JPH0763572B2 - High magnetic field gradient magnetic separation method and apparatus - Google Patents

High magnetic field gradient magnetic separation method and apparatus

Info

Publication number
JPH0763572B2
JPH0763572B2 JP3082471A JP8247191A JPH0763572B2 JP H0763572 B2 JPH0763572 B2 JP H0763572B2 JP 3082471 A JP3082471 A JP 3082471A JP 8247191 A JP8247191 A JP 8247191A JP H0763572 B2 JPH0763572 B2 JP H0763572B2
Authority
JP
Japan
Prior art keywords
magnetic field
matrix
magnet
fluid
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3082471A
Other languages
Japanese (ja)
Other versions
JPH04317705A (en
Inventor
駿 佐藤
利男 山田
利治 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3082471A priority Critical patent/JPH0763572B2/en
Publication of JPH04317705A publication Critical patent/JPH04317705A/en
Publication of JPH0763572B2 publication Critical patent/JPH0763572B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は流体中に含まれる磁性粒
子の除去回収を目的とする高磁場勾配磁気分離方法およ
びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high magnetic field gradient magnetic separation method and apparatus for the purpose of removing and recovering magnetic particles contained in a fluid.

【0002】[0002]

【従来の技術】強磁性体の繊維を磁界中に充填すること
によって、繊維の表面に大きな磁界勾配を形成せしめ、
流体中の磁性粒子を吸引捕獲する方法は、原理的には古
くから知られている。(例えば、解説・Transactions o
n Magnetics、vol MAG-10,No2,June,1974年
刊,223頁以降を参照)上記の原理を具体化した装置
にはいろいろな方式が開示されている。磁界の付与の方
法についても、電磁石,ソレノイド,永久磁石などがあ
り、強磁性体マトリックスについても、ステンレス繊維
や球状体あるいは最近では非晶質繊維などが用いられて
いる。繊維マトリックスの充填の方法も、回収効率を高
めるために網状に編んだ多孔シートを磁界に直角に何層
も配設する方法などが実施されている。他にはマトリッ
クスを編まずにそのまま容器に詰め込む方式も従来から
採用されている。この方式は網状に編む手間が不要なの
で簡便であるが、マトリックスはランダムな方向を向い
ているため、磁性粒子の回収に寄与しない部分も含まれ
るので、回収率が落ちるなど長所と短所を併せもってい
る。
2. Description of the Related Art By filling a ferromagnetic fiber in a magnetic field, a large magnetic field gradient is formed on the surface of the fiber,
The method of attracting and capturing magnetic particles in a fluid has been known in principle for a long time. (For example, commentary / Transactions o
n Magnetics, vol MAG-10, No2, June, 1974, pp. 223 et seq.) Various systems have been disclosed for devices embodying the above principles. There are electromagnets, solenoids, permanent magnets, etc. as a method of applying a magnetic field, and stainless fibers, spherical bodies, or recently amorphous fibers are also used as a ferromagnetic matrix. As a method of filling the fiber matrix, a method of arranging multiple layers of a porous sheet woven in a mesh shape at right angles to a magnetic field in order to improve recovery efficiency has been implemented. In addition, a method of packing a matrix as it is without knitting it has been conventionally used. This method is simple because it does not require the work of knitting in a mesh shape, but since the matrix is oriented in a random direction, it also includes a part that does not contribute to the recovery of magnetic particles, so it has both advantages and disadvantages such as a low recovery rate. There is.

【0003】高磁場勾配磁気分離は逆洗工程を必要とす
る。逆洗工程は、マトリックスが磁性粒子を除去回収す
る能力が低下した状態を元に復帰するために行うもの
で、一般には磁界を解除した状態で、あるいはマトリッ
クスを磁界の外に取り出して、マトリックスに吸着した
磁性粒子を洗い落とすものである。すなわち、長時間の
運転によりマトリックスは吸着粒子により目詰まりを生
じ、除去効率の低下および流体抵抗の増大を招くので、
これを初期の状態に戻すのが逆洗の役割である。逆洗を
行うには、一時、ラインを停止する必要があるので磁気
分離装置を付設する設備の効率低下および作業能率低下
の原因となっていた。
High field gradient magnetic separation requires a backwash step. The backwash process is performed to restore the state in which the ability of the matrix to remove and recover the magnetic particles deteriorates. Generally, the magnetic field is released or the matrix is taken out of the magnetic field to form a matrix. This is to wash off the adsorbed magnetic particles. In other words, the matrix is clogged with adsorbed particles due to long-term operation, resulting in a decrease in removal efficiency and an increase in fluid resistance.
The role of backwash is to restore this to the initial state. In order to carry out backwashing, it is necessary to temporarily stop the line, which causes a decrease in the efficiency of equipment equipped with a magnetic separator and a decrease in work efficiency.

【0004】[0004]

【発明が解決しようとする課題】本発明は、高磁場勾配
磁気分離において、逆洗工程の頻度を低減するために、
磁性粒子の除去回収能力を長時間保持するとともにマト
リックスの目詰まりによる圧損増加を最小限に抑制する
ための方法および装置を提供することを目的とする。
SUMMARY OF THE INVENTION In order to reduce the frequency of backwashing steps in high magnetic field gradient magnetic separation, the present invention is directed to
An object of the present invention is to provide a method and an apparatus for keeping the removal and recovery ability of magnetic particles for a long time and suppressing an increase in pressure loss due to clogging of a matrix to a minimum.

【0005】[0005]

【課題を解決するための手段・作用】本発明は、磁界発
生源として永久磁石を用い、磁界中に充填された強磁性
体マトリックスにより生じる高磁場勾配を利用する磁気
分離方法において、検出した被処理流体の圧力変化の大
きさに応じて、永久磁石の位置を被処理流体の流路に沿
って下流から上流に向かって変えることを特徴とする
気分離方法およびそれを具体化する装置である。ここ
で、永久磁石の位置の設定方法は、磁気分離装置の稼働
開始時に、マトリックスを充填した容器の下流側に配置
し、所定の流体圧力の増加を検出したら増加量に応じて
上流方向に移動させるものである。
The present invention uses a permanent magnet as a magnetic field source and uses a high magnetic field gradient generated by a ferromagnetic matrix filled in a magnetic field to detect a detected magnetic field. Large change in pressure of processing fluid
Depending on the size, the position of the permanent magnet should be aligned with the flow path of the fluid to be treated.
A magnetic separation method and a device embodying the same, characterized by changing from downstream to upstream . Here, the setting method of the position of the permanent magnet is arranged at the downstream side of the container filled with the matrix at the start of the operation of the magnetic separation device, and when the increase in the predetermined fluid pressure is detected, the position is moved in the upstream direction according to the increase amount. It is what makes me.

【0006】本発明の方法および装置を図1を用いて、
より具体的に説明する。図1は、被処理流体が流路9の
矢印の方向すなわち下から上に流れている場合を想定し
ている。3は永久磁石であり、その長さは強磁性体マト
リックス7を充填した容器5の長さとほぼ同等ないしや
や長めにするのがよい。磁石3の通路11は強磁性体マ
トリックス7を充填した容器5の周りを囲むように配設
されており、その長さは磁石3とマトリックス容器5の
長さの和より短かく、図1のようにマトリックス容器5
に対して相対的に上方に配置される。また通路11の下
端はマトリックス容器5の下端とほぼ同じ高さにあわせ
る。ここで、容器の長さとは、マトリックスが実質的に
充填されている部分の長さであり、通路11の長さは永
久磁石が移動できる空間の長さのことをいう。磁石3、
通路11、容器5の長さ、相対的配置を上記のように決
める理由は磁石が上端に位置するとき、磁石の下端の少
なくとも一部がマトリックスの上部とオーバラップする
必要があるからである。
The method and apparatus of the present invention will be described with reference to FIG.
This will be described more specifically. FIG. 1 assumes that the fluid to be processed is flowing in the direction of the arrow of the flow path 9, that is, from the bottom to the top. 3 is a permanent magnet, the length of which is preferably approximately the same as or slightly longer than the length of the container 5 filled with the ferromagnetic matrix 7. The passage 11 of the magnet 3 is arranged so as to surround the container 5 filled with the ferromagnetic matrix 7, and the length thereof is shorter than the sum of the lengths of the magnet 3 and the matrix container 5, and is shown in FIG. As a matrix container 5
It is arranged relatively upward with respect to. Further, the lower end of the passage 11 is adjusted to have substantially the same height as the lower end of the matrix container 5. Here, the length of the container means the length of the portion substantially filled with the matrix, and the length of the passage 11 means the length of the space in which the permanent magnet can move. Magnet 3,
The reason for determining the length and relative arrangement of the passage 11 and the container 5 as described above is that at least a part of the lower end of the magnet needs to overlap with the upper part of the matrix when the magnet is located at the upper end.

【0007】つぎに本発明の装置の操作方法の一例を述
べる。永久磁石3はマトリックス7が交換直後の場合
は、磁石通路11の上端に配置する。12は被処理流体
の、マトリックス容器の入側と出側の圧力の差を計測す
る差圧計である。定常状態の圧力差Po に対して圧力増
加が所定の範囲にある場合は永久磁石3は初期の位置を
保持したままにする。時間が経過して吸着粒子により圧
力増加が所定の値ΔPに達した時、磁石3を例えばモー
ターを利用した駆動機構13によりLだけ下に移動させ
る。この状態でさらに稼働時間が経過して圧力がさらに
ΔP増加した時は、磁石3をさらにLだけ下に移動させ
る。このプロセスを繰り返すことによって最後に磁石3
は通路11の下端に達する。このとき、強磁性体マトリ
ックス7は全体が平均的に吸着粒子によって汚れている
から逆洗を行う。差圧ΔPと移動距離Lの具体的設定に
ついては、マトリックスの種類、繊維の線径、充填率、
充填長さ、被処理流体の種類、圧力など多くのファクタ
ーに依存するため前もって実際の使用環境、要求性能
(例えば除去効率)に応じて決定する。重要なことは許
容できる最大差圧ΔPm に達する前に、磁石が通路下端
に達するように設定することである。
Next, an example of a method of operating the apparatus of the present invention will be described. The permanent magnet 3 is arranged at the upper end of the magnet passage 11 when the matrix 7 has just been replaced. Reference numeral 12 is a differential pressure gauge for measuring the difference between the pressure of the fluid to be treated on the inlet side and the outlet side of the matrix container. When the pressure increase is within a predetermined range with respect to the steady-state pressure difference P o , the permanent magnet 3 holds the initial position. When the pressure increase due to the adsorbed particles reaches a predetermined value ΔP with the passage of time, the magnet 3 is moved to, for example , a mode.
It is moved down by L by the drive mechanism 13 using the target . In this state, when the operating time further elapses and the pressure further increases by ΔP, the magnet 3 is further moved downward by L. By repeating this process, finally magnet 3
Reaches the lower end of the passage 11. At this time, the entire ferromagnetic matrix 7 is soiled by the adsorbed particles on average, and therefore backwashing is performed. Regarding the specific setting of the differential pressure ΔP and the moving distance L, the type of matrix, the fiber diameter of the fiber, the filling rate,
Since it depends on many factors such as the filling length, the type of fluid to be treated, and the pressure, it is determined in advance according to the actual use environment and the required performance (for example, removal efficiency). What is important is to set the magnet so that it reaches the lower end of the passage before the maximum allowable pressure difference ΔP m is reached.

【0008】上記の操作は一例に過ぎず、圧力変化に対
して磁石の移動を連続的にすることも可能であることは
いうまでもない。また、装置の構造に関して公知の方法
との組合せも本発明の範囲にふくまれる。例えば、逆洗
によるラインの停止時間を短縮する手段として、実開昭
56−121415号公報に開示されるマトリックスを
内蔵する容器を複数のカートリッジに分割する方法を併
用できる。
Needless to say, the above operation is only an example, and it is possible to continuously move the magnet in response to a pressure change. Also, combinations with known methods for the structure of the device are included in the scope of the present invention. For example, as a means for shortening the line stop time due to backwashing, the method of dividing a container containing a matrix disclosed in Japanese Utility Model Laid-Open No. 56-121415 into a plurality of cartridges can be used together.

【0009】つぎに容器5、永久磁石3の断面形状につ
いて述べる。容器5は好ましくは円筒状であり、永久磁
石3は断面が円弧状であるのがよい。永久磁石は半径方
向に磁化されたものを1対、図1の(b)に示すように
N極とS極が対向するように配置する。磁石を円弧状に
すると平板状磁石を対向させる場合に比べて、端部の漏
洩磁束が少ないので一様でかつ強い磁界が形成される。
永久磁石3の容器を兼ねる通路11の断面形状は永久磁
石のそれに依存することはいうまでもない。磁石が円弧
状であれば必然的に通路11の断面も円弧状となる。た
だし、上記の磁石断面形状は磁性粒子の除去効率向上の
観点から推奨するものであり、除去効率をそれほど重要
視しない場合は、平板状の磁石を用いることができる。
本発明で採用できる永久磁石の種類は、フェライト系、
稀土類系、アルニコ系、ホイスラー合金などである。ま
た、粉末状の上記磁石をプラスチックなどで固めたもの
も使用できる。
Next, the sectional shapes of the container 5 and the permanent magnet 3 will be described. The container 5 is preferably cylindrical and the permanent magnet 3 is preferably arcuate in cross section. A pair of permanent magnets magnetized in the radial direction are arranged so that the N pole and the S pole face each other as shown in FIG. When the magnets are arcuate, compared to the case where the flat magnets are opposed to each other, the leakage magnetic flux at the ends is small, so that a uniform and strong magnetic field is formed.
It goes without saying that the cross-sectional shape of the passage 11 which also serves as the container of the permanent magnet 3 depends on that of the permanent magnet. If the magnet has an arc shape, the cross section of the passage 11 will inevitably have an arc shape. However, the above-mentioned magnet cross-sectional shape is recommended from the viewpoint of improving the removal efficiency of magnetic particles, and if the removal efficiency is not so important, a flat magnet can be used.
The types of permanent magnets that can be used in the present invention are ferrite type,
Rare earth type, Alnico type, Heusler alloy, etc. Further, a powdered magnet obtained by hardening the magnet with plastic or the like can also be used.

【0010】本発明の装置の周辺部分の構成について述
べる。強磁性体マトリックスを充填した容器5は伸縮継
手1を介して被処理流体の流路9に着脱自在に設けてあ
る。これはマトリックスの洗浄、あるいは交換の際に容
器5を流路9から取り外すためである。なお容器5は非
磁性体で構成され、必要な強度と被処理流体による腐食
や反応、場合によっては生じる熱による軟化など変形や
亀裂を生じないものを用いる。例えば、アクリル、塩化
ビニール、アルミニウム、真鍮、オーステナイト系ステ
ンレス鋼などが使用できる。6は容器5内に設けた目
皿、8は流体通過孔である。強磁性体マトリックスは、
流体の種類や捕獲すべき粒子の種類や粒径などによって
適宜選択される。被処理流体が腐食性の強い場合は、そ
れに応じて耐食性のあるマトリックス材料を用いる必要
がある。また腰の強いもの(バネ性の強いもの)が性能
劣化を起こしにくく有利である。この目的に最も適合す
るのは非晶質合金繊維であり、耐酸性、耐アルカリ性、
耐塩性など、それぞれ使用環境に適した成分の選択がで
きる。またバネ性も強いことも特徴としてあげることが
できる。強磁性体粒子の除去回収ならば充填率が1vol
%程度で十分であるので目詰まりを起こしにくく、した
がって逆洗の頻度は一層減らすことができるので非晶質
合金繊維を用いることを推奨する。
The configuration of the peripheral portion of the device of the present invention will be described. The container 5 filled with the ferromagnetic matrix is detachably provided in the flow path 9 for the fluid to be processed through the expansion joint 1. This is because the container 5 is removed from the channel 9 when the matrix is washed or replaced. It should be noted that the container 5 is made of a non-magnetic material, and has a required strength and does not cause deformation or cracks such as corrosion or reaction due to the fluid to be treated and softening due to heat in some cases. For example, acrylic, vinyl chloride, aluminum, brass, austenitic stainless steel, etc. can be used. 6 is a perforated plate provided in the container 5, and 8 is a fluid passage hole. The ferromagnetic matrix is
It is appropriately selected depending on the type of fluid, the type and particle size of particles to be captured. If the fluid to be treated is highly corrosive, it is necessary to use a matrix material that has corrosion resistance accordingly. In addition, a material with a strong elasticity (a material with a strong spring property) is advantageous because it is unlikely to cause performance deterioration. The most suitable for this purpose are amorphous alloy fibers, which have acid resistance, alkali resistance,
It is possible to select components suitable for each environment such as salt resistance. Another feature is that it has a strong elasticity. Filling rate is 1 vol for removal and recovery of ferromagnetic particles
% Is sufficient to prevent clogging, and the frequency of backwashing can be further reduced, so it is recommended to use amorphous alloy fibers.

【0011】本発明の特徴は磁界発生源である永久磁石
の強磁性マトリックスに対する相対的位置をずらすこと
にある。従来の高磁場勾配磁気分離方法においては、流
体入側のマトリックスのみに磁性粒子のほとんどが吸着
して流路をふさぎ、残りのマトリックスが機能を発揮す
る前に全体を逆洗しなければならなかった。これに対し
て、改良型としてマトリックスを充填する容器を複数に
分割するカートリッジ方式が提案されたが、人手を要す
るカートリッジ交換作業の頻度が減少したわけではなか
った。本発明は磁石を自動的に移動してマトリックス全
体を活用することによりマトリックス容器の交換頻度お
よび逆洗頻度を従来法に比べて著しく削減する作用をも
たらした。
A feature of the present invention is to shift the relative position of the permanent magnet, which is the magnetic field generating source, with respect to the ferromagnetic matrix. In the conventional high magnetic field gradient magnetic separation method, most of the magnetic particles are adsorbed only on the fluid-entry side matrix to block the channel, and the whole matrix must be backwashed before the remaining matrix functions. It was On the other hand, as an improved type, a cartridge system has been proposed in which the container filled with the matrix is divided into a plurality of cartridges, but the frequency of cartridge replacement work that requires manual labor has not been reduced. The present invention brings about the effect of remarkably reducing the replacement frequency of the matrix container and the backwashing frequency as compared with the conventional method by automatically moving the magnet and utilizing the entire matrix.

【0012】[0012]

【実施例】小型冷間圧延機のクーラントを循環するため
の装置の途中に本発明の高磁場勾配磁気分離装置を設置
した。この磁気分離装置の主要部は、マトリックスとし
て体積率で1%のアモルファス合金繊維を充填した内径
3cm、長さ20cm円筒状の非磁性ステンレススチール製
容器と、長さ22cm,内径5cm、厚さ1cmの円弧状磁
石、および長さ38cmの磁石通路から構成されている。
ただし、磁石は稀土類系のボンド磁石で、マトリックス
容器は伸縮継手を介してクーラント循環用の内径2cmの
スチール製パイプに接続され、このスチール製パイプの
伸縮継手近傍を結ぶバイパスには、流体入側出側の差圧
を検出するための差圧計が設けられている。
EXAMPLE A high magnetic field gradient magnetic separator according to the present invention was installed in the middle of an apparatus for circulating coolant in a small cold rolling mill. The main part of this magnetic separation device is a cylindrical non-magnetic stainless steel container with an inner diameter of 3 cm and a length of 20 cm filled with 1% by volume of amorphous alloy fiber as a matrix, and a length of 22 cm, an inner diameter of 5 cm and a thickness of 1 cm. Of arc-shaped magnets and a magnet passage having a length of 38 cm.
However, the magnet is a rare earth bond magnet, the matrix container is connected to a steel pipe with an inner diameter of 2 cm for coolant circulation through an expansion joint, and the bypass that connects the steel pipe near the expansion joint is filled with fluid. A differential pressure gauge is provided for detecting the differential pressure on the side output side.

【0013】上記冷間圧延機運転開始時の磁石下端位置
をマトリックス容器下流側から1/4の位置(図1の
A)に配置し、磁石移動の起点となる差圧の閾値を1cm
Aqに設定した。平均流量20 l/minのクーラントを流し
ながら炭素鋼の圧延を行ったところ、本発明の高磁場勾
配磁気分離装置の許容差圧4cmAqに達するまでの実質稼
働時間(稼働時間の累計)は56時間であった。
The lower end position of the magnet at the start of operation of the cold rolling mill is arranged at a position 1/4 from the downstream side of the matrix container (A in FIG. 1), and the threshold value of the differential pressure which is the starting point of the magnet movement is 1 cm.
Set to Aq. When carbon steel was rolled while flowing a coolant with an average flow rate of 20 l / min, the actual operating time (cumulative operating time) until the allowable differential pressure of 4 cmAq of the high magnetic field gradient magnetic separator of the present invention was reached was 56 hours. Met.

【0014】一方、比較のために行った磁石移動機構を
もたない、従来の高磁場勾配磁気分離装置では、許容差
圧4cmAqに達するまでの実質稼働時間は21時間であっ
た。ただし、磁石位置は通路の最上流位置(図1のD)
で、磁石移動機構以外は同一条件で比較した。
On the other hand, in the conventional high magnetic field gradient magnetic separation device having no magnet moving mechanism, which was used for comparison, the actual operating time until reaching the allowable differential pressure of 4 cmAq was 21 hours. However, the magnet position is the most upstream position of the passage (D in Fig. 1).
Then, the comparison was made under the same conditions except for the magnet moving mechanism.

【0015】[0015]

【発明の効果】以上説明したように本発明の磁石移動機
構を有する高磁場勾配磁気分離方法は、従来法に比べて
マトリックス交換までの稼動時間が長いことは明らかで
ある。このように、本発明の磁気分離法を採用すること
により逆洗の頻度が著しく減少し、作業能率の大幅向上
が達成された。また、本発明の磁気分離装置によりこの
磁気分離法を効果的に実施することができた。
As described above, it is apparent that the high magnetic field gradient magnetic separation method having the magnet moving mechanism of the present invention has a longer operation time until the matrix exchange, as compared with the conventional method. As described above, by adopting the magnetic separation method of the present invention, the frequency of backwash was remarkably reduced, and the work efficiency was significantly improved. Further, the magnetic separation apparatus of the present invention was able to effectively carry out this magnetic separation method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高磁場勾配磁気分離方法および装置を
説明するための図で、(a)は全体像を示す側面図、
(b)は主要部の横断平面図である。
FIG. 1 is a diagram for explaining a high magnetic field gradient magnetic separation method and apparatus of the present invention, in which (a) is a side view showing an overall image;
(B) is a cross-sectional plan view of the main part.

【符号の説明】[Explanation of symbols]

1 伸縮継手 2 シール用パッキン 3 永久磁石 5 マトリックス容器 6 目皿 7 強磁性マトリックス 8 流体通過孔 9 流路 11 磁石の通路 12 差圧計 13 磁石駆動機構 1 Expansion Joint 2 Seal Packing 3 Permanent Magnet 5 Matrix Container 6 Eye Plate 7 Ferromagnetic Matrix 8 Fluid Passage Hole 9 Flow Path 11 Magnet Passage 12 Differential Pressure Gauge 13 Magnet Drive Mechanism

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】磁界発生源として永久磁石を用い、磁界中
に充填された強磁性体マトリックスにより生じる高磁場
勾配を利用する磁気分離方法において、検出した被処理
流体の圧力変化の大きさに応じて、永久磁石の位置を
処理流体の流路に沿って下流から上流に向かって変える
ことを特徴とする高磁場勾配磁気分離方法。
1. A magnetic separation method using a permanent magnet as a magnetic field source and utilizing a high magnetic field gradient generated by a ferromagnetic matrix filled in a magnetic field, the detected object to be processed.
Depending on the magnitude of the pressure change of the fluid, the high magnetic field gradient magnetic separation wherein the can variables toward the downstream to the upstream along the position of the permanent magnet in the flow path of the fluid to be treated.
【請求項2】被処理流体の流路に設けられている強磁性
体マトリックスを充填した容器、該容器のまわりを囲む
ように配置された永久磁石、被処理流体の圧力変化を検
出する機構、検出した圧力変化の大きさに応じて磁界発
生源の永久磁石の移動距離を設定する機構、および永久
磁石を流路に沿って移動させる機構を有することを特徴
とする高磁場勾配磁気分離装置。
2. Ferromagnetism provided in the flow path of the fluid to be processed
A container filled with a body matrix, surrounding the container
Of the permanent magnets arranged in such a way that pressure changes in the fluid to be processed can be detected.
A magnetic field is generated according to the output mechanism and the detected pressure change.
Mechanism for setting the moving distance of the permanent magnet of the source, and permanent
Characterized by having a mechanism to move the magnet along the flow path
High magnetic field gradient magnetic separator.
JP3082471A 1991-04-15 1991-04-15 High magnetic field gradient magnetic separation method and apparatus Expired - Lifetime JPH0763572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3082471A JPH0763572B2 (en) 1991-04-15 1991-04-15 High magnetic field gradient magnetic separation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3082471A JPH0763572B2 (en) 1991-04-15 1991-04-15 High magnetic field gradient magnetic separation method and apparatus

Publications (2)

Publication Number Publication Date
JPH04317705A JPH04317705A (en) 1992-11-09
JPH0763572B2 true JPH0763572B2 (en) 1995-07-12

Family

ID=13775425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3082471A Expired - Lifetime JPH0763572B2 (en) 1991-04-15 1991-04-15 High magnetic field gradient magnetic separation method and apparatus

Country Status (1)

Country Link
JP (1) JPH0763572B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012030031A1 (en) * 2010-08-31 2012-03-08 한국전력공사 Apparatus and method for removing granular iron from water

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176382A (en) * 2011-02-28 2012-09-13 Nippon Steel Engineering Co Ltd Magnetic separation filter device
CN102489398A (en) * 2011-12-21 2012-06-13 昆明理工大学 Magnetic matrix used for high silicon cold rolling prism-shaped rod type magnet separator
CN113231194B (en) * 2021-05-15 2022-10-11 唐山金信硅业有限公司 Iron-removing concentrating machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262911A (en) * 1988-04-11 1989-10-19 Kawasaki Steel Corp Apparatus for removing impurities from fluid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012030031A1 (en) * 2010-08-31 2012-03-08 한국전력공사 Apparatus and method for removing granular iron from water

Also Published As

Publication number Publication date
JPH04317705A (en) 1992-11-09

Similar Documents

Publication Publication Date Title
US5089128A (en) Apparatus for separation of ferromagnetic materials from fluid media
US4472275A (en) Magnetic separator
GB1578396A (en) Magnetic separator
JPH0763572B2 (en) High magnetic field gradient magnetic separation method and apparatus
JPS6344006B2 (en)
RU2300421C1 (en) Magnetic separator
JP5802251B2 (en) Magnetic filter device, liquid cleaning system, and liquid cleaning method
JPS621425A (en) Filtering and desalting apparatus
JP5077821B2 (en) Magnetic separation device
KR20120020898A (en) Apparatus and process for removing iron particles in water solution
WO2014061172A1 (en) Magnetic separation system, magnetic separation device, and magnetic separation method
SU784894A1 (en) Electromagnetic filter-separator
JP2968069B2 (en) Magnetic separation device
CN206762421U (en) The attached magnetic filter device of one kind cooling bath
JPH04349908A (en) Oil purifying apparatus
JP4009699B2 (en) Purification device using magnetic material
JPH0380525B2 (en)
JPH0157608B2 (en)
JPS6323707A (en) Magnetic separator
CA1134752A (en) Dual-flow electromagnetic filter
KR100967712B1 (en) Magnetic Filter For Recycling the Roll Milling Oil
JPH01262911A (en) Apparatus for removing impurities from fluid
CN220957056U (en) Normally closed electromagnetic valve with filtering function
KR100643350B1 (en) A magnetic filter for recirculating roll milling oil
EP0341824A2 (en) Apparatus for magnetic separation of impurities from fluids

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19951226