棄物を増量
させることなく、かつ高価な酸化剤を消費することな
く、重金属および有機物を含有する廃液を処理する方法
を提供することにある。
An object of the present invention is, as one solution to the above-mentioned problem relating to waste liquid treatment, utilizing electrolysis to simultaneously perform insolubilization of heavy metals and oxidative decomposition of organic substances, without increasing the amount of waste, and expensive oxidation. An object of the present invention is to provide a method for treating a waste liquid containing heavy metals and organic substances without consuming an agent.

【課題を解決するための手段】[Means for Solving the Problems]

本発明の重金属および有機物を含有する廃液の処理方法
は、重金属のイオンおよび水溶性の有機物を含有してい
る廃液を、pH4〜9において直流電流により電解するこ
とにより、陰極においては重金属イオンを金属または水
酸化物として析出させるとともに、陽極においては有機
物を酸化分解し、主として二酸化炭素および水に変える
ことからなる。
The method for treating a waste liquid containing a heavy metal and an organic substance according to the present invention is a method in which a waste liquid containing a heavy metal ion and a water-soluble organic substance is electrolyzed with a direct current at a pH of 4 to 9 so that a heavy metal ion is metalized Alternatively, it consists of depositing as a hydroxide and oxidatively decomposing an organic substance at the anode to convert it mainly into carbon dioxide and water.

【作 用】[Work]

図面を参照して詳細に説明すると、第1図のフローチャ
ートにみるように、タンク(1)に受け容れた廃液を電
解槽(4)に供給して電解する。このとき、pHを4〜9
の範囲とする。pHは、金属イオンを不溶化するためには
4以上であること、また酸素ガスの発生を抑制するため
には9以下であることを要する。必要により、酸または
アルカリを、それぞれのタンク(2,3)から添加する。
廃液(9)には硫酸塩やアンモニウム塩が存在して、通
常は電解に適した電導度を示すが、塩類濃度が低くて電
導度が小さすぎる場合は、さらに電解質を加える。 電極材材の選択は、とくに陽極(5)に関して重要であ
って、陽極において酸素ガスが発生すると酸化反応に役
立たないし、電極の溶出もできるだけ避けなければなら
ないから、材料はこうした観点からえらぶ。白金などの
貴金属、酸化鉄(Fe3O4)、二酸化鉛(PbO2)などが使
用できるが、有機物の酸化のためにはPbO2が有用であ
る。PbO2は、チタンなどそれ自体不溶性電極として使用
できる材料に、電着その他の手段により担持させて使う
とよい。陰極(6)の材料は任意であって、たとえばス
テンレス鋼などが使いやすい。 電解の条件は、圧力はもちろん常圧が安全の点から好ま
しく、温度は常温ないし液の沸騰点までの温度とする。
高温の方が、有機物の酸化にとって有利である。電流密
度は、1〜10A/dm2が適当である。あまりに低い電流密
度では電解の進行が遅く実用的でないし、過大にしても
電流効率が低下する。電圧は液の電導度や電流密度、電
極間距離などの条件によって異なるが、通常は4〜6V程
度であろう。 電解によって、陰極では、つぎの金属電着または水酸化
物の生成反応が起こる。2価の金属イオンに例をとる
と、 M+++2e- →M M+++2OH-→M(OH) 一方、陽極では、つぎのようにして、有機物の酸化反応
が起る。 20H-→H2O+O+2e C+O→CO2+H2 (Oは酸素原子をあらわす。)。 電解液が弱アルカリ性の場合、陽極側で金属イオンが酸
化されて酸化物になる(たとえばMn++からMnO2が生成す
る)ことがある。これを避けるには、カチオンを通さな
い隔膜(図示してない)を両極間に設ければよい。 電解操作は、回分式、連続式どちらでも実施できること
はもちろんであるが、回分式で、分解または電着除去の
度合とエネルギー効率の両方からみて最適の時間行なう
のが実際的といえよう。通常は数〜10時間程度が適当で
ある。 電解後、必要があれば酸またはアルカリの中和剤を加え
て、電解液を中和する。電解液中に、生成した金属や酸
化物が電極から剥離して懸濁しているような場合、後続
の工程への諭送に支障のないよう、フィルター(7)で
濾過するとよい。この濾過は、電解中にポンプ(8)で
液を循環させながら行なってもよい。
This will be described in detail with reference to the drawings. As shown in the flow chart of FIG. 1, the waste liquid received in the tank (1) is supplied to the electrolytic cell (4) for electrolysis. At this time, adjust the pH to 4-9
The range is. The pH needs to be 4 or more to insolubilize metal ions and 9 or less to suppress the generation of oxygen gas. If necessary, add acid or alkali from each tank (2,3).
Sulfate or ammonium salt is present in the waste liquid (9) and usually exhibits an electric conductivity suitable for electrolysis, but when the salt concentration is low and the electric conductivity is too small, an electrolyte is further added. The selection of the electrode material is particularly important for the anode (5), and if oxygen gas is generated at the anode, it does not contribute to the oxidation reaction, and elution of the electrode must be avoided as much as possible, so the material is selected from this viewpoint. Noble metals such as platinum, iron oxide (Fe 3 O 4 ) and lead dioxide (PbO 2 ) can be used, but PbO 2 is useful for oxidizing organic substances. PbO 2 is preferably used by supporting it on a material such as titanium that can be used as an insoluble electrode by electrodeposition or other means. The material of the cathode (6) is arbitrary and, for example, stainless steel is easy to use. Regarding electrolysis, not only pressure but also normal pressure is preferable from the viewpoint of safety, and the temperature is from room temperature to the boiling point of the liquid.
Higher temperatures favor the oxidation of organics. A current density of 1 to 10 A / dm 2 is suitable. If the current density is too low, the progress of electrolysis is slow and it is not practical, and if it is too large, the current efficiency is lowered. The voltage will vary depending on the conditions such as the electric conductivity of the liquid, the current density, and the distance between the electrodes, but it will usually be about 4 to 6V. Electrolysis causes the following metal electrodeposition or hydroxide generation reaction at the cathode. Taking a divalent metal ion as an example, M ++ + 2e → M M ++ + 2OH → M (OH) 2 On the other hand, at the anode, an oxidation reaction of an organic substance occurs as follows. 20H - → H 2 O + O · + 2e C m H n + O · → CO 2 + H 2 (O · represents an oxygen atom.). When the electrolyte is weakly alkaline, metal ions may be oxidized on the anode side to form an oxide (for example, Mn ++ is converted to MnO 2 ). To avoid this, a cation impermeable diaphragm (not shown) may be provided between both electrodes. It is needless to say that the electrolysis operation can be carried out by either a batch system or a continuous system, but it is practical to carry out the electrolysis process for an optimum time in view of both the degree of decomposition or electrodeposition removal and the energy efficiency. Usually, about several to 10 hours is appropriate. After electrolysis, if necessary, an acid or alkali neutralizing agent is added to neutralize the electrolytic solution. When the generated metal or oxide is separated from the electrode and suspended in the electrolytic solution, it may be filtered by the filter (7) so as not to interfere with the subsequent process. This filtration may be performed while circulating the liquid by the pump (8) during electrolysis.

【実施例1】 アクリル樹脂系の電解槽に、陽極としてTiにPbO2を電着
させたもの、陰極としてステンレス鋼板を対立させて置
いた。電極面積は、両極とも0.3dm2である。 EDTA250mg/およびNa2SO413重量%を含有する液に、Co
(NO3をCoイオン濃度が100mg/となるように添加
して模擬廃液と、H2SO4を加えてpHを約4に調整した。 上記の電解槽にこの液を200ml入れ、槽電圧4.0V、電流
1.5Aの条件で電解した。液の温度は30℃である。 1時間ごとに液のTOC成分濃度およびCoイオン濃度を測
定して、第2図のグラフを得た。6時間後にCoイオン不
溶化率80%、EDTA分解率82%に達した。
Example 1 In an acrylic resin-based electrolytic cell, a positive electrode made by electrodepositing PbO 2 on Ti and a negative electrode made of a stainless steel plate were placed in opposition. The electrode area is 0.3 dm 2 for both electrodes. A solution containing 250 mg / EDTA and 13% by weight Na 2 SO 4 was added with Co.
(NO 3 ) 2 was added so that the Co ion concentration was 100 mg /, and the simulated waste liquid and H 2 SO 4 were added to adjust the pH to about 4. Put 200 ml of this solution in the above electrolyzer, tank voltage 4.0V, current
Electrolysis was performed under the condition of 1.5A. The temperature of the liquid is 30 ° C. The TOC component concentration and Co ion concentration of the solution were measured every hour to obtain the graph of FIG. After 6 hours, the Co ion insolubilization rate reached 80% and the EDTA decomposition rate reached 82%.

【実施例2】 実施例1の模擬廃液に加えるH2SO4またはNaOHの量を調
節して、pHがそれぞれ3.5,5.0および9.0の3種の液を用
意した。 上記と同じ条件で電解し、Coイオンの不溶化率を測定し
た。その結果を、実施例1のデータとともに、第3図に
示す。図のグラフから、重金属の不溶化にとって、pHの
い方が有利なことがわかる。
Example 2 By adjusting the amount of H 2 SO 4 or NaOH added to the simulated waste liquid of Example 1, three types of liquid having pHs of 3.5, 5.0 and 9.0 were prepared. Electrolysis was performed under the same conditions as above, and the insolubilization rate of Co ions was measured. The results are shown in FIG. 3 together with the data of Example 1. From the graph in the figure, it can be seen that pH is more advantageous for insolubilizing heavy metals.

【実施例3】 EDTA10g/およびNa2SO430g/を含む廃液200mlを、上
記の電解槽で、槽電圧4.5〜5.0V、電流1.5Aの条件で電
解した。液温をそれぞれ30゜,50゜および70℃に保持し
て、EDTAの分解速度を比較した。その間、液のpHは5〜
6の範囲にあった。 各時間ごとに到達した分解率を、第4図に示す。液温の
高い方が分解が進むことを、図のグラフは示している。
Example 3 200 ml of a waste liquid containing 10 g / EDTA and 30 g / Na 2 SO 4 was electrolyzed in the above electrolytic cell under the conditions of a cell voltage of 4.5 to 5.0 V and a current of 1.5 A. The decomposition temperature of EDTA was compared by keeping the liquid temperature at 30 °, 50 ° and 70 ° C., respectively. Meanwhile, the pH of the liquid is 5 to
It was in the range of 6. The decomposition rate reached at each time is shown in FIG. The graph in the figure shows that the higher the liquid temperature, the higher the decomposition.

【発明の効果】【The invention's effect】

本発明の方法によれば、重金属および有機物を含有する
廃液から、金属の電着除去と有機物の酸化分解とを同時
に行なうことができ、簡単な工程で処理が完了する。重
金属中の放射性核種は、電着金属となって不溶化するか
ら、安全な処理が実現する。有機物の分解も高度に進
み、無害な水と二酸化炭素になるうえ、酸化剤も触媒も
加える必要がないから、廃棄物量を増大させることはな
いし、コストも低減できる。
According to the method of the present invention, it is possible to simultaneously perform electrodeposition removal of metal and oxidative decomposition of organic matter from a waste liquid containing heavy metals and organic matter, and the treatment is completed by simple steps. The radionuclide in the heavy metal becomes an electrodeposited metal and becomes insoluble, so that safe treatment is realized. Decomposition of organic substances also progresses to a high degree, harmless water and carbon dioxide, and since it is not necessary to add an oxidizer or a catalyst, the amount of waste is not increased and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の処理方法を説明するための、装置の
フローチャートである。 第2図ないし第4図は本発明の実施データであって、第
2図は電解時間に対する残存Coイオン濃度およびTOC濃
度の変化を、第3図は電解時間に対するCoイオン濃度の
変化を異なるpHにおいて、そして第4図は電解時間に対
するキレート剤の電解率を異なる液温において、それぞ
れ示すグラフである。 1……廃液タンク、2……酸タンク 3……アルカリタンク、4……電解槽 5……陽極、6……陰極 7……フィルター、8……ポンプ 9……廃液
FIG. 1 is a flow chart of an apparatus for explaining the processing method of the present invention. FIGS. 2 to 4 are data for carrying out the present invention. FIG. 2 shows changes in residual Co ion concentration and TOC concentration with respect to electrolysis time, and FIG. 3 shows changes in Co ion concentration with electrolysis time at different pH values. And FIG. 4 is a graph showing the electrolysis rate of the chelating agent with respect to the electrolysis time at different liquid temperatures. 1 ... Waste liquid tank, 2 ... Acid tank 3 ... Alkaline tank, 4 ... Electrolyzer 5 ... Anode, 6 ... Cathode 7 ... Filter, 8 ... Pump 9 ... Waste liquid

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】重金属のイオンおよび水溶性の有機物を含
有している廃液を、pH4〜9において直流電流により電
解することにより、陰極においては重金属イオンを金属
または水酸化物として析出させるとともに、陽極におい
ては有機物を酸化分解し、主として二酸化炭素および水
に変えることからなる重金属および有機物を含有する廃
液の処理方法。
1. A waste liquid containing heavy metal ions and a water-soluble organic substance is electrolyzed with a direct current at a pH of 4 to 9 to precipitate heavy metal ions as a metal or hydroxide at the cathode, In the method of treating waste liquid containing heavy metals and organic matter, which comprises oxidatively decomposing organic matter and converting it mainly into carbon dioxide and water.
【請求項2】廃液が放射性物質で汚染された機器類の除
染廃液であって、重金属イオンとして放射性核種を含
み、水溶性有機物が有機酸、その塩またはキレート剤で
ある請求項1の処理方法。
2. The treatment according to claim 1, wherein the waste liquid is a decontamination waste liquid for equipment contaminated with radioactive substances, contains a radionuclide as a heavy metal ion, and the water-soluble organic matter is an organic acid, its salt or a chelating agent. Method.
【請求項3】電解の陽極として二酸化鉛を使用し、温度
は常温ないし廃水の沸騰温度、電流密度1〜10A/dm2
条件で実施する請求項1または2の処理方法。
3. The treatment method according to claim 1, wherein lead dioxide is used as an electrolysis anode, and the temperature is room temperature to the boiling temperature of waste water and the current density is 1 to 10 A / dm 2 .
【請求項4】両極間に隔膜を置いて電解を行なう請求項
1〜3のいずれかの処理方法。
4. The processing method according to claim 1, wherein electrolysis is performed by placing a diaphragm between both electrodes.
JP2175965A 1990-07-03 1990-07-03 Method for treating waste liquid containing heavy metals and organic substances Expired - Fee Related JPH0763699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2175965A JPH0763699B2 (en) 1990-07-03 1990-07-03 Method for treating waste liquid containing heavy metals and organic substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2175965A JPH0763699B2 (en) 1990-07-03 1990-07-03 Method for treating waste liquid containing heavy metals and organic substances

Publications (2)

Publication Number Publication Date
JPH0466187A JPH0466187A (en) 1992-03-02
JPH0763699B2 true JPH0763699B2 (en) 1995-07-12

Family

ID=16005354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2175965A Expired - Fee Related JPH0763699B2 (en) 1990-07-03 1990-07-03 Method for treating waste liquid containing heavy metals and organic substances

Country Status (1)

Country Link
JP (1) JPH0763699B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101947311B1 (en) * 2018-02-05 2019-05-02 건국대학교 산학협력단 Treatment system and method for wastewater containing cyanide and heavy metal

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2620839B2 (en) * 1993-11-15 1997-06-18 森川産業株式会社 Method of treating a chelating agent solution containing radioactive contaminants
JPH09101397A (en) * 1995-10-02 1997-04-15 Morikawa Sangyo Kk Method and device for decomposing organic treatment liquid containing radioactive metal ion and method and device for extracting radioactive metal using the decomposition method and device
WO2001030704A1 (en) 1999-10-28 2001-05-03 Kazuto Hashizume Improved process for water treatment
AU2002952678A0 (en) * 2002-11-15 2002-11-28 Waterpower Systems Pty Ltd Radioactive species removal process
DE102008048691A1 (en) * 2008-07-07 2010-01-14 Areva Np Gmbh Process for conditioning a waste solution containing organic substances and metals in ionic form in wet-chemical cleaning of conventional or nuclear-engineering plants
JP5660461B2 (en) * 2011-03-29 2015-01-28 住友大阪セメント株式会社 Wastewater treatment method and treatment apparatus using membrane separation
CN103160852A (en) * 2013-04-04 2013-06-19 安徽首文碳纤维有限公司 Method for detecting concentration of electrolyte on carbon fiber production line
CN108362833B (en) * 2018-02-05 2021-03-23 中国水产科学研究院黄海水产研究所 Method for determining transfer of heavy metal settled in atmospheric air in sediment
CN108318629B (en) * 2018-02-05 2021-03-09 中国水产科学研究院黄海水产研究所 Device for measuring heavy metal flux in atmospheric sedimentation by using sediments
FR3083224B1 (en) * 2018-06-29 2023-01-06 Centre Nat Rech Scient METHOD FOR THE DECONTAMINATION OF HEAVY METALS IN AN AQUEOUS SOLUTION
CN111747492A (en) * 2020-06-18 2020-10-09 四川润邦利泰科技有限公司 Laboratory waste liquid electrolysis device and electrolysis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101947311B1 (en) * 2018-02-05 2019-05-02 건국대학교 산학협력단 Treatment system and method for wastewater containing cyanide and heavy metal

Also Published As

Publication number Publication date
JPH0466187A (en) 1992-03-02

Similar Documents

Publication Publication Date Title
Grimm et al. Review of electro-assisted methods for water purification
JPH0763699B2 (en) Method for treating waste liquid containing heavy metals and organic substances
US5516972A (en) Mediated electrochemical oxidation of organic wastes without electrode separators
US4701246A (en) Method for production of decontaminating liquid
US5439562A (en) Electrochemical decontamination of radioactive metals by alkaline processing
JPH07280998A (en) Method for decontaminating transition metal
HU212234B (en) Process for the solution of metallic surfaces covered by radioactive dirt, and the decontamining compound
JP2004286471A (en) Method and device for chemical decontamination of radioactivity
JP5253994B2 (en) Treatment method of radioactive metal waste
JP5927198B2 (en) Methods for conditioning waste resulting from decommissioning of nuclear power plants
US11342092B2 (en) Electrolyte for electrochemical decontamination and preparation method and application thereof
US5102511A (en) Method of decontaminating radioactive metallic wastes
JPH08254597A (en) Method for treating waste liquid containing ammoniac nitrogen and organic substance
JPH09234471A (en) Treatment of waste liquid containing organic nitrogen compound
JP2762281B2 (en) Dissolution method of plutonium dioxide useful for treatment of organic waste contaminated by plutonium dioxide
CN211920984U (en) Cathode structure and system for electrochemical reduction of iodinated X-ray contrast agents
JPH10104396A (en) Method and device for chemical decontamination
JPS61231496A (en) Method of decontaminating radioactive metallic waste
JP3175522B2 (en) How to remove radioactive materials
JP3044306B1 (en) Radioactive waste decontamination system and operating method thereof
JPH0557560B2 (en)
Lee et al. Application of a modified electrochemical system for surface decontamination of radioactive metal waste
JPS59224598A (en) Electrolytic regenerating method of used ion-exchange resin
CN111362370A (en) Cathode structure and preparation method and application thereof
Dziewinski et al. Electrochemical treatment of mixed and hazardous waste

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees