JPH0761823A - Production of silica glass having ultraviolet resistance and silica glass optical member - Google Patents

Production of silica glass having ultraviolet resistance and silica glass optical member

Info

Publication number
JPH0761823A
JPH0761823A JP5211216A JP21121693A JPH0761823A JP H0761823 A JPH0761823 A JP H0761823A JP 5211216 A JP5211216 A JP 5211216A JP 21121693 A JP21121693 A JP 21121693A JP H0761823 A JPH0761823 A JP H0761823A
Authority
JP
Japan
Prior art keywords
silica glass
ingot
quartz glass
content
optical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5211216A
Other languages
Japanese (ja)
Other versions
JP3259460B2 (en
Inventor
Norio Komine
典男 小峯
Masashi Fujiwara
誠志 藤原
Hiroki Jinbo
宏樹 神保
Hiroyuki Hiraiwa
弘之 平岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP21121693A priority Critical patent/JP3259460B2/en
Publication of JPH0761823A publication Critical patent/JPH0761823A/en
Application granted granted Critical
Publication of JP3259460B2 publication Critical patent/JP3259460B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1484Means for supporting, rotating or translating the article being formed
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/23Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/62Distance
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To improve ultraviolet resistance, reduce generation of structural defects and optimize the chlorine content, the OH content and the metal impurity content by specifying the growth rate in formation of a silica glass ingot. CONSTITUTION:Oxygen gas and hydrogen gas of a silica glass burner are mixed and burnt and a silicon chloride compound as the raw material, e.g. silicon tetrachloride diluted with a carrier gas (oxygen gas in general) is supplied and injected through its central part at a rate of about 5 to 20g/min. The injected silicon chloride compound is allowed to react with water generated by combustion of the hydrogen gas and the oxygen gas and the produced silica glass soot is deposited and melted on a target made of an opaque silica glass plate and designed so as to perform a rotational motion, a shaking motion respectively in a prescribed period and a descending motion at <=2mm/hr at the same time, keep the position of the ingot at a constant distance from the burner and control the growth rate of the ingot to <=2mm/hr. Thereby, the objective silica glass of a silica glass ingot preform having >=800ppm OH group content, <=50ppm chlorine content and <=20ppb metal impurity content can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエキシマレーザーリソグ
ラフィなどの300nm以下の紫外線レーザーの光学系に使
用される石英ガラス光学部材およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silica glass optical member used in an optical system of an ultraviolet laser of 300 nm or less such as excimer laser lithography and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、シリコン等のウエハ上に集積回路
の微細パターンを露光・転写する光リソグラフィー技術
においては、ステッパーと呼ばれる露光装置が用いられ
る。このステッパーの光源は、近年のLSIの高集積化に
伴ってg線(436nm)からi線(365nm)、さらにはKr
F(248nm)やArF(193nm)エキシマレーザーへと短
波長化が進められている。一般に、ステッパーの照明系
あるいは投影レンズとして用いられる光学ガラスは、i
線よりも短い波長領域では光透過率が低いため、従来の
光学ガラスにかえて合成石英ガラスが用いられる。
2. Description of the Related Art Conventionally, in an optical lithography technique for exposing and transferring a fine pattern of an integrated circuit on a wafer such as silicon, an exposure device called a stepper is used. The light source of this stepper is g-line (436 nm) to i-line (365 nm), and further Kr with the recent high integration of LSI.
Shortening wavelengths are being promoted to F (248 nm) and ArF (193 nm) excimer lasers. Generally, an optical glass used as an illumination system of a stepper or a projection lens is i
Since the light transmittance is low in the wavelength region shorter than the line, synthetic quartz glass is used instead of conventional optical glass.

【0003】しがしながら、合成石英ガラスであって
も、高出力の紫外光やエキシマレーザー光のもとで長時
間使用すると、光透過率の低下、あるいはその他の光学
的特性の劣化がおこる。これらの劣化は、紫外線レーザ
ーの照射によりE'センターと呼ばれる構造欠陥に起因す
る215nmの吸収帯やNBOHC(Non-Bridging Oxygen Hole C
enter)と呼ばれる構造欠陥に起因する260nm吸収帯が現
れることが原因のひとつであると考えられている。
However, even synthetic quartz glass, when used for a long time under high-power ultraviolet light or excimer laser light, has a reduced light transmittance or other optical characteristics. . These deteriorations are caused by the structural defect called E'center due to the irradiation of the ultraviolet laser at the absorption band of 215 nm and NBOHC (Non-Bridging Oxygen Hole C).
It is thought that one of the causes is the appearance of a 260 nm absorption band due to a structural defect called "enter".

【0004】エキシマレーザーリソグラフィーなどの30
0nm以下の紫外線レーザーの光学系に使用される石英ガ
ラス光学部材は高い耐紫外線性が要求されるため、上記
のような構造欠陥を低減するためのさまざまな研究がな
されている。以下にそれらについて簡単に説明する。合
成石英ガラスに含有される溶存塩素は、石英ガラス内部
では、Si-Cl、Cl2、HCl等の状態で存在していることが
知られている。そして、どのような存在形態であっても
塩素は紫外線が照射された場合に容易に有害な構造欠陥
に変換されることが予測される。つまり、合成石英ガラ
ス中の含有塩素濃度が高いと、耐紫外線性が悪くなる。
このことは特開平5-32432に記載されているように、合
成石英ガラス中の塩素濃度を200ppm以下に抑制すること
によって、高い耐紫外線性が得られる。また、欧州特許
EP0525984A1に記載されているように、塩素を含まない
原料を用いて石英ガラスを合成することによって高い耐
紫外線性が得られることが知られている。
30 such as excimer laser lithography
Since quartz glass optical members used for optical systems of ultraviolet lasers of 0 nm or less are required to have high resistance to ultraviolet rays, various studies have been made to reduce the above structural defects. These will be briefly described below. It is known that the dissolved chlorine contained in the synthetic quartz glass exists in the state of Si-Cl, Cl 2 , HCl, etc. inside the quartz glass. It is expected that chlorine in any existing form is easily converted into harmful structural defects when irradiated with ultraviolet rays. In other words, if the concentration of chlorine contained in the synthetic quartz glass is high, the UV resistance will be poor.
This means that, as described in JP-A-5-32432, high UV resistance can be obtained by suppressing the chlorine concentration in the synthetic quartz glass to 200 ppm or less. Also European patent
As described in EP0525984A1, it is known that high UV resistance can be obtained by synthesizing quartz glass using a chlorine-free raw material.

【0005】一方、特開平4ー295018号明細書に記載され
ているように、含有OH基濃度が多くなると紫外領域での
光透過率が高くなり耐紫外線性が良くなることから、紫
外線レーザー用石英ガラス光学部材として含有OH基濃度
が800ppm〜1200ppmのように高いものが用いられてい
る。また、合成石英ガラス中の含有金属不純物も、構造
欠陥の原因であり、耐紫外線性を悪化させるため、含有
金属不純物を低減した合成石英ガラスが用いられてい
る。
On the other hand, as described in JP-A-4-295018, when the content of OH groups is increased, the light transmittance in the ultraviolet region is increased and the ultraviolet resistance is improved. Quartz glass optical members having a high OH group concentration of 800 ppm to 1200 ppm are used. Further, the metal impurities contained in the synthetic quartz glass are also a cause of structural defects and deteriorate the ultraviolet resistance, so that the synthetic quartz glass in which the metal impurities contained are reduced is used.

【0006】さらに、合成石英ガラスの耐紫外線性をさ
らに向上させるために、得られた石英ガラスインゴット
を水素雰囲気下での熱処理することにより耐紫外線性を
向上させる技術(特開平1-201664)や、水素分子をドー
プすることにより耐エキシマ性を向上させる技術(特開
平3-109233)が提案されている。このようにして石英ガ
ラスインゴットにドープされた水素分子は、紫外線照射
によって生成した構造欠陥を安定な構造に変化(ターミ
ネート)する効果があると考えられいる。
Further, in order to further improve the ultraviolet resistance of the synthetic quartz glass, a technique for improving the ultraviolet resistance by heat-treating the obtained quartz glass ingot in a hydrogen atmosphere (JP-A-1-201664) and A technique (JP-A-3-109233) for improving the excimer resistance by doping hydrogen molecules has been proposed. It is considered that the hydrogen molecules thus doped into the quartz glass ingot have an effect of changing (terminating) the structural defects generated by the ultraviolet irradiation into a stable structure.

【0007】[0007]

【発明が解決しようとする課題】従来技術の問題点につ
いて説明する。まず、含有塩素であるが、特開平5-3243
2では合成石英ガラス中の塩素濃度を200ppm以下に抑制
することが提案されているが、課題を解決するための手
段で説明するように、200ppm以下では不十分である。こ
のような濃度の塩素では紫外線照射による劣化が大き
い。一方で、欧州特許EP0525984A1に記載されているよ
うに、塩素を含まない原料を用いて石英ガラスを合成し
たとしても、逆にその他の構造欠陥を増加させる恐れが
あり、耐紫外線性の劣化を免れない。さらに、含有OH基
濃度を800ppm以上に保ったとしても、塩素濃度が低減さ
れていなければやはり耐紫外線性の劣化の恐れがある。
すなわち、含有塩素濃度、含有OH基濃度、および含有金
属不純物濃度はそれぞれを独立に最適化しても意味がな
い。
The problems of the prior art will be described. First, regarding the content of chlorine, JP-A-5-3243
In No. 2, it has been proposed to suppress the chlorine concentration in the synthetic quartz glass to 200 ppm or less, but as described in the means for solving the problem, 200 ppm or less is insufficient. With such a concentration of chlorine, deterioration due to ultraviolet irradiation is large. On the other hand, as described in European Patent EP0525984A1, even if silica glass is synthesized using a chlorine-free raw material, it may increase other structural defects on the contrary and avoid deterioration of ultraviolet resistance. Absent. Further, even if the contained OH group concentration is kept at 800 ppm or more, if the chlorine concentration is not reduced, the UV resistance may deteriorate.
That is, it is meaningless to optimize the contained chlorine concentration, the contained OH group concentration, and the contained metal impurity concentration independently.

【0008】さらには、それらを最適化しても石英ガラ
ス基本構造Si-O-Siそのものに不完全構造、たとえばK.A
wazu et.al.:Journal of Applied Physics,73(1993)164
4に記載されているようなストレス構造があってはなら
ない。次に、水素分子導入による耐紫外線性向上におけ
る問題点を説明する。石英ガラスインゴット中に水素分
子を導入するためには、一旦ガラスインゴットを形成し
た後に再び熱処理(水素処理)を加えなければならない
という問題がある。すなわち、この方法であると水素分
子の導入まで熱を少なくとも 2回加えることになり、
コスト的にも時間的にも不利である。また、二次処理で
水素分子を導入するためには水素雰囲気中で処理を行わ
ねばならず、発火・爆発等の危険性も伴う。更に二次処
理をするということは、形成後のインゴットに少なから
ず人手がかかるため、不純物混入の可能性も否定できな
い。加えて、近年、光リソグラフィー技術に用いるレン
ズ径が大きくなるにつれ、二次処理で水素分子を大口径
の石英ガラスインゴット中に均一に導入するには、拡散
係数から考えてもかなりの長時間を有する。
Furthermore, even if they are optimized, the silica glass basic structure Si--O--Si itself has an incomplete structure, for example, KA.
wazu et.al.:Journal of Applied Physics, 73 (1993) 164
There should be no stress structure as described in 4. Next, the problems in improving the ultraviolet resistance by introducing hydrogen molecules will be described. In order to introduce hydrogen molecules into the quartz glass ingot, there is a problem that the heat treatment (hydrogen treatment) must be performed again after forming the glass ingot once. In other words, with this method, heat is applied at least twice until the introduction of hydrogen molecules,
It is disadvantageous both in terms of cost and time. Further, in order to introduce hydrogen molecules in the secondary treatment, the treatment must be carried out in a hydrogen atmosphere, and there is a risk of ignition and explosion. Further secondary treatment requires considerable labor for the ingot after formation, and therefore the possibility of inclusion of impurities cannot be denied. In addition, in recent years, as the lens diameter used for photolithography technology has become larger, it takes a considerably long time to evenly introduce hydrogen molecules into a large-diameter quartz glass ingot by secondary treatment, considering the diffusion coefficient. Have.

【0009】さらに、水素処理の最大の問題点は、水素
分子が発生した構造欠陥をターミネートする効果がある
のみで、構造欠陥の生成そのものを抑制することができ
ないことである。したがって、溶存水素分子を含有して
いても、欠陥生成そのものを抑制することができないた
めに、耐紫外線性をさらに向上させるための根本的な解
決手段にはならない。
Further, the biggest problem of hydrogen treatment is that it has only an effect of terminating structural defects generated by hydrogen molecules, and cannot suppress generation of structural defects themselves. Therefore, even if it contains a dissolved hydrogen molecule, it cannot suppress the generation of defects itself, and therefore cannot be a fundamental solution to further improve the ultraviolet resistance.

【0010】そこで、本発明においては、水素処理など
の二次的処理を行わずとも、紫外線レーザー用石英ガラ
ス光学部材として充分な耐紫外線性を得られるように、
構造欠陥の生成そのものを抑制し、さらに含有塩素濃
度、含有OH基濃度、および含有金属不純物濃度を最適化
した石英ガラスを提供することを目的とする。
Therefore, in the present invention, it is possible to obtain sufficient ultraviolet resistance as a quartz glass optical member for an ultraviolet laser without performing a secondary treatment such as hydrogen treatment.
It is an object of the present invention to provide a quartz glass that suppresses the generation of structural defects itself and further optimizes the content chlorine concentration, the content OH group concentration, and the content metal impurity concentration.

【0011】[0011]

【課題を解決するための手段】本発明者らは、インゴッ
ト形成時において石英ガラスの構造そのものが安定であ
るような製造条件を得るために、紫外線を照射したとき
に構造欠陥の生じる原因について研究した。その結果、
石英ガラスインゴット形成時の成長速度が耐紫外線性に
非常に影響することを発見した。すなわち、インゴット
の成長速度が速すぎると、石英ガラススートがターゲッ
ト上に堆積、溶融された後、不完全構造が取り除かれな
いままガラス化してしまい、これらの不完全構造が紫外
線を照射したときの欠陥生成の前駆体となり、従って、
成長速度が小さいときに比べて耐エキシマレーザー性が
悪化するとの結論に至ったのである。この結果から石英
ガラスインゴットの形成時の成長速度は、2mm/時以下
に設定することが必要であることが判明した。
The inventors of the present invention have investigated the cause of structural defects when irradiated with ultraviolet rays in order to obtain manufacturing conditions in which the structure itself of quartz glass is stable during ingot formation. did. as a result,
It was discovered that the growth rate during the formation of a quartz glass ingot has a great influence on the UV resistance. That is, if the growth rate of the ingot is too fast, after the quartz glass soot is deposited on the target and melted, it vitrifies without removing the incomplete structure, and these incomplete structures are exposed to ultraviolet rays. It is a precursor to defect generation and therefore
It was concluded that the excimer laser resistance was worse than when the growth rate was low. From this result, it was found that the growth rate at the time of forming the quartz glass ingot needs to be set to 2 mm / hour or less.

【0012】また、インゴットの成長速度の最適化と同
時に、従来の含有塩素濃度、含有金属不純物濃度、およ
び含有OH基濃度の最適化を達成することにより、石英ガ
ラスの耐紫外線性をさらに向上させることが可能であ
る。実験を繰り返した結果、含有塩素濃度は50ppm以
下、含有OH基濃度は800ppm以上、含有金属不純物濃度は
各元素とも20ppb以下に設定することが必要であると判
明した。
Further, by simultaneously optimizing the growth rate of the ingot and the conventional concentration of chlorine content, metal impurity concentration, and content OH group concentration, the ultraviolet resistance of the quartz glass is further improved. It is possible. As a result of repeating the experiment, it was found that it is necessary to set the content chlorine concentration to 50 ppm or less, the content OH group concentration to 800 ppm or more, and the content metal impurity concentration to 20 ppb or less for each element.

【0013】[0013]

【作用】合成石英ガラスの製造方法においては、原料に
四塩化ケイ素などの塩化ケイ素を用い、原料を酸水素火
炎で分解してシリカスートを形成させ、それを回転、揺
動、引き下げを行っているターゲット上に堆積、溶融す
ることによって石英ガラスインゴットを得るため、製造
条件による石英ガラス構造の多様化が予測される。
In the method for producing synthetic quartz glass, silicon chloride such as silicon tetrachloride is used as a raw material, and the raw material is decomposed by an oxyhydrogen flame to form silica soot, which is rotated, shaken, and lowered. Since the silica glass ingot is obtained by depositing and melting on the target, it is expected that the silica glass structure will be diversified depending on the manufacturing conditions.

【0014】インゴットの成長速度は、主に原料の供給
量とターゲットの降下速度によって決まる。従来、イン
ゴットの成長速度に注目した研究はなされていなかった
が、成長速度が速ければ速いほど生産性が向上し、歩留
まりはよくなるため、従来は例えば2mm/時以上の成長
速度で製造が行われていた。本発明は、インゴット中の
不完全構造を取り除くために、成長速度を2mm/時以下
に設定したことを特徴とする。
The growth rate of the ingot is mainly determined by the supply amount of the raw material and the descent rate of the target. Until now, no research focusing on the growth rate of ingots has been done, but the higher the growth rate, the higher the productivity and the better the yield. Therefore, in the past, for example, the production was performed at a growth rate of 2 mm / hour or more. Was there. The present invention is characterized in that the growth rate is set to 2 mm / hour or less in order to remove the incomplete structure in the ingot.

【0015】不完全構造の例としては、これまで文献等
でSi-Si結合やSi-O-O-Si結合等が提案されているが、本
発明で得られた石英ガラスにそのような化学量論比から
のずれに起因する不完全構造が存在しないことは、真空
紫外・紫外・可視・赤外分光光度計による吸収測定から
確認済である。すなわち、g線(436nm)からi線(365
nm)、さらにはKrF(248nm)波長では内部透過率99.
9%以上、ArF(193nm)波長では略99.9%以上を達成し
ている。
As an example of the incomplete structure, Si-Si bond, Si-OO-Si bond and the like have been proposed in the literature and the like, but the stoichiometry of silica glass obtained in the present invention is such. The absence of incomplete structures due to deviations from the ratio has been confirmed by absorption measurements with a vacuum ultraviolet / ultraviolet / visible / infrared spectrophotometer. That is, g-line (436 nm) to i-line (365 nm)
nm), and KrF (248 nm) wavelength has an internal transmittance of 99.
Achieved 9% or more, and approximately 99.9% or more at the wavelength of ArF (193 nm).

【0016】石英ガラスネットワーク中では、酸素原子
とケイ素原子とで作られる四面体どうしが架橋してお
り、Si-O-Si結合角はガラスであるがゆえにある分布を
持っている。このSi-O-Si結合角分布の中には構造的に
不安定なものが含まれている。この不安定なSi-O-Si結
合角成分が耐紫外線性の悪化を引き起こしていると考え
られる。すなわち、化学量論比からのずれに起因する不
完全構造ではない。このような不安定構造として、たと
えばSi-O結合距離が最安定距離からずれている場合や、
3員環、4員環構造のような不安定な結合角を有する結
合などが考えられる。
In the quartz glass network, the tetrahedra made up of oxygen atoms and silicon atoms are cross-linked, and the Si-O-Si bond angle has a certain distribution because it is glass. This Si-O-Si bond angle distribution contains structurally unstable ones. It is considered that this unstable Si-O-Si bond angle component causes deterioration of ultraviolet resistance. That is, it is not an incomplete structure due to deviation from the stoichiometric ratio. As such an unstable structure, for example, when the Si-O bond distance is deviated from the most stable distance,
A bond having an unstable bond angle such as a three-membered ring or a four-membered ring structure is considered.

【0017】このとき、OH基が含有すると架橋する必要
が無くなるため、Si-O-H結合角が最安定構造に近づくこ
とができる。したがって、OH基含有量が多いほど耐紫外
線性が向上するものと推定される。本発明においては、
インゴットの成長速度を2mm/時以下に設定し、かつOH
基含有量を800ppm以上にすることにより、従来よりさら
に耐紫外線性に優れ、紫外線用光学部材としての要求を
充分に満たした石英ガラス光学部材を提供することが可
能となる。
At this time, when the OH group is contained, it is not necessary to crosslink, so that the Si—OH bond angle can approach the most stable structure. Therefore, it is presumed that the higher the OH group content is, the higher the UV resistance is. In the present invention,
Set the growth rate of the ingot to 2 mm / hr or less, and
By setting the content of the group to 800 ppm or more, it becomes possible to provide a quartz glass optical member that is more excellent in ultraviolet resistance than ever before and sufficiently satisfies the requirements as an optical member for ultraviolet rays.

【0018】同様に、含有Cl濃度(50ppm以下)、含有
金属不純物濃度(20ppb以下)についても、インゴット
の成長速度(2mm/時以下)と組み合わせることにより
耐紫外線性に優れた石英ガラス光学部材を提供すること
が可能となる。
Similarly, regarding the content of Cl (50 ppm or less) and the content of metal impurities (20 ppb or less), by combining with the growth rate of the ingot (2 mm / hour or less), a quartz glass optical member excellent in ultraviolet resistance can be obtained. It becomes possible to provide.

【0019】[0019]

【実施例1】高純度石英ガラスインゴットは、原料とし
て高純度の四塩化ケイ素を用い、石英ガラス製バーナー
にて酸素ガス及び水素ガスを混合・燃焼させ、中心部か
ら原料ガスをキャリアガス(通常酸素ガス)で希釈して
噴出させ、ターゲット上に堆積、溶融して合成した。合
成の際、原料ガスを周囲の酸素ガス及び水素ガスの燃焼
により生成する水と反応させ、バーナー下方にある不透
明石英ガラス板からなるターゲット上にガラス化して堆
積させるわけであるが、その際ターゲットは一定周期で
回転及び揺動させ、更に降下を同時に行うことによりイ
ンゴット部の位置を常時バーナーから同距離に保った
(特願平5-22293、特願平5-22294参照)。
Example 1 A high-purity quartz glass ingot uses high-purity silicon tetrachloride as a raw material, and an oxygen gas and a hydrogen gas are mixed and burned by a quartz glass burner, and the raw material gas is supplied from a center portion to a carrier gas (usually It was diluted with oxygen gas) and ejected, deposited on a target, melted, and synthesized. At the time of synthesis, the raw material gas is reacted with water generated by combustion of surrounding oxygen gas and hydrogen gas, and vitrified and deposited on the target made of an opaque quartz glass plate below the burner. Rotates and oscillates at a constant cycle, and further descends at the same time to keep the position of the ingot at the same distance from the burner at all times (see Japanese Patent Application Nos. 5-22293 and 5-22294).

【0020】このとき、実施例1では、原料供給量を5g
/minに設定し、ターゲットの降下速度を1mm/時として、
合成時のインゴットのヘッドを一定に保つことにより、
成長速度1mm/時で合成した直径180mm、長さ550mmの石英
ガラスインゴットを得た。また、比較例1として、原料
供給量を20g/minとして、成長速度4mm/時で合成した直
径180mm、長さ480mmの石英ガラスインゴットを作成し
た。
At this time, in Example 1, the raw material supply amount was 5 g.
/ min, set the target descent speed to 1 mm / hour,
By keeping the ingot head constant during synthesis,
A quartz glass ingot having a diameter of 180 mm and a length of 550 mm was synthesized at a growth rate of 1 mm / hour. Further, as Comparative Example 1, a quartz glass ingot having a diameter of 180 mm and a length of 480 mm synthesized at a growth rate of 4 mm / hour with a raw material supply rate of 20 g / min was prepared.

【0021】これらの石英ガラスインゴットについて、
赤外吸収分光法(1.38μmのOH基による吸収量を測定す
る。)によりOH基含有量を測定したところ、実施例1は
1200ppm、比較例1は1070ppmであった。また、放射化分
析法により塩素含有量を調べたところ、実施例1は15pp
m、比較例1は70ppmであった。
Regarding these quartz glass ingots,
The OH group content was measured by infrared absorption spectroscopy (the amount of absorption by the OH group at 1.38 μm is measured).
It was 1200 ppm and Comparative Example 1 was 1070 ppm. In addition, when the chlorine content was examined by activation analysis, it was found that
m and Comparative Example 1 were 70 ppm.

【0022】さらに、含有金属不純物(Mg,Ca,Ti,Cr,F
e,Ni,Cu,Zn,Co,Mn)の定量分析を誘導結合プラズマ発光
分光法によって行ったところ、濃度がそれぞれ20ppb以
下と高純度であることがわかった。これらの、実施例
1、比較例1の石英ガラスインゴットのそれぞれから直
径60mm、厚さ10mmのArFエキシマレーザー照射用試験片
を切り出し、厚さ方向の向かい合う2面に光学研磨を施
した。次に、これらの2つの試験片を同一の熱処理炉内
において拡散ポンプで10-5Torrに排気しながら 700℃に
60hr保持して(真空アニール)室温まで冷却して脱水素
ガス処理を施し、レーザー耐性に対する溶存水素分子の
影響を排除した。水素分子濃度の測定は、レーザーラマ
ン分光光度計により行った。定量は、サンプルを試料台
にセットした後、Ar+レーザー(出力 800mW)を照射し
た時に発生するサンプルと直角方向のラマン散乱光のう
ち、800cm-1と4135cm-1の強度を測定し、その強度比を
とることにより行った(V.S.Khotimchenko et al., J.Ap
pl.Spectrosc., 46, 632-635(1987) )。その結果、溶存
水素分子はいずれの試験片も検出限界(1x1016molecule
s/cm3)以下であった。
Further, metal impurities contained (Mg, Ca, Ti, Cr, F
Quantitative analysis of e, Ni, Cu, Zn, Co, Mn) was carried out by inductively coupled plasma emission spectroscopy, and it was found that the concentration was 20 ppb or less and the purity was high. Test pieces for ArF excimer laser irradiation having a diameter of 60 mm and a thickness of 10 mm were cut out from each of the quartz glass ingots of Example 1 and Comparative Example 1, and two surfaces facing each other in the thickness direction were optically polished. Next, these two test pieces were heated to 700 ° C in the same heat treatment furnace while exhausting to 10 -5 Torr with a diffusion pump.
After holding it for 60 hours (vacuum annealing), it was cooled to room temperature and subjected to dehydrogenation gas treatment to eliminate the influence of dissolved hydrogen molecules on laser resistance. The measurement of hydrogen molecule concentration was performed by a laser Raman spectrophotometer. Quantification is performed by setting the sample on the sample table and then measuring the intensity at 800 cm -1 and 4135 cm -1 of the Raman scattered light in the direction perpendicular to the sample generated when the sample is irradiated with Ar + laser (output 800 mW). By taking the ratio (VSKhotimchenko et al., J. Ap.
pl. Spectrosc., 46, 632-635 (1987)). As a result, the dissolved hydrogen molecule was detected at the detection limit (1x10 16 molecule
s / cm 3 ) or less.

【0023】このようにして作成した実施例1、比較例
1の試験片に、ArFエキシマレーザー光をワンパルスエ
ネルギー密度:100mJ/cm2/pulse、繰り返し:100Hzで照
射試験を行い、193nmの吸収係数、 吸収係数=ln(照射後の透過率/照射前の透過率)/
試験片厚さ の変化を調べた。その結果を図1に示した。図1のよう
に、石英ガラスインゴットを成長速度1mm/時で合成した
実施例1の方が比較例1に比べてエキシマレーザー耐性
が著しく向上していることがわかる。
The test pieces of Example 1 and Comparative Example 1 thus prepared were subjected to irradiation test with ArF excimer laser light at one pulse energy density: 100 mJ / cm 2 / pulse and repetition: 100 Hz, and absorption at 193 nm was measured. Coefficient, absorption coefficient = ln (transmittance after irradiation / transmittance before irradiation) /
The change in the thickness of the test piece was investigated. The results are shown in Fig. 1. As shown in FIG. 1, it can be seen that the excimer laser resistance of Example 1 in which the silica glass ingot was synthesized at a growth rate of 1 mm / hour was significantly improved as compared with Comparative Example 1.

【0024】[0024]

【実施例2】実施例2では、原料供給量を20g/minに設
定し、ターゲットの降下速度を1.2mm/時として、合成時
のインゴットのヘッドを一定に保つことにより、成長速
度1.2mm/時で合成した直径280mm、長さ600mmの石英ガラ
スインゴットを得た。また、比較例2として、原料供給
量を40g/minとして、成長速度20mm/時で合成した直径12
5mm、長さ500mmの石英ガラスインゴットを作成した。
Example 2 In Example 2, the feed rate was set to 20 g / min, the target descending rate was 1.2 mm / hour, and the growth rate of 1.2 mm / hour was maintained by keeping the ingot head constant during synthesis. A quartz glass ingot having a diameter of 280 mm and a length of 600 mm synthesized at the time was obtained. In addition, as Comparative Example 2, a diameter of 12 mm synthesized at a growth rate of 20 mm / hour with a raw material supply rate of 40 g / min.
A quartz glass ingot having a length of 5 mm and a length of 500 mm was prepared.

【0025】これらの石英ガラスインゴットについて、
OH基含有量を測定したところ、実施例2は1200ppm、比
較例2は660ppmであった。また、塩素含有量を調べたと
ころ、実施例2は23ppm、比較例2は130ppmであった。
さらに、含有金属不純物(Mg,Ca,Ti,Cr,Fe,Ni,Cu,Zn,C
o,Mn)濃度はそれぞれ20ppb以下と高純度であることが
わかった。
Regarding these quartz glass ingots,
When the OH group content was measured, it was 1200 ppm in Example 2 and 660 ppm in Comparative Example 2. Further, when the chlorine content was examined, Example 2 was 23 ppm, and Comparative Example 2 was 130 ppm.
In addition, contained metal impurities (Mg, Ca, Ti, Cr, Fe, Ni, Cu, Zn, C
It was found that the concentration of o, Mn) was less than 20 ppb, which was high purity.

【0026】これらの、実施例2、比較例2の石英ガラ
スインゴットのそれぞれから直径60mm、厚さ10mmのArF
エキシマレーザー照射用試験片を切り出し、厚さ方向の
向かい合う2面に光学研磨を施した。次に、これらの2つ
の試験片を同一の熱処理炉内において拡散ポンプで10-5
Torrに排気しながら 700℃に60hr保持して(真空アニー
ル)室温まで冷却して脱水素ガス処理を施し、レーザー
耐性に対する溶存水素分子の影響を排除した。その結
果、溶存水素分子はいずれの試験片も検出限界(1x1016
molecules/cm3)以下であった。
ArF having a diameter of 60 mm and a thickness of 10 mm from each of the silica glass ingots of Example 2 and Comparative Example 2
A test piece for excimer laser irradiation was cut out, and two surfaces facing each other in the thickness direction were subjected to optical polishing. These two test pieces were then placed in the same heat treatment furnace at 10 -5 with a diffusion pump.
While evacuating to Torr, the temperature was kept at 700 ° C for 60 hours (vacuum annealing), cooled to room temperature, and subjected to dehydrogenation gas treatment to eliminate the influence of dissolved hydrogen molecules on laser resistance. As a result, dissolved hydrogen molecules were detected at the detection limit (1x10 16
molecules / cm 3 ) or less.

【0027】このようにして作成した実施例2、比較例
2の試験片に、ArFエキシマレーザー光をワンパルスエ
ネルギー密度:100mJ/cm2/pulse、繰り返し:100Hzで照
射試験を行い、193nmの吸収係数の変化を調べた。その
結果を図2に示した。図2のように、石英ガラスインゴ
ットを成長速度1.2mm/時で合成した実施例2の方が比較
例2に比べてエキシマレーザー耐性が著しく向上してい
ることがわかる。
The test pieces of Example 2 and Comparative Example 2 thus prepared were subjected to irradiation test with ArF excimer laser light at one pulse energy density: 100 mJ / cm 2 / pulse, repetition: 100 Hz, and absorption at 193 nm The change in coefficient was investigated. The results are shown in Fig. 2. As shown in FIG. 2, it can be seen that the excimer laser resistance of Example 2 in which the silica glass ingot was synthesized at a growth rate of 1.2 mm / hour was significantly improved as compared with Comparative Example 2.

【0028】[0028]

【発明の効果】以上の記載のように、本発明によれば、
高出力なエキシマレーザー光や紫外線の長期にわたる照
射に対して、本質的に透過率低下の少ない耐紫外線性に
優れた合成石英ガラス光学部材を得ることができる。
As described above, according to the present invention,
It is possible to obtain a synthetic quartz glass optical member which is essentially excellent in ultraviolet resistance with little reduction in transmittance with respect to high-power irradiation of excimer laser light or ultraviolet light for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1、比較例1の試験片にArFエキシマ
レーザー照射したときの193nm吸収係数の変化。
FIG. 1 shows a change in absorption coefficient of 193 nm when the test pieces of Example 1 and Comparative Example 1 were irradiated with ArF excimer laser.

【図2】 実施例2、比較例2の試験片にArFエキシマ
レーザー照射したときの193nm吸収係数の変化。
FIG. 2 shows changes in absorption coefficient of 193 nm when the test pieces of Example 2 and Comparative Example 2 were irradiated with ArF excimer laser.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平岩 弘之 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hiroyuki Hiraiwa 3 2-3 Marunouchi, Chiyoda-ku, Tokyo Inside Nikon Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】塩化ケイ素化合物を酸水素火炎で加水分解
し、生じた石英ガラススートをターゲット上に堆積、溶
融して石英ガラスインゴットを形成する石英ガラスの製
造方法において、 前記石英ガラスインゴットの成長速度を2mm/時 以下に
することを特徴とする石英ガラスの製造方法。
1. A method for producing quartz glass, wherein a silica glass compound is hydrolyzed by an oxyhydrogen flame, and the produced quartz glass soot is deposited on a target and melted to form a quartz glass ingot, which comprises growing the quartz glass ingot. A method for producing quartz glass, characterized in that the speed is 2 mm / hour or less.
【請求項2】塩化ケイ素化合物を酸水素火炎で加水分解
し、生じた石英ガラススートをターゲット上に堆積、溶
融して得られた石英ガラスインゴットを母材として用い
た石英ガラス光学部材において、 前記石英ガラスインゴットの成長速度が2mm/時 以下で
あることを特徴とする紫外線用石英ガラス光学部材。
2. A silica glass optical member using a silica glass ingot obtained by hydrolyzing a silicon chloride compound with an oxyhydrogen flame, depositing the resulting silica glass soot on a target, and melting the silica glass ingot as a base material. A quartz glass optical member for ultraviolet rays, wherein the growth rate of the quartz glass ingot is 2 mm / hour or less.
【請求項3】請求項2に記載の石英ガラス光学部材にお
いて、 前記石英ガラスインゴットの含有OH基濃度が800ppm以上
であることを特徴とする紫外線用石英ガラス光学部材。
3. The silica glass optical member according to claim 2, wherein the silica glass ingot has an OH group concentration of 800 ppm or more.
【請求項4】請求項2に記載の石英ガラス光学部材にお
いて、 前記石英ガラスインゴットの含有塩素濃度が50ppm以下
であることを特徴とする紫外線用石英ガラス光学部材。
4. The silica glass optical member according to claim 2, wherein the silica glass ingot has a chlorine concentration of 50 ppm or less.
【請求項5】請求項2に記載の石英ガラス光学部材にお
いて、 前記石英ガラスインゴットの含有金属不純物濃度がそれ
ぞれ20ppb以下であることを特徴とする紫外線用石英ガ
ラス光学部材。
5. The quartz glass optical member according to claim 2, wherein the concentration of metal impurities contained in the quartz glass ingot is 20 ppb or less, respectively.
JP21121693A 1993-08-26 1993-08-26 Method for producing quartz glass having ultraviolet light resistance and quartz glass optical member Expired - Lifetime JP3259460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21121693A JP3259460B2 (en) 1993-08-26 1993-08-26 Method for producing quartz glass having ultraviolet light resistance and quartz glass optical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21121693A JP3259460B2 (en) 1993-08-26 1993-08-26 Method for producing quartz glass having ultraviolet light resistance and quartz glass optical member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000345535A Division JP2001199734A (en) 2000-11-13 2000-11-13 Method for producing quartz glass

Publications (2)

Publication Number Publication Date
JPH0761823A true JPH0761823A (en) 1995-03-07
JP3259460B2 JP3259460B2 (en) 2002-02-25

Family

ID=16602227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21121693A Expired - Lifetime JP3259460B2 (en) 1993-08-26 1993-08-26 Method for producing quartz glass having ultraviolet light resistance and quartz glass optical member

Country Status (1)

Country Link
JP (1) JP3259460B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000076923A1 (en) * 1999-06-10 2000-12-21 Asahi Glass Company, Limited Synthetic quartz glass and method for preparing the same
US6499315B1 (en) 1997-04-08 2002-12-31 Shin-Etsu Quartz Products Co., Ltd Production method for making an optical member for excimer laser using synthetic quartz glass
EP1319637A2 (en) 2001-12-11 2003-06-18 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass blank
EP1340723A2 (en) * 2002-03-01 2003-09-03 Schott Glas Quartz glass preform and process for its manufacture
EP1754689A1 (en) 2005-08-11 2007-02-21 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass substrate for excimer lasers and making method
US7827824B2 (en) 2006-09-07 2010-11-09 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass substrate for excimer lasers and making method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6499315B1 (en) 1997-04-08 2002-12-31 Shin-Etsu Quartz Products Co., Ltd Production method for making an optical member for excimer laser using synthetic quartz glass
WO2000076923A1 (en) * 1999-06-10 2000-12-21 Asahi Glass Company, Limited Synthetic quartz glass and method for preparing the same
US6576578B1 (en) 1999-06-10 2003-06-10 Asahi Glass Company, Limited Synthetic quartz glass and method for preparing the same
JP4529340B2 (en) * 1999-06-10 2010-08-25 旭硝子株式会社 Synthetic quartz glass and manufacturing method thereof
EP1319637A2 (en) 2001-12-11 2003-06-18 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass blank
US6761951B2 (en) 2001-12-11 2004-07-13 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass blank
EP1340723A2 (en) * 2002-03-01 2003-09-03 Schott Glas Quartz glass preform and process for its manufacture
EP1754689A1 (en) 2005-08-11 2007-02-21 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass substrate for excimer lasers and making method
US7954340B2 (en) 2005-08-11 2011-06-07 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass substrate for excimer lasers and making method
US7827824B2 (en) 2006-09-07 2010-11-09 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass substrate for excimer lasers and making method

Also Published As

Publication number Publication date
JP3259460B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
KR100382776B1 (en) Quartz glass, optical member containing the same, and manufacturing method thereof
EP0691312B1 (en) Method for producing silica glass for use with light in a vacuum ultraviolet wavelength range, and silica glass and optical member produced by the method
US5958809A (en) Fluorine-containing silica glass
EP1067096B1 (en) Quartz glass members for excimer laser, and their method of manufacture
EP1462717A2 (en) Burner for the manufacture of synthetic quartz glass
JP2764207B2 (en) Water-soluble synthetic quartz glass for ultraviolet region and method for producing the same
JP3259460B2 (en) Method for producing quartz glass having ultraviolet light resistance and quartz glass optical member
JP2971686B2 (en) Manufacturing method of optical member for UV resistant laser
JPH06166528A (en) Production of ultraviolet-laser resistant optical member
JP2000143278A (en) Projection exposure device having enhanced durability and production of image forming optical system
JP2000290026A (en) Optical quartz glass member for excimer laser
EP1067097A1 (en) Synthetic quartz glass and method for preparation thereof
US6630418B2 (en) Fused silica containing aluminum
JPH1053432A (en) Quartz glass optical member, its production, and projection exposure device
US6946416B2 (en) Fused silica having improved index homogeneity
JPH0840736A (en) Synthetic quartz glass member for excimer laser optical material and its production
JPH11116248A (en) Synthetic quartz glass member
JP2566151B2 (en) Method for manufacturing laser optical system base material
JP2001199734A (en) Method for producing quartz glass
KR20030017550A (en) Quartz glass member and projection aligner
KR20040045015A (en) Fused silica having high internal transmission and low birefringence
JP2001180963A (en) SYNTHESIZED QUARTZ GLASS MEMBER FOR HIGH POWER ArF EXCIMER LASER AND MANUFACTURING METHOD THEREOF
JPH06199531A (en) Synthetic quartz glass for optics

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 12

EXPY Cancellation because of completion of term