JPH0762480A - Low linear expansion aluminum alloy solidified by rapid cooling and its production - Google Patents

Low linear expansion aluminum alloy solidified by rapid cooling and its production

Info

Publication number
JPH0762480A
JPH0762480A JP5237374A JP23737493A JPH0762480A JP H0762480 A JPH0762480 A JP H0762480A JP 5237374 A JP5237374 A JP 5237374A JP 23737493 A JP23737493 A JP 23737493A JP H0762480 A JPH0762480 A JP H0762480A
Authority
JP
Japan
Prior art keywords
linear expansion
aluminum alloy
low linear
alloy
rapidly solidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5237374A
Other languages
Japanese (ja)
Other versions
JP2781131B2 (en
Inventor
Hideo Sano
秀男 佐野
Naoki Tokizane
直樹 時實
Yoshimasa Okubo
喜正 大久保
Kazuhisa Shibue
和久 渋江
Makoto Otani
真 大谷
Shinichi Tani
真一 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP5237374A priority Critical patent/JP2781131B2/en
Publication of JPH0762480A publication Critical patent/JPH0762480A/en
Application granted granted Critical
Publication of JP2781131B2 publication Critical patent/JP2781131B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain an Al alloy having a low coefft. of linear expansion and satisfactory machinability, excellent in mechanical characteristics after heating at a high temp. and especially useful for the screw rotor of the supercharger of an automobile or an industrial machine. CONSTITUTION:This Al alloy solidified by rapid cooling consists of 10-30% Si, 3-10% one or more among Fe, Mn and Ni and the balance Al and has <=10mum average grain diameter of Si grains and grains of AlSiFe, AlFe, AlMn and AlNi as intermetallic compds. and <=0.4% total amt. of alloying elements allowed to enter into solid soln. This alloy may further contain Cu and Mg. In a producing process, holding under heating at >=400 deg.C is carried out before or after hot working or cooling is carried out at <=5 deg.C/sec cooling rate in the temp. range from the hot working temp. to 200 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低線膨張急冷凝固アル
ミニウム合金およびその製造方法、とくに、自動車、産
業機械などに使用される過給機のスクリューローター用
として好適な高温強度および切削加工性に優れた低線膨
張急冷凝固アルミニウム合金およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to a low linear expansion rapidly solidified aluminum alloy and a method for producing the same, and particularly to high temperature strength and machinability suitable for a screw rotor of a supercharger used in automobiles, industrial machines and the like. Relates to a low linear expansion rapidly solidified aluminum alloy and a method for producing the same.

【0002】[0002]

【従来の技術】過給機は、自動車や産業機械に広く使用
されているが、そのスクリューローターは使用中200 ℃
程度の高温になるため、スクリューローター用の材料に
は、常温から200 ℃までにおける高速回転による塑性変
形や破壊に耐える強度と、高温になっても回転の際のク
リアランスを小さく保持できる低線膨張性が要求され
る。
2. Description of the Related Art Superchargers are widely used in automobiles and industrial machinery, but their screw rotors are used at 200 ° C.
Since the temperature of the screw rotor is high, the strength of the material for screw rotors is such that it can withstand plastic deformation and fracture due to high-speed rotation from room temperature to 200 ° C, and low linear expansion that can keep the clearance during rotation small even at high temperatures. Sex is required.

【0003】スクリューローターには、また、寸法精度
の厳密なスクリュー形状に成形加工するために、優れた
塑性加工性、切削加工性も必要とされる。さらに、スク
リューローターは、最終形状に成形加工された後にPTFE
( ポリテトラフルオロエチレン) コーティイング処理を
行う際、400 ℃で100h保持の熱履歴を受けるから、この
加熱にも耐える強度を有しなければならない。
The screw rotor is also required to have excellent plastic workability and machinability in order to form a screw shape having strict dimensional accuracy. In addition, the screw rotor is made of PTFE after being molded into its final shape.
(Polytetrafluoroethylene) When performing a coating process, it must be strong enough to withstand this heating, as it will be subjected to a heat history of 100 h retention at 400 ° C.

【0004】自動車や産業機械の軽量化、高速度化、高
性能化などのためにスクリューローターへのアルミニウ
ムの使用が考えられているが、通常の溶解ー鋳造法によ
り製造されたアルミニウム合金では、上記の要求性能、
とくに強度特性を満足させることができない。
It is considered to use aluminum for a screw rotor in order to reduce the weight, speed and performance of automobiles and industrial machines. However, in an aluminum alloy produced by a usual melting-casting method, Required performance above,
In particular, the strength characteristics cannot be satisfied.

【0005】一方、アルミニウム材料に優れた特性を与
える方法として、急冷凝固法を利用した粉末冶金法およ
びスプレイフォーミング法がある。粉末冶金法は急冷凝
固で得たアルミニウム粉末を圧縮成形し、押出、鍛造な
どの加工を行って成形体を得る方法であり、スプレイフ
ォーミング法は非酸化性ガスを噴霧して急冷凝固させた
アルミニウムをコレクタ上に堆積させることにより予備
成形体を得る方法で、これらの方法で製造されたアルミ
ニウム合金は一部の自動車部品や家電部品に実用化され
ている。
On the other hand, as a method for giving excellent characteristics to an aluminum material, there are a powder metallurgy method and a spray forming method using a rapid solidification method. The powder metallurgy method is a method in which aluminum powder obtained by rapid solidification is compression-molded and processed by extrusion, forging, etc. to obtain a molded body. The aluminum alloy produced by these methods is put to practical use in some automobile parts and home electric appliance parts.

【0006】発明者らは、粉末冶金法、スプレイフォー
ミング法によるアルミニウム合金を過給機のスクリュー
ローター用素材として適用するために、要求諸特性、と
くに線膨張係数と、合金成分の組合わせ、合金元素の固
溶、析出状態、合金の製造条件などとの関係について広
範囲な基礎的研究を行った。
In order to apply the aluminum alloy by the powder metallurgy method and the spray forming method as a material for a screw rotor of a supercharger, the inventors have required various characteristics, particularly a combination of a linear expansion coefficient and an alloy component, and an alloy. Extensive basic research was conducted on the relationship between the solid solution of elements, the state of precipitation, and the manufacturing conditions of alloys.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記の基礎
的研究をベースとしてなされたものであり、その目的
は、過給機のスクリューローター用の材料として要求さ
れる前記の諸性能をすべて満足する低線膨張急冷凝固ア
ルミニウム合金およびその製造方法を提供することにあ
る。
The present invention has been made based on the above basic research, and its purpose is to achieve all the above-mentioned various performances required as a material for a screw rotor of a supercharger. An object of the present invention is to provide a satisfying low linear expansion rapidly solidified aluminum alloy and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による低線膨張急冷凝固アルミニウム合金
は、Si10〜30%と、Fe、Mn、Niのうちの1種以
上を合計3 〜10%含有し、残部Alからなり、Si粒子
およびAl−Si−Fe系、Al−Fe系、Al−Mn
系、Al−Ni系金属間化合物の平均粒子径が10μm 以
下で、合金元素の固溶量が0.4 %以下であることを構成
上の基本的特徴とし、Cu0.5 〜6 %およびMg0.2 〜
3 %を含有すること、およびさらに選択的にZr、T
i、Mo、Vを合計0.2 〜3 %含有することを構成上の
第2、第3の特徴とする。
A low linear expansion rapidly solidified aluminum alloy according to the present invention for achieving the above object comprises 10 to 30% of Si and one or more of Fe, Mn and Ni in total of 3 to 30%. 10% content, balance Al, Si particles and Al-Si-Fe system, Al-Fe system, Al-Mn
-Based, Al-Ni-based intermetallic compounds having an average particle size of 10 μm or less and a solid solution amount of an alloying element of 0.4% or less are the basic structural features, and Cu0.5-6% and Mg0.2 ~
3%, and optionally Zr, T
The second and third structural features are that i, Mo, and V are contained in a total amount of 0.2 to 3%.

【0009】また、本発明による低線膨張急冷凝固アル
ミニウム合金の製造方法は、Si10〜30%と、Fe、M
n、Niのうちの1種以上を合計3 〜10%含有し、残部
Alからなる急冷凝固体を熱間加工するに際し、熱間加
工前または熱間加工後に400℃以上の温度に加熱保持す
る工程、または熱間加工後200 ℃までを5 ℃/s 以下の
冷却速度で冷却する工程を包含することを構成上の基本
的特徴とし、Cu0.5〜6 %およびMg0.2 〜3 %を含
有すること、およびさらに選択的にZr、Ti、Mo、
Vのうちの1種以上を合計0.2 〜3 %含有することを構
成上の第2、第3の特徴とする。
The method for producing a low linear expansion rapidly solidified aluminum alloy according to the present invention comprises Si 10 to 30%, Fe and M.
When hot-working a rapidly solidified body containing at least one of n and Ni in a total amount of 3 to 10% and the balance being Al, it is heated and maintained at a temperature of 400 ° C. or higher before or after hot-working. The basic characteristic of the constitution is to include a step or a step of cooling up to 200 ° C. at a cooling rate of 5 ° C./s or less after hot working, and Cu 0.5 to 6% and Mg 0.2 to 3% are added. And optionally further Zr, Ti, Mo,
The second and third structural features are that one or more of V is contained in a total amount of 0.2 to 3%.

【0010】本発明におけるアルミニウム合金の基本組
成は、Si10〜30%と、Fe、Mn、Niのうちの1種
以上を合計3 〜10%含有し、残部Alからなり、これに
Cu0.5 〜6 %およびMg0.2 〜3 %を含有させること
ができ、さらにZr、Ti、Mo、Vのうちの1種以上
を合計0.2 〜3 %添加することもできる。Siは、アル
ミニウム合金の線膨張係数を低くするよう作用する元素
である。Siの好ましい含有範囲は10〜30%であり、含
有量が10%未満では線膨張係数低下の効果が小さく、30
%を越えると切削性が劣化する。
The basic composition of the aluminum alloy according to the present invention is 10 to 30% of Si and 3 to 10% of at least one of Fe, Mn and Ni, and the balance is Al. 6% and Mg 0.2 to 3% may be contained, and one or more kinds of Zr, Ti, Mo and V may be added in a total amount of 0.2 to 3%. Si is an element that acts to reduce the linear expansion coefficient of the aluminum alloy. The preferred content range of Si is 10 to 30%, and if the content is less than 10%, the effect of lowering the linear expansion coefficient is small, and
If it exceeds%, the machinability deteriorates.

【0011】Fe、Mn、Niは、アルミニウム合金に
200 〜400 ℃加熱後の強度低下を抑える効果を有する。
好ましい含有範囲は合計量で3 〜10%であり、3 %未満
では効果が小さく、10%を越えると切削性が劣化する。
CuおよびMgは共存して、合金を時効、析出処理する
ことによりAl2 CuMg相を形成し、常温の強度を高
める。好ましい含有範囲は、それぞれ0.5 〜6 %および
0.2 〜3 %であり、下限未満では効果が小さく、上限を
越えると合金の切削性や耐食性を害する。
Fe, Mn, and Ni are aluminum alloys.
It has the effect of suppressing the decrease in strength after heating at 200 to 400 ° C.
A preferable content range is 3 to 10% in total. If it is less than 3%, the effect is small, and if it exceeds 10%, the machinability is deteriorated.
Cu and Mg coexist to form an Al 2 CuMg phase by aging and precipitating the alloy to enhance the strength at room temperature. The preferred content ranges are 0.5 to 6% and
If it is less than the lower limit, the effect is small, and if it exceeds the upper limit, the machinability and corrosion resistance of the alloy are impaired.

【0012】Zr、Ti、Mo、Vは、合金中において
Al−Zr系、Al−Ti系、Al−Mo系、Al−V
系の金属間化合物を形成して、高温加熱後の強度低下を
抑制する。好ましい含有範囲は合計量で0.2 〜2 %であ
り、0.2 %未満では効果が小さく、2 %を越えると切削
性を害する。
Zr, Ti, Mo and V are Al-Zr type, Al-Ti type, Al-Mo type and Al-V type in the alloy.
It forms an intermetallic compound of the system and suppresses the decrease in strength after heating at high temperature. The preferred content range is 0.2 to 2% in total. If it is less than 0.2%, the effect is small, and if it exceeds 2%, the machinability is impaired.

【0013】本発明における第1の性状的要件は、合金
中に晶出または析出するSi粒子、およびAl−Fe−
Si系、Al−Fe系、Al−Mn系、Al−Ni系金
属間化合物粒子の平均粒子径を10μm 以下とすることで
あり、これらの粒子を合金マトリックス中に微細に分散
させることにより高強度が得られ、例えば400 ℃で10時
間保持した後も高い強度を維持することができる。ま
た、優れた切削加工性が与えられ、寸法精度の厳しいス
クリュー形状への加工も可能となる。平均粒子径が10μ
m を越えると、分散強化による強度向上が得られず、塑
性加工性や切削加工性も劣化する。
The first property requirement in the present invention is Si particles which are crystallized or precipitated in the alloy, and Al--Fe--.
The average particle size of Si-based, Al-Fe-based, Al-Mn-based, and Al-Ni-based intermetallic compound particles is to be 10 μm or less, and high strength can be obtained by finely dispersing these particles in the alloy matrix. Thus, high strength can be maintained even after holding at 400 ° C. for 10 hours. In addition, excellent machinability is given, and it becomes possible to process into a screw shape with strict dimensional accuracy. Average particle size is 10μ
If it exceeds m, strength improvement due to dispersion strengthening cannot be obtained, and plastic workability and machinability also deteriorate.

【0014】本発明における第2の性状的要件は、合金
元素の合計固溶量を0.4 %以下とすることであり、過飽
和な固溶元素をアルミニウム系金属間化合物として析出
させることにより、すなわち、アルミニウムと化合物の
複合系にすることで合金の線膨張係数を小さくする。好
ましくはSi、Feなどの合金元素の固溶量を0.2 %未
満としてこれらの元素を十分析出させておくのがよい。
固溶量は、X線回析により格子定数を求め、この値に基
づいて測定することができる。
The second property requirement in the present invention is that the total solid solution amount of the alloying elements is 0.4% or less, and the supersaturated solid solution element is precipitated as an aluminum-based intermetallic compound, that is, The linear expansion coefficient of the alloy is reduced by using a composite system of aluminum and a compound. Preferably, the solid solution amount of the alloying elements such as Si and Fe is set to less than 0.2% to sufficiently precipitate these elements.
The solid solution amount can be measured based on this value by obtaining the lattice constant by X-ray diffraction.

【0015】上記の性状的要件を与えるために、急冷凝
固を利用した粉末冶金法あるいはスプレーデポジション
法により製造した本発明の組成を有するアルミニウム合
金の急冷凝固体を加熱するに際し、熱間加工前または熱
間加工後に400 ℃以上の温度に加熱保持する工程、また
は熱間加工後200 ℃までを5 ℃/s以下の冷却速度で冷却
する工程を包含させる
In order to provide the above-mentioned property requirements, when heating the rapidly solidified body of the aluminum alloy having the composition of the present invention, which is produced by the powder metallurgy method utilizing rapid solidification or the spray deposition method, before hot working. Or a step of heating and holding at a temperature of 400 ° C or higher after hot working, or a step of cooling up to 200 ° C after hot working at a cooling rate of 5 ° C / s or less

【0016】熱間加工前または熱間加工後の加熱保持温
度が350 ℃未満の場合、および/または熱間加工後200
℃までの冷却速度が5 ℃/sを越える場合は、合金元素が
固溶して線膨張係数低減の十分な効果が得られない。加
熱保持温度が530 ℃を越えると、析出物が粗大化して金
属間化合物の平均粒径が10μm を越え、合金の強度が低
下する。
If the heating and holding temperature before or after hot working is less than 350 ° C. and / or after hot working 200
If the cooling rate up to ° C exceeds 5 ° C / s, the alloying elements will form a solid solution and the sufficient effect of reducing the linear expansion coefficient cannot be obtained. If the heating and holding temperature exceeds 530 ° C, the precipitates become coarse and the average particle size of the intermetallic compound exceeds 10 µm, and the strength of the alloy decreases.

【0017】[0017]

【作用】本発明においては、SiおよびFe、Mn、N
iなどの合金元素の特定範囲の組合わせ、Si粒子およ
びAl−Si−Fe系、Al−Fe系その他の金属間化
合物の微細粒子の析出、および合金元素の特定範囲の固
溶量の相乗効果により、線膨張係数が低く、高温加熱後
の強度、切削加工性にも優れた急冷凝固アルミニウム合
金が得られる。
In the present invention, Si, Fe, Mn, N
Combination of alloy elements such as i in a specific range, precipitation of Si particles and fine particles of Al-Si-Fe system, Al-Fe system and other intermetallic compounds, and synergistic effect of solid solution amount in a specific range of alloy elements Thereby, a rapidly solidified aluminum alloy having a low coefficient of linear expansion, excellent strength after high temperature heating and excellent machinability can be obtained.

【0018】[0018]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。実施例および比較例における粉末冶金法、スプ
レイフォーミング法および溶解鋳造法は以下による。 粉末冶金法:溶融したアルミニウム合金溶湯を平均冷却
速度約103 〜104 ℃/sのヘリウムガスアトマイズ法によ
って粉末とし、得られた粉末を用いて、予備圧縮( 真密
度の70〜80%まで)−アルミニウム容器封入−400 ℃で
真空脱ガスの工程により直径67mmのビレットを製作し、
これを熱間押出加工して直径18mmの棒材とする。 スプレイフォーミング:溶融したアルミニウム合金溶湯
をアルゴンガス雰囲気中においてアルゴンガスで噴霧し
て、円柱状のコレクタ上に急冷凝固させながら堆積さ
せ、直径約260mm 、長さ900mm のビレットを製作した。
このビレットを、押出比10で熱間押出加工した。 溶解鋳造法:通常の連続鋳造によりビレットを製作し、
このビレットを押出比10で熱間押出加工した。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples. The powder metallurgy method, spray forming method and melt casting method in the examples and comparative examples are as follows. Powder metallurgy method: Molten molten aluminum alloy is made into powder by the helium gas atomization method with an average cooling rate of about 10 3 to 10 4 ° C / s, and precompressed (up to 70 to 80% of true density) -Aluminum container encapsulation-A billet with a diameter of 67 mm was manufactured by a vacuum degassing process at 400 ° C.
This is hot extruded into a bar with a diameter of 18 mm. Spray forming: A molten aluminum alloy melt was sprayed with argon gas in an argon gas atmosphere, and was rapidly cooled and solidified and deposited on a cylindrical collector to produce a billet with a diameter of about 260 mm and a length of 900 mm.
This billet was hot extruded at an extrusion ratio of 10. Melt casting method: Billet is manufactured by normal continuous casting,
The billet was hot extruded at an extrusion ratio of 10.

【0019】実施例1 表1に示すアルミニウム合金を溶解して、粉末冶金法お
よびスプレイフォーミング法を適用してビレットを作製
し、熱間押出加工前に表2に示す各温度に保持した後、
熱間押出を行い、押出加工後200 ℃まで表2に示す各冷
却速度で冷却した材料により試料を作製し、Si粒子お
よび金属間化合物の平均粒径、合金元素の合計固溶量の
測定、線膨張係数、高温加熱後の耐力、旋削後の表面粗
さの測定を行った。測定結果を表2に示す。
Example 1 The aluminum alloys shown in Table 1 were melted, a powder metallurgy method and a spray forming method were applied to prepare a billet, and the billet was held at each temperature shown in Table 2 before hot extrusion.
Hot extrusion was performed, and after extrusion processing, samples were prepared from the materials cooled to 200 ° C. at each cooling rate shown in Table 2, and the average particle size of Si particles and intermetallic compounds and the total solid solution amount of alloy elements were measured. The linear expansion coefficient, the proof stress after high temperature heating, and the surface roughness after turning were measured. The measurement results are shown in Table 2.

【0020】旋削は、超硬の片刃バイト(すくい角0
°、逃げ角5 °、切り刃角0 °、ノーズ半径0.4mm)を使
用し、43mm径の試料を切削速度162mm/分、切り込み量1m
m 、送り速度0.05mm/rev. の条件で旋削した後、試料の
旋削面の表面粗さを測定した。表2によれば、本発明の
条件に従って作製された試料は、いずれも線膨張係数が
低く、高温加熱後の耐力に優れ、旋削後の表面は平滑で
あった。
For turning, a carbide single-edged bite (rake angle 0
°, clearance angle 5 °, cutting edge angle 0 °, nose radius 0.4 mm), 43 mm diameter sample cutting speed 162 mm / min, cutting depth 1 m
After turning under the conditions of m 2 and a feed rate of 0.05 mm / rev., the surface roughness of the turned surface of the sample was measured. According to Table 2, all the samples produced according to the conditions of the present invention had a low linear expansion coefficient, excellent proof stress after high temperature heating, and a smooth surface after turning.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表2】 [Table 2]

【0023】比較例1 表3に示す組成のアルミニウム合金について、通常の溶
解鋳造法、粉末冶金法およびスプレイフォーミング法を
適用してビレットを製作し、熱間押出加工前に表4に示
す温度に加熱保持し、熱間押出後200 ℃までの間を表4
に示す冷却速度で冷却することにより試料を作製し、S
i粒子および金属間化合物粒子の平均径、合金元素の合
計固溶量の測定、線膨張係数、高温加熱後の耐力および
旋削後の表面粗さの測定を行った。結果を表4に示す。
旋削条件は実施例1と同様とした。なお、本発明の条件
を外れたものには下線を付した。
Comparative Example 1 Aluminum alloys having the compositions shown in Table 3 were manufactured into billets by applying the usual melting casting method, powder metallurgy method and spray forming method, and were made to the temperature shown in Table 4 before hot extrusion. After heating and hot extrusion, the temperature up to 200 ° C is shown in Table 4.
A sample was prepared by cooling at the cooling rate shown in
The average diameter of the i particles and the intermetallic compound particles, the total solid solution amount of the alloy elements, the linear expansion coefficient, the proof stress after high temperature heating, and the surface roughness after turning were measured. The results are shown in Table 4.
The turning conditions were the same as in Example 1. Those that do not satisfy the conditions of the present invention are underlined.

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】表4にみられるように、合金元素の合計固
溶量が本発明の条件より多い試料No.1は、線膨張係数が
高くなっており、Si含有量が少ない試料No.2も線膨張
係数が高い。Si含有量の多過ぎる試料No.3およびFe
含有量が多過ぎる試料No.4は、切削加工性が劣るため旋
削後の表面粗さが大きい。また、溶解鋳造法により作製
された試料は、いずれもSi粒子および金属間化合物粒
子の径が大きいため、機械的特性が劣るとともに旋削後
の表面粗さが大きい。なお、A4032 合金(Al-12.3%Si-
0.5%Fe-0.9%Cu-1.1%Mg) を通常の連続鋳造でビレッ
トとし、熱間押出加工前400 ℃の温度に加熱保持した
後、熱間押出を行い、200 ℃までの間を5 ℃/sの冷却速
度で冷却した材料により作製した試料( Si粒子平均径
5 μm 、金属間化合物平均径2.8 μm 、合金元素の合計
固溶量0.13%)は、線膨張係数が19.9( ×10-6/K) と高
く、強度特性は常温の耐力130MPa、150 ℃加熱後の耐力
107MPa、200 ℃加熱後の耐力102MPaといずれも低い値を
示した。
As can be seen from Table 4, Sample No. 1 in which the total solid solution amount of alloying elements is larger than the condition of the present invention has a high linear expansion coefficient, and Sample No. 2 in which the Si content is small is also High coefficient of linear expansion. Sample No. 3 and Fe containing too much Si
Sample No. 4, which has an excessively large content, has poor machinability and thus has a large surface roughness after turning. In addition, since the samples produced by the melt casting method have large Si particles and intermetallic compound particles, the mechanical properties are poor and the surface roughness after turning is large. A4032 alloy (Al-12.3% Si-
0.5% Fe-0.9% Cu-1.1% Mg) is made into a billet by normal continuous casting, heated and held at a temperature of 400 ° C before hot extrusion, then hot extruded to a temperature of 5 ° C up to 200 ° C. Sample made of material cooled at a cooling rate of / s (Si particle average diameter
5 μm, average diameter of intermetallic compound 2.8 μm, total solid solution amount of alloying elements 0.13%) has a high linear expansion coefficient of 19.9 (× 10 -6 / K), and strength characteristics are proof stress 130 MPa at room temperature and heating at 150 ° C. Later yield strength
The values were 107 MPa and 102 MPa after heating at 200 ° C, which were both low values.

【0027】比較例2 Si20%、Fe5 %を含み、残部Alからなる組成のア
ルミニウム合金を溶解し、スプレイフォーミング法を適
用してビレットを製作し、340 ℃で熱間押出を行い、熱
間押出加工後に表5に示す温度に加熱保持した後、200
℃までの間表5に示す冷却速度で冷却した材料から試料
を作製し、Si粒子および金属間化合物粒子の平均径、
合金元素の合計固溶量の測定、高温加熱後の耐力、旋削
後の表面粗さの測定を行った。測定結果を表5に示す。
なお、旋削条件は実施例1と同様とした。
Comparative Example 2 An aluminum alloy containing 20% of Si and 5% of Fe and the balance of Al was melted, a billet was manufactured by applying a spray forming method, and hot extrusion was performed at 340 ° C. After processing and heating at the temperature shown in Table 5, 200
Samples were prepared from materials cooled at a cooling rate shown in Table 5 up to ℃, and the average diameter of Si particles and intermetallic compound particles,
The total solid solution amount of alloy elements, the yield strength after high temperature heating, and the surface roughness after turning were measured. The measurement results are shown in Table 5.
The turning conditions were the same as in Example 1.

【0028】[0028]

【表5】 [Table 5]

【0029】表5に示されるように、熱間押出加工後の
加熱保持温度が本発明の条件より低い試料No.12 は、合
金元素の固溶量が多くなり、線膨張係数低減効果が得ら
れない。試料No.13 は、熱間押出加工後の加熱保持温度
が高いため、析出物が粗大化して機械的特性が劣り、切
削加工性も低下する。
As shown in Table 5, Sample No. 12 having a heating and holding temperature after hot extrusion processing lower than the condition of the present invention has a large solid solution amount of alloying elements and has a linear expansion coefficient reducing effect. I can't. Sample No. 13 has a high heating and holding temperature after the hot extrusion process, so that the precipitates are coarsened, the mechanical properties are deteriorated, and the machinability is also deteriorated.

【0030】[0030]

【発明の効果】以上のとおり、本発明によれば、線膨張
係数が低く、高温加熱後の機械的性能に優れ、良好な切
削加工性を有するアルミニウム合金が提供され、とくに
自動車や産業機械用過給機のスクリューローター用材料
として有用である。
As described above, according to the present invention, there is provided an aluminum alloy having a low linear expansion coefficient, excellent mechanical performance after heating at high temperature, and good machinability, particularly for automobiles and industrial machines. It is useful as a material for a screw rotor of a supercharger.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渋江 和久 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内 (72)発明者 大谷 真 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内 (72)発明者 谷 真一 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kazuhisa Shibue 5-11-3 Shimbashi, Minato-ku, Tokyo Sumitomo Light Metal Industries, Ltd. (72) Inventor Makoto Otani 5-11-3 Shimbashi, Minato-ku, Tokyo No. Sumitomo Light Metal Industry Co., Ltd. (72) Inventor Shinichi Tani 5-11-3 Shimbashi, Minato-ku, Tokyo Sumitomo Light Metal Industry Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Si10〜30%(重量%、以下同じ)と、
Fe、Mn、Niのうちの1種以上を合計3 〜10%含有
し、残部Alからなり、Si粒子およびAl−Si−F
e系、Al−Fe系、Al−Mn系、Al−Ni系金属
間化合物粒子の平均粒子径が10μm 以下で、前記合金元
素のうちSi、Fe、Mn、Niの合計固溶量が0.4 %
以下であることを特徴とする過給機のスクリューロータ
ー用急冷凝固アルミニウム合金。
1. Si 10 to 30% (weight%, the same applies hereinafter),
It contains at least one of Fe, Mn, and Ni in a total amount of 3 to 10%, the balance is Al, and Si particles and Al-Si-F.
The average particle size of the e-based, Al-Fe-based, Al-Mn-based, and Al-Ni-based intermetallic compound particles is 10 μm or less, and the total solid solution amount of Si, Fe, Mn, and Ni among the alloy elements is 0.4%.
A rapidly solidified aluminum alloy for a screw rotor of a supercharger, characterized in that:
【請求項2】 Cu0.5 〜6 %およびMg0.2 〜3 %を
含有することを特徴とする請求項1記載の低線膨張急冷
凝固アルミニウム合金。
2. A low linear expansion rapidly solidified aluminum alloy according to claim 1, which contains Cu 0.5 to 6% and Mg 0.2 to 3%.
【請求項3】 Zr、Ti、Mo、Vにうちの1種以上
を合計0.2 〜2 %含有することを特徴とする請求項1ま
たは2記載の低線膨張急冷凝固アルミニウム合金。
3. The low linear expansion rapidly solidified aluminum alloy according to claim 1, wherein Zr, Ti, Mo and V contain at least one of 0.2 to 2% in total.
【請求項4】 Si10〜30%と、Fe、Mn、Niのう
ちの1種以上を合計3 〜10%含有し、残部Alからなる
急冷凝固体を熱間加工により成形するに際し、熱間加工
前あるいは熱間加工後に350 ℃以上の温度に加熱保持す
る工程、または熱間加工後200 ℃までを5 ℃/s 以下の
冷却速度で冷却する工程を包含させることを特徴とする
低線膨張急冷凝固アルミニウム合金の製造方法。
4. Hot-working when forming a rapidly solidified body containing 10 to 30% of Si and at least 3 to 10% of at least one of Fe, Mn, and Ni, and the balance being Al by hot working. Low linear expansion rapid cooling characterized by including a step of heating and holding at a temperature of 350 ° C or more before or after hot working, or a step of cooling up to 200 ° C after hot working at a cooling rate of 5 ° C / s or less Method for producing solidified aluminum alloy.
【請求項5】 Cu0.5 〜6 %およびMg0.2 〜3 %を
含有することを特徴とする請求項3記載の低線膨張急冷
凝固アルミニウム合金の製造方法。
5. The method for producing a low linear expansion rapidly solidified aluminum alloy according to claim 3, which contains Cu 0.5 to 6% and Mg 0.2 to 3%.
【請求項6】 Zr、Ti、Mo、Vにうちの1種以上
を合計0.2 〜2 %含有することを特徴とする請求項4ま
たは5記載の低線膨張急冷凝固アルミニウム合金の製造
方法。
6. The method for producing a low linear expansion rapidly solidified aluminum alloy according to claim 4, wherein one or more of Zr, Ti, Mo and V are contained in a total amount of 0.2 to 2%.
JP5237374A 1993-08-30 1993-08-30 Low linear expansion rapidly solidified aluminum alloy and method for producing the same Expired - Lifetime JP2781131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5237374A JP2781131B2 (en) 1993-08-30 1993-08-30 Low linear expansion rapidly solidified aluminum alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5237374A JP2781131B2 (en) 1993-08-30 1993-08-30 Low linear expansion rapidly solidified aluminum alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0762480A true JPH0762480A (en) 1995-03-07
JP2781131B2 JP2781131B2 (en) 1998-07-30

Family

ID=17014444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5237374A Expired - Lifetime JP2781131B2 (en) 1993-08-30 1993-08-30 Low linear expansion rapidly solidified aluminum alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP2781131B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1046465A1 (en) * 1998-11-06 2000-10-25 Noritake Co., Limited Base disk type grinding wheel
JP2007084889A (en) * 2005-09-22 2007-04-05 Aisin Seiki Co Ltd Aluminum alloy and its production method
JP2016017181A (en) * 2014-07-04 2016-02-01 昭和電工株式会社 Aluminum alloy for continuous casting and method for producing continuous casting material
WO2019245720A1 (en) * 2018-06-20 2019-12-26 Arconic Inc. Aluminum alloys having iron, silicon, and manganese and methods for making the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266005A (en) * 1987-11-10 1988-11-02 Showa Denko Kk High strength aluminum alloy powder having heat and wear resistances
JPH01156447A (en) * 1987-12-11 1989-06-20 Furukawa Alum Co Ltd Aluminum alloy powder compact having resistance to heat and wear and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266005A (en) * 1987-11-10 1988-11-02 Showa Denko Kk High strength aluminum alloy powder having heat and wear resistances
JPH01156447A (en) * 1987-12-11 1989-06-20 Furukawa Alum Co Ltd Aluminum alloy powder compact having resistance to heat and wear and its production

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1046465A1 (en) * 1998-11-06 2000-10-25 Noritake Co., Limited Base disk type grinding wheel
US6319109B1 (en) 1998-11-06 2001-11-20 Noritake Co., Limited Disk-shaped grindstone
EP1046465A4 (en) * 1998-11-06 2007-01-10 Noritake Co Ltd Base disk type grinding wheel
JP2007084889A (en) * 2005-09-22 2007-04-05 Aisin Seiki Co Ltd Aluminum alloy and its production method
JP2016017181A (en) * 2014-07-04 2016-02-01 昭和電工株式会社 Aluminum alloy for continuous casting and method for producing continuous casting material
WO2019245720A1 (en) * 2018-06-20 2019-12-26 Arconic Inc. Aluminum alloys having iron, silicon, and manganese and methods for making the same

Also Published As

Publication number Publication date
JP2781131B2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
WO2010122960A1 (en) High-strength copper alloy
JP2651975B2 (en) Gamma titanium aluminide and its manufacturing method
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
WO2002083964A1 (en) Quasi-crystalline phase hardened magnesium alloy with excellent hot formability and method for preparing the same
JPH11504388A (en) Aluminum alloy powder mixture and sintered aluminum alloy
JP2546660B2 (en) Method for producing ceramics dispersion strengthened aluminum alloy
CN112708803B (en) High-specific-modulus aluminum alloy and preparation method thereof
JPS63241148A (en) Production of semi-manufactured product from aluminum base alloy
JP3886329B2 (en) Al-Mg-Si aluminum alloy extruded material for cutting
JP2781131B2 (en) Low linear expansion rapidly solidified aluminum alloy and method for producing the same
JP3184367B2 (en) Method for producing high toughness Al-Si alloy
JPH07145440A (en) Aluminum alloy forging stock
EP0171798A1 (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
US4992117A (en) Heat resistant aluminum alloy excellent in tensile strength, ductility and fatigue strength
JP2019183191A (en) Aluminum alloy powder and manufacturing method therefor, aluminum alloy extrusion material and manufacturing method therefor
JP2951262B2 (en) Aluminum alloy with excellent high-temperature strength
JPH08232053A (en) Production of high strength aluminum alloy extruded material
JP3379901B2 (en) Al-Mg-Si alloy extruded material excellent in cutting workability and method for producing the same
WO2019193985A1 (en) Compressor part for transport aircraft having excellent mechanical properties at high temperature and manufacturing method thereof
JP2790774B2 (en) High elasticity aluminum alloy with excellent toughness
JP2000282161A (en) Heat resisting aluminum alloy excellent in toughness, and its manufacture
JPH108162A (en) Production of aluminum alloy material excellent in high temperature strength
JPH11302807A (en) Manufacture of aluminum alloy for compressor vane
JP3336631B2 (en) Aluminum alloy oil pump
JP2003096524A (en) Aluminum alloy, piston made of aluminum alloy, and method of producing piston made of aluminum alloy