JPH0763305A - Exhaust heat recovery boiler - Google Patents

Exhaust heat recovery boiler

Info

Publication number
JPH0763305A
JPH0763305A JP21114593A JP21114593A JPH0763305A JP H0763305 A JPH0763305 A JP H0763305A JP 21114593 A JP21114593 A JP 21114593A JP 21114593 A JP21114593 A JP 21114593A JP H0763305 A JPH0763305 A JP H0763305A
Authority
JP
Japan
Prior art keywords
pressure
superheated steam
steam
low
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21114593A
Other languages
Japanese (ja)
Inventor
Minoru Yamada
実 山田
Akira Nemoto
晃 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21114593A priority Critical patent/JPH0763305A/en
Publication of JPH0763305A publication Critical patent/JPH0763305A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To feed superheat steam, generated by an exhaust heat recovery boiler, at temperature adjusted to a proper value. CONSTITUTION:A superheat steam generating part SH to change steam fed from a high pressure drum 20 of an exhaust heat recovery boiler 1 to superheat steam. The superheat steam generating part SH is divided into a superheat steam first generating part 26 and a superheat steam second generating part 25 and the generating parts 25 and 26 are individually connected in series to the high pressure drum 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えばガスタ―ビン
等の原動機から出た排ガス(排熱)を利用して蒸気を発
生せしめる排熱回収ボイラの改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of an exhaust heat recovery boiler which generates steam by using exhaust gas (exhaust heat) emitted from a prime mover such as a gas turbine.

【0002】[0002]

【従来の技術】従来、火力発電プラントに使用される蒸
気タ―ビンは、その作動のための蒸気源を大形のボイラ
に求めていたが、何分にもその燃焼効率の割合にはプラ
ント熱効率が高まらず、省エネルギの観点から新らたな
発電プラントの出現が望まれていた。
2. Description of the Related Art Conventionally, a steam turbine used in a thermal power plant requires a large-scale boiler as a steam source for its operation. There has been a demand for the appearance of a new power plant from the viewpoint of energy saving without increasing the thermal efficiency.

【0003】近時、ガスタ―ビンと蒸気タ―ビンとを組
合せた、いわゆるコンバインドサイクル発電プラントの
実機出現を見、斯界から脚光をあびている。このコンバ
インドサイクル発電プラントは、プラントの高熱効率化
および出力大容量化等の対応から出現したものであっ
て、ガスタ―ビン入口への燃焼ガスが高温化され、これ
に伴って排熱回収ボイラに案内される排ガスの温度も高
温化してきている。この排ガスの高温化により排熱回収
ボイラで発生する蒸気も高くなってきている。
Recently, the appearance of a so-called combined cycle power plant, which is a combination of a gas turbine and a steam turbine, has come to the fore, and this field is in the limelight. This combined cycle power plant emerged due to measures such as high thermal efficiency and large output capacity of the plant.The combustion gas at the gas turbine inlet was heated to a high temperature, and the exhaust heat recovery boiler was changed accordingly. The temperature of the guided exhaust gas is also increasing. Due to the high temperature of the exhaust gas, the steam generated in the exhaust heat recovery boiler has also become high.

【0004】一方、排熱回収ボイラからの蒸気を受ける
蒸気タ―ビンは、その作動蒸気の温度が 538℃〜 566℃
の高温にも抗し得る耐熱鋼がタ―ビンロ―タに使用さ
れ、また鋳鋼製のタ―ビンケ―シングも肉厚にしている
ものの、これ以上の作動蒸気温度になると、各構成部品
の材力低下、あるいはじん性不足などの心配が出てく
る。このため蒸気タ―ビンに蒸気を送り出す排熱回収ボ
イラには減温装置を設けておき、排熱回収ボイラから蒸
気タ―ビンに送られる蒸気温度の上限値を発電出力に関
係なく一定範囲内に収めようとする技術がすでに提案さ
れている。
On the other hand, the steam turbine that receives steam from the exhaust heat recovery boiler has a working steam temperature of 538 ° C to 566 ° C.
Although heat-resistant steel that can withstand the high temperatures of the above is used for the turbine rotor and the turbine casing made of cast steel is also thick, when the operating steam temperature exceeds this, the material of each component There is concern about weakness or lack of toughness. For this reason, a temperature reduction device is installed in the exhaust heat recovery boiler that sends steam to the steam turbine, and the upper limit of the steam temperature sent from the exhaust heat recovery boiler to the steam turbine is within a certain range regardless of the power generation output. The technology to try to fit in has already been proposed.

【0005】図4は、減温装置を備えた排熱回収ボイラ
の一代表的実施例を示す概略図である。全体を符号1で
示す排熱回収ボイラは、横長胴を有する複圧式タイプで
ある。この排熱回収ボイラ1は、ガスタ―ビンの排ガス
(排熱)の流れに沿って次順に、高圧第2過熱器2、高
圧第1過熱器3、高圧ドラム20を備えた高圧蒸発器4、
脱硝装置9、高圧節炭器5、低圧過熱器6、低圧ドラム
13を備えた低圧蒸発器7、低圧節炭器8を配置したもの
であり、給水を予熱、蒸発、加熱、蒸発を繰り返す、い
わゆる段階的昇温昇圧にして最終的に過熱蒸気を作り出
すものである。
FIG. 4 is a schematic view showing a typical embodiment of an exhaust heat recovery boiler equipped with a temperature reducing device. The exhaust heat recovery boiler indicated by reference numeral 1 is a compound pressure type having a horizontally long cylinder. The exhaust heat recovery boiler 1 has a high-pressure second superheater 2, a high-pressure first superheater 3, and a high-pressure evaporator 4 including a high-pressure drum 20 in the following order along the flow of exhaust gas (exhaust heat) from the gas turbine:
Denitration device 9, high pressure economizer 5, low pressure superheater 6, low pressure drum
A low-pressure evaporator 7 and a low-pressure coal economizer 8 each having 13 are arranged, and the superheated steam is finally created by preheating, evaporating, heating, and repeating vaporization, which is so-called stepwise heating and pressurization. is there.

【0006】すなわち、給水管10を経て低圧節炭器8に
案内された給水は、ここで排ガス(排熱)により予熱さ
れた飽和水となり、その一部を低圧管11、調整弁12を経
て低圧ドラム13に送られている。また、その残りの飽和
水は管路15、給水ポンプ16、高圧水管17を経て高圧節炭
器5に送られている。
That is, the feed water guided to the low pressure economizer 8 through the water supply pipe 10 becomes saturated water preheated by the exhaust gas (exhaust heat), and a part of the saturated water passes through the low pressure pipe 11 and the adjusting valve 12. It is sent to the low-pressure drum 13. The remaining saturated water is sent to the high-pressure economizer 5 via the pipe 15, the water supply pump 16, and the high-pressure water pipe 17.

【0007】上記低圧ドラム13に集められた飽和水は、
低圧蒸発器7により蒸発し、この蒸発が繰り返えされて
気水分離し、比較的湿り度の高い飽和蒸気として再び管
路14を経て低圧過熱器6に送られ、ここで湿り度の低い
飽和蒸気として蒸気タ―ビン低圧段部に送り出してい
る。
The saturated water collected in the low pressure drum 13 is
The low-pressure evaporator 7 evaporates, and this evaporation is repeated to separate water and water, and the saturated steam having a relatively high degree of wetness is again sent to the low-pressure superheater 6 via the pipeline 14, where the degree of wetness is low. It is sent to the steam turbine low pressure stage as saturated steam.

【0008】他方、高圧節炭器5に集められた飽和水
は、ここで排ガス(排熱)と熱交換し、比較的湿り度の
低い飽和蒸気として高圧管18、調整弁19を経て高圧ドラ
ム20に送り出されている。
On the other hand, the saturated water collected in the high-pressure economizer 5 exchanges heat with the exhaust gas (exhaust heat) here, and becomes saturated vapor having a relatively low degree of wetness through the high-pressure pipe 18 and the adjusting valve 19 to the high-pressure drum. Has been sent to 20.

【0009】高圧ドラム20は、飽和蒸気を一旦、高圧蒸
発器4に送り出して再蒸発させ、気水分離後、きわめて
湿り度の低い飽和蒸気として蒸気管21を経て高圧第1過
熱器3、高圧第2過熱器2に送り出している。そして高
圧第1過熱器3、高圧第2過熱器2では過熱蒸気を作り
出し、蒸気タ―ビン高圧段部に作動蒸気として与えてい
る。
The high-pressure drum 20 once sends the saturated steam to the high-pressure evaporator 4 for re-evaporation, and after vapor-water separation, the saturated steam having a very low degree of wetness is passed through the steam pipe 21 and the high-pressure first superheater 3 It is being sent to the second superheater 2. Then, the high-pressure first superheater 3 and the high-pressure second superheater 2 generate superheated steam and supply it to the steam turbine high-pressure stage as working steam.

【0010】[0010]

【発明が解決しようとする課題】ところで、排熱回収ボ
イラから蒸気タ―ビン高圧段部に与えられる作動蒸気の
温度が高すぎると、その高圧段部を構成する各部材の材
力低下等の心配が出るので、図4に示すように、高圧第
2過熱器2の入口には減温装置22が設けられている。こ
の減温装置22は、給水ポンプ16の高圧水管17を分岐した
スプレ―管23からの飽和水を受け、この飽和水により高
圧第1過熱器3から作り出される過熱蒸気を適正な温度
に下げている。すなわち、高圧第2過熱器2から作り出
される過熱蒸気は、温度検出端25によって常時、温度検
出されており、この検出温度が規準値を越えると、調整
弁24を開口させ、減温装置22に上述飽和水を霧状に供
し、高圧第1過熱器3の温熱蒸気温度が好ましく下るよ
うに混合させている。
If the temperature of the working steam supplied from the exhaust heat recovery boiler to the high pressure stage of the steam turbine is too high, the strength of each member constituting the high pressure stage will decrease. Because of concern, a temperature reducing device 22 is provided at the inlet of the high-pressure second superheater 2 as shown in FIG. The temperature reducing device 22 receives saturated water from a spray pipe 23 that branches the high-pressure water pipe 17 of the water supply pump 16, and lowers the superheated steam produced from the high-pressure first superheater 3 to an appropriate temperature by this saturated water. There is. That is, the temperature of the superheated steam produced from the high-pressure second superheater 2 is constantly detected by the temperature detecting end 25. When the detected temperature exceeds the reference value, the regulating valve 24 is opened and the temperature reducing device 22 is opened. The saturated water is provided in the form of mist and mixed so that the temperature of the hot steam of the high-pressure first superheater 3 is preferably lowered.

【0011】したがって、蒸気タ―ビン高圧段部に送ら
れた過熱蒸気は、好ましい混合状態に調整されているの
で、その高圧段部は過剰な熱応力や熱歪などの外的要因
による材力低下の心配は少ない。
Therefore, since the superheated steam sent to the steam turbine high-pressure stage is adjusted to a preferable mixed state, the high-pressure stage has a material strength due to external factors such as excessive thermal stress and thermal strain. There is little concern about the decline.

【0012】ところが、減温装置22には、温度差の極端
に異なる過熱蒸気と飽和水との混合体が通過するため、
長く使用していると、過熱応力や熱歪による損耗が激し
く、しばしば作動不良になり、飽和水が水滴状のまま高
圧第2過熱器2に流れるトラブルがある。また、蒸気タ
―ビンに急激な出力増減の指令がある場合、過渡的では
あるが過熱蒸気への飽和水の供給が不足し、高圧第1過
熱器3の過熱蒸気を適正温度に下げることができないま
ま高圧第2過熱器2に送られ、ここで異常事体を起すこ
とがある。
However, since a mixture of superheated steam and saturated water having extremely different temperature differences passes through the temperature reducing device 22,
If it is used for a long period of time, it suffers severe wear due to overheating stress and thermal strain, often resulting in malfunction, and there is a problem that saturated water flows into the high-pressure second superheater 2 in the form of water droplets. When the steam turbine has a command to rapidly increase or decrease the output, the supply of saturated water to the superheated steam may be insufficient, but the superheated steam of the high-pressure first superheater 3 may be lowered to an appropriate temperature although it is transient. It is sent to the high-pressure second superheater 2 without being able to do so, and an abnormal event may occur there.

【0013】この発明は、上述事情に照して改善を加え
たもので、従来の減温装置の代りに高圧第1、第2過熱
器を適正配置し、これにより適正温度の過熱蒸気を作り
出す排熱回収ボイラを公表することを目的とする。
The present invention is an improvement made in view of the above-mentioned circumstances. Instead of the conventional temperature reducing device, the high pressure first and second superheaters are properly arranged to thereby generate superheated steam at an appropriate temperature. The purpose is to announce the exhaust heat recovery boiler.

【0014】[0014]

【課題を解決するための手段】この目的を達成するため
に、請求項1に記載した発明は、熱源として導かれた排
ガスの流れに沿って次順に、高圧第2過熱器、高圧第1
過熱器、高圧ドラムを備えた高圧蒸発器、脱硝装置、高
圧節炭器、低圧過熱器、低圧ドラムを備えた低圧蒸発
器、低圧節炭器を配置する一方、低圧節炭器により予熱
した給水の一部を低圧ドラムに案内して蒸発させ、その
蒸発した蒸気を、さらに低圧過熱器により蒸発させて蒸
気タ―ビン低圧段部に送り出すとともに、上記給水の残
りの一部を高圧節炭器を経て高圧ドラムに案内して蒸発
させ、その蒸発した蒸気を高圧第1過熱器により過熱蒸
気に生成し、その過熱蒸気を減温装置で適正温度に調整
し、その調整後の過熱蒸気を高圧第2過熱器を経て蒸気
タ―ビン高圧段部に送り出す排熱回収ボイラにおいて、
上記高圧ドラムから送り出される蒸気を過熱蒸気に変え
る過熱蒸気発生部を設け、この過熱蒸気発生部は過熱蒸
気第1発生部と過熱蒸気第2発生部とに区分けされ、こ
れら各発生部は上記高圧ドラムに対して個々に直列接続
したものである。
In order to achieve this object, the invention described in claim 1 has a high pressure second superheater and a high pressure first
A superheater, a high-pressure evaporator equipped with a high-pressure drum, a denitration device, a high-pressure economizer, a low-pressure superheater, a low-pressure evaporator equipped with a low-pressure drum, and a low-pressure economizer are arranged, while the preheated water supply by the low-pressure economizer is used. Part of the water is guided to the low-pressure drum and evaporated, and the evaporated steam is further evaporated by the low-pressure superheater and sent out to the low-pressure stage of the steam turbine, while the remaining part of the feed water is saved in the high-pressure economizer. Through the high pressure drum to evaporate, the vaporized steam is generated into superheated steam by the high pressure first superheater, the superheated steam is adjusted to an appropriate temperature by the temperature reducing device, and the superheated steam after the adjustment is pressurized to high pressure. In the exhaust heat recovery boiler that sends to the steam turbine high pressure stage through the second superheater,
A superheated steam generating part is provided for converting the steam sent out from the high-pressure drum into superheated steam, and the superheated steam generating part is divided into a superheated steam first generating part and a superheated steam second generating part, and each of these generating parts has the high pressure. The drums are individually connected in series.

【0015】また、請求項1に記載した発明に加えて、
請求項2に記載した発明は、過熱蒸気第1発生部と過熱
蒸気第2発生部は排ガスの流れに沿って次順に連続配置
したものであり、さらに請求項3記載の発明は過熱蒸気
第1発生部と過熱蒸気第2発生部は、排ガスの流れに横
断して平行配置したものである。
In addition to the invention described in claim 1,
In the invention described in claim 2, the first superheated steam generating part and the second superheated steam generating part are continuously arranged in the following order along the flow of the exhaust gas, and the invention according to claim 3 is the superheated steam first part. The generator and the second superheated steam generator are arranged in parallel across the flow of the exhaust gas.

【0016】[0016]

【作用】請求項1および2記載の発明にかかる排熱回収
ボイラでは、高圧ドラムから送り出される蒸気を過熱蒸
気に変える過熱蒸気発生部を設け、この過熱蒸気発生部
は過熱蒸気第1発生部と過熱蒸気第2発生部とに区分け
され、これら各発生部は高圧ドラムに直列接続する一
方、過熱蒸気第1発生部と過熱蒸気第2発生部とは排ガ
スの流れに沿って連続配置したものであるから、過熱蒸
気第2発生部から作り出される過熱蒸気の温度は過熱蒸
気第1発生部から作り出される過熱蒸気の温度よりも高
い。この温度の相違は、排ガスが過熱蒸気第2発生部を
経て過熱蒸気第1発生部に流れるので排ガス温度の高低
の熱量差による。
In the exhaust heat recovery boiler according to the first and second aspects of the present invention, there is provided a superheated steam generating section for converting the steam sent from the high-pressure drum into superheated steam, and the superheated steam generating section is the superheated steam first generating section. It is divided into a superheated steam second generation section, and each of these generation sections is connected in series to a high-pressure drum, while the superheated steam first generation section and the superheated steam second generation section are arranged continuously along the flow of exhaust gas. Therefore, the temperature of the superheated steam generated from the second superheated steam generating section is higher than the temperature of the superheated steam generated from the first superheated steam generating section. This difference in temperature is due to the difference in the amount of heat of the exhaust gas temperature, because the exhaust gas flows to the first superheated steam generation unit via the second superheated steam generation unit.

【0017】しかしながら、排熱回収ボイラから蒸気タ
―ビンに送り出される過熱蒸気の許容温度値は過熱蒸気
第2発生部の過熱蒸気温度と過熱蒸気第1発生部の過熱
蒸気温度との間に存在するので、過熱蒸気第2発生部の
過熱蒸気と、過熱蒸気第1発生部の過熱蒸気とを合流さ
せればその合流蒸気は上述許容温度値内におさめること
ができる。したがって、排熱回収ボイラからは適正温度
の過熱蒸気として蒸気タ―ビン高圧段部に送り出すこと
ができ、従来のような問題点は発生しない。
However, the allowable temperature value of the superheated steam sent from the exhaust heat recovery boiler to the steam turbine exists between the superheated steam temperature of the second superheated steam generating section and the superheated steam temperature of the first superheated steam generating section. Therefore, if the superheated steam of the second superheated steam generating unit and the superheated steam of the first superheated steam generating unit are combined, the combined steam can be kept within the above allowable temperature value. Therefore, the exhaust heat recovery boiler can send the superheated steam at an appropriate temperature to the steam turbine high-pressure stage, and the conventional problems do not occur.

【0018】また、請求項3記載の発明にかかる排熱回
収ボイラでは、過熱蒸気第1発生部と過熱蒸気第2発生
部は排ガスの流れに横断して平行配置しているので、各
発生部に量的に異なる蒸気を送り、過熱蒸気を比較的低
く抑えることができる。一般に平行配置した二つの過熱
蒸気発生部に等量の蒸気を流すと、これらの発生部から
作り出される過熱蒸気温度は高い。
Further, in the exhaust heat recovery boiler according to the third aspect of the present invention, since the first superheated steam generating section and the second superheated steam generating section are arranged in parallel across the flow of the exhaust gas, each generating section The superheated steam can be suppressed to a relatively low level by sending different quantities of steam to. Generally, when equal amounts of steam are flown through two superheated steam generators arranged in parallel, the superheated steam temperature generated from these generators is high.

【0019】しかしながら、一の過熱蒸気発生部に比較
的多くの蒸気を流し、他の一の過熱蒸気発生部に比較的
少ない蒸気を流し、これらを合流させた場合の過熱蒸気
温度は、各発生器に等量蒸気を流した場合の合流過熱蒸
気温度にくらべて低い。
However, when a relatively large amount of steam is caused to flow to one superheated steam generating part and a relatively small amount of steam is caused to flow to another one of the superheated steam generating parts, the superheated steam temperature when these are combined is It is lower than the combined superheated steam temperature when an equal amount of steam is passed through the vessel.

【0020】この原因を今少し詳しく説明する。過熱蒸
気発生部の伝熱面積は一定になっているから、一の過熱
蒸気発生部に比較的多くの蒸気を流したところで、排ガ
スの熱量が一定である場合、交換熱量は変化しない。ま
た、他の一の過熱蒸気発生部に比較的少ない蒸気を流し
た場合、ここで生成される過熱蒸気の温度は排ガスの温
度を越えることはない。
The cause of this will now be described in a little more detail. Since the heat transfer area of the superheated steam generation part is constant, when a relatively large amount of steam is flown through one superheated steam generation part, the exchange heat amount does not change when the heat quantity of the exhaust gas is constant. When a relatively small amount of steam is caused to flow through the other superheated steam generating portion, the temperature of the superheated steam generated here does not exceed the temperature of the exhaust gas.

【0021】したがって、各発生部から生成される過熱
蒸気の温度は異なるにしても、これら蒸気を合流させた
合流過熱蒸気の温度は、各発生部の等量合流過熱蒸気の
温度にくらべて低くなる。
Therefore, even if the temperatures of the superheated steam generated from the respective generating parts are different, the temperature of the combined superheated steam obtained by combining these steams is lower than the temperature of the equal amount of the combined superheated steam of the respective generating parts. Become.

【0022】このように、平行配置の過熱蒸気発生部の
うち、一つの発生部に比較的多くの蒸気を流し、他の一
の発生部に比較的少ない蒸気を流せば、その合流過熱蒸
気は等量合流過熱蒸気にくらべて温度が低いから適正過
熱蒸気温度として蒸気タ―ビン高圧段部に送り出すこと
ができる。
As described above, when a relatively large amount of steam is caused to flow to one of the superheated steam generating units arranged in parallel and a relatively small amount of steam is caused to flow to the other one of the superheated steam generating units, the combined superheated steam is generated. Since the temperature is lower than the equivalent combined superheated steam, it can be sent to the steam turbine high pressure stage as the proper superheated steam temperature.

【0023】[0023]

【実施例】以下に、この発明にかかる排熱回収ボイラを
例示して図面を参照しつつ説明する。なお、図4に示し
た構成部分と同一構成部分には同一符号を付し、その重
複説明は略す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Exhaust heat recovery boiler according to the present invention will be described below with reference to the drawings. The same components as those shown in FIG. 4 are designated by the same reference numerals, and the duplicate description thereof will be omitted.

【0024】図1は、この発明にかかる排熱回収ボイラ
の概略図である。この発明は、排熱回収ボイラのうち、
過熱蒸気を生成する部分を改良したものである。すなわ
ち、排熱回収ボイラ1の入口(ガスタ―ビンからの排ガ
スが最初に案内される部分)に過熱蒸気発生部SHを設
けたものである。この過熱蒸気発生部SHは、過熱蒸気
第1発生部26と過熱蒸気第2発生部25とに区分けされ、
過熱蒸気第1発生部26は連絡管路28上に調整弁30を介装
して高圧ドラム20に、また過熱蒸気第2発生部25は連絡
管路27上に調整弁29を介装して高圧ドラム20に、個々に
直列接続されている。そして、これら各過熱蒸気発生部
26,25は排熱回収ボイラ1内では排ガスの流れに沿って
連続配置になっている。
FIG. 1 is a schematic diagram of an exhaust heat recovery boiler according to the present invention. This invention, among the exhaust heat recovery boiler,
This is an improvement of the part that produces superheated steam. That is, the superheated steam generating section SH is provided at the inlet of the exhaust heat recovery boiler 1 (the portion where the exhaust gas from the gas turbine is first guided). The superheated steam generating section SH is divided into a superheated steam first generating section 26 and a superheated steam second generating section 25,
The first superheated steam generator 26 is provided on the high-pressure drum 20 with the adjustment valve 30 provided on the communication pipe 28, and the second superheated steam generator 25 is provided on the communication pipe 27 with the adjustment valve 29. The high-pressure drums 20 are individually connected in series. And each of these superheated steam generators
In the exhaust heat recovery boiler 1, 26 and 25 are continuously arranged along the flow of exhaust gas.

【0025】このような構成において、排ガスと蒸気と
は図2に示すグラフにしたがって熱交換する。先ず、高
圧蒸発器4、高圧ドラム20間を往復している間に生成さ
れたきわめて湿り度の低い飽和蒸気は、一部、過熱蒸気
第1発生部26に送られ、ここで過熱蒸気が作り出されて
おり、その温度T1 である。また、高圧ドラム20を出た
他の一部の飽和蒸気は過熱蒸気第2発生部25に案内さ
れ、ここで過熱蒸気が作り出され、その温度はT2 であ
る。このように、各発生部26,25により作り出された過
熱蒸気温度は異なるけれども、蒸気タ―ビン高圧段部が
求めている過熱蒸気温度設定値T0 は上述各発生部26,
25の蒸気温度T1 ,T2 の間に存在する。このため、各
発生部26,25により作り出された過熱蒸気を合流させれ
ば、その合流過熱蒸気の温度は上述設定値T0 に近づ
く。
In such a structure, the exhaust gas and the steam exchange heat according to the graph shown in FIG. First, a part of the saturated steam having a very low degree of wetness generated while reciprocating between the high pressure evaporator 4 and the high pressure drum 20 is sent to the superheated steam first generation section 26, where the superheated steam is generated. And its temperature is T 1 . The other part of the saturated steam that has exited the high-pressure drum 20 is guided to the superheated steam second generation section 25, where superheated steam is produced and its temperature is T 2 . In this way, although the superheated steam temperatures produced by the generators 26, 25 are different, the superheated steam temperature set value T 0 required by the steam turbine high-pressure stage is the above-mentioned generators 26, 25.
It exists between the vapor temperatures T 1 and T 2 of 25. For this reason, if the superheated steam produced by each of the generation units 26 and 25 is merged, the temperature of the merged superheated steam approaches the set value T 0 .

【0026】したがって、排熱回収ボイラ1から蒸気タ
―ビン高圧段部に送られる過熱蒸気は、タ―ビン各部材
の材力低下にならないような適正温度にして送り出すこ
とができる。
Therefore, the superheated steam sent from the exhaust heat recovery boiler 1 to the high-pressure stage of the steam turbine can be sent out at an appropriate temperature so that the strength of each member of the turbine does not decrease.

【0027】図3はこの発明にかかる排熱回収ボイラの
他の実施例を示す概略図である。この実施例では、排ガ
スの流れに横断して過熱蒸気第1発生部31、過熱蒸気第
2発生部32を平行配置し、各発生部31,32は連絡管33,
35上に調整弁34,36を介装して高圧ドラム20に個々に直
列接続したものである。
FIG. 3 is a schematic view showing another embodiment of the exhaust heat recovery boiler according to the present invention. In this embodiment, a superheated steam first generation part 31 and a superheated steam second generation part 32 are arranged in parallel across the flow of exhaust gas, and each generation part 31, 32 is connected to a connecting pipe 33,
The high pressure drum 20 is connected in series to the high pressure drum 20 via the adjusting valves 34 and 36 on the 35.

【0028】このような構成によれば、過熱蒸気第1発
生部31と過熱蒸気第2発生部32とに高圧ドラム20から飽
和蒸気を量的に相違させて流すことができるので、量的
な相違によって作り出される過熱蒸気の合流は上述作用
説明のように、高い温度にはならないから、排熱回収ボ
イラ1から蒸気タ―ビン高圧段部にはタ―ビン部材の材
力低下にならない安全な温度の過熱蒸気として送り出す
ことができる。なお、過熱蒸気第1発生部31と過熱蒸気
第2発生部32に送られる飽和蒸気の量的相違は、調整弁
34,36によってコントロ―ルされている。
According to such a configuration, saturated steam can be flowed from the high-pressure drum 20 to the first superheated steam generating section 31 and the second superheated steam generating section 32 in a quantitatively different manner. As described above, the confluence of the superheated steam created by the difference does not reach a high temperature, and therefore the strength of the turbine member does not decrease from the exhaust heat recovery boiler 1 to the steam turbine high pressure stage. It can be delivered as superheated steam at a temperature. Note that the quantitative difference between the saturated steam sent to the first superheated steam generating section 31 and the second superheated steam generating section 32 is
It is controlled by 34 and 36.

【0029】[0029]

【発明の効果】以上説明したように、この発明にかかる
排熱回収ボイラは、高圧ドラムから送り出される蒸気を
過熱蒸気に変える過熱蒸気発生部を設け、この過熱蒸気
発生部は過熱蒸気第1発生部と過熱蒸気第2発生部とに
区分けされ、これら各発生部は高圧ドラムに対して個々
に直列接続したものであり、各発生部から生成された過
熱蒸気の合流値は比較的温度が低いから、排熱回収ボイ
ラから適正温度の過熱蒸気として蒸気タ―ビン高圧段部
に送り出すことができる。
As described above, the exhaust heat recovery boiler according to the present invention is provided with the superheated steam generating section for converting the steam sent from the high-pressure drum into the superheated steam, and the superheated steam generating section produces the first superheated steam. Section and a superheated steam second generation section, and these generation sections are individually connected in series to the high-pressure drum, and the confluent value of the superheated steam generated from each generation section has a relatively low temperature. From the exhaust heat recovery boiler, it can be sent to the steam turbine high pressure stage as superheated steam at an appropriate temperature.

【0030】また、過熱蒸気第1発生部と過熱蒸気第2
発生部とは排ガスの流れに横断して平行配置しているの
で、各発生部には量的に異なる蒸気を流すことにより、
各発生部から作り出された過熱蒸気の合流は比較的低い
温度になり、このため蒸気タ―ビン高圧段部には適正な
温度の過熱蒸気として送ることができる。
In addition, the first superheated steam generation section and the second superheated steam second section
Since the generator and the generator are arranged parallel to each other across the flow of exhaust gas, by flowing different amount of steam to each generator,
The confluence of the superheated steam generated from each generation section has a relatively low temperature, so that it can be sent to the steam turbine high-pressure stage as superheated steam at an appropriate temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明にかかる排熱回収ボイラの概略図。FIG. 1 is a schematic view of an exhaust heat recovery boiler according to the present invention.

【図2】この発明にかかる排熱回収ボイラの熱精算を示
すグラフ。
FIG. 2 is a graph showing heat settlement of an exhaust heat recovery boiler according to the present invention.

【図3】この発明にかかる排熱回収ボイラの他の実施例
を示す概略図。
FIG. 3 is a schematic view showing another embodiment of the exhaust heat recovery boiler according to the present invention.

【図4】従来の排熱回収ボイラの実施例を示す概略図。FIG. 4 is a schematic diagram showing an embodiment of a conventional exhaust heat recovery boiler.

【符号の説明】[Explanation of symbols]

1 排熱回収ボイラ 2 高圧第2過熱器 3 高圧第1過熱器 4 高圧蒸発器 5 高圧節炭器 6 低圧過熱器 7 低圧蒸発器 8 低圧節炭器 9 脱硝装置 13 低圧ドラム 20 高圧ドラム 22 減温装置 SH 過熱蒸気発生部 25 過熱蒸気第2発生部 26 過熱蒸気第1発生部 1 Exhaust heat recovery boiler 2 High pressure second superheater 3 High pressure first superheater 4 High pressure evaporator 5 High pressure economizer 6 Low pressure superheater 7 Low pressure evaporator 8 Low pressure economizer 9 Denitration equipment 13 Low pressure drum 20 High pressure drum 22 Reduction Warming device SH Superheated steam generator 25 Superheated steam second generator 26 Superheated steam first generator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱源として導かれた排ガスの流れに沿っ
て次順に、高圧第2過熱器、高圧第1過熱器、高圧ドラ
ムを備えた高圧蒸発器、脱硝装置、高圧節炭器、低圧過
熱器、低圧ドラムを備えた低圧蒸発器、低圧節炭器を配
置する一方、低圧節炭器により予熱した給水の一部を低
圧ドラムに案内して蒸発させ、その蒸発した蒸気を、さ
らに低圧過熱器により蒸発させて蒸気タ―ビン低圧段部
に送り出すとともに、上記給水の残りの一部を高圧節炭
器を経て高圧ドラムに案内して蒸発させ、その蒸発した
蒸気を高圧第1過熱器により過熱蒸気に生成し、その過
熱蒸気を減温装置で適正温度に調整し、その調整後の過
熱蒸気を高圧第2過熱器を経て蒸気タ―ビン高圧段部に
送り出す排熱回収ボイラにおいて、上記高圧ドラムから
送り出される蒸気を過熱蒸気に変える過熱蒸気発生部を
設け、この過熱蒸気発生部は過熱蒸気第1発生部と過熱
蒸気第2発生部とに区分けされ、これら各発生部は上記
高圧ドラムに対して個々に直列接続したことを特徴とす
る排熱回収ボイラ。
1. A high-pressure second superheater, a high-pressure first superheater, a high-pressure evaporator equipped with a high-pressure drum, a denitration device, a high-pressure economizer, and a low-pressure superheat in the following order along the flow of exhaust gas guided as a heat source: A low-pressure evaporator equipped with a low-pressure drum and a low-pressure economizer are arranged, while part of the feedwater preheated by the low-pressure economizer is guided to the low-pressure drum to evaporate, and the vaporized vapor is further heated to low-pressure overheat. Vaporizer and sends it to the steam turbine low pressure stage, and guides the remaining part of the feed water through the high pressure economizer to the high pressure drum to vaporize the vaporized steam by the high pressure first superheater. In the exhaust heat recovery boiler that produces superheated steam, adjusts the superheated steam to an appropriate temperature by a temperature reducing device, and sends the adjusted superheated steam to the steam turbine high pressure stage through the high pressure second superheater, The steam delivered from the high-pressure drum An overheated steam generating part for converting to overheated steam is provided, and this overheated steam generating part is divided into an overheated steam first generating part and an overheated steam second generating part, and these generating parts are individually connected in series to the high pressure drum. Exhaust heat recovery boiler characterized by
【請求項2】 過熱蒸気第1発生部と過熱蒸気第2発生
部は排ガスの流れに沿って次順に連続配置したことを特
徴とする請求項1記載の排熱回収ボイラ。
2. The exhaust heat recovery boiler according to claim 1, wherein the first superheated steam generating section and the second superheated steam generating section are continuously arranged in the following order along the flow of the exhaust gas.
【請求項3】 過熱蒸気第1発生部と過熱蒸気第2発生
部は、排ガスの流れに横断して平行配置したことを特徴
とする請求項1記載の排熱回収ボイラ。
3. The exhaust heat recovery boiler according to claim 1, wherein the first superheated steam generating section and the second superheated steam generating section are arranged in parallel across the flow of the exhaust gas.
JP21114593A 1993-08-26 1993-08-26 Exhaust heat recovery boiler Pending JPH0763305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21114593A JPH0763305A (en) 1993-08-26 1993-08-26 Exhaust heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21114593A JPH0763305A (en) 1993-08-26 1993-08-26 Exhaust heat recovery boiler

Publications (1)

Publication Number Publication Date
JPH0763305A true JPH0763305A (en) 1995-03-07

Family

ID=16601131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21114593A Pending JPH0763305A (en) 1993-08-26 1993-08-26 Exhaust heat recovery boiler

Country Status (1)

Country Link
JP (1) JPH0763305A (en)

Similar Documents

Publication Publication Date Title
EP0609037B1 (en) Combined combustion and steam turbine power plant
KR100766345B1 (en) Combined cycle system for fuel gas moisturization and heating
KR100592144B1 (en) Apparatus and methods for supplying auxiliary steam in a combined cycle system
EP0391082B1 (en) Improved efficiency combined cycle power plant
JP2849140B2 (en) Waste heat steam generation method and equipment
NL1008162C2 (en) Cogeneration plant and method for supplying cooling steam to it.
JP3032005B2 (en) Gas / steam turbine combined facility
RU2009333C1 (en) Combined steam-gas power plant and method of its operation
US10900418B2 (en) Fuel preheating system for a combustion turbine engine
RU2070293C1 (en) Method of operation of steam turbine plant and steam turbine plant for realization of this method
JP3925985B2 (en) Combined cycle power plant
US9404395B2 (en) Selective pressure kettle boiler for rotor air cooling applications
WO2016125300A1 (en) Steam turbine plant, combined cycle plant provided with same, and method of operating steam turbine plant
WO2016047400A1 (en) Boiler, combined cycle plant, and steam cooling method for boiler
JPH11509901A (en) Method of operating gas / steam combined turbine equipment and equipment operated by this method
KR101887971B1 (en) Low load turndown for combined cycle power plants
JPH0763305A (en) Exhaust heat recovery boiler
KR102456168B1 (en) Combined power plant and operating method of the same
KR102445324B1 (en) Combined power plant and operating method of the same
KR102481490B1 (en) Combined power plant and operating method of the same
CN211372365U (en) System is utilized to rich coal gas high efficiency of iron and steel enterprise
JPH0419306A (en) Steam temperature control system of combined cycle plant
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
JPH01280604A (en) Method of improving efficiency of steam process
JP2015048796A (en) Steam turbine plant, combined cycle plant including the same, and method of operating steam turbine plant