JPH0761346A - Flying type rail-car and rail device thereof - Google Patents

Flying type rail-car and rail device thereof

Info

Publication number
JPH0761346A
JPH0761346A JP24842593A JP24842593A JPH0761346A JP H0761346 A JPH0761346 A JP H0761346A JP 24842593 A JP24842593 A JP 24842593A JP 24842593 A JP24842593 A JP 24842593A JP H0761346 A JPH0761346 A JP H0761346A
Authority
JP
Japan
Prior art keywords
vehicle
rail
drive
guide
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24842593A
Other languages
Japanese (ja)
Inventor
Masaru Tsuda
勝 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP24842593A priority Critical patent/JPH0761346A/en
Publication of JPH0761346A publication Critical patent/JPH0761346A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To construct an energy saving convenient elevated railway system which use ultra-light vehicles quickly and at a low cost to eliminate traffic snarl and to provide a high speed automatic conveyance system and a high speed science model unit by miniaturizing the vehicles. CONSTITUTION:A railway is mainly of an elevated type, and a supporting arc can be adjusted at a given angle to a fixed arc at job sites, and curved sections are made of the same members as members for straight lines, and a high level rail road is of an assemble type except the bases of columns. A vehicle of a single wheel line drive type are made to safely runs on a rail 23 by an auxiliary device through a guide ring. As a drive system, a propeller 14 propelling device is added for wheel driving, and the wheel driving device is of bilaterally symmetrical wheel drive braking type for large type vehicles and both collar wheel drive type for small type vehicles. The propeller 14 propelling device is of high speed type and is used for acceleration and braking. The slip of a drive wheel 4 is detected to control the strength of thrust force. A pantograph is supported by a barbell type air spring damping device on the truck and is of a wind pressure endurance type and can be used as a current collecting shoe.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主として低速時に車輪駆
動であり、プロペラ推進で高速性を増大せしめる飛行式
の軌道車及びその軌道システムに関する。より詳細に
は、一条の軌道上を転がる1乃至複数の支持輪を車両の
前後方向の中央線の下方に設け、該支持輪の一個乃至複
数を軌道車に搭載した原動機に連結し、該軌道車に左右
の案内輪を設けて左右の案内体に案内せしめて成る単列
車輪駆動軌道車と、該軌道車にプロペラ推進装置を設け
て成る複合高速推進式の飛行式の軌道車、及びそれらの
運航を支持する軌道システムと、前記単列車輪駆動軌道
車或いは飛行式の軌道車に各種の装置を設けて成る小型
のりモートコントロール式高速輸送システム、科学模
型、或いは遊戯装置等の構造とシステム等に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flight-type track car which is driven mainly by wheels at a low speed and which can increase a high speed by propeller propulsion, and a track system therefor. More specifically, one or a plurality of support wheels that roll on a single track are provided below the center line in the front-rear direction of the vehicle, and one or a plurality of the support wheels are connected to a prime mover mounted on the track car, A single-row wheel-driven rail car that is provided with left and right guide wheels on the vehicle and is guided by the left and right guide bodies, and a compound high-speed propulsion flight-type rail car that is equipped with a propeller propulsion device for the rail car. Structure and system such as a track system for supporting the operation of a vehicle, and a small-scale moat control type high speed transportation system, a scientific model, or a game machine provided with various devices on the single-row wheel-driven orbital car Etc.

【0002】[0002]

【従来の技術】従来、高速軌道システム、例えば新幹
線、常伝導磁気浮上車システム、超伝導磁気浮上車シス
テム等に於いては、車両一台の重量は軽くとも10数ト
ン以上30数トンもある。人間一人60キロと仮定した
定員によれば、車重/人数>200キロであり、この値
を単位車両重量と呼ぶこととすると、この重量車両を支
持する軌道の負担が大きすぎて多くの問題が生じる。即
ち、大重量車輛の故に、直線的で広い幅で土地収用をし
て堅固に軌道を構築する必要があり、建設用地の確保が
至難となってきている。そのため現実には、高速軌道の
建設は棚上げされ、在来線の高速化や中速の地下鉄、モ
ノレール等を多くの費用と年数を費やして建設するか、
小間切れの供用でも使える道路の建設が主であり、エネ
ルギーを過消費し、かつ大気汚染が問題な航空機に限ら
れてきている。しかるに、高速の交通システムの研究
は、超軽量車両が軌道架設を容易にする利点がありか
つ、エネルギー消費を少なくするのに最も重要であるの
を重視せず、他の要素に重点をおいて為されてきてい
る。その結果、電力エネルギーの消費を大幅に減らせる
との予測で研究が進められてきた超伝導磁気浮上走行シ
ステムは、幾つかの理由で軽量化が無理で、省エネルギ
ーのシステムとは考え難くなってきている。車両を軽量
化して、軽便な軌道で市街地に架設する目的で出願した
本願人による昭和58年特許願第094869号−飛行
車は、プロペラ推進によるもので、レールの長手方向に
下向きに設けた係止面と、該面に転動する最高位接触面
とが停止時において、所定間隔開けてある案内輪を少な
くとも二個有す軌道車であり、かつ該軌道車の車両を所
定速度以上で浮上する構造となし、該車両に設けたプロ
ペラ又はジェットで駆動せしめられて成る飛行車であ
る。が、停止時や発車時、低速時には、車輪駆動を併用
できる構造でないので高速時には空気を引っ張らない長
所があるが、プロペラ制動だけでは低速時には風害の問
題もあった。更に、2本の平行レールの車輪駆動と制動
を併用せしめれば、重量車両となり、軽量化ができなか
った。
2. Description of the Related Art Conventionally, in a high-speed track system such as a Shinkansen, a normal conduction magnetic levitation vehicle system, and a superconducting magnetic levitation vehicle system, the weight of one vehicle is 10 tons or more and 30 tons or more. . According to the capacity assuming that one person is 60 kg, the vehicle weight / the number of people> 200 kg, and if this value is called the unit vehicle weight, the burden on the track supporting this heavy vehicle is too large and many problems occur. Occurs. In other words, because of the heavy vehicle, it is necessary to acquire the land in a straight and wide width to build a solid track, which makes it difficult to secure the land for construction. Therefore, in reality, the construction of high-speed tracks will be shelved, speeding up conventional lines, medium-speed subways, monorails, etc.
Mainly the construction of roads that can be used even during short periods of service has been limited to aircraft that consume too much energy and have problems with air pollution. However, research on high-speed transportation systems does not emphasize that ultralight vehicles have the advantages of facilitating track erection and is most important for reducing energy consumption, but focuses on other factors. It has been done. As a result, the superconducting magnetic levitation system, which has been researched with the expectation that the consumption of electric power energy can be significantly reduced, cannot be considered to be an energy-saving system because it cannot be lightened for several reasons. ing. The application filed by the applicant for the purpose of lightening the vehicle so that it can be installed in an urban area on a light rail track, in Japanese Patent Application No. 094869 in 1983-The flying vehicle is propeller-propelled and is installed downward in the longitudinal direction of the rail. When the stop surface and the highest contact surface rolling on the stop surface are stopped, it is a rail car that has at least two guide wheels that are spaced apart by a predetermined distance, and the vehicle of the rail car is levitated at a predetermined speed or more. It is a flight vehicle that is driven by a propeller or a jet provided in the vehicle. However, it has the advantage that it does not pull air at high speed because it is not a structure that can drive wheels at the same time when stopping, starting, or at low speed, but there is also a problem of wind damage at low speed with propeller braking alone. Furthermore, if both parallel wheel drive and braking of two parallel rails are used, it becomes a heavy vehicle and the weight cannot be reduced.

【0003】[0003]

【発明が解決しようとする課題】本発明は前述の交通シ
ステムの欠点を解消するために、車輛重量を軽くするこ
と、その装置類の数を減らすこと、複雑で重い装置を新
しく開発した簡単で軽量の装置に置き換えること、省エ
ネルギーの鋼鉄製車輪駆動の従来の軌道車に、より以上
の高速性を加えること等を課題とする。即ち、現在、実
用中、或いは開発テスト中の高速の交通システムでは、
駆動装置が大規模で重くて嵩張り、制御機器も同様であ
るから単位車両重量が200キロ以上である。従来の車
輛は車重が大きいので、急カーブの高速走行は危険であ
り、軌道は大径のカーブか直線状であり、加えて堅固に
軌道を敷設する必要があるため、直線状の広い土地の収
用に膨大な費用がかかり、新規の建設が困難になってい
る。特に新幹線は、大量輸送が可能でエネルギー消費が
少ない長所が大きいのに、急制動で車輪の偏磨耗を生
じ、制動により生じたレールの凹凸を平滑にするための
連夜の研磨が必要である。並行支持軌道であるから、左
右相互のレール間隔の拡張力が常に加わり、平行度の不
整による左右への振動や、台車の蛇行動が生じる欠点が
あり、保守作業が大変である。車重が大なので、出発抵
抗が大となり、低速駆動力を大にするための機器の重量
が大きく、その制動装置も複雑で重くなる。一台の車輪
が8個も必要であり、長くて重い車軸が4本も用いてあ
る。重車輛の走行騒音は遠距離の地域にもその被害を及
ぼす。常伝導や超伝導の磁気浮上システムは、低騒音で
振動が少ないが、軌道敷設では上記重量車両の弱点があ
るので堅固につくらねばならず、加えて、エネルギーの
消費量は大きく高速走行では、航空機に近い水準となり
省エネルギー技術とは云いがたい。。特に超伝導方式の
場合、強力な磁力が遺伝子に変異を起こすので、客室の
遮蔽体の重量を加えねばならず軽量化は無理で、駆動部
分以外の機器のエネルギー消費が大きい。現実に、地球
上で、車を多く用いる地域は化石燃料の大量消費によ
り、常に雨乞い現象があるので多雨となり、一方車を殆
ど使用せず燃料消費の少ない地域、例えばゴビ砂漠・ア
フリカの大部分は、エネルギー消費の多い地域への大量
の降雨のために、降水量が激減している。加えて、車の
ための道路建設を主とした自然破壊による緑地の減少
や、車或いは航空機による化石燃料の大量消費による炭
酸ガスの増加で、魚類の食する藻類が減少し、代わり
に、炭酸カルシュウム成分を多く生成して食用にならず
に海底を覆う貝類の増殖で、海洋が砂漠化し、魚類資源
も将来枯渇すると考えられる。しかるに、地球規模の気
候の変動による生存環境悪化への根本的な対策=エネル
ギー消費の抑制及び自然の緑地保全=は実行する手段さ
え、利便の名目で、無視されている。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks of the transportation system by reducing vehicle weight, reducing the number of devices, and newly developing a complicated and heavy device. The challenges are to replace it with a light-weight device, to add more speed to the conventional railcars with energy-saving steel wheels, and so on. That is, in a high-speed transportation system currently in practical use or under development test,
Since the driving device is large and heavy and bulky, and the control device is the same, the unit vehicle weight is 200 kg or more. Since conventional vehicles have heavy vehicle weight, it is dangerous to drive at high speed on a sharp curve, and the track has a large-diameter curve or a straight line. The cost of expropriation is huge and new construction is difficult. In particular, the Shinkansen has the advantages of being able to be transported in large quantities and consuming less energy, but it requires uneven grinding of the wheels due to sudden braking, and requires night-long polishing to smooth the unevenness of the rails caused by braking. Since it is a parallel support track, the expansion force of the rail interval between the left and right is always applied, and there are drawbacks that left and right vibrations due to improper parallelism and a snake's snake's behavior occur, which makes maintenance work difficult. Since the vehicle weight is large, the starting resistance is large, the weight of the device for increasing the low speed driving force is large, and the braking device is also complicated and heavy. It requires as many as eight wheels and four long and heavy axles. The running noise of heavy vehicles also damages long-distance areas. Normal and superconducting magnetic levitation systems have low noise and little vibration, but they have to be made solidly because of the weaknesses of the above heavy vehicles in track laying, and in addition, energy consumption is large and high speed running, It is hard to say that it is an energy-saving technology because the level is close to that of an aircraft. . In particular, in the case of the superconducting system, the strong magnetic force causes mutations in the gene, so the weight of the passenger compartment shield must be added to reduce the weight, and the energy consumption of equipment other than the driving part is large. Actually, on the earth, regions where a lot of cars are used have heavy rain due to the constant begging phenomenon due to the large consumption of fossil fuels. Has drastically reduced precipitation due to heavy rainfall in energy-intensive areas. In addition, a decrease in green space due to natural destruction mainly due to road construction for cars and an increase in carbon dioxide due to large consumption of fossil fuels by cars or aircraft will reduce algae eaten by fish, and It is considered that the ocean becomes a desert and fish resources will be depleted in the future due to the proliferation of shellfish that cover the seabed without producing edible substances by producing a large amount of calcium components. However, even the means to implement the fundamental measures against the deterioration of the living environment due to global climate change = restraint of energy consumption and conservation of natural green areas = are ignored for the sake of convenience.

【0004】[0004]

【課題を解決するための手段】本発明の主な目的は、軌
道の建設用地収用を小ならしめ、市街地の交通施設、例
えば道路上、高速道路上、既存の軌道上等の空間にも建
設可能な軽量軌道による高速の交通手段を提供し、緑地
の破壊を防ぐことである。本発明の次の主たる目的は、
従来の軌道車の単位車両重量に比較して5分の1以下に
車輛を軽量化し、省エネルギーで高速の大量輸送手段を
提供することである。小径で、翼幅が広く、45度のひ
ねり角のプロペラによる推進装置を用いて、主として高
速時に高効率の加速手段を、特に駆動車輪のすべりが生
じて車輪の駆動力がゼロになったときに、車輛に具備さ
せて燃料を使用する全ての交通手段の中で、最も省エネ
ルギーで大気汚染の少ない高速の大量輸送手段を提供す
ることである。より詳細には、本発明の第一の目的は、
エネルギー消費を少なくするために、転がり抵抗を減ら
す歪みの小さい素材、例えば鋼鉄、で形成した駆動輪を
用いるその駆動輪の数も減らすために中央の単列にし、
大型の高速車に適したバランスの良い左右対称式車輪駆
動制動方式と小型車輛或いは模型等に適したツバ歯車駆
動方式の提供である。本発明の第2の目的は、単列車輪
駆動軌道車を最小のトルクで安定走行させ得る案内シス
テムとして、等速強制回転式・自在回転式・等速強制回
転弾力接蝕式等の提供である。本発明の第3の目的は、
従来の車輪駆動車は高速での急制動で車輪の滑りを生じ
て車輪が偏磨耗するが、その欠点のないプロペラ制動に
より、装置を簡単に軽量化し高速性を高める複合進行方
式の提供である。本発明の第4の目的は、高速で駆動輪
のすべり又は空転を検知して、プロペラ推進装置の推力
を調整するシステムを提供してすべり或いは空転の発生
を防ぎ、高速性を増大することである。本発明の第5の
目的は従来の高速の軌道車の緩衝装置では複雑で重いの
で、安全に安定して走行出来る軽量の車体傾斜調節緩衝
装置であるバーベル式空気バネ緩衝装置により、車体の
カーブ内側への自動傾斜構造を軌道車に提供することで
ある。本発明の第6の目的は、間隔を離した左右の案内
体にトロリー線を取付けて高圧での給電を可能とし、上
空の高架線装置のない軽便な軌道構造により、量産によ
る安価な組立て部材を供給し、高架軌道を安いコストで
工期を早く提供することである。本発明の第7の目的
は、カーブ位置で高架建設が容易で、かつ量産可能の軌
道支持構造の提供であり、レールの支持骨材をカーブと
直線区間を同一の部材で架設可能にし、現場で適宜に傾
斜度を調節できる構造を提供することである。本発明の
第8の目的は、飛行式の軌道車の下方にプロペラ推進装
置を設けてプロペラ推進の地面効果の高い車輛の提供で
ある。本発明の第9の目的は、良伝導性・耐腐食性・強
靭性・弾力性を具有する金属薄板を構成材料に使用して
の小型で軽量で着脱が容易で風圧の影響が小で、トロリ
ー線からの集電高架の高い外径が20ミリ角位より30
0ミリ角程度の大きさのパンタグラフ又は集電靴の提供
である。本発明の第10の目的は、時速約30キロ以上
で長時間走行が可能な模型或いは小型の自動搬送装置と
しての飛行軌道車システムの提供である。本発明の第1
1の目的は、模型の飛行式の軌道車に標的を設け、該標
的を適宜の距離から、狙撃装置で加撃可能となし、的中
時に標的からサイン或いは反応して作動せしめる遊戯シ
ステムの提供である。本発明の第12の目的は、軌道と
案内体と案内支持骨材及び支持部材を組立て及び解体自
在に構成して成る模型セットの提供である。本発明は、
断面が溝型の構築体の底部中央に一条のレールを設ける
とともに、該構築体の左右の立ち上がり壁に案内体を設
けて成る軌道装置と、該レールに転がるI乃至複数の支
持輪を車両の前後方向の中央線の下方に設けてあり、該
1乃至複数の支持輪の1乃至全個を原動機に連結して駆
動装置に組み入れて駆動輪となし、該車輛に設けた左右
の案内輪を該案内体で進行方向に案内させて走行せしめ
る単列車輪駆動軌道車及び該単列車輪駆動軌道車にプロ
ペラ推進装置を加えて成る飛行式の軌道車及びその関連
する装置類とシステム等に関する。より詳細には、断面
が溝型の構築体は、地上に於いては鉄筋コンクリートで
構築し得る(図1、2 後述)。高架方式では、本発明
による架設部材は、強度が大で低価格の鉄を塗装不要に
した複合材例えば、ジシクロペンタジエンとの複合成形
部材を使用するのが望ましく、レールの支持骨材はカー
ブ、直線区間とも同一の部材を用いて、現場で適宜にレ
ールの傾斜度を調節できる構成が望ましい。高架軌道
は、レールを支持するレール支持体の接続部毎に、コン
クリート製或いは、鋼鉄製の支柱を構築し、該支柱の上
部にレール支持体を延々と置いて固定し、該レール支持
体の上部に、固定アークの中央部分の下部を一体に固定
したゲート状の固定肢を、一体に固定して(後述)、該
アークの上方に鉄骨或いは鉄筋入りのコンクリート製の
支持アークを所定の角度(後述)で固定具で取り付け、
該支持アークにレール及び左右の案内体を所定の位置に
取り付けてある。該案内体の上部には碍子を介して高圧
給電用のトロリー線が配してある。更に隣り合う支持装
置間とレール支持体及び案内体とで囲まれる面には壁体
が取付けてある。この壁体はプロペラ推進風力を直接う
けて地面効果を車輛に与えて高速性を高めるし、金網或
いは多孔板を主体で構成することで、台風の横風の風圧
を減じるし、積雪を溶かし易いので好ましい。該壁体の
レール寄りに、セラミックヒーターを取りつけて、凍結
時に加熱可能にするのが好ましい。トロリー線は案内体
にではなく、在来線の如く車輛の上空に配線してもよい
が架設コストが高い。間隔の広い左右の案内体に碍子を
介して取付けるのが、コストが安くて好ましい。駆動装
置として1例をあげると、(1)高速車用としての駆動
装置は左右の対称型が風圧に対して左右バランスが好ま
しく歯車装置の点検が容易にできる構造が望ましい。本
発明による左右対称型車輪駆動制動装置は高速車に適し
ていて、車輛の中央線の下方に設けて、台車との結合が
緩衝的にできている(後述)。 (2) 主として小型の模型に好ましい1例として、両
ツバ車輪のツバに歯車を構成し、ナイロン駆動歯車を上
方で咬み合せしめるツバ歯車駆動装置が軽量で部品が少
なく無給油で回せるので好ましい。案内輪は車両の両側
に設ける。縦軸、横軸、斜軸等で設け得るが、縦軸で水
平に回転自在であれば、横揺れを制御するのに好まし
い。車両を車体と台車とで構成する場合は、台車の両側
に少なくとも各一個、望ましくは2個づつ左右を並行し
て設けるのがよい。これらの案内輪は、高速車に於いて
は、左右の案内輪を車輛に設けた原動機で駆動して車輛
の速度と等速で回転せしめて案内体に接触案内せしめる
構造と成すのが望ましく、その主な構造は、(1) 等
速強制回転式では原動機で駆動される左右の案内輪を車
輛速度と等速に制御し、一方の案内輪を案内体に接触せ
しめて案内するものであり、(2) 自在回転式では、
弾力装置を介して左右の案内軸を寄せる圧力を加え、一
方の案内輪の外周を案内体に接触回転せしめて、案内す
るもので、軽量で好ましい。また、(3) 等速強制回
転弾力接触式は、原動機に駆動回転される左右の案内輪
のそれぞれの軸間距離を拡大する圧力を弾力装置で加え
て、双方の案内輪の外周を案内体に強制接触せしめて回
転案内せしめるもので、車両の高速での安定走行に好ま
しい。横軸による案内輪は、(1) 強制回転型と
(2) 自在回転型に大別できる。レールと案内体との
高低差が大であれば、姿勢の制御が完全な縦軸型が望ま
しく、高低差が小になるほど、横軸の案内輪が効果的に
姿勢の制御がし易くなる。しかしこの場合、(1) 車
高を低くすれば、プロペラ推進装置は車輛の下方に設定
できないので、前後方又は上方に設定する以外になく、
プロペラ回転の危険性とか、連結の不利とか、或いは地
面効果の低下等の問題が生じるし、(2)車高を高くす
れば、横軸の支持体を下方に大きく幅広く構成せねばな
らず、強度を大にするとき軽量化が犠牲になる。従って
横軸の案内輪はプロペラ推進装置を縮小して設ける場合
と、縦軸の案内輪との併用でプロペラ推進装置を大にし
て推力を確保する場合とがあるが、併用の方が高速化に
とって有利である。車体と台車の緩衝装置では、軸ばね
或いはまくらばねにダンパーを並べて取り付けるのもよ
いが、自動的に車体を傾斜せしめる緩衝装置=カーブで
車体の遠心力の掛かる側が高まり反対側が低く沈む=バ
ーベル式空気バネ緩衝装置を用いて、カーブでの安定性
と高速性を高めるのが好ましい。本発明によるバーベル
式空気バネ緩衝装置は主として、(1) 連結棒の両端
部にボール状の膨大部を取付けて成るバーベル形状の連
結棒と (2) 該膨大部を収容し、かつ所定角度内で
回動自在に支持するとともに、膨大部より小径の軸受を
取付けた離脱制止縁を開口部に設けた回動支持室を半分
づつ有する上下の穴付支持函とカバー支持函各1個とを
合体して構成した回動支持函と、(3)前記連結棒を貫
通せしめる中央孔を有するドーナツ形状のゴム製の空気
バネ、とで構成してある。 更に、支持棒が外方には傾
かない角度で回動支持函を台車に取り付けるとともに、
車体には支持棒の上方の間隔を狭くし、かつ下方の間隔
を適宜に広くして他方の回動支持函を取り付け、カーブ
区間で車体に遠心力が掛かれば、遠心側を高くし、求心
側を低く沈ませて、走行安定性を高めるのが好まし
い。。プロペラ推進装置は、本発明の車輪駆動とプロペ
ラ推進との複合進行方式に於いて、低速時は主として車
輪駆動であるが、駆動輪の数が少なく車体が軽いので、
高速では駆動輪の回転速度と車体の速度の差より車輪の
滑りを検知してプロペラによる推力を適切に増減する制
御が望ましい。プロペラを支持するモータパイロンは推
進モータを上下方向に可変に構成して推力の方向を調節
して車輛重量の前後の負荷のバランスを保てる。プロペ
ラ推進の前後方向は、パイロン台の回転で推力を逆にで
きる。プロペラ制動は高速時に主として使用し、(1)
パイロン台の回転、(2)プロペラを可変翼にする、
(3) プロペラの翼のひねり角を45度程度に構成し
て推進モータを逆転せしめる等で行なえる。。プロペラ
はひねり角を約45度にして、幅を広く、短径に形成す
ると、回転数に比して推力が大となり、風きり量が減り
低騒音となる。更にその翼を後退させてあれば、空気を
押す圧力の積が大となり、推力が増大する。車両の上部
に垂直尾翼を取り付けて、進行方向への追随性を高め、
水平尾翼の揚力で車体を軽くし、或いは浮上せしめて高
速性を高められる。扉は車体側壁と同一径のカーブで縦
方向に湾曲せしめ、前後にスライダーを設けるととも
に、該スライダーの支持縁を車体の上部の一段下げた格
納部の支持縁に連続して設けて成る上下のスライド式ア
ーク扉が空気抵抗が小で、好ましい集電装置は、軽量で
小型が望ましく 本発明による着脱自在の集電靴として
も使える耐風圧式パンタグラフの一例をあげる。耐風圧
式パンタグラフは、軽量化のためにすり板以外は、良電
導性、高弾力性、耐腐食性、強靭性を全て具備する肉薄
の金属板、例えば燐青銅板の如きを素材として用いて、
構成する。進行方向には、構成する薄板の厚みの断面と
すり板の側面を向けるだけで、すり板間に設ける風穴で
空気が抜けるので、揚力が生じない。その取付けは、保
守性を高めるために、数本のネジの締め付けで可能に構
成して成る。このパンタグラフは外形の大きさが約20
ミリ立方から300ミリ立法の大きさに構成できる。す
り板を下方に向けて取りつけができるので、集電靴とし
て使用できる。数本のネジで着脱自在なので、交換・修
理等が容易である。小型の飛行式の軌道車は科学模型に
できる。高速で遠距離の搬送システムとして例えば、郵
便物専用で断面が約1平方メートルの高架軌道を高速道
路或いは在来鉄道沿いに設ければ、国家的メリットがあ
るばかりか、遠距離の運搬車輛が不要になり、世界的な
省エネルギーが実行できる。或いは標的を積載して周回
軌道を高速走行せしめ狙撃台からの命中率を競うシステ
ムのような遊戯装置に使用できる。
The main object of the present invention is to minimize land acquisition for track construction, and to construct it in urban transportation facilities such as roads, highways, and existing tracks. The aim is to provide high-speed transportation by possible lightweight tracks and prevent the destruction of green spaces. The next main object of the present invention is to
The purpose of the present invention is to provide an energy-saving, high-speed mass transportation means by reducing the vehicle weight to less than one fifth of the unit vehicle weight of a conventional rail car. Using a propeller with a small diameter, wide wing, and propeller with a twist angle of 45 degrees, a highly efficient accelerating means mainly at high speed, especially when the driving wheel slips and the driving force of the wheel becomes zero. First, it is to provide the most energy-saving, high-speed mass transportation method with the least air pollution among all the transportation methods that use fuel for vehicles. More specifically, the first object of the present invention is to
In order to reduce energy consumption, use a drive wheel made of a low strain material that reduces rolling resistance, such as steel, and use a central single row to reduce the number of the drive wheels.
It provides a well-balanced left-right symmetrical wheel drive braking system suitable for large high-speed vehicles and a flange gear drive system suitable for small vehicles or models. A second object of the present invention is to provide a constant-speed forced rotation type, a free rotation type, a constant-speed forced rotation elastic erosion type, etc. as a guide system capable of stably running a single-row wheel-driven rail car with minimum torque. is there. The third object of the present invention is to
In conventional wheel drive vehicles, wheel slippage occurs due to sudden braking at high speed, resulting in uneven wear of the wheels.Propeller braking, which does not have the drawbacks, provides a complex traveling system that simplifies the weight of the device and increases the speed. . A fourth object of the present invention is to provide a system for detecting slippage or idling of a drive wheel at high speed to adjust thrust of a propeller propulsion device to prevent slipping or idling and to increase high speed. is there. A fifth object of the present invention is that the conventional shock absorber for a high-speed rail car is complicated and heavy. Therefore, a car body curve is adjusted by a barbell type air spring shock absorber which is a lightweight vehicle body tilt adjusting shock absorber capable of driving safely and stably. Providing a rail car with an inwardly-inclined structure. A sixth object of the present invention is to install a trolley wire on the left and right guide bodies which are spaced apart from each other to enable high-voltage power supply, and to provide an inexpensive track assembly without an overhead overhead wire device, which is an inexpensive assembly member for mass production. Is to supply the elevated tracks and to provide the elevated tracks at a low cost and early construction period. A seventh object of the present invention is to provide a track support structure which is easy to construct an elevated structure at a curved position and can be mass-produced, and allows a rail support aggregate to be erected in the same member in a curve and a straight line section. The purpose is to provide a structure in which the inclination can be adjusted appropriately. An eighth object of the present invention is to provide a vehicle having a propeller propulsion device provided below a flight-type track car and having a high ground effect for propeller propulsion. A ninth object of the present invention is to use a thin metal plate having good conductivity, corrosion resistance, toughness, and elasticity as a constituent material, which is small, lightweight, easy to attach and detach, and has little influence of wind pressure. The outer diameter of the elevated elevated current collection from the trolley wire is 30 mm from the 20 mm square
It is to provide pantographs or current collecting shoes of about 0 mm square. A tenth object of the present invention is to provide a flight orbit vehicle system as a model or a small-sized automatic carrier capable of running for a long time at a speed of about 30 km / hour or more. First of the present invention
The purpose of 1 is to provide a play system in which a target is provided on a model flight-type track car, and the target can be attacked from an appropriate distance by a sniper device, and can be activated by signing or reacting from the target when hit. Is. A twelfth object of the present invention is to provide a model set including a track, a guide body, a guide support aggregate and a support member that can be assembled and disassembled. The present invention is
A railroad device having a single rail provided at the center of the bottom of a groove-shaped construction and guides provided on the right and left rising walls of the construction, and I or a plurality of support wheels rolling on the rails of the vehicle. It is provided below the center line in the front-rear direction, and one or all of the one or more support wheels are connected to a prime mover to be incorporated into a drive device to form drive wheels, and the left and right guide wheels provided in the vehicle are provided. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single-row wheel-driven rail car that is guided by the guide body in a traveling direction and a flight-type rail car that is formed by adding a propeller propulsion device to the single-row wheel-drive rail car and its related devices and systems. More specifically, a grooved cross-section structure may be constructed of reinforced concrete on the ground (see FIGS. 1 and 2 below). In the elevated system, the erection member according to the present invention is preferably a composite material having high strength and low cost, which does not require coating of iron, for example, a composite molded member with dicyclopentadiene, and the rail supporting aggregate is curved. It is desirable that the same member is used for both the straight section and the inclination of the rail can be appropriately adjusted on site. In the elevated track, a concrete or steel strut is constructed for each connection portion of the rail support that supports the rail, and the rail support is endlessly placed and fixed on the upper part of the strut to fix the rail support. A gate-shaped fixed limb integrally fixing the lower part of the central part of the fixed arc to the upper part (later described), and a supporting arc made of concrete with steel frame or reinforcing bar above the arc at a predetermined angle. Attach it with the fixing tool (described later),
Rails and left and right guide bodies are attached to the supporting arc at predetermined positions. A trolley wire for high-voltage power supply is arranged above the guide body via an insulator. Furthermore, a wall is attached to the surface surrounded by the adjacent support devices and between the rail support and the guide. This wall body receives the propeller propelling wind force directly to give the ground effect to the vehicle and enhances the high speed, and by mainly consisting of wire mesh or perforated plate, it reduces the wind pressure of the side wind of the typhoon and it is easy to melt snow. preferable. It is preferable that a ceramic heater is attached near the rail of the wall body to enable heating when freezing. The trolley wire may be wired above the vehicle like a conventional wire instead of being used as a guide, but the construction cost is high. It is preferable to attach the guide bodies to the left and right guide bodies with wide intervals via insulators because the cost is low. As an example of the drive device, (1) the drive device for a high-speed vehicle is preferably a left-right symmetrical type having a left-right balance with respect to wind pressure, and a structure that allows easy inspection of the gear device is desirable. The symmetrical wheel drive braking device according to the present invention is suitable for high-speed vehicles, and is provided below the center line of the vehicle so as to provide a buffer connection with the carriage (described later). (2) As a preferable example mainly for a small model, a brim gear driving device in which gears are formed on the brim of both brim wheels and a nylon driving gear is engaged with the brim upward is preferable because it is lightweight and has few parts and can be rotated without oiling. Guide wheels are provided on both sides of the vehicle. It may be provided on a vertical axis, a horizontal axis, an oblique axis, or the like, but if it can be rotated horizontally on the vertical axis, it is preferable for controlling the horizontal vibration. When the vehicle is composed of a vehicle body and a bogie, it is preferable to provide at least one, preferably two left and right sides in parallel on both sides of the bogie. In a high-speed vehicle, these guide wheels are preferably structured so that the left and right guide wheels are driven by a prime mover provided in the vehicle to rotate at a speed equal to the speed of the vehicle to guide the contact with the guide body. The main structure is (1) In the constant velocity forced rotation type, the left and right guide wheels that are driven by the prime mover are controlled at the same speed as the vehicle speed, and one guide wheel is brought into contact with the guide body for guiding. , (2) In the freely rotatable type,
Pressure is applied to the left and right guide shafts via an elastic device, and the outer circumference of one of the guide wheels is contacted and rotated by the guide body to guide the guide, which is lightweight and preferable. (3) In the constant velocity forced rotation elastic contact type, the elastic device applies pressure to expand the axial distance between the left and right guide wheels that are driven and rotated by the prime mover, and the outer circumferences of both guide wheels are guided by the guide members. It is forcibly brought into contact with and is guided for rotation, which is preferable for stable running of the vehicle at high speed. The guide wheel on the horizontal axis is (1) Forced rotation type
(2) It can be roughly divided into the freely rotatable type. If the height difference between the rail and the guide body is large, it is desirable to use the vertical axis type for complete posture control. The smaller the height difference, the easier the horizontal axis guide wheel is to effectively control the posture. However, in this case, (1) if the vehicle height is lowered, the propeller propulsion device cannot be set below the vehicle.
There are problems such as the danger of propeller rotation, the disadvantage of connection, and the reduction of the ground effect. (2) If the vehicle height is increased, the support of the horizontal shaft must be configured widely downward. Weight reduction comes at the cost of increased strength. Therefore, there are cases where the horizontal axis guide wheel is provided with a reduced size of the propeller propulsion device, and there are cases where the vertical axis guide wheel is used together to increase the propeller propulsion device to secure thrust. Is advantageous to. In the shock absorbers of the car body and bogie, dampers may be installed side by side on the shaft springs or pillow springs, but a shock absorber that automatically tilts the car body = a curve that increases the centrifugal force of the car body and lowers the opposite side = barbell type An air spring dampener is preferably used to increase stability and speed on curves. The barbell type air spring shock absorber according to the present invention mainly includes (1) a barbell-shaped connecting rod formed by attaching ball-shaped enlarged portions to both ends of the connecting rod, and (2) accommodating the enlarged portion and within a predetermined angle. And a support box with holes and a cover support box each having half rotation support chambers each having a release stop edge with a bearing having a diameter smaller than that of the enlarged portion provided in the opening. It is composed of a rotation support box constructed by combining, and (3) a donut-shaped rubber air spring having a central hole through which the connecting rod penetrates. Furthermore, while attaching the rotation support box to the truck at an angle that the support rod does not tilt outward,
On the car body, narrow the upper space of the support rods and widen the lower space as appropriate to attach the other rotating support box, and if centrifugal force is applied to the car body in the curved section, raise the centrifugal side and It is preferable to lower the side to improve running stability. . The propeller propulsion device is mainly a wheel drive at a low speed in the compound traveling system of the wheel drive and the propeller propulsion of the present invention, but since the number of drive wheels is small and the vehicle body is light,
At high speeds, it is desirable to detect the slip of the wheels from the difference between the rotational speed of the drive wheels and the speed of the vehicle body and appropriately increase or decrease the thrust of the propeller. The motor pylon that supports the propeller can be configured to variably move the propulsion motor up and down to adjust the direction of thrust and maintain the balance of the front and rear loads of the vehicle. In the front-back direction of propeller propulsion, the thrust can be reversed by rotating the pylon table. Propeller braking is mainly used at high speeds (1)
Rotation of the pylon stand, (2) variable prop blades,
(3) It can be performed by configuring the twist angle of the propeller blades at about 45 degrees and reversing the propulsion motor. . If the propeller is formed with a twist angle of about 45 degrees and a wide width and a short diameter, the thrust becomes large compared to the rotation speed, the wind cut amount is reduced, and the noise is reduced. Furthermore, if the blades are retracted, the product of the pressure pushing the air becomes large and the thrust increases. A vertical stabilizer is attached to the upper part of the vehicle to enhance tracking in the traveling direction,
The lift of the horizontal tail makes the car body lighter or levitates to increase the speed. The door is curved vertically with a curve having the same diameter as the side wall of the vehicle body, sliders are provided in the front and rear, and the support edge of the slider is continuously provided on the support edge of the storage part which is lowered one step above the vehicle body. The sliding arc door has low air resistance, and the preferred current collector is preferably lightweight and small. An example of the wind pressure resistant pantograph which can be used as a detachable current collecting shoe according to the present invention is given below. The wind pressure resistant pantograph uses a thin metal plate having good electrical conductivity, high elasticity, corrosion resistance, and toughness, such as a phosphor bronze plate, as a material, except for the sliding plate for weight reduction,
Constitute. In the traveling direction, only by directing the cross section of the thickness of the thin plate and the side surface of the contact plate, air is released through the air holes provided between the contact plates, so that lift does not occur. The mounting is made possible by tightening a few screws in order to improve maintainability. This pantograph has an external size of about 20
It can be configured in the size of millimeter cubic to 300 millimeter cubic. It can be used as a current collecting shoe because it can be attached with the sliding plate facing downward. Since it is removable with a few screws, it is easy to replace and repair. A small flight car can be a scientific model. As a high-speed, long-distance transportation system, for example, if an elevated track dedicated to postal matter and having a cross section of about 1 square meter is installed along a highway or a conventional railroad, not only is there a national merit, but a long-distance transport vehicle is not required. It becomes possible to implement global energy conservation. Alternatively, it can be used in an amusement device such as a system in which a target is loaded and the orbit is run at a high speed to compete for a hit rate from a sniper table.

【0005】[0005]

【実施例1】 (図1、図2 参照) 図面は本発明によるI実施例の概略図で、図Iはその地
上のコンクリート製の軌道と飛行式の軌道車の遠景側面
図である。この軌道は断面凹型の底部中央上面にレール
が、レール押さえで締付けてある。このコンクリート製
の軌道の最上部の両側内部には案内体24が固定してあ
る。該軌道の左右上部外寄りには碍子21を介してトロ
リー線29が設けてある(図2)。該軌道を飛走行する
飛行式の軌道車2は、上方の車体2が、台車3にバーベ
ル式空気バネ緩衝装置30の連結棒17により緩衝的に
結合されている。台車3の下方には41を左右に貫通せ
しめて案内モータで案内輪11を車輛速度と等速回転に
制御してある。駆動輪4は台車3の前後方向の中央線の
下方の前後に各一個が駆動装置に組み入れて設けてあ
る。プロペラ推進装置はモータパイロン13により推進
モータ12と該モータに取付けたプロペラ14とが台車
の下方に設けてある。本例の軌道は上空に架線がなく、
軌道の内側でプロペラ推進気流は地面効果を大きく得ら
れ、車輛の高速性を増大する。
First Embodiment (See FIGS. 1 and 2) The drawings are schematic views of an I embodiment according to the present invention, and FIG. I is a distant view side view of a ground concrete track and a flight-type track car. This track has a rail on the upper surface of the bottom center with a concave cross section, and is clamped by a rail retainer. Guide bodies 24 are fixed inside the uppermost sides of the concrete track. Trolley wires 29 are provided outside the left and right upper portions of the track via insulators 21 (FIG. 2). In the flight-type track car 2 that travels along the track, the upper vehicle body 2 is buffered to the carriage 3 by a connecting rod 17 of a barbell type air spring buffer device 30. A guide motor 11 controls the guide wheel 11 to rotate at a vehicle speed and a constant speed by penetrating left and right under the carriage 3. One drive wheel 4 is provided in front of and behind the center line of the carriage 3 in the front-rear direction so as to be incorporated in the drive device. In the propeller propulsion device, a propelling motor 12 and a propeller 14 attached to the motor by a motor pylon 13 are provided below the carriage. The orbit of this example has no overhead lines in the sky,
Inside the track, the propeller-propelled airflow has a great effect on the ground, increasing the speed of the vehicle.

【実施例2】 (図3より図11まで参照) 図面は本発明による1実施例で、図1はその高架軌道と
飛行式の軌道車1の遠景である。この高架軌道は下方の
コンクリート台座49で固定された支柱50を所定間隔
で配置してあり、その上部にH鋼製のレール支持体31
が延々と置いて固定してある。該レール支持体31には
固定アーク25の中央下部のゲート状の左右の固定肢5
1の横梁49が一体に固定してある。該左右の固定肢5
1はレール支持体31を挟んで下方に下がり、支柱50
の上部に固定してある(図6)。該固定アーク25の上
面には、鉄筋コンクリート製の支持アーク22を置いて
あり、固定具26で固定してある。カーブ区間では、カ
ーブの勾配に応じた所定の傾きで支持アークを固定して
ある(図7)。この支持アーク22の上方内側には中央
上面にレール23が取り付けてある。レール底面とレー
ル支持体31との間には、レール台48があり、その上
面はアーク状でレールがカーブで傾けて取り付けてあっ
ても、レール底面の左右端縁が密着するアーク状面にな
っている(図6、7)。レールを支持している前記支持
アーク22の両側上方の内側には案内体24が置かれ、
上方が案内体固定板74で押さえてあり、内側の下方は
留め板75で留めてある。さらに前記案内体24の上部
には碍子21が取り付けてあって、トロリー線29を支
持している(図3、6、7)。上述の構造は、トロリー
線を在来線の如く支柱の上からの集電でもよいが、本例
では間隔を離した案内体に碍子を取付けているので、従
来の第3軌条方式にょるものより高圧の給電が可能であ
る。レール支持体・レール台を除いてその他の部材はカ
ーブ区間も直線区間と同一の部材で架設可能なので、量
産でコストが安くなり、レール支持体・レール台等も工
場生産可能であるから、工期も早く建設用地が小さくて
すむ。組立式模型では、固定肢51と横梁49を図12
に示す如く、固定アークの両側全体をコ字状内にはめこ
めば、平面上に定置できるし、カーブの傾斜も調節でき
るから、一定の長さの軌道セットを組み立て解体自在に
製作できる。この高架軌道上を進行する飛行式の軌道車
1の車両の下方の前後に各1個の駆動輪を中心線の直下
に設けてある。より詳細には、図3、4、5、6、7、
8、9に於いて飛行式の軌道車1の車両は車体2と台車
3とからなる。車体1は断面が半円形で、運転室の直後
及び最後部の両側にアーク形の扉43がある。扉と車両
面を等しくできて風圧を小にする。 該車体2を支持す
る台車3はバーベル式空気バネ緩衝装置30により弾力
的に台車に結合してある。バーベル式空気バネ緩衝装置
は両端部に取付けたボール状の膨大部を持つバーベル状
の連結棒17と、該膨大部を所定範囲の角度で回動自在
に支持しつつ収容し、該連結棒を回動自在かつ滑動自在
に支持する軸受を取付けた離脱制止縁を開口部に設けた
回動支持室を有する上下の回動支持函各1個と、前記連
結棒17を貫通せしめる中央孔を有するゴム製のドーナ
ツ状の空気バネ18とで構成してある。該回動支持函は
穴付支持函15とカバー支持函16の合体で成り、かつ
回動支持函の少なくとも一方(本例では下方の回動支持
函)の回動支持室の奥が膨大部を所定の深さまで引っ込
ませ得る大きさで形成せしめて成る(図9、10)。こ
のバーベル式空気バネ緩衝装置の組み立ては、前記空気
バネ18の空気を抜き、その中心の穴に連結棒17を通
しておく。そして、穴付支持函15を両端に通してその
後、両端にボール状の膨大部を取付ける。該ボール部分
を残るカバー支持函16で囲ってボルト孔84を通して
ボルト締めする。このバーベル式空気バネ緩衝装置の取
り付けは、左右の装置の支持棒の間隔が、上方がせまく
て下方が広くなる傾斜取付方式が望ましい。そうすれ
ば、カーブでは車体の遠心側が高まり、求心側が沈むの
で安定性が高まる(図6)。台車3には単列車輪駆動装
置とプロペラ推進装置が設けてある。単列車輪駆動装置
は空気抵抗のバランスを得るために、左右対称が好まし
い。左右対称型駆動制動装置は図8に於いて、台車の前
後方向中心線の下方に駆動輪4が2個ある。駆動軸7は
中央に前記駆動輪4を嵌殺してあり、該駆動輪4の両側
とも同じ順序でブレーキ35、軸受34、大歯車5、軸
受34の順に嵌込んであり、ボルトとナット36で両端
を止めてある。大歯車5の軸心は駆動軸7の継手歯車と
咬み合う内歯車となっているので、駆動輪35と、大歯
車5及び駆動軸7は同体で回転する。 前記左右の大歯
車5はそれぞれ左右のギアーボックス10内で上方の小
歯車6と咬み合っている。大歯車5は支持体20に軸受
34を介して回転自在に支持されている。支持体20は
上方で台車3の内部で天板80とクッション39を挟ん
でボルトとナット36で締めてある。下方のサイドカバ
ー33は上方の床53の直下で小歯車カバー32の下端
の折り縁とシールを挾んでネジ止めしてある。小歯車カ
バー32は上方の台車3内で軸受34を介して、小歯車
軸38を回転自在に支持し、該小歯車軸38は中心側で
は小歯車6をギアーボックス10内で嵌殺してあり、更
にギアーボックスに取り付けた軸受34に回転自在に支
持され、他方の外側では、たわみ軸継手9に連結してあ
る。該たわみ軸継手9には小歯車軸38の反対側に駆動
モータ8のモータ軸79の軸端が連結してある。ブレー
キ35は両側の支持体20の内方に取付けてあり、ディ
スク型で、駆動輪4の両側から締付けて制動可能として
ある。駆動装置の各機器は、駆動モータを除けば、支持
体20に支持され、支持体20は強化した台車の天板5
2に弾性体39を介してボルトとナット36で取り付け
てある。更に、該支持体20は前後に突出せしめた耳8
0で台車の床53に下方からクッションを介してボルト
締めしてある。駆動モータは、別のクッション39を介
して台車の床に取り付けてあるから、そのモータ軸は支
持体に軸受を介して支持されている小歯車軸38の振動
のリズムと同一でないが、たわみ軸継手9が緩和する
し、単列駆動輪故に横揺れは小でかつ大径の車輪故に激
しいリズムの衝撃は生じにくい。従って、モータに対す
る衝撃は平行レールの軌道車より小なので、簡単な緩衝
構造でも耐久性があり、緩衝装置を軽量化できる。上記
の駆動装置はギアーボックス10内に於いて、油潤滑が
可能で大型の高速車に用いるのが望ましい。プロペラ推
進装置は図4、5、6、11に於いて、台車3の底部に
回転可能にして設けたパイロン台19から下がるモータ
パイロンの下方に推進モータを取り付け、該モータの軸
に取り付けた固着具58(図11)にプロペラ14を取
り付けてある。車両の逆進時は図5中の破線のプロペラ
14のようにパイロン台19の180度の回転により推
進させることができ。その制御システムは車輪の回転数
と車両のスピードの差を検知装置で検出して駆動輪のす
べりが生じない範囲に推力を制御して成る。該装置によ
る制動は、プロペラの逆回転又はパイロン台19の18
0度回転でできる。特に高速時は車輪制動より衝撃が少
ないし、制動のための複雑な制御機器を殆ど必要としな
いので、コストは安く軽量化に適している。案内装置は
図4、5、6に於いて、案内輪11が台車3の底部の前
後に左右一対で設けてある。該案内輪11は台車3の底
面と同一水準に下面を合わせて縦軸であり、台車の中心
線の位置で左右の案内輪の外周が接触せしめてある。従
って一方の案内輪が案内体に接触して回転するとき、他
方の案内輪も逆に回転し、台車が揺れて反対側に傾いた
時に反対側の案内輪が案内体に接触してすべりを生じな
いように左右が等速回転になっている。この案内輪11
を台車に搭載した破線の案内モータ81で車両のスピー
ドと等速に図5中の矢印の如く逆方向に回転制御するこ
とが可能であり、高速性を高めるので一層好ましい。上
述の案内輪11は最高位置が、案内体に規制されている
ので台車はそれ以上は浮上しないし、駆動輪の両ツバ7
7は高く踏面76が深く、レール23より少し離れて浮
いても、脱輪しない位置にレールがあるように駆動輪が
取り付けてある(図8)。従って、推進力を大にして駆
動力の限界以上の速度が出せる。
Second Embodiment (Refer to FIGS. 3 to 11) The drawings are one embodiment according to the present invention, and FIG. 1 is a distant view of the elevated track and the flight type rail car 1. In this elevated track, columns 50 fixed by a concrete pedestal 49 below are arranged at predetermined intervals, and an H steel rail support 31 is provided above the columns 50.
Is laid out and fixed. The rail support 31 includes gate-shaped left and right fixed limbs 5 at the lower center of the fixed arc 25.
One horizontal beam 49 is integrally fixed. The left and right fixed limbs 5
1 is lowered with the rail support 31 interposed therebetween, and the column 50
It is fixed to the upper part of (Fig. 6). A supporting arc 22 made of reinforced concrete is placed on the upper surface of the fixed arc 25, and is fixed by a fixture 26. In the curve section, the supporting arc is fixed at a predetermined inclination according to the gradient of the curve (Fig. 7). A rail 23 is attached to the central upper surface of the upper side of the support arc 22. A rail base 48 is provided between the rail bottom surface and the rail support 31, and the top surface thereof has an arc shape, and even if the rail is mounted with a curve inclined, the rail bottom surface has an arc-shaped surface to which the left and right edges of the rail are closely attached. (Figs. 6 and 7). Guide bodies 24 are placed inside both sides of the supporting arc 22 supporting the rails,
The upper part is pressed by the guide body fixing plate 74, and the inner lower part is fixed by the retaining plate 75. Further, an insulator 21 is attached to the upper part of the guide body 24 to support the trolley wire 29 (FIGS. 3, 6, 7). In the above structure, the trolley wire may be used to collect current from the top of the pillar like a conventional wire, but in this example, since the insulators are attached to the guide bodies spaced apart from each other, the conventional third rail system is used. Higher voltage supply is possible. Except for the rail support / rail base, other members can be erected by the same member as the curved section even in the curved section, so the cost is low in mass production, and the rail support / rail base, etc. can be manufactured at the factory. The construction site can be small quickly. In the assembled model, the fixed limb 51 and the cross beam 49 are shown in FIG.
As shown in, if both sides of the fixed arc are fitted into the U-shape, it can be placed on a flat surface and the inclination of the curve can be adjusted, so that a set of orbits of a certain length can be assembled and dismantled. One drive wheel is provided directly below the center line in front of and behind the vehicle of the flight-type rail car 1 traveling on this elevated track. More specifically, FIGS. 3, 4, 5, 6, 7,
In 8 and 9, the vehicle of the flight type rail car 1 includes a body 2 and a carriage 3. The vehicle body 1 has a semicircular cross section, and has arc-shaped doors 43 immediately after the cab and on both sides of the rearmost portion. The door and the vehicle surface can be made equal to reduce the wind pressure. A carriage 3 that supports the vehicle body 2 is elastically coupled to the carriage by a barbell type air spring cushioning device 30. The barbell type air spring shock absorber accommodates a barbell-shaped connecting rod 17 having ball-shaped enlarging parts attached to both ends, and accommodating while supporting the enlarging part rotatably at an angle within a predetermined range. Each of the upper and lower rotation support boxes has a rotation support chamber having a release stop edge attached to a bearing for rotatably and slidably supporting the opening, and a central hole through which the connecting rod 17 is inserted. It is composed of a rubber donut-shaped air spring 18. The rotation support box is a combination of the hole support box 15 and the cover support box 16, and the inside of the rotation support chamber of at least one of the rotation support boxes (the lower rotation support box in this example) has an enlarged portion. Is formed to a size such that it can be retracted to a predetermined depth (FIGS. 9 and 10). In assembling this barbell type air spring cushioning device, the air of the air spring 18 is evacuated and the connecting rod 17 is passed through the hole at the center thereof. Then, the support box 15 with holes is passed through both ends, and thereafter, ball-shaped enlarged portions are attached to both ends. The ball portion is surrounded by the remaining cover support box 16 and bolted through the bolt hole 84. It is desirable that the barbell type air spring cushioning device be mounted in an inclined mounting system in which the distance between the support rods of the left and right devices is narrow in the upper part and wide in the lower part. Then, in the curve, the centrifugal side of the vehicle body rises, and the centripetal side sinks, which improves stability (Fig. 6). The trolley 3 is provided with a single-row wheel drive device and a propeller propulsion device. The single row wheel drive device is preferably bilaterally symmetrical in order to obtain a balance of air resistance. The left-right symmetric drive braking device has two drive wheels 4 below the center line in the front-rear direction of the carriage in FIG. The drive shaft 7 has the drive wheel 4 fitted in the center thereof, and the brake 35, the bearing 34, the large gear 5, and the bearing 34 are fitted in this order on both sides of the drive wheel 4 in the same order. Both ends are stopped. Since the shaft center of the large gear 5 is an internal gear that meshes with the joint gear of the drive shaft 7, the drive wheel 35 and the large gear 5 and the drive shaft 7 rotate together. The left and right large gears 5 mesh with the upper small gears 6 in the left and right gear boxes 10, respectively. The large gear 5 is rotatably supported by the support 20 via a bearing 34. The support body 20 is fastened with bolts and nuts 36 at the upper side inside the carriage 3 with the top plate 80 and the cushion 39 sandwiched therebetween. The lower side cover 33 is screwed right below the upper floor 53 by sandwiching the folded edge and the seal at the lower end of the pinion gear cover 32. The pinion gear cover 32 rotatably supports a pinion gear shaft 38 via a bearing 34 in the upper bogie 3, and the pinion gear shaft 38 has the pinion gear 6 fitted in the gear box 10 on the center side. Further, it is rotatably supported by a bearing 34 attached to the gear box, and is connected to the flexible shaft coupling 9 on the other outer side. A shaft end of a motor shaft 79 of the drive motor 8 is connected to the flexible shaft coupling 9 on the opposite side of the pinion shaft 38. The brake 35 is attached to the inside of the support 20 on both sides, is a disk type, and can be tightened from both sides of the drive wheel 4 for braking. Each device of the drive device is supported by a support body 20 except for the drive motor, and the support body 20 is a reinforced top plate 5 of the truck.
It is attached to the No. 2 with a bolt and a nut 36 via an elastic body 39. Further, the supporting body 20 has ears 8 projecting forward and backward.
No. 0 is bolted to the floor 53 of the truck from below through a cushion. Since the drive motor is attached to the floor of the trolley via another cushion 39, its motor shaft is not the same as the vibration rhythm of the pinion shaft 38 supported by the support through the bearing, but the flexible shaft. The joint 9 is relaxed, and the rolling is small due to the single-row drive wheel, and a violent rhythm impact is unlikely to occur due to the large-diameter wheel. Therefore, since the impact on the motor is smaller than that of the rail car of parallel rails, the shock absorber has durability even with a simple shock absorber structure, and the shock absorber can be reduced in weight. It is desirable that the above-mentioned drive device be used in a large high-speed vehicle because oil can be lubricated in the gear box 10. The propeller propulsion device is shown in FIGS. 4, 5, 6 and 11 in which a propulsion motor is attached below a motor pylon which descends from a pylon table 19 rotatably provided at the bottom of the carriage 3 and is fixed to the shaft of the motor. The propeller 14 is attached to the tool 58 (FIG. 11). When the vehicle reverses, it can be propelled by rotating the pylon table 19 by 180 degrees like a propeller 14 shown by a broken line in FIG. The control system detects the difference between the rotational speed of the wheel and the speed of the vehicle by a detection device and controls the thrust within a range in which the drive wheel does not slip. Braking by the device is carried out by reverse rotation of the propeller or 18 of the pylon stand 19.
It can be done by 0 degree rotation. Particularly at high speed, the impact is less than that of wheel braking, and since a complicated control device for braking is hardly required, the cost is low and it is suitable for weight reduction. As shown in FIGS. 4, 5 and 6, the guide device includes a pair of left and right guide wheels 11 in front of and behind the bottom of the carriage 3. The guide wheel 11 has its lower surface aligned with the bottom surface of the carriage 3 and the vertical axis, and the outer circumferences of the left and right guide wheels are in contact with each other at the position of the center line of the carriage. Therefore, when one guide wheel rotates in contact with the guide body, the other guide wheel also rotates in the opposite direction, and when the carriage shakes and tilts to the opposite side, the guide wheel on the opposite side contacts the guide body and slips. The left and right are rotated at a constant speed so that they do not occur. This guide wheel 11
It is possible to control the rotation in the opposite direction as indicated by the arrow in FIG. 5 at the same speed as the speed of the vehicle by the guide motor 81 of the broken line mounted on the trolley, which is more preferable because the high speed is enhanced. Since the highest position of the guide wheel 11 is regulated by the guide body, the dolly does not levitate any further, and both the brims 7 of the drive wheels are not lifted.
7, the tread 76 is deep, and the drive wheels are attached so that the rail is located at a position where it does not derail even if it floats slightly away from the rail 23 (FIG. 8). Therefore, it is possible to increase the propulsive force and obtain a speed exceeding the limit of the driving force.

【実施例3】 (図11より図17まで参照) 本例は模型の一例で、図9は車両の一部の前後方向の中
心線を通る縦断面であり、図12は図11中の駆動軸の
中心線を通る一点鎖線b−b′の断面である。軌道装置
は、支持アーク22が固定アーク25上で固定具26で
一体に固定され、左右の固定肢51は固定アーク25の
外方より溶着せしめてあり、下方で横梁48を挾んで溶
着してある。この状態で地上でも固定できる。レール2
3は支持アークの中央の溝に防音のためのクッションを
挾んで差し込んである。このレールは縦幅が広くなって
いる。案内体24は案内体固定板74で支持アークに締
め付けてある。この車両は台車がない型で、外殼と底板
はアーク状に形成して成り、その空洞内に駆動モータ
8、小歯車6、支持体20の棚57を含む上方部分が納
まっている。更に、その前部には標的70が前記底板に
取り付けて、上半分を露出せしめてあり、目視しやすく
なっていて、光線銃がヒットすると所定のサインを発す
る構成になっている。駆動軸4は左右のツバ部分を歯車
に形成してあり(図11)、駆動軸7で両側の支持体2
0間に軸受を介して回転自在に支持されている。両側の
支持体20は、上の方へ高くなっているが、車体内に於
いて途中でモー、さらに上方で、軸受を介して小歯車軸
38を回転自在に支持している。この小歯車軸38は支
持体間で小歯車6をはめ殺してあり、外方の両側でたわ
み軸継手9と結合してある。該たわみ軸継手9は駆動モ
ータ8の軸端に外側で連結してある。この小歯車38は
ナイロン製で、大歯車4のツバ歯車と無給油で咬み合っ
ている。前記棚57は外方へ伸びていて、その上に駆動
モータ8がモータクッション37を介して取り付けてあ
る。更に、該棚の駆動モータ8の外方を緩衝ボルト37
がコイルバネ56を介して棚下の棚クッション39に圧
力を加えつつその下方の床台54まで貫通せしめてあ
り、床台の下側でナットで締めてある。駆動モータ8の
モータ軸は前記の如くたわみ軸継手9を介して前記小歯
車軸38と連結せしめてある。従って、駆動モータはモ
ータクッシヨン39により、駆動輪の衝撃は緩和され、
車両の衝撃も棚クッション39によって減殺され、駆動
輪の発する衝撃を受けるのは支持体20とその棚に限定
される。上述の如く、ツバ歯車駆動装置は極めて少ない
部品でコストが安く、無給油でも相当程度の速度で走行
でき、低騒音である。プロペラ推進装置は、駆動輪4の
後方にあり、プロペラの固着具58により推進モータ1
2の後方に突出したモータ軸と一体に固定してある。推
進モータ12は中央上部の車両の底面であるアーク状の
最高部位置より垂れ下げたモータパイロン13で支持さ
れている。モータパイロン13は床53への取り付け部
分が両側の上方向に膨れていて、サーボモータが内在せ
しめてあり、該サーボモータはパイロン歯車45に連結
してある。該パイロン歯車45はモータ支持体59の上
方に構成した回動歯車47に咬み合っている。モータ支
持体59の支持片は、両側のパイロンに取り付けてある
モータ回動軸46で回動自在に支持されている。従っ
て、モータ支持体59はサーボモータが回転した分だけ
パイロン歯車45を介して、回動歯車47により、モー
タ回動軸46を中心に回動して推進モータ12の上下角
を変化させる。それにより、プロペラの推進方向も上下
方向が変化せしめられる。その結果後部駆動輪のすべり
を検知した場合には推進モータ12の前部が下がるよう
にすると、台車の前部が軽くなり後部に逆の荷重かか
り、すべりをなくせる。前部の駆動輪のすべりはその逆
でなくせる。該推進モータ12と駆動輪4との間には断
面翼型の案内翼42内を貫通する案内軸41がある。こ
の案内軸41は両側を案内脚40で支持されていて、そ
の両外側に案内輪11を回転自在に軸着せしめてある。
案内翼は案内軸を補強し揚力も発生し車輪にかかる重量
を軽くする。本例のパンタグラフは、バネ板62、丁番
63等の素材として良伝導体で、かつ硬質で弾性に富
む、例えば燐青銅の如き金属が好ましい。すり板には、
燐青銅も使えるが、焼結合金の新素材を選ぶのが、望ま
しい。図13、14、15、16、17 に於いて、耐
風圧式パンタグラフは、一対のすり板61、該すり板を
固定するバネ板62、該バネ板を片側に固着せしめた左
右の丁番63、該左右の丁番の他側には、中央に支え板
64を固着したバネ板62の両端部が一体に固定してあ
る。すり板61は短い丸棒の両端部を薄肉に形成して鋲
孔を穿ってあり、2本を並べてバネ板62に鋲65止め
してある。バネ板62は、すり板を固定した中央部を残
して両側をアールをつけて同じ方向に約45度で曲げて
ある。対面しているバネ板も同一の形状に曲げて形成し
てある。上記の2枚のバネ板の両端部がそれぞれ2枚の
丁番の一片づつに固着してあって外形ができている。そ
して風圧が大きくかかるバネ板の2本のすり板61の間
に風孔69が穿ってある。このパンタグラフ60の取り
付けは、車両の所定の位置に一対の押さえ板66をパン
タグラフの支え板64の幅に合う隙を開けて平行に固定
する。次には、2枚の平行に取り付けた押さえ板の間に
支え板を横方向から押し込み、押さえ孔67により、ビ
ス止めすれば完了する。該パンタグラフの素材が良伝導
体であれば、この押さえ板に電極を取り付けて配線すれ
ばよい。このパンタグラフは、すり板61が押圧される
と、図15の破線の如く低くなり、圧力を除くと瞬時に
復元するので、トロリー線の高低の変化に良く追随でき
るし、すり板を除くと、風圧は構成部品の板の厚みにか
かるのみであり、バネ板の幅の広い点は風孔69で空気
が抜けるので、風圧に強い特徴がある。尚、前記の押さ
え孔67のビスを外せば、矢印P方向にスライドさせて
パンタグラフを簡単に外すことができる。このパンタグ
ラフは下向きにも使えるので、集電靴にもなる。かくの
如く本例のパンタグラフは部品点数が少なく、簡単な構
造なので軽量で反応が早いからトロリー線への追随性が
良く、離線を防止し易い。
Third Embodiment (Refer to FIGS. 11 to 17) This example is an example of a model, FIG. 9 is a vertical cross section that passes through a center line in the front-rear direction of a part of the vehicle, and FIG. It is a cross-section taken along alternate long and short dash line bb 'passing through the center line of the axis. In the track device, the support arc 22 is integrally fixed on the fixed arc 25 by the fixing tool 26, the left and right fixed limbs 51 are welded from the outside of the fixed arc 25, and the horizontal beam 48 is sandwiched below and welded. is there. It can be fixed on the ground in this state. Rail 2
No. 3 has a cushion for sound insulation inserted in the central groove of the supporting arc. This rail has a wide vertical width. The guide body 24 is fastened to the supporting arc by a guide body fixing plate 74. This vehicle is a type without a trolley, and the outer shell and the bottom plate are formed in an arc shape, and the upper portion including the drive motor 8, the pinion 6 and the shelf 57 of the support 20 is housed in the cavity. Further, a target 70 is attached to the bottom plate at the front part thereof, and the upper half is exposed so that it is easy to see, and a predetermined sign is emitted when the ray gun hits. The drive shaft 4 is formed with gears on the left and right flanges (FIG. 11), and the drive shaft 7 supports the support members 2 on both sides.
It is rotatably supported between bearings 0 through a bearing. Although the support bodies 20 on both sides are raised upward, the support bodies 20 rotatably support the small gear shaft 38 via bearings in the middle of the vehicle in the middle of the vehicle body and further above. The pinion shaft 38 has the pinion 6 fitted between the supports, and is connected to the flexible shaft coupling 9 on both outer sides. The flexible shaft coupling 9 is connected to the shaft end of the drive motor 8 on the outside. The small gear 38 is made of nylon and meshes with the flange gear of the large gear 4 without oil. The shelf 57 extends outward, and the drive motor 8 is mounted on the shelf 57 via a motor cushion 37. Further, a buffer bolt 37 is attached to the outside of the drive motor 8 on the shelf.
Applies pressure to the shelf cushion 39 under the shelf via the coil spring 56 and penetrates to the floor base 54 below the shelf cushion 39, and is tightened with a nut on the lower side of the floor base. The motor shaft of the drive motor 8 is connected to the pinion shaft 38 via the flexible shaft coupling 9 as described above. Therefore, the drive motor is cushioned by the motor cushion 39 to reduce the impact of the drive wheels.
The shock of the vehicle is also attenuated by the shelf cushion 39, and the shock generated by the drive wheels is limited to the support 20 and its shelf. As described above, the flange gear drive device has extremely few parts, is low in cost, can travel at a considerable speed without oiling, and has low noise. The propeller propulsion device is located behind the drive wheels 4 and is fixed by the propeller fastener 58.
It is fixed integrally with the motor shaft projecting to the rear of 2. The propulsion motor 12 is supported by a motor pylon 13 that hangs from an arc-shaped highest position which is the bottom surface of the vehicle in the upper center. The motor pylon 13 has a mounting portion on the floor 53 bulging upward on both sides, and a servo motor is incorporated therein, and the servo motor is connected to a pylon gear 45. The pylon gear 45 meshes with a rotary gear 47 formed above the motor support 59. The support piece of the motor support 59 is rotatably supported by the motor rotation shafts 46 attached to the pylons on both sides. Therefore, the motor support 59 is rotated about the motor rotation shaft 46 by the rotation gear 47 via the pylon gear 45 by the amount of rotation of the servo motor to change the vertical angle of the propulsion motor 12. As a result, the propelling direction of the propeller is also changed vertically. As a result, when slippage of the rear drive wheels is detected, if the front part of the propulsion motor 12 is lowered, the front part of the dolly becomes lighter and a reverse load is applied to the rear part to eliminate slippage. The slippage of the front drive wheels can be reversed. Between the propulsion motor 12 and the drive wheel 4, there is a guide shaft 41 that penetrates inside a guide vane 42 having a blade-shaped cross section. Both sides of the guide shaft 41 are supported by guide legs 40, and guide wheels 11 are rotatably mounted on both outer sides of the guide shaft 41.
The guide vanes reinforce the guide shaft and also generate lift, reducing the weight on the wheels. The pantograph of this example is preferably made of a metal such as phosphor bronze, which is a good conductor as the material of the spring plate 62, the hinge 63, etc., and which is hard and rich in elasticity. On the scraping board,
Phosphor bronze can be used, but it is preferable to select a new sintered alloy material. 13, 14, 15, 16 and 17, the wind pressure resistant pantograph includes a pair of sliding plates 61, a spring plate 62 for fixing the sliding plates, left and right hinges 63 having the spring plates fixed to one side, On the other side of the left and right hinges, both ends of a spring plate 62 having a support plate 64 fixed to the center are integrally fixed. The contact plate 61 has both ends of a short round bar formed thin to have rivet holes, and two linings are arranged side by side and fixed to the spring plate 62 with rivets 65. The spring plate 62 is bent at about 45 degrees in the same direction with a radius on both sides except for the central portion to which the contact plate is fixed. The facing spring plates are also bent and formed in the same shape. Both ends of the above-mentioned two spring plates are fixed to each of the two hinges to form the outer shape. An air hole 69 is formed between the two sliding plates 61 which are spring plates to which a large wind pressure is applied. The attachment of the pantograph 60 is performed by fixing a pair of pressing plates 66 in parallel to each other at a predetermined position of the vehicle with a gap matching the width of the supporting plate 64 of the pantograph. Next, the supporting plate is pushed laterally between the two pressing plates that are attached in parallel, and the pressing holes 67 are screwed to complete the process. If the material of the pantograph is a good conductor, the electrodes may be attached to the pressing plate for wiring. This pantograph becomes lower as shown by the broken line in FIG. 15 when the contact plate 61 is pressed, and is restored instantly when the pressure is removed. The wind pressure is only applied to the thickness of the plate of the component, and the wide point of the spring plate is characterized in that it is strong against the wind pressure because air escapes through the air holes 69. If the screw of the pressing hole 67 is removed, the pantograph can be easily removed by sliding in the direction of arrow P. This pantograph can also be used face down, so it can also be used as a current collecting shoe. As described above, the pantograph of this example has a small number of parts, has a simple structure, is light in weight, and has a quick reaction.

【実施例4】 (図18、19、20 参照) 本例は小型模型の1例で、標的を積載して高速走行せし
めるタイプで、軽量化のために車両の後方にだけ1個の
駆動輪4を配したもので、駆動装置は両ツバ型駆動装置
を用いてある。本例は、プロペラ推進力を大きくして僅
かに浮上せしめるために、駆動装置その他の機器を限界
迄少なくしてある。車両側面の外観は翼型になっていて
下面後方には一個の駆動輪4を設けてあり、更に前方の
左右に各一個の案内輪11が横軸41で設けてあり、中
央に縦軸で破線の案内輪11が設けてある。駆動輪4は
ツバ歯車55を形成してあり、後方にモータパイロン1
3が垂れ下げてあり、プロペラ14が取り付けてある。
前方の案内軸41は車両の底部内で支持され、両外端部
に案内輪11が1個づつ合計2個を回転自在に取り付け
てあり、駆動輪の不安定な姿勢を支えて回転しつつ案内
する。運転席の後方には、標的70が搭載してあり、特
定の光線にヒットした時にサインを発する構成である。
他の装置類は既述例と同じである。 上述の飛行式の軌
道車は、案内体の上限に案内輪が接触するまで、浮上可
能であり、ツバ歯車の踏面は深くて、案内体で案内輪が
規制されているので、脱輪しない。航空機のようにエン
ジンを搭載して高速時にプロペラ推進だけで浮上状態で
飛行制御するのに適した型である。左右対称型車輪駆動
装置及びプロペラ推進装置に強力なモータを使用し、プ
ロペラ飛行機のような飛走行が可能である。
[Embodiment 4] (See FIGS. 18, 19 and 20) This is an example of a small model, which is a type in which a target is loaded and driven at high speed, and one drive wheel is provided only behind the vehicle for weight reduction. 4 are arranged, and the driving device is a double brim type driving device. In this example, in order to increase the propeller propelling force to slightly raise the propeller, the number of driving devices and other devices is reduced to the limit. The exterior of the side of the vehicle is wing-shaped, and one drive wheel 4 is provided at the rear of the lower surface, and one guide wheel 11 is provided at the left and right in the front by a horizontal axis 41, and the vertical axis is at the center. A broken guide wheel 11 is provided. The drive wheel 4 forms a bevel gear 55, and the motor pylon 1 is located at the rear.
3 is hanging and a propeller 14 is attached.
The front guide shaft 41 is supported in the bottom of the vehicle, and two guide wheels 11 are attached rotatably to both outer ends of the vehicle, so that the guide wheels 41 rotate while supporting the unstable posture of the drive wheels. invite. A target 70 is mounted behind the driver's seat and is configured to emit a signature when a specific ray is hit.
The other devices are the same as the above-mentioned examples. The flight-type rail car described above can float until the guide wheel comes into contact with the upper limit of the guide body, the tread of the flange gear is deep, and the guide wheel regulates the guide wheel. This type is suitable for controlling the flight in a levitating state by only propeller propelling at high speed with an engine mounted like an aircraft. A powerful motor is used for the left-right symmetric wheel drive device and the propeller propulsion device, and it can fly like a propeller airplane.

【実施例5】 (図21、22、23 参照) 本例の飛行式の軌道車は前例とは逆に前後に駆動輪4を
設けて重量物の積載にも耐える構造で、車輪駆動力を大
としてある。プロペラは最後部に一対ある。各種機器は
既述例の如く用途により構成してあり、車両の側面の外
形は前後とも同一で丸くなっている(図21)。前方よ
りみて案内輪11の左右は台車の両側で僅かに出っ張っ
ていて縦軸の水平回転である。案内輪に直結した破線の
案内モータ18は車輛速度と等速に制御してある。 車
両の底面は曲面と平面で構成、前進と後進ともに長時間
の走行を行なわせることができるので貨物を積み長距離
走行させることができる。
Fifth Embodiment (Refer to FIGS. 21, 22, and 23) The flight-type rail car of this example has a structure in which driving wheels 4 are provided in the front and rear to conversely load heavy objects, contrary to the preceding example, and the wheel driving force is Large as it is. There is a pair of propellers at the end. The various devices are configured according to their uses as described above, and the outer shape of the side surface of the vehicle is the same in both front and rear and is round (FIG. 21). When viewed from the front, the left and right sides of the guide wheel 11 slightly project on both sides of the carriage and are horizontal rotations on the vertical axis. A broken-line guide motor 18 directly connected to the guide wheel is controlled at the same speed as the vehicle speed. The bottom surface of the vehicle is composed of a curved surface and a flat surface, and can travel for a long time both forward and backward, so that cargo can be stacked and traveled for a long distance.

【実施例6】 (図24 参照) 図24に於いて、長円形状の軌道73が複数設定してあ
り、標的を搭載した飛行式の軌道車1が走行している。
該模型に好ましい競技システムの一例をのべる。該軌道
73と適宜の距離に設定した回転台72に1乃至複数の
狙撃装置71を設けてある。 該飛行式の軌道車1の標
的は特定の光線のヒットに対して所定のサインをだした
り或いはカウントする。矢印のように、該軌道車と回転
台72を逆にも回転せしめ得るし、回転スピードを早め
たり、傾けたり、揺動させたりできる。 複数の狙撃者
で狙撃のヒット数を競争できる。標的のサインには、メ
ロディー音・点滅光・色の変化・形態の変更・物体を発
射する等多くの種類がある。
Sixth Embodiment (Refer to FIG. 24) In FIG. 24, a plurality of elliptical orbits 73 are set, and a flight type rail car 1 carrying a target is running.
An example of a preferred competition system for the model is given below. One or a plurality of sniper devices 71 are provided on a turntable 72 set at an appropriate distance from the track 73. The target of the flight-type rail car 1 gives a predetermined sign or counts for a specific ray hit. As indicated by the arrow, the rail car and the turntable 72 can be rotated in reverse, and the rotation speed can be increased, tilted, or swung. Multiple snipers can compete for sniper hits. There are many types of target signs such as melody sounds, flashing lights, color changes, shape changes, and object firing.

【実施例7】 (図25 参照) 本例は本発明による飛行式の軌道車の一例で、車体上に
もプロペラ14とその推進装置が設けてある。案内輪1
1は、車両が傾いたとき、その側に幾分掛かるが、主な
荷重は中央の駆動輪に掛かるし、案内モータ81は案内
軸と直結され車両スピードと同一に回転制御されている
が、実施例1に記述した技術範囲で本発明に含まれる。
H鋼製の案内体24は断面溝型の立ち上がり壁を案内
体と合体させたもので、重量に比較して強度があり、好
ましい。その他、断面円形や角型のパイプによる案内体
等にツバ車輪の案内輪を組み合わせるように、本発明の
含む構造の組合せ方法は多くある。このように、本発明
による実施例では、軽量性を限界まで求めてエネルギー
消費を抑制せんとするもので、大型ではプロペラ飛行機
のような高速性を具有し、小型模型は高速性と相当程度
の重量物の可載性を具備するので、リモートコントロー
ルあるいは、自動制御装置を組み込んで、自動搬送装
置、遊戯装置等広範囲の用途に利用できる。
Seventh Embodiment (See FIG. 25) This embodiment is an example of a flight-type rail car according to the present invention, in which the propeller 14 and its propulsion device are also provided on the vehicle body. Guide wheel 1
No. 1 is somewhat applied to the side of the vehicle when the vehicle leans, but the main load is applied to the central drive wheel, and the guide motor 81 is directly connected to the guide shaft and is controlled to rotate at the same speed as the vehicle. The technical scope described in Example 1 is included in the present invention.
The guide body 24 made of H steel is a combination of a rising wall having a groove-shaped cross section with the guide body, and has strength as compared with weight, which is preferable. In addition, there are many methods of combining the structures included in the present invention such that the guide wheel of the brim wheel is combined with the guide body having a pipe having a circular or rectangular cross section. As described above, in the embodiment according to the present invention, light weight is sought to the limit to suppress energy consumption, and a large model has a high speed like a propeller airplane, and a small model has a high speed and a considerable degree. Since it has the ability to load heavy objects, it can be used for a wide range of applications such as an automatic carrying device and an amusement device by incorporating a remote control or an automatic control device.

【0006】[0006]

【発明の効果】以上説明したように本発明の軌道は他の
軌道車の車両重量と比較して約5分の1で、掛かる負荷
が小さいので、高架でも特殊な場所を除けば支柱及びそ
の基礎は小規模で簡単であるから、部材は量産し易く高
架上のコンクリート打ち込みのような長期工事は必要な
く、工期も早い。最大の効果は軌道の建設用地の買収が
不要になり、既存の高速道路沿い或いは鉄道上等にも小
規模の工事により高架で架設できることである。軌道は
1条のレール上を単列の車輪が転がるので、進行方向へ
の慣性が大になるので高速性が大になり、左右のレール
の不整による蛇行動や振動がなくレールへの負荷が小で
あり、レールの不整の保守点検が不要となり、両ツバ車
輪のツバは高くでき、案内輪に上限があるので脱輪がな
く、左右の車輪を支える重量車軸がないので構造が簡単
で軽量化でき、車輪駆動装置は左右対称型車輪駆動制動
装置では、両側のサイドカバーを外して大歯車と小歯車
を点検できるし、左右対称だから一対の小型の駆動モー
タを使用して台車の厚さを薄く軽量化できて、空気抵抗
上も好ましく、両側からディスクブレーキで制動できて
高速時には使用しない等で保守点検の手間が僅かですむ
し、油潤滑が可能で高速性がある。ツバ歯車駆動装置で
は部品点数が少なく、無給油でも走れるので、整備の手
間が省けてランニングコストが安くなり、小型化が容易
にできる。プロペラ推進では、車輪のすべりを検知して
推進力を増大せしめることができるので車輪駆動の限界
以上に高速性を高めることができるし、高速時の制動で
は車輪によらないのですべりがなくて車輪やレールの偏
磨耗が生じないから保守の手間が省ける。更に、モータ
パイロンの上下への推進方向の調節構造により上述の効
果を高められる。バーベル型緩衝装置はカーブ区間で車
体を内方へ傾けるので、高速安定性を高めるし、部品点
数が少ないから軽量化できる。縦型2段引き込み式アー
ク扉は空気抵抗を小とし、高速性をたかめる。パンタグ
ラフは超小型化と軽量化が可能で集電靴としても使用で
き、かつ風圧に強くトロリー線への追随性がよいので、
高速での集電を可能とし、車両の高速走行を実現せしめ
る。更に小型の模型に使用してショートによる故障を防
ぐことができる。上記の如く、本発明による軌道構造・
単列車輪駆動軌道車・飛行式の軌道車・左右対称式車輪
駆動制動装置・両ツバ歯車駆動装置・薄板製のパンタグ
ラフ・バーベル式緩衝装置・プロペラ推進システム等に
よれば、高速大量輸送システムが安い費用で土地の買収
なしで早い工期で供用でき、模型或いは遊戯システム以
外でも、小型で従来と全く異なった高性能の飛行式の軌
道車ができるので、閉鎖空間内をリモートコントロール
で飛走行する長距離高速輸送システム、例えば郵便物
の、が提供でき省エネルギーを実現できる。
As described above, the track of the present invention is about one fifth of the vehicle weight of other rail cars, and the load applied is small. Since the foundation is small and simple, it is easy to mass-produce the material, and long-term construction such as concrete driving on an elevated structure is not required and the construction period is fast. The greatest effect is that the acquisition of land for track construction is no longer necessary, and it can be installed over the existing highways or on railways by a small-scale construction. The track has a single row of wheels rolling on a single rail, so the inertia in the direction of travel is large, so the speed is high, and there is no snake action or vibration due to irregularity of the left and right rails It is small and does not require irregular maintenance of the rails, the brim of both brim wheels can be made high, there is no derailment because the guide wheel has an upper limit, and there is no heavy axle supporting the left and right wheels, so the structure is simple and lightweight. In the wheel drive braking system, the side covers on both sides can be removed to inspect the large and small gears, and because the wheels are symmetrical, a pair of small drive motors can be used to increase the thickness of the truck. Can be made thinner and lighter, and has good air resistance. It can be braked from both sides and not used at high speeds, so maintenance and inspection is a little troublesome, and oil lubrication is possible and it has high speed. Since the flange gear drive device has a small number of parts and can be run without oiling, maintenance work can be saved, running costs can be reduced, and miniaturization can be facilitated. With propeller propulsion, it is possible to increase the propulsive force by detecting the slip of the wheels, so it is possible to increase the speed higher than the limit of driving the wheels, and braking at high speed does not rely on the wheels, so there is no slip. Since there is no uneven wear of the rail or rail, maintenance work can be saved. Furthermore, the above-mentioned effect can be enhanced by the structure for adjusting the propulsion direction of the motor pylon up and down. Since the barbell type shock absorber leans the vehicle body inward in the curved section, high-speed stability is enhanced and the number of parts is small, so that the weight can be reduced. The vertical two-stage retractable arc door has low air resistance and high speed. The pantograph can be made extremely compact and lightweight, can be used as a current collecting shoe, and is strong against wind pressure and has good followability to the trolley wire.
It enables high-speed power collection and realizes high-speed running of the vehicle. Furthermore, it can be used for a small model to prevent breakdown due to short circuit. As described above, the track structure according to the present invention
Single-row wheel drive railcars, flight railcars, symmetrical wheel drive brakes, double-branch gear drive, thin plate pantographs, barbell shock absorbers, propeller propulsion systems, etc. It can be used in a short period of time without acquisition of land at a low cost, and besides the model or play system, a small and high-performance flight-type rail car that is completely different from the conventional one can be made, so fly in a closed space by remote control. It is possible to provide a long-distance high-speed transportation system, for example, postal items, and realize energy saving.

【図面の簡単な説明】 図面は本発明による1実施例の縮小図で、図1、図2は
実施例1の概略説明図で、図1は本発明による軌道装置
と飛行式の軌道車の遠景部分側面図、図2は図1の正面
拡大図、図3より図11までは実施例2の説明図で図3
は本発明による高架軌道と飛行式の軌道車の遠景側面
図、図4は図3の飛行式の軌道車の拡大側面図、図5は
図4の底面図、図6は図4中の断面a−・−a′の拡大
図、図7は図6中の軌道のカーブ区間での傾斜調節完成
図、図8は図6中の左右対称式車輪駆動制動装置の拡大
図、図9はバーベル式空気バネ緩衝装置の斜視図、図1
0は図9の分解図、図11より図17までは実施例3の
説明図で、図11はツバ歯車駆動装置による模型の飛行
式軌道車の車両の一部を前後方向の中心線での縦断面
図、図12は図11中の一点鎖線b−・−b′での車両
の断面図、図13は本発明によるパンタグラフの取り付
け状態の斜視図、図14は図13でパンタグラフを外し
た状態、図15は図13のパンタグラフの正面図、図1
6は図13の平面図、図17は図13の側面図、図18
より図20までは実施例4の説明図で、図18はその飛
行式の軌道車が軌道に停止している側面図、図19は図
18の車両の底面図、図20は図18の車両の背面図、
図21より図23は実施例5の説明図で、図21はその
飛行式の軌道車が軌道に停止している側面図、図22は
図21の車両の背面図、図23は図21の車両の底面
図、図24は実施例6の説明図で、飛行式の軌道車によ
る狙撃ゲーム図である。図25は実施例7の説明図で、
その概略正面図である。
BRIEF DESCRIPTION OF THE DRAWINGS The drawing is a reduced view of one embodiment according to the present invention, FIGS. 1 and 2 are schematic explanatory views of the first embodiment, and FIG. 1 shows a track device according to the present invention and a flight-type track car. 3 is a front view enlarged view of FIG. 1, and FIG. 3 to FIG. 11 are explanatory views of the second embodiment.
4 is a side view of an elevated track and a flight type rail car according to the present invention, FIG. 4 is an enlarged side view of the flight rail car of FIG. 3, FIG. 5 is a bottom view of FIG. 4, and FIG. 6 is a cross section of FIG. 7 is an enlarged view of a -.- a ', FIG. 7 is a completed view of inclination adjustment in the curve section of the track in FIG. 6, FIG. 8 is an enlarged view of the symmetrical wheel drive braking device in FIG. 6, and FIG. 9 is a barbell. Type air spring cushioning device perspective view, FIG.
FIG. 0 is an exploded view of FIG. 9, and FIGS. 11 to 17 are explanatory views of the third embodiment. FIG. 11 shows a part of a model flight-type track car with a brim gear drive in the longitudinal centerline. FIG. 12 is a vertical cross-sectional view, FIG. 12 is a cross-sectional view of the vehicle taken along alternate long and short dash line b-. B 'in FIG. 11, FIG. State, FIG. 15 is a front view of the pantograph of FIG. 13, FIG.
6 is a plan view of FIG. 13, FIG. 17 is a side view of FIG. 13, and FIG.
20 to 20 are explanatory views of the fourth embodiment, FIG. 18 is a side view in which the flight type rail car is stopped on the track, FIG. 19 is a bottom view of the vehicle of FIG. 18, and FIG. 20 is a vehicle of FIG. Rear view of the
21 to 23 are explanatory views of the fifth embodiment, FIG. 21 is a side view in which the flight type rail car is stopped on the track, FIG. 22 is a rear view of the vehicle of FIG. 21, and FIG. 24 is a bottom view of the vehicle, and FIG. 24 is an explanatory view of the sixth embodiment and is a diagram of a sniper game using a flight type rail car. FIG. 25 is an explanatory diagram of the seventh embodiment,
It is the schematic front view.

【符号の説明】[Explanation of symbols]

1 飛行式の軌道車、2 車体、 3 台車、
4 駆動輪、5 大歯車、 6 小歯車、
7 駆動軸、 8 駆動モータ 9 たわみ軸継手、 10 ギアーボックス、11 案
内輪、12 推進モータ、 13 モータパイロン、
14 プロペラ、 15 穴付支持函、16 カバー支
持函、 17 連結棒、 18 空気バネ 19 パイロン台、 20 支持体、 21 碍
子、 22 支持アーク、23 レール、
24 案内体、 25固定アーク、 26 固定具、
27 支柱、 28 集電子、 29 トロ
リー線、30 バーベル式空気バネ緩衝装置、 31
レール支持体、32 小歯車カバー、 33 サイド
カバー 34 軸受、 35 ブレーキ、36 ナ
ット、 37 緩衝ボルト、38 小歯車軸、
39 クッション、40 案内脚、 41 案内
軸、 42 案内翼、 43 扉、44 連結具、
45 パイロン歯車、 46
モータ回動軸 47 回動歯車、 48 レール台、 49 横
梁、 50 支柱、51 固定肢、 52
天板、 53 床、 54 床台 55 ツバ歯車、 56 コイルバネ、57 棚、
58 固着具、59 モータ支持片、 60
パンタグラフ、 61 すり板、62
バネ板、 63 丁番、 64 支え板、
65 鋲、66 押さえ板、 67 押さえ孔、
68 ストッパー、69 風孔、70 標的、
71 回転台、 72 狙撃装置、 73 軌道
装置、74 案内体固定板、 75 留板、 76
踏面、 77 ツバ、78 ネジ、 7
9 モータ軸、 80 耳 81 案内モータ 82 レール押さえ、 83 緩衝軸受 84 ボル
ト孔である。
1 flight type rail car, 2 car bodies, 3 trucks,
4 drive wheels, 5 large gears, 6 small gears,
7 Drive shaft, 8 Drive motor 9 Flexible shaft coupling, 10 Gear box, 11 Guide wheel, 12 Propulsion motor, 13 Motor pylon,
14 propellers, 15 support box with holes, 16 cover support box, 17 connecting rods, 18 air springs 19 pylon stand, 20 supports, 21 insulators, 22 support arcs, 23 rails,
24 guides, 25 fixed arcs, 26 fixtures,
27 columns, 28 current collectors, 29 trolley wires, 30 barbell type air spring shock absorbers, 31
Rail support, 32 pinion gear cover, 33 side cover 34 bearing, 35 brake, 36 nut, 37 buffer bolt, 38 pinion gear shaft,
39 cushions, 40 guide legs, 41 guide shafts, 42 guide wings, 43 doors, 44 connecting tools,
45 pylon gears, 46
Motor rotation shaft 47 Rotation gear, 48 Rail base, 49 Cross beam, 50 Strut, 51 Fixed limb, 52
Top plate, 53 floors, 54 floor stand 55 flange gears, 56 coil springs, 57 shelves,
58 fasteners, 59 motor support pieces, 60
Pantograph, 61 scraper, 62
Spring plate, 63 hinge, 64 support plate,
65 studs, 66 holding plate, 67 holding hole,
68 stoppers, 69 air holes, 70 targets,
71 turntable, 72 sniper device, 73 track device, 74 guide fixing plate, 75 retaining plate, 76
Tread, 77 collar, 78 screw, 7
9 motor shaft, 80 ears 81 guide motor 82 rail retainer, 83 buffer bearing 84 bolt hole.

【手続補正書】[Procedure amendment]

【提出日】平成5年9月10日[Submission date] September 10, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 飛行式の軌道車とその軌道装置Title: Flight type rail car and its rail device

【特許請求の範囲】[Claims]

【請求鋼12】 縦軸で設けた左右の案内輪を等速逆回
転構造となし、何れか一方の案内輪の外周を案内体に接
触せしめて走行する請求項3乃至5の何れかに記載の軌
道車。
12. The steel according to claim 3, wherein the left and right guide wheels provided on the vertical axis have a constant-velocity reverse rotation structure, and the outer periphery of one of the guide wheels is brought into contact with the guide body to travel. Rail car.

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主として低速時に車輪駆
動であり、プロペラ推進で高速性を増大せしめる飛行式
の軌道車及びその軌道システムに関する。より詳細に
は、一条の軌道上を転がる1乃至複数の支持輪を車両の
前後方向の中央線の下方に設け、該支持輪の一個乃至複
数を軌道車に搭載した原動機に連結し、該軌道車に左右
の案内輪を設けて左右の案内体に案内せしめて成る単列
車輪駆動軌道車と、該軌道車にプロペラ推進装置を設け
て成る複合高速推進式の飛行式の軌道車、及びそれらの
運航を支持する軌道システムと、前記単列車輪駆動軌道
車或いは飛行式の軌道車に各種の装置を設けて成る小型
のリモートコントロール式高速輸送システム、科学模
型、或いは遊戯装置等の構造とシステム等に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flight-type track car which is driven mainly by wheels at a low speed and which can increase a high speed by propeller propulsion, and a track system therefor. More specifically, one or a plurality of support wheels that roll on a single track are provided below the center line in the front-rear direction of the vehicle, and one or a plurality of the support wheels are connected to a prime mover mounted on the track car, A single-row wheel-driven rail car that is provided with left and right guide wheels on the vehicle and is guided by the left and right guide bodies, and a compound high-speed propulsion flight-type rail car that is equipped with a propeller propulsion device for the rail car. Structure and system such as a track system that supports the operation of the above, and a small remote-controlled high-speed transportation system, a scientific model, or a game machine, which is provided with various devices on the above-mentioned single-row wheel-driven orbit-type rail car. Etc.

【0002】[0002]

【従来の技術】従来の高速軌道システム、例えば新幹線
・常伝導磁気浮上車システム・超伝導磁気浮上車システ
ム等、に於いては、車両一台の重量は軽くとも10数ト
ン以上30数トンもある。人間一人60キロと仮定した
定員によれば、車重/人数>200キロであり、この値
を単位車両重量と呼ぶこととすると、この重量車両を支
持する軌道の負担が大きすぎて多くの問題が生じる。即
ち、大重量車輌の故に、直線的で広い幅で土地収用をし
て堅固に軌道を構築する必要があり、建設用地の確保が
至難となってきている。そのため現実には、高速軌道の
建設は棚上げされ、在来線の高速化や中速の地下鉄、モ
ノレール等を多くの費用と年数を費やして建設するか、
小間切れの供用でも使える道路の建設が主であり、エネ
ルギーを過消費し、かつ大気汚染が問題な航空機に限ら
れてきている。しかるに、高速の交通システムの研究
は、超軽量車両が軌道架設を容易にする利点がありか
つ、エネルギー消費を少なくするのに最も重要であるの
を重視せず、他の要素に重点をおいて為されてきてい
る。その結果、電力エネルギーの消費を大幅に減らせる
との予測で研究が進められてきた超伝導磁気浮上走行シ
ステムは、幾つかの理由で軽量化が無理で、省エネルギ
ーのシステムとは考え難くなってきている。車両を軽量
化して、軽便な軌道で市街地に架設する目的で出願した
本願人による昭和58年特許願第094869号−飛行
車は、プロペラ推進によるもので、レールの長手方向に
下向きに設けた係止面と、該面に転動する最高位接触面
とが停止時において、所定間隔開けてある案内輪を少な
くとも二個有す軌道車であり、かつ該軌道車の車両を所
定速度以上で浮上する構造となし、該車両に設けたプロ
ペラ又はジェットで駆動せしめられて成る飛行車であ
る。が、停止時や発車時、低速時には、車輪駆動を併用
できる構造でないので高速時には空気を引っ張らない長
所があるが、プロペラ制動だけでは低速時には風害の問
題もあった。更に、2本の平行レールの車輪駆動と制動
を併用せしめれば、重量車両となり、軽量化ができなか
った。
2. Description of the Related Art In conventional high-speed track systems, such as the Shinkansen, normal-conducting magnetic levitation vehicle system, and superconducting magnetic levitation vehicle system, the weight of one vehicle is as low as 10 tons to 30 tons. is there. According to the capacity assuming that one person is 60 kg, the vehicle weight / the number of people> 200 kg, and if this value is called the unit vehicle weight, the burden on the track supporting this heavy vehicle is too large and many problems occur. Occurs. That is, since it is a heavy-duty vehicle, it is necessary to acquire the land in a straight and wide width to construct a solid track, and it is becoming very difficult to secure a land for construction. Therefore, in reality, the construction of high-speed tracks will be shelved, speeding up conventional lines, medium-speed subways, monorails, etc.
Mainly the construction of roads that can be used even during short periods of service has been limited to aircraft that consume too much energy and have problems with air pollution. However, research on high-speed transportation systems does not emphasize that ultralight vehicles have the advantages of facilitating track erection and is most important for reducing energy consumption, but focuses on other factors. It has been done. As a result, the superconducting magnetic levitation system, which has been researched with the expectation that the consumption of electric power energy can be significantly reduced, cannot be considered to be an energy-saving system because it cannot be lightened for several reasons. ing. The application filed by the applicant for the purpose of lightening the vehicle so that it can be installed in an urban area on a light rail track, in Japanese Patent Application No. 094869 in 1983-The flying vehicle is propeller-propelled and is installed downward in the longitudinal direction of the rail. When the stop surface and the highest contact surface rolling on the stop surface are stopped, it is a rail car that has at least two guide wheels that are spaced apart by a predetermined distance, and the vehicle of the rail car is levitated at a predetermined speed or more. It is a flight vehicle that is driven by a propeller or a jet provided in the vehicle. However, it has the advantage that it does not pull air at high speed because it is not a structure that can drive wheels at the same time when stopping, starting, or at low speed, but there is also a problem of wind damage at low speed with propeller braking alone. Furthermore, if both parallel wheel drive and braking of two parallel rails are used, it becomes a heavy vehicle and the weight cannot be reduced.

【0003】[0003]

【発明が解決しようとする課題】本発明は前述の交通シ
ステムの欠点を解消するために、車輌重量を軽くするこ
と、その装置類の数を減らすこと、複雑で重い装置を新
しく開発した簡単で軽量の装置に置き換えること、省エ
ネルギーの鋼鉄製車輪駆動の従来の軌道車に、より以上
の高速性を加えること等を課題とする。即ち、現在、実
用中、或いは開発テスト中の高速の交通システムでは、
駆動装置が大規模で重くて嵩張り、制御機器も同様であ
るから単位車両重量が200キロ以上である。従来の車
輌は車重が大きいので、急カーブの高速走行は危険であ
り、軌道は大径のカーブか直線状であり、加えて堅固に
軌道を敷設する必要があるため、直線状の広い土地の収
用に膨大な費用がかかり、新規の建設が困難になってい
る。特に新幹線は、大量輸送が可能でエネルギー消費が
少ない長所が大きいのに、急制動で車輪の偏磨耗を生
じ、制動により生じたレールの凹凸を平滑にするための
連夜の研磨が必要である。並行支持軌道であるから、左
右相互のレール間隔の拡張力が常に加わり、平行度の不
整による左右への振動や、台車の蛇行動が生じる欠点が
あり、保守作業が大変である。車重が大なので、出発抵
抗が大となり、低速駆動力を大にするための機器の重量
が大きく、その制動装置も複雑で重くなる。一台の車輪
が8個も必要であり、長くて重い車軸が4本も用いてあ
る。重車輌の走行騒音は遠距離の地域にもその被害を及
ぼす。常伝導や超伝導の磁気浮上システムは、低騒音で
振動が少ないが、軌道敷設では上記重量車両の弱点があ
るので堅固につくらねばならず、加えて、エネルギーの
消費量は大きく高速走行では、航空機に近い水準となり
省エネルギー技術とは云いがたい。。特に超伝導方式の
場合、強力な磁力が遺伝子に変異を起こすので、客室の
遮蔽体の重量を加えねばならず軽量化は無理で、駆動部
分以外の機器のエネルギー消費が大きい。現実に、地球
上で、車を多く用いる地域は化石燃料の大量消費によ
り、常に雨乞い現象があるので多雨となり、一方車を殆
ど使用せず燃料消費の少ない地域、例えばゴビ砂漠・ア
フリカの大部分は、エネルギー消費の多い地域への大量
の降雨のために、降水量が減少している。加えて、車の
ための道路建設を主とした自然破壊による緑地の減少
や、車或いは航空機による化石燃料の大量消費による炭
酸ガスの増加で、魚類の食する藻類が減少し、代わり
に、炭酸カルシュウム成分を多く生成して食用にならず
に海底を覆う貝類の増殖で、海洋の砂漠化が日本或いは
南米等にも進行しつつあるため、魚類資源も将来枯渇す
ると考えられる。しかるに、地球規模の気候の変動によ
る生存環境悪化への根本的な対策=エネルギー消費の抑
制及び自然の緑地保全=は実行する手段さえ、利便の名
目で、無視されている。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks of the transportation system by reducing the weight of the vehicle, reducing the number of devices, and newly developing a complicated and heavy device. The challenges are to replace it with a lightweight device, and to add more speed to the conventional railcars driven by energy-saving steel wheels. That is, in a high-speed transportation system currently in practical use or under development test,
Since the driving device is large and heavy and bulky, and the control device is the same, the unit vehicle weight is 200 kg or more. Since conventional vehicles have a heavy vehicle weight, it is dangerous to drive at high speed on a sharp curve, and the track has a large-diameter curve or a straight line.In addition, it is necessary to lay the track firmly. The cost of expropriation is huge and new construction is difficult. In particular, the Shinkansen has the advantages of being able to be transported in large quantities and consuming less energy, but it requires uneven grinding of the wheels due to sudden braking, and requires night-long polishing to smooth the unevenness of the rails caused by braking. Since it is a parallel support track, the expansion force of the rail interval between the left and right is always applied, and there are drawbacks that left and right vibrations due to improper parallelism and a snake's snake's behavior occur, which makes maintenance work difficult. Since the vehicle weight is large, the starting resistance is large, the weight of the device for increasing the low speed driving force is large, and the braking device is also complicated and heavy. It requires as many as eight wheels and four long and heavy axles. The running noise of heavy vehicles also damages long-distance areas. Normal and superconducting magnetic levitation systems have low noise and little vibration, but they have to be made solidly because of the weaknesses of the above heavy vehicles in track laying, and in addition, energy consumption is large and high speed running, It is hard to say that it is an energy-saving technology because the level is close to that of an aircraft. . In particular, in the case of the superconducting system, the strong magnetic force causes mutations in the gene, so the weight of the passenger compartment shield must be added to reduce the weight, and the energy consumption of equipment other than the driving part is large. Actually, on the earth, regions where a lot of cars are used have heavy rain due to the constant begging phenomenon due to the large consumption of fossil fuels, while on the other hand, the regions where the cars are rarely used and the fuel consumption is low, for example, most of the Gobi Desert and Africa. Has reduced rainfall due to heavy rainfall in areas of high energy consumption. In addition, a decrease in green space due to natural destruction mainly due to road construction for cars and an increase in carbon dioxide due to large consumption of fossil fuels by cars or aircraft will reduce algae eaten by fish, and It is considered that fish resources will be depleted in the future as the desertification of the ocean is progressing to Japan, South America, etc. due to the proliferation of shellfish that cover the seabed without producing edible substances by producing a large amount of calcium components. However, even the means to implement the fundamental measures against the deterioration of the living environment due to global climate change = restraint of energy consumption and conservation of natural green areas = are ignored for the sake of convenience.

【0004】[0004]

【課題を解決するための手段】本発明の主な目的は、軌
道の建設用地収用を小ならしめ、市街地の交通施設、例
えば道路上、高速道路上、既存の軌道上等の空間にも建
設可能な軽量軌道による高速の交通手段を提供し、緑地
の破壊を防ぐことである。本発明の次の主たる目的は、
従来の軌道車の単位車両重量に比較して5分の1以下に
車輌を軽量化した全てのプロペラ推進装置を設けた車輪
駆動軌道車に於いて、主として高速時に高効率の加速手
段、特に駆動車輪のすべりが生じて車輪の駆動力が低下
してきたときに、を車輌に具備させて燃料を使用する全
ての交通手段の中で、最も省エネルギーで大気汚染の少
ない高速の大量輸送手段を提供することである。より詳
細には、本発明の第一の目的は、エネルギー消費を少な
くするために、転がり抵抗を減らす歪みの小さい素材、
例えば鋼鉄、で形成した駆動輪を用いたり、駆動モータ
と車輪を一体に構成して駆動機構を簡略にし軽量化した
り、更にそれらの駆動輪を中央の単列にして数を減らし
て成る単列車輪駆動方式と、該方式に併用して効果の高
い大型の高速車に適したバランスの良い左右対称式車輪
駆動制動方式や小型車輌或いは模型等に適したツバ歯車
駆動方式等の提供である。本発明の第2の目的は、単列
車輪駆動軌道車を最小のトルクで安定走行させ得る案内
システムとして、等速強制回転式・自在回転式・等速強
制回転弾力接触式等の提供である。本発明の第3の目的
は、従来の車輪駆動車は高速での急制動で車輪の滑りを
生じて車輪が偏磨耗するが、その欠点のないプロペラ制
動により、装置を簡単に軽量化し高速性を高める複合進
行方式の提供である。本発明の第4の目的は、駆動輪の
すべり又は空転を検知して、プロペラ推進装置の推力を
増大して加速するシステムを提供して車輪駆動軌道車に
一層の高速性を加えることである。本発明の第5の目的
は従来の高速の軌道車の緩衝装置では複雑で重くなるの
で、安全に安定して走行出来る軽量の車体傾斜調節緩衝
装置であるバーベル式空気バネ緩衝装置により、車体の
カーブ内側への自動傾斜構造を軌道車に提供することで
ある。本発明の第6の目的は、間隔を離した左右の案内
体にトロリー線を取付けて高圧での給電を可能とし、上
空の高架線装置のない軽便な軌道構造により、量産によ
る安価な組立て部材を供給し、高架軌道を安いコストで
工期を早く提供することである。本発明の第7の目的
は、カーブ位置で高架建設が容易で、かつ量産可能の軌
道支持構造の提供であり、レールの支持骨材をカーブと
直線区間を同一の部材で架設可能にし、現場で適宜に傾
斜度を調節できる構造を提供することである。本発明の
第8の目的は、飛行式の軌道車の下方にプロペラ推進装
置を設けてプロペラ推進の地面効果の高い車輌の提供で
ある。本発明の第9の目的は、良伝導性・耐腐食性・強
靭性・弾力性を具有する金属薄板を構成材料に使用して
の小型で軽量で着脱が容易で風圧の影響が小で、トロリ
ー線からの集電効果の高い外径が20ミリ角位より30
0ミリ角程度の大きさのパンタグラフ又は集電靴の提供
である。本発明の第10の目的は、時速約30キロ以上
で長時間走行が可能な模型或いは小型の自動搬送装置と
しての飛行軌道車システムの提供である。本発明の第1
1の目的は、模型の飛行式の軌道車に標的を設け、該標
的を適宜の距離から、狙撃装置で加撃可能となし、的中
時に標的からサイン或いは反応して作動せしめる遊戯シ
ステムの提供である。本発明の第12の目的は、軌道と
案内体と案内支持骨材及び支持部材を組立て及び解体自
在に構成して成る模型セットの提供である。本発明は、
断面が溝型の構築体の底部中央に一条のレールを設ける
とともに、該構築体の左右の立ち上がり壁に案内体を設
けて成る軌道装置と、該レールに転がるI乃至複数の支
持輪を車両の前後方向の中央線の下方に設けてあり、該
1乃至複数の支持輪の1乃至全個を原動機に連結して駆
動装置に組み入れて駆動輪となし、該車輌に設けた左右
の案内輪を該案内体で進行方向に案内させて走行せしめ
る単列車輪駆動軌道車及び該単列車輪駆動軌道車にプロ
ペラ推進装置を加えて成る飛行式の軌道車及びその関連
する装置類とシステム等に関する。より詳細には、断面
が溝型の構築体は、地上に於いては鉄筋コンクリートで
構築し得る(図1、2 後述)。高架方式では、本発明
による架設部材は、強度が大で低価格の鉄を塗装不要に
した複合材例えば、ジシクロペンタジエンとの複合成形
部材を使用するのが望ましく、レールの支持骨材はカー
ブ、直線区間とも同一の部材を用いて、現場で適宜にレ
ールの傾斜度を調節できる構成が望ましい。高架軌道
は、レールを支持するレール支持体の接続部毎に、コン
クリート製或いは、鋼鉄製の支柱を構築し、該支柱の上
部にレール支持体を延々と置いて固定し、該レール支持
体の上部に、固定アークの中央部分の下部を一体に固定
したゲート状の固定肢を、一体に固定して(後述)、該
アークの上方に鉄骨或いは鉄筋入りのコンクリート製の
支持アークを所定の角度(後述)で固定具で取り付け、
該支持アークにレール及び左右の案内体を所定の位置に
取り付けてある。該案内体の上部には碍子を介して高圧
給電用のトロリー線が配してある。更に隣り合う支持装
置間とレール支持体及び案内体とで囲まれる面には壁体
が取付けてある。この壁体はプロペラ推進風力を直接う
けて地面効果を車輌に与えて高速性を高めるし、金網或
いは多孔板を主体で構成することで、台風の横風の風圧
を減じるし、積雪を溶かし易いので好ましい。該壁体の
レール寄りに、セラミックヒーターを取りつけて、凍結
時に加熱可能にするのが好ましい。トロリー線は間隔の
広い左右の案内体に碍子を介して取付けるのが高圧送電
もできて、車輌上空の架線よりコストが安く軽便で好ま
しい。駆動装置として1例をあげると、(1)高速車用
としての駆動装置は左右の対称型が風圧に対して左右バ
ランスが好ましく歯車装置の点検が容易にできる構造が
望ましい。本発明による左右対称型車輪駆動制動装置は
高速車に適していて、車輌の中央線の下方に設けて、台
車との結合が緩衝的にできている(後述)。 (2)主として小型の模型に好ましい1例として、両ツ
バ車輪のツバに歯車を構成し、ナイロン駆動歯車を上方
で咬み合せしめるツバ歯車駆動装置が軽量で部品が少な
く無給油で回せるので好ましい。案内体は従来のレール
型とかその他多種の断面形状があり、複合構成も可能で
あるが、切り替えポイント、簡単さ、施工コスト等で銅
製の単体が望ましい。案内輪は車両の両側に設ける。縦
軸、横軸、斜軸等で設け得るが、縦軸で水平に回転自在
であれば、横揺れを制御するのに好ましい。車両を車体
と台車とで構成する場合は、台車の両側に少なくとも各
一個、望ましくは2個づつ左右を並行して設けるのがよ
い。これらの案内輪は、高速車に於いては、左右の案内
輪を車輌に設けた原動機で駆動して車輌の速度と等速で
回転せしめて案内体に接触案内せしめる構造と成すのが
望ましく、その主な構造は、(1)等速強制回転式では
原動機で駆動される左右の案内輪を車輌速度と等速に制
御し、一方の案内輪を案内体に接触せしめて案内するも
のであり、(2)自在回転式では、弾力装置を介して左
右の案内軸を寄せる圧力を加え、一方の案内輪の外周を
案内体に接触回転せしめて、案内するもので、軽量で好
ましい。また、(3)等速強制回転弾力接触式は、原動
機に駆動回転される左右の案内輪のそれぞれの軸間距離
を拡大する圧力を弾力装置で加えて、双方の案内輪の外
周を案内体に強制接触せしめて回転案内せしめるもの
で、車両の高速での安定走行に好ましい。横軸による案
内輪は、(1)強制回転型と(2)自在回転型に大別で
きる。レールと案内体との高低差が大であれば、姿勢の
制御が完全な縦軸型が望ましく、高低差が小になるほ
ど、横軸の案内輪が効果的に姿勢の制御がし易くなる。
しかしこの場合、(1)車高を低くすれば、プロペラ推
進装置は車輌の下方に設定できないので、前後方又は上
方に設定する以外になく、プロペラ回転の危険性とか、
連結の不利とか、或いは地面効果の低下等の問題が生じ
るし、(2)車高を高くすれば、横軸の支持体を下方に
大きく幅広く構成せねばならず、強度を大にするとき軽
量化が犠牲になる。従って横軸の案内輪はプロペラ推進
装置を縮小して設ける場合と、縦軸の案内輪との併用で
プロペラ推進装置を大にして推力を確保する場合とがあ
るが、併用の方が高速化にとって有利である。車体と台
車の緩衝装置では、軸ばね或いはまくらばねにダンパー
を並べて取り付けるのもよいが、自動的に車体を傾斜せ
しめる緩衝装置=カーブで車体の遠心力の掛かる側が高
まり反対側が低く沈む=バーベル式空気バネ緩衝装置を
用いて、カーブでの安定性と高速性を高めるのが好まし
い。本発明によるバーベル式空気バネ緩衝装置は主とし
て、(1)連結棒の両端部にボール状の膨大部を取付け
て成るバーベル形状の連結棒と(2)該膨大部を収容
し、かつ所定角度内で回動自在に支持するとともに、膨
大部より小径の軸受を取付けた離脱制止縁を開口部に設
けた回動支持室を半分づつ有する上下の穴付支持函とカ
バー支持函各1個とを合体して構成した回動支持函と、
(3)前記連結棒を貫通せしめる中央孔を有するドーナ
ツ形状のゴム製の空気バネ、とで構成してある。 更
に、支持棒が外方には傾かない角度で回動支持函を台車
に取り付けるとともに、車体には支持棒の上方の間隔を
狭くし、かつ下方の間隔を適宜に広くして他方の回動支
持函を取り付け、カーブ区間で車体に遠心力が掛かれ
ば、遠心側を高くし、求心側を低く沈ませて、走行安定
性を高めるのが好ましい。。プロペラ推進では、従来の
鉄道車輌その他の車輪駆動軌道車とプロペラ推進との複
合進行方式の軌道車に於いて、低速時は主として車輪駆
動であるが、高速では駆動輪の回転速度と車体の速度の
差より駆動輪の滑りを検知してプロペラによる推力を適
切に増大して駆動力以上の高速性を車輌に具備せしめら
れる。プロペラを支持するモータパイロンは推進モータ
を上下方向に可変に構成して推力の方向を調節して車輌
重量の前後の負荷のバランスを保てる。プロペラ推進の
前後方向は、パイロン台の回転で推力を逆にできる。プ
ロペラ制動は高速時に主として使用し、(1)パイロン
台の回転、(2)プロペラを可変翼にする、(3)プロ
ペラの翼のひねり角を45度程度に構成して推進モータ
を逆転せしめる等で行なえる。プロペラはひねり角を約
45度にして、幅を広く、短径に形成すると、回転数に
比して推力が大となり、風きり量が減り低騒音となる。
更にその翼を後退させてあれば、空気を押す圧力の積が
大となり、推力が増大する。車両の上部に垂直尾翼を取
り付けて、進行方向への追随性を高め、水平尾翼の揚力
で車体を軽くし、或いは浮上せしめて高速性を高められ
る。扉は車体側壁と同一径のカーブで縦方向に湾曲せし
め、前後にスライダーを設けるとともに、該スライダー
の支持縁を車体の上部の一段下げた格納部の支持縁に連
続して設けて成る上下のスライド式アーク扉が空気抵抗
が小で好ましい。集電装置は、軽量で小型が望ましく
本発明による着脱自在の集電靴としても使える耐風圧式
パンタグラフの一例をあげる。耐風圧式パンタグラフ
は、軽量化のためにすり板以外は、良電導性、高弾力
性、耐腐食性、強靭性を全て具備する肉薄の金属板、例
えば燐青銅板の如きを素材として用いて、構成する。進
行方向には、構成する薄板の厚みの断面とすり板の側面
を向けるだけで、すり板間に設ける風穴で空気が抜ける
ので、揚力が生じない。その取付けは、保守性を高める
ために、数本のネジの締め付けで可能に構成して成る。
このパンタグラフは外形の大きさが約20ミリ立方から
300ミリ立法の大きさに構成できる。すり板を下方に
向けて取りつけができるので、集電靴として使用でき
る。数本のネジで着脱自在なので、交換・修理等が容易
である。小型の飛行式の軌道車は科学模型にできる。高
速で遠距離の搬送システムとして例えば、郵便物専用で
断面が約1平方メートルの高架軌道を高速道路或いは在
来鉄道沿いに設ければ、国家的メリットがあるばかり
か、遠距離の運搬車輌が不要になり、世界的な省エネル
ギーが実行できる。或いは標的を積載して周回軌道を高
速走行せしめ狙撃台からの命中率を競うシステムのよう
な遊戯装置に使用できる。
The main object of the present invention is to minimize land acquisition for track construction, and to construct it in urban transportation facilities such as roads, highways, and existing tracks. The aim is to provide high-speed transportation by possible lightweight tracks and prevent the destruction of green spaces. The next main object of the present invention is to
In a wheel drive railcar equipped with all propeller propulsion devices that reduce the vehicle weight by less than one-fifth compared to the unit vehicle weight of conventional railcars, mainly high-efficiency acceleration means at high speed, especially drive Providing the most energy-saving, high-speed, mass-transport means of all transportation methods that use fuel to equip the vehicle with fuel when wheel slippage occurs and the driving force of the wheels decreases. That is. More specifically, a first object of the present invention is to provide a material with low strain that reduces rolling resistance in order to reduce energy consumption,
For example, a single train that uses drive wheels made of steel, or has a drive motor and wheels that are integrally configured to simplify and reduce the weight of the drive mechanism. The present invention provides a wheel drive system, a well-balanced left-right symmetrical wheel drive braking system suitable for a large high-speed vehicle that is highly effective in combination with the system, and a flange gear drive system suitable for a small vehicle or a model. A second object of the present invention is to provide a constant-speed forced rotation type, a free rotation type, a constant-speed forced rotation elastic contact type, etc. as a guide system capable of stably running a single-row wheel driven rail car with minimum torque. . A third object of the present invention is that a conventional wheel drive vehicle causes wheel slippage due to sudden braking at high speeds, resulting in uneven wear of the wheels. However, due to the propeller braking that does not have such drawbacks, the weight of the device is simplified and the speed is increased. It is the provision of a complex progression method that enhances A fourth object of the present invention is to provide a system for detecting slipping or idling of drive wheels to increase and accelerate the thrust of a propeller propulsion device to add higher speed to a wheel drive rail car. . A fifth object of the present invention is that the conventional shock absorber for a high-speed rail car is complicated and heavy. Therefore, a barbell-type air spring shock absorber, which is a lightweight vehicle body tilt adjustment shock absorber capable of safely and stably traveling, is used for the vehicle body. The purpose is to provide a rail car with an automatic tilt structure toward the inside of the curve. A sixth object of the present invention is to install a trolley wire on the left and right guide bodies which are spaced apart from each other to enable high-voltage power supply, and to provide an inexpensive track assembly without an overhead overhead wire device, which is an inexpensive assembly member for mass production. Is to supply the elevated tracks and to provide the elevated tracks at a low cost and early construction period. A seventh object of the present invention is to provide a track support structure which is easy to construct an elevated structure at a curved position and can be mass-produced, and allows a rail support aggregate to be erected in the same member in a curve and a straight line section. The purpose is to provide a structure in which the inclination can be adjusted appropriately. An eighth object of the present invention is to provide a vehicle having a propeller propulsion device provided below a flight type rail car and having a high ground effect for propeller propulsion. A ninth object of the present invention is to use a thin metal plate having good conductivity, corrosion resistance, toughness, and elasticity as a constituent material, which is small, lightweight, easy to attach and detach, and has little influence of wind pressure. Outer diameter with high current collection effect from trolley wire is 30 mm from 20 mm square
It is to provide pantographs or current collecting shoes of about 0 mm square. A tenth object of the present invention is to provide a flight orbit vehicle system as a model or a small-sized automatic carrier capable of running for a long time at a speed of about 30 km / hour or more. First of the present invention
The purpose of 1 is to provide a play system in which a target is provided on a model flight-type track car, and the target can be attacked from an appropriate distance by a sniper device, and can be activated by signing or reacting from the target when hit. Is. A twelfth object of the present invention is to provide a model set including a track, a guide body, a guide support aggregate and a support member that can be assembled and disassembled. The present invention is
A railroad device having a single rail provided at the center of the bottom of a groove-shaped construction and guides provided on the right and left rising walls of the construction, and I or a plurality of support wheels rolling on the rails of the vehicle. It is provided below the center line in the front-rear direction, and one or all of the one or more support wheels are connected to a prime mover to be incorporated into a drive device to form drive wheels. The left and right guide wheels provided on the vehicle are provided. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single-row wheel-driven rail car that is guided by the guide body in the traveling direction, and a flight-type rail car that is formed by adding a propeller propulsion device to the single-row wheel-drive rail car and its related devices and systems. More specifically, a grooved cross-section structure may be constructed of reinforced concrete on the ground (see FIGS. 1 and 2 below). In the elevated system, the erection member according to the present invention is preferably a composite material having high strength and low cost, which does not require coating of iron, for example, a composite molded member with dicyclopentadiene, and the rail supporting aggregate is curved. It is desirable that the same member is used for both the straight section and the inclination of the rail can be appropriately adjusted on site. In the elevated track, a concrete or steel strut is constructed for each connection portion of the rail support that supports the rail, and the rail support is endlessly placed and fixed on the upper part of the strut to fix the rail support. A gate-shaped fixed limb integrally fixing the lower part of the central part of the fixed arc to the upper part (later described), and a supporting arc made of concrete with steel frame or reinforcing bar above the arc at a predetermined angle. Attach it with the fixing tool (described later),
Rails and left and right guide bodies are attached to the supporting arc at predetermined positions. A trolley wire for high-voltage power supply is arranged above the guide body via an insulator. Furthermore, a wall is attached to the surface surrounded by the adjacent support devices and between the rail support and the guide. This wall body receives the propeller propelling wind force directly to give the ground effect to the vehicle and enhances the high speed, and by mainly composing the wire mesh or the perforated plate, it reduces the wind pressure of the side wind of the typhoon and easily melts snow. preferable. It is preferable that a ceramic heater is attached near the rail of the wall body to enable heating when freezing. It is preferable that the trolley wire is attached to the left and right guide bodies with wide intervals via insulators, because high-voltage power transmission is possible, and the cost is lower and the flight is easier than the overhead wire above the vehicle. As an example of the drive device, (1) the drive device for a high-speed vehicle is preferably a left-right symmetrical type having a left-right balance with respect to wind pressure, and a structure that allows easy inspection of the gear device is desirable. The symmetrical wheel drive braking device according to the present invention is suitable for high-speed vehicles, and is provided below the center line of the vehicle to provide a buffer connection with the bogie (described later). (2) As a preferable example mainly for a small model, a brim gear driving device in which gears are formed on the brim of both brim wheels and a nylon driving gear is engaged with the brim above is preferable because it is lightweight and has few parts and can be rotated without oiling. The guide body has various cross-sectional shapes such as a conventional rail type, and a composite structure is possible, but a single unit made of copper is preferable in view of switching points, simplicity, construction cost, and the like. Guide wheels are provided on both sides of the vehicle. It may be provided on a vertical axis, a horizontal axis, an oblique axis, or the like, but if it can be rotated horizontally on the vertical axis, it is preferable for controlling the horizontal vibration. When the vehicle is composed of a vehicle body and a bogie, it is preferable to provide at least one, preferably two left and right sides in parallel on both sides of the bogie. In a high-speed vehicle, these guide wheels are preferably structured such that the left and right guide wheels are driven by a prime mover provided on the vehicle to rotate at a speed equal to the speed of the vehicle to guide the contact with a guide body. The main structure is (1) In the constant velocity forced rotation type, the left and right guide wheels driven by the prime mover are controlled to be at the same speed as the vehicle speed, and one guide wheel is brought into contact with the guide body for guiding. (2) In the freely rotatable type, pressure is applied to the left and right guide shafts via an elastic device to guide the outer circumference of one guide wheel by contacting and rotating the outer circumference of the guide wheel with the guide body. Further, (3) the constant velocity forced rotation elastic contact type applies pressure for expanding the axial distance of each of the left and right guide wheels driven and rotated by the prime mover by the elastic device so that the outer circumferences of both guide wheels are guided. It is forcibly brought into contact with and is guided for rotation, which is preferable for stable running of the vehicle at high speed. The guide wheel on the horizontal axis can be roughly classified into (1) forced rotation type and (2) free rotation type. If the height difference between the rail and the guide body is large, it is desirable to use the vertical axis type for complete posture control. The smaller the height difference, the easier the horizontal axis guide wheel is to effectively control the posture.
However, in this case, (1) if the vehicle height is lowered, the propeller propulsion device cannot be set below the vehicle, so there is no choice but to set it to the front or rear or above, and there is the danger of propeller rotation.
Problems such as connection disadvantages or reduction of the ground effect will occur. (2) If the vehicle height is increased, the support for the horizontal axis will have to be widely and downwardly constructed to be lightweight when increasing the strength. Sacrifices Therefore, there are cases where the horizontal axis guide wheel is provided with a reduced size of the propeller propulsion device, and there are cases where the vertical axis guide wheel is used together to increase the propeller propulsion device to secure thrust. Is advantageous to. In the shock absorbers of the car body and bogie, dampers may be installed side by side on the shaft springs or pillow springs, but a shock absorber that automatically tilts the car body = a curve that increases the centrifugal force of the car body and lowers the opposite side = barbell type An air spring dampener is preferably used to increase stability and speed on curves. The barbell type air spring shock absorber according to the present invention mainly includes (1) a barbell-shaped connecting rod formed by attaching ball-shaped enlarged portions to both ends of the connecting rod, and (2) accommodating the enlarged portion and within a predetermined angle. And a support box with holes and a cover support box each having half rotation support chambers each having a release stop edge with a bearing having a diameter smaller than that of the enlarged portion provided in the opening. A rotation support box configured by combining,
(3) A donut-shaped rubber air spring having a central hole for penetrating the connecting rod. Further, the rotation support box is attached to the trolley at an angle at which the support rod does not tilt outward, and the space above the support rod is narrowed and the space below the support rod is appropriately widened on the vehicle body to rotate the other side. When a support box is attached and centrifugal force is applied to the vehicle body in a curved section, it is preferable to raise the centrifugal side and lower the centripetal side to enhance running stability. . In propeller propulsion, in a conventional railroad car or other wheel drive railcar of a combined traveling type with propeller propulsion, mainly at wheel drive at low speed, but at high speed the rotational speed of the drive wheels and the speed of the vehicle body The slip of the drive wheels can be detected from the difference between the two, and the thrust of the propeller can be appropriately increased, so that the vehicle can be provided with a higher speed than the drive force. The motor pylon that supports the propeller is configured so that the propulsion motor can be changed in the vertical direction and the direction of the thrust can be adjusted to maintain the load balance before and after the vehicle weight. In the front-back direction of propeller propulsion, the thrust can be reversed by rotating the pylon table. Propeller braking is mainly used at high speeds: (1) rotation of the pylon stand, (2) variable propeller blades, (3) propeller blade twist angle of about 45 degrees to reverse the propulsion motor, etc. Can be done with. If the propeller is formed with a twist angle of about 45 degrees and a wide width and a short diameter, the thrust becomes large compared to the rotation speed, the wind cut amount is reduced, and the noise is reduced.
Furthermore, if the blades are retracted, the product of the pressure pushing the air becomes large and the thrust increases. A vertical tail is attached to the upper part of the vehicle to enhance the followability in the traveling direction, and the lift of the horizontal tail can be used to lighten or lift the vehicle body to improve high speed. The door is curved vertically with a curve having the same diameter as the side wall of the vehicle body, sliders are provided in the front and rear, and the support edge of the slider is continuously provided on the support edge of the storage part which is lowered one step above the vehicle body. Sliding arc doors are preferred due to their low air resistance. The current collector should be lightweight and small.
An example of a wind pressure resistant pantograph that can also be used as a detachable collector shoe according to the present invention will be given. The wind pressure resistant pantograph uses a thin metal plate having good electrical conductivity, high elasticity, corrosion resistance, and toughness, such as a phosphor bronze plate, as a material, except for the sliding plate for weight reduction. Constitute. In the traveling direction, only by directing the cross section of the thickness of the thin plate and the side surface of the contact plate, air is released through the air holes provided between the contact plates, so that lift does not occur. The mounting is made possible by tightening a few screws in order to improve maintainability.
The pantograph can be configured to have an outer size of approximately 20 mm3 to 300 mm3. It can be used as a current collecting shoe because it can be attached with the sliding plate facing downward. Since it is removable with a few screws, it is easy to replace and repair. A small flight car can be a scientific model. As a high-speed and long-distance transportation system, for example, if an elevated track dedicated to postal matter and having a cross section of about 1 square meter is installed along a highway or a conventional railroad, not only is there a national merit, but a long-distance transportation vehicle is unnecessary. It becomes possible to implement global energy conservation. Alternatively, it can be used in an amusement device such as a system in which a target is loaded and the orbit is run at a high speed to compete for a hit rate from a sniper table.

【0005】[0005]

【実施例1】 (図1、図2 参照) 図面は本発明によるI実施例の概略図で、昭和58年特
許願第094869号発明の名称飛行車を改良して本発
明による駆動輪のすべり或いは空転を検知してプロペラ
推力を増減する機構を設けた飛行式の軌道車で、図Iは
コンクリート製の軌道と飛行式の軌道車の遠景側面図
で、該軌道は断面凹型で底部中央上面にレール(破線2
3)を敷設すれば、単列車輪駆動軌道車の軌道として使
える(後述)。該軌道の両側内の棚の溝にレール23の
下部をボルトとナットで固定してあり、最上部には案内
体24がナット23で固定してある。該案内体の上部に
は碍子21を介してトロリー線29が設けてある(図
2)。飛行式の軌道車1は、上方の車体2が、連結棒1
7の上下の位置に設けたバーベル式空気バネ緩衝装置3
0で台車3に緩衝的に結合してあり、台車3の下方の左
右の駆動軸8は各々回転速度の検知装置を設けた支持体
20に駆動輪4側で支持され、中央で他端を軸受34で
支持されている。駆動輪4は両ツバ型で、下方のレール
23上を転がり浮上の際は案内体24の内端の下縁に当
たり、浮上を規制している。台車3の下方に設けたモー
タパイロン13に取付けた推進モータ12に固定したプ
ロペラ14が大推力を出し台車が浮上したときには、駆
動輪4は上方の案内体に脱輪を阻止される。駆動輪と駆
動装置は本例以外の構成でも本発明を適用して駆動輪の
駆動力の限界以上にプロペラ推進で加速できる。本例の
軌道はトロリー線の間隔が広くて、高圧配電が可能で、
軌道の内側でプロペラ推進気流は地面効果を大きく得ら
れ、車輌の高速性を一層増大する。
Embodiment 1 (See FIGS. 1 and 2) The drawings are schematic views of an embodiment I according to the present invention, in which the name of the invention of Japanese Patent Application No. 094869 of 1983 is improved to improve the slip of the drive wheels according to the present invention. Alternatively, FIG. I is a perspective side view of a concrete track and a flight-type track car provided with a mechanism for detecting a slip and increasing / decreasing the propeller thrust. On the rail (dashed line 2
If 3) is laid, it can be used as a track for single-row wheel-drive railcars (described later). The lower part of the rail 23 is fixed with bolts and nuts in the grooves of the shelves on both sides of the track, and the guide body 24 is fixed with the nut 23 at the uppermost part. A trolley wire 29 is provided above the guide body via an insulator 21 (FIG. 2). In the flight-type rail car 1, the upper body 2 has a connecting rod 1
Barbell type air spring cushioning device 3 provided above and below 7
0 is buffered to the trolley 3, and the left and right drive shafts 8 below the trolley 3 are supported on the drive wheels 4 side by the support bodies 20 provided with the rotational speed detection devices, respectively, and the other end at the center. It is supported by bearings 34. The drive wheel 4 is a double-bran type, and when rolling on the lower rail 23 and floating, it hits the lower edge of the inner end of the guide body 24 and restricts the floating. When the propeller 14 fixed to the propulsion motor 12 attached to the motor pylon 13 provided below the trolley 3 gives a large thrust and the levitation of the trolley floats, the drive wheels 4 are prevented from escaping by the upper guide body. The present invention can be applied to the drive wheels and the drive device other than this example to accelerate the propeller propelling beyond the limit of the drive force of the drive wheels. The orbit of this example has a wide space between trolley wires, enabling high-voltage power distribution,
Inside the track, the propeller-propelled airflow has a great effect on the ground, further increasing the speed of the vehicle.

【実施例2】 (図3より図11まで参照) 図面は本発明による1実施例の略図で、図1は高架軌道
と飛行式の軌道車1の遠景である。該高架軌道は下方の
コンクリート台座49で固定した支柱50を所定間隔で
配置してあり、その上部にH鋼製のレール支持体31が
延々と置いて固定してある。該レール支持体31には固
定アーク25の中央下部のゲート状の左右の固定肢51
の横梁49が一体に固定してある。該左右の固定肢51
はレール支持体31を挟んで下方に下がり、支柱50の
上部に固定してある(図6)。該固定アーク25の上面
には、鉄筋コンクリート製の支持アーク22を置いて、
固定具26で固定してある。カーブ区間では、カーブの
勾配に応じた所定の傾きで支持アークを固定してある
(図7)。この支持アーク22の上方内側にはレール2
3が取り付けてある。レール底面とレール支持体31と
の間には、レール台48があり、その上面はアーク状で
レールがカーブで傾けて取り付けてあっても、レール底
面の左右端縁が密着するアーク状面になっている(図
6、7)。レールを支持している前記支持アーク22の
両側上方の内側には案内体24が置かれ、上方が案内体
固定板74で押さえてあり、内側の下方は留め板75で
留めてある。さらに前記案内体24の上部には碍子21
が取付けてあり、トロリー線29を支持している(図
3、6、7)。トロリー線は在来線の如く支柱の上から
でもよいが、本例では間隔を離した案内体に碍子を取付
けているので、従来の第3軌条方式より高圧の給電が可
能であり支柱がなく、レール支持体・レール台を除く他
の部材はカーブ区間も直線区間と同一の部材で架設可能
であるし、レール支持体・レール台等も工場生産可能で
あるから、工期も早く建設用地が小さくてすむ。組立式
模型では、固定肢51と横梁49を図12に示す如く、
固定アークの両側全体をコ字状内にはめこめば、平面上
に定置できるし、カーブの傾斜も調節できるから、一定
の長さの軌道セットを組み立て解体自在に製作できる。
より詳細には、図3、4、5、6、7、8、9に於いて
飛行式の軌道車1の車両は車体2と台車3とからなる。
車体1は断面が半円形で、運転室の直後及び最後部の両
側にアーク形の扉43がある。扉と車両面を等しくでき
て風圧を小にする。 該車体2を支持する台車3はバー
ベル式空気バネ緩衝装置30により弾力的に台車に結合
してある。バーベル式空気バネ緩衝装置は両端部に取付
けたボール状の膨大部を持つバーベル状の連結棒17
と、該膨大部を所定範囲の角度で回動自在に支持しつつ
収容し、該連結棒を回動自在かつ滑動自在に支持する軸
受を取付けた離脱制止縁を開口部に設けた回動支持室を
有する上下の回動支持函各1個と、前記連結棒17を貫
通せしめる中央孔を有するゴム製のドーナツ状の空気バ
ネ18とで構成してある。該回動支持函は穴付支持函1
5とカバー支持函16の合体で成り、かつ回動支持函の
少なくとも一方(本例では下方の回動支持函)の回動支
持室の奥が膨大部を所定の深さまで引っ込ませ得る大き
さで形成せしめて成る(図9、10)。このバーベル式
空気バネ緩衝装置の組み立ては、前記空気バネ18の空
気を抜き、その中心の穴に連結棒17を通しておく。そ
して、穴付支持函15を両端に通してその後、両端にボ
ール状の膨大部を取付ける。該ボール部分を残るカバー
支持函16で囲ってボルト孔84を通してボルト締めす
る。このバーベル式空気バネ緩衝装置の取り付けは、左
右の装置の支持棒の間隔が、上方がせまくて下方が広く
なる傾斜取付方式が望ましい。そうすれば、カーブでは
車体の遠心側が高まり、求心側が沈むので安定性が高ま
る(図6)。台車3には単列車輪駆動装置とプロペラ推
進装置が設けてある。単列車輪駆動装置は空気抵抗のバ
ランスを得るために、左右対称が好ましい。左右対称型
駆動制動装置は図8に於いて、台車の前後方向中心線の
下方に駆動輪4が2個ある。駆動軸7は中央に前記駆動
輪4を嵌殺してあり、該駆動輪4の両側とも同じ順序で
ブレーキ35、軸受34、大歯車5、軸受34の順に嵌
込んであり、ボルトとナット36で両端を止めてある。
大歯車5の軸心は駆動軸7の継手歯車と咬み合う内歯車
となっているので、駆動輪35と、大歯車5及び駆動軸
7は同体で回転する。 前記左右の大歯車5はそれぞれ
左右のギアーボックス10内で上方の小歯車6と咬み合
っている。大歯車5は支持体20に軸受34を介して回
転自在に支持されている。支持体20は上方で台車3の
内部で天板80とクッション39を挟んでボルトとナッ
ト36で締めてある。下方のサイドカバー33は上方の
床53の直下で小歯車カバー32の下端の折り縁とシー
ルを挾んでネジ止めしてある。小歯車カバー32は上方
の台車3内で軸受34を介して、小歯車軸38を回転自
在に支持し、該小歯車軸38は中心側では小歯車6をギ
アーボックス10内で嵌殺してあり、更にギアーボック
スに取り付けた軸受34に回転自在に支持され、他方の
外側では、たわみ軸継手9に連結してある。該たわみ軸
継手9には小歯車軸38の反対側に駆動モータ8のモー
タ軸79の軸端が連結してある。ブレーキ35は両側の
支持体20の内方に取付けてあり、ディスク型で、駆動
輪4の両側から締付けて制動可能としてある。駆動装置
の各機器は、駆動モータを除けば、支持体20に支持さ
れ、支持体20は強化した台車の天板52に弾性体39
を介してボルトとナット36で取り付けてある。更に、
該支持体20は前後に突出せしめた耳80で台車の床5
3に下方からクッションを介してボルト締めしてある。
駆動モータは、別のクッション39を介して台車の床に
取り付けてあるから、そのモータ軸は支持体に軸受を介
して支持されている小歯車軸38の振動のリズムと同一
でないが、たわみ軸継手9が緩和するし、単列駆動輪故
に横揺れは小でかつ大径の車輪故に激しいリズムの衝撃
は生じにくい。従って、モータに対する衝撃は平行レー
ルの軌道車より小なので、簡単な緩衝構造でも耐久性が
あり、緩衝装置を軽量化できる。上記の駆動装置はギア
ーボックス10内に於いて、油潤滑が可能で大型の高速
車に用いるのが望ましい。プロペラ推進装置は図4、
5、6、11に於いて、台車3の底部に回転可能にして
設けたパイロン台19から下がるモータパイロンの下方
に推進モータを取り付け、該モータの軸に取り付けた固
着具58(図11)にプロペラ14を取り付けてある。
車両の逆進時は図5中の破線のプロペラ14のようにパ
イロン台19の180度の回転により推進させることが
できる。その制御システムは車輪の回転数と車両のスピ
ードの差を新幹線の如く検知装置で検出し、駆動輪のす
べりが生じない範囲に推力を制御して成る。該装置によ
る制動は、プロペラの逆回転又はパイロン台19の18
0度回転でできる。特に高速時は車輪制動より衝撃が少
ないし、制動のための複雑な制御機器を殆ど必要としな
いので、コストは安く軽量化に適している。案内装置は
図4、5、6に於いて、案内輪11が台車3の底部の前
後に左右一対で設けてある。該案内輪11は台車3の底
面と同一水準に下面を合わせて縦軸であり、台車の中心
線の位置で左右の案内輪の外周が接触せしめてある。従
って一方の案内輪が案内体に接触して回転するとき、他
方の案内輪も逆に回転し、台車が揺れて反対側に傾いた
時に反対側の案内輪が案内体に接触してすべりを生じな
いように左右が等速回転になっている。この案内輪11
を台車に搭載した破線の案内モータ81で車両のスピー
ドと等速に図5中の矢印の如く逆方向に回転制御するこ
とが可能であり、高速性を高めるので一層好ましい。上
述の案内輪11は最高位置が、案内体に規制されている
ので台車はそれ以上は浮上しないし、駆動輪の両ツバ7
7は高く踏面76が深く、レール23より少し離れて浮
いても、脱輪しない位置にレールがあるように駆動輪が
取り付けてある(図8)。従って、推進力を大にして駆
動力の限界以上の速度が出せる。
Embodiment 2 (See FIGS. 3 to 11) The drawings are schematic views of one embodiment according to the present invention, and FIG. 1 is a distant view of an elevated track and a flight type rail car 1. On the elevated track, columns 50 fixed by a concrete pedestal 49 below are arranged at a predetermined interval, and a rail support 31 made of H steel is placed endlessly and fixed on the upper part thereof. The rail support 31 includes gate-shaped left and right fixed limbs 51 at the lower center of the fixed arc 25.
The horizontal beam 49 of is fixed integrally. The left and right fixed limbs 51
Is fixed to the upper part of the support column 50 by dropping downward with the rail support 31 sandwiched therebetween (FIG. 6). A supporting arc 22 made of reinforced concrete is placed on the upper surface of the fixed arc 25,
It is fixed by a fixture 26. In the curve section, the supporting arc is fixed at a predetermined inclination according to the gradient of the curve (Fig. 7). The rail 2 is located above the supporting arc 22.
3 is attached. A rail base 48 is provided between the rail bottom surface and the rail support 31, and the top surface thereof has an arc shape, and even if the rail is mounted with a curve inclined, the rail bottom surface has an arc-shaped surface to which the left and right edges of the rail are closely attached. (Figs. 6 and 7). Guide bodies 24 are placed inside both sides of the supporting arc 22 supporting the rails, the upper side is pressed by a guide body fixing plate 74, and the inner lower side is fixed by a retaining plate 75. Further, the insulator 21 is provided above the guide body 24.
Is attached and supports the trolley wire 29 (FIGS. 3, 6, 7). The trolley wire may be installed on the pillars like the conventional wire, but in this example, since the insulators are attached to the guides spaced apart from each other, it is possible to supply a higher voltage than the conventional third rail system and there is no pillar. Other than the rail support / rail base, the curved sections can be installed with the same members as the straight sections, and the rail support / rail base etc. can be manufactured at the factory. It can be small. In the assembled model, as shown in FIG. 12, the fixed limb 51 and the cross beam 49 are
If both sides of the fixed arc are fitted in the U-shape, it can be placed on a flat surface and the inclination of the curve can be adjusted, so that a set of tracks of a certain length can be assembled and dismantled.
More specifically, in FIG. 3, 4, 5, 6, 7, 8 and 9, the vehicle of the flight type rail car 1 comprises a vehicle body 2 and a carriage 3.
The vehicle body 1 has a semicircular cross section, and has arc-shaped doors 43 immediately after the cab and on both sides of the rearmost portion. The door and the vehicle surface can be made equal to reduce the wind pressure. A carriage 3 that supports the vehicle body 2 is elastically coupled to the carriage by a barbell type air spring cushioning device 30. The barbell type air spring shock absorber has a barbell-shaped connecting rod 17 having ball-shaped enlarging parts attached to both ends.
And a swivel support in which an opening is provided with a disengagement stop edge having a bearing for supporting the connecting rod rotatably and slidably while accommodating the bulged portion while being rotatably supported within a predetermined range of angle. Each of the upper and lower rotary support boxes has a chamber, and a rubber donut-shaped air spring 18 having a central hole through which the connecting rod 17 penetrates. The rotation support box is a support box with holes 1
5 and the cover support box 16 are combined, and the inside of the rotation support chamber of at least one of the rotation support boxes (the lower rotation support box in this example) is large enough to retract the enlarged portion to a predetermined depth. It is formed by (Figs. 9 and 10). In assembling this barbell type air spring cushioning device, the air of the air spring 18 is evacuated and the connecting rod 17 is passed through the hole at the center thereof. Then, the support box 15 with holes is passed through both ends, and thereafter, ball-shaped enlarged portions are attached to both ends. The ball portion is surrounded by the remaining cover support box 16 and bolted through the bolt hole 84. It is desirable that the barbell type air spring cushioning device be mounted in an inclined mounting system in which the distance between the support rods of the left and right devices is narrow in the upper part and wide in the lower part. Then, in the curve, the centrifugal side of the vehicle body rises, and the centripetal side sinks, which improves stability (Fig. 6). The trolley 3 is provided with a single-row wheel drive device and a propeller propulsion device. The single row wheel drive device is preferably bilaterally symmetrical in order to obtain a balance of air resistance. The left-right symmetric drive braking device has two drive wheels 4 below the center line in the front-rear direction of the carriage in FIG. The drive shaft 7 has the drive wheel 4 fitted in the center thereof, and the brake 35, the bearing 34, the large gear 5, and the bearing 34 are fitted in this order on both sides of the drive wheel 4 in the same order. Both ends are stopped.
Since the shaft center of the large gear 5 is an internal gear that meshes with the joint gear of the drive shaft 7, the drive wheel 35 and the large gear 5 and the drive shaft 7 rotate together. The left and right large gears 5 mesh with the upper small gears 6 in the left and right gear boxes 10, respectively. The large gear 5 is rotatably supported by the support 20 via a bearing 34. The support body 20 is fastened with bolts and nuts 36 at the upper side inside the carriage 3 with the top plate 80 and the cushion 39 sandwiched therebetween. The lower side cover 33 is screwed right below the upper floor 53 by sandwiching the folded edge and the seal at the lower end of the pinion gear cover 32. The pinion gear cover 32 rotatably supports a pinion gear shaft 38 via a bearing 34 in the upper bogie 3, and the pinion gear shaft 38 has the pinion gear 6 fitted in the gear box 10 on the center side. Further, it is rotatably supported by a bearing 34 attached to the gear box, and is connected to the flexible shaft coupling 9 on the other outer side. A shaft end of a motor shaft 79 of the drive motor 8 is connected to the flexible shaft coupling 9 on the opposite side of the pinion shaft 38. The brake 35 is attached to the inside of the support 20 on both sides, is a disk type, and can be tightened from both sides of the drive wheel 4 for braking. Each device of the drive device is supported by the support body 20 except for the drive motor, and the support body 20 is attached to the reinforced truck top plate 52 by the elastic body 39.
It is attached with a bolt and a nut 36 through. Furthermore,
The supporting body 20 is provided with the ears 80 projecting forward and backward and the floor 5 of the truck.
3 is bolted from below through a cushion.
Since the drive motor is attached to the floor of the trolley via another cushion 39, its motor shaft is not the same as the vibration rhythm of the pinion shaft 38 supported by the support through the bearing, but the flexible shaft. The joint 9 is relaxed, and the rolling is small due to the single-row drive wheel, and a violent rhythm impact is unlikely to occur due to the large-diameter wheel. Therefore, since the impact on the motor is smaller than that of the rail car of parallel rails, the shock absorber has durability even with a simple shock absorber structure, and the shock absorber can be reduced in weight. It is desirable that the above-mentioned drive device be used in a large high-speed vehicle because oil can be lubricated in the gear box 10. The propeller propulsion device is shown in Fig. 4,
In 5, 6, and 11, the propulsion motor is attached below the motor pylon that descends from the pylon table 19 that is rotatably provided at the bottom of the carriage 3, and the fastener 58 (FIG. 11) is attached to the shaft of the motor. A propeller 14 is attached.
When the vehicle reverses, it can be propelled by rotating the pylon table 19 by 180 degrees like the propeller 14 shown by the broken line in FIG. The control system detects the difference between the rotation speed of the wheels and the speed of the vehicle with a detection device such as the Shinkansen, and controls the thrust within a range in which the drive wheels do not slip. Braking by the device is carried out by reverse rotation of the propeller or 18 of the pylon stand 19.
It can be done by 0 degree rotation. Particularly at high speed, the impact is less than that of wheel braking, and since a complicated control device for braking is hardly required, the cost is low and it is suitable for weight reduction. As shown in FIGS. 4, 5 and 6, the guide device includes a pair of left and right guide wheels 11 in front of and behind the bottom of the carriage 3. The guide wheel 11 has its lower surface aligned with the bottom surface of the carriage 3 and the vertical axis, and the outer circumferences of the left and right guide wheels are in contact with each other at the position of the center line of the carriage. Therefore, when one guide wheel rotates in contact with the guide body, the other guide wheel also rotates in the opposite direction, and when the carriage shakes and tilts to the opposite side, the guide wheel on the opposite side contacts the guide body and slips. The left and right are rotated at a constant speed so that they do not occur. This guide wheel 11
It is possible to control the rotation in the opposite direction as indicated by the arrow in FIG. 5 at the same speed as the speed of the vehicle by the guide motor 81 of the broken line mounted on the trolley, which is more preferable because the high speed is enhanced. Since the highest position of the guide wheel 11 is regulated by the guide body, the dolly does not levitate any further, and both the brims 7 of the drive wheels are not lifted.
7, the tread 76 is deep, and the drive wheels are attached so that the rail is located at a position where it does not derail even if it floats slightly away from the rail 23 (FIG. 8). Therefore, it is possible to increase the propulsive force and obtain a speed exceeding the limit of the driving force.

【実施例3】 (図11より図17まで参照) 本例は模型の一例で、図9は車両の一部の前後方向の中
心線を通る縦断面であり、図12は図11中の駆動軸の
中心線を通る一点鎖線b−b′の断面である。軌道装置
は、支持アーク22が固定アーク25上で固定具26で
一体に固定され、左右の固定肢51は固定アーク25の
外方で溶着し、下方で横梁48を挾んで溶着してある。
この状態で地上でも固定できる。レール23は支持アー
クの中央の溝に防音のためのクッションを挾んで差し込
んである。該レールは縦幅が広くなっている。案内体2
4は案内体固定板74で支持アークに締め付けてある。
この車両は台車がない型で、外殼と底板はアーク状に形
成して成り、その空洞内に駆動モータ8、小歯車6、支
持体20の棚57を含む上方部分が納まっている。更
に、その前部には標的70が前記底板に取り付けて、上
半分を露出せしめてあり、目視しやすくなっていて、光
線銃がヒットすると所定のサインを発する構成になって
いる。駆動軸4は左右のツバ部分を歯車に形成してあり
(図11)、駆動軸7で両側の支持体20間に軸受を介
して回転自在に支持されている。両側の支持体20は、
上の方へ高くなっているが、車体内に於いて途中でモー
タ8を取り付ける棚57とクッション39を介して緩衝
的に結合して設けてあり、さらに上方で、軸受を介して
小歯車軸38を回転自在に支持している。この小歯車軸
38は支持体間で小歯車6をはめ殺してあり、外方の両
側でたわみ軸継手9と結合してある。該たわみ軸継手9
は駆動モータ8の軸端に外側で連結してある。この小歯
車38はナイロン製で、大歯車4のツバ歯車と無給油で
咬み合っている。前記棚57は外方へ伸びていて、その
上に駆動モータ8がモータクッション37を介して取り
付けてある。更に、該棚の駆動モータ8の外方を緩衝ボ
ルト37がコイルバネ56を介して棚下の棚クッション
39に圧力を加えつつその下方の床台54まで貫通せし
めてあり、床台の下側でナットで締めてある。駆動モー
タ8のモータ軸は前記の如くたわみ軸継手9を介して前
記小歯車軸38と連結せしめてある。従って、駆動モー
タはモータクッシヨン39により、駆動輪の衝撃は緩和
され、車両の衝撃も棚クッション39によって減殺さ
れ、駆動輪の発する衝撃を受けるのは支持体20とその
棚に限定される。上述の如く、ツバ歯車駆動装置は極め
て少ない部品でコストが安く、無給油でも相当程度の速
度で走行でき、低騒音である。プロペラ推進装置は、駆
動輪4の後方にあり、プロペラの固着具58により推進
モータ12の後方に突出したモータ軸と一体に固定して
ある。推進モータ12は中央上部の車両の底面であるア
ーク状の最高部位置より垂れ下げたモータパイロン13
で支持されている。モータパイロン13は床53への取
り付け部分が両側の上方向に膨れていて、サーボモータ
が内在せしめてあり、該サーボモータはパイロン歯車4
5に連結してある。該パイロン歯車45はモータ支持体
59の上方に構成した回動歯車47に咬み合っている。
モータ支持体59の支持片は、両側のパイロンに取り付
けてあるモータ回動軸46で回動自在に支持されてい
る。従って、モータ支持体59はサーボモータが回転し
た分だけパイロン歯車45を介して、回動歯車47によ
り、モータ回動軸46を中心に回動して推進モータ12
の上下角を変化させる。それにより、プロペラの推進方
向も上下方向が変化せしめられる。その結果後部駆動輪
のすべりを検知した場合には推進モータ12の前部が下
がるようにすると、台車の前部が軽くなり後部に逆の荷
重かかり、すべりをなくせる。前部の駆動輪のすべりは
その逆でなくせる。該推進モータ12と駆動輪4との間
には断面翼型の案内翼42内を貫通する案内軸41があ
る。この案内軸41は両側を案内脚40で支持されてい
て、その両外側に案内輪11を回転自在に軸着せしめて
ある。案内翼は案内軸を補強し揚力も発生し車輪にかか
る重量を軽くする。本例のパンタグラフは、バネ板6
2、丁番63等の素材として良伝導体で、かつ硬質で弾
性に富む、例えば燐青銅の如き金属が好ましい。すり板
には、燐青銅も使えるが、焼結合金の新素材を選ぶの
が、望ましい。図13、14、15、16、17 に於
いて、耐風圧式パンタグラフは、一対のすり板61、該
すり板を固定するバネ板62、該バネ板を片側に固着せ
しめた左右の丁番63、該左右の丁番の他側には、中央
に支え板64を固着したバネ板62の両端部が一体に固
定してある。すり板61は短い丸棒の両端部を薄肉に形
成して鋲孔を穿ってあり、2本を並べてバネ板62に鋲
65止めしてある。バネ板62は、すり板を固定した中
央部を残して両側をアールをつけて同じ方向に約45度
で曲げてある。対面しているバネ板も同一の形状に曲げ
て形成してある。上記の2枚のバネ板の両端部がそれぞ
れ2枚の丁番の一片づつに固着してあって外形ができて
いる。そして風圧が大きくかかるバネ板の2本のすり板
61の間に風孔69が穿ってある。このパンタグラフ6
0の取り付けは、車両の所定の位置に一対の押さえ板6
6をパンタグラフの支え板64の幅に合う隙を開けて平
行に固定する。次には、2枚の平行に取り付けた押さえ
板の間に支え板を横方向から押し込み、押さえ孔67に
より、ビス止めすれば完了する。該パンタグラフの素材
が良伝導体であれば、この押さえ板に電極を取り付けて
配線すればよい。このパンタグラフは、すり板61が押
圧されると、図15の破線の如く低くなり、圧力を除く
と瞬時に復元するので、トロリー線の高低の変化に良く
追随できるし、すり板を除くと、風圧は構成部品の板の
厚みにかかるのみであり、バネ板の幅の広い点は風孔6
9で空気が抜けるので、風圧に強い特徴がある。尚、前
記の押さえ孔67のビスを外せば、矢印P方向にスライ
ドさせてパンタグラフを簡単に外すことができる。この
パンタグラフは下向きにも使えるので、集電靴にもな
る。かくの如く本例のパンタグラフは部品点数が少な
く、簡単な構造なので軽量で反応が早いからトロリー線
への追随性が良く、離線を防止し易い。
Third Embodiment (Refer to FIGS. 11 to 17) This example is an example of a model, FIG. 9 is a vertical cross section that passes through a center line in the front-rear direction of a part of the vehicle, and FIG. It is a cross-section taken along alternate long and short dash line bb 'passing through the center line of the axis. In the track device, the supporting arc 22 is integrally fixed on the fixed arc 25 by the fixing tool 26, the left and right fixed limbs 51 are welded outside the fixed arc 25, and the horizontal beam 48 is sandwiched below to be welded.
It can be fixed on the ground in this state. The rail 23 has a cushion for sound insulation inserted in a groove in the center of the supporting arc. The rail has a wide vertical width. Guide 2
Reference numeral 4 is a guide body fixing plate 74 which is fastened to the supporting arc.
This vehicle is a type without a trolley, and the outer shell and the bottom plate are formed in an arc shape, and the upper portion including the drive motor 8, the pinion 6 and the shelf 57 of the support 20 is housed in the cavity. Further, a target 70 is attached to the bottom plate at the front part thereof, and the upper half is exposed so that it is easy to see, and a predetermined sign is emitted when the ray gun hits. The drive shaft 4 has left and right flanges formed as gears (FIG. 11), and is rotatably supported by the drive shaft 7 between the supports 20 on both sides via bearings. The supports 20 on both sides are
Although it is higher toward the upper side, it is provided so as to be buffered through a cushion 39 and a shelf 57 to which the motor 8 is attached midway in the vehicle body, and further above, a small gear shaft via a bearing. 38 is rotatably supported. The pinion shaft 38 has the pinion 6 fitted between the supports, and is connected to the flexible shaft coupling 9 on both outer sides. The flexible shaft coupling 9
Is externally connected to the shaft end of the drive motor 8. The small gear 38 is made of nylon and meshes with the flange gear of the large gear 4 without oil. The shelf 57 extends outward, and the drive motor 8 is mounted on the shelf 57 via a motor cushion 37. Further, a buffer bolt 37 is applied to the outside of the drive motor 8 on the shelf through a coil spring 56 to a shelf cushion 39 under the shelf while penetrating to a floor base 54 below the shelf cushion 39, and a nut is provided below the floor base. It is closed with. The motor shaft of the drive motor 8 is connected to the pinion shaft 38 via the flexible shaft coupling 9 as described above. Therefore, the drive motor reduces the impact of the drive wheel by the motor cushion 39, the impact of the vehicle is also attenuated by the shelf cushion 39, and the impact generated by the drive wheel is limited to the support 20 and its shelf. As described above, the flange gear drive device has extremely few parts, is low in cost, can travel at a considerable speed without oiling, and has low noise. The propeller propulsion device is located behind the drive wheel 4 and is fixed integrally with a motor shaft protruding rearward of the propulsion motor 12 by a propeller fixing member 58. The propulsion motor 12 is a motor pylon 13 that hangs from the arc-shaped highest position which is the bottom surface of the vehicle in the upper center.
Supported by. The motor pylon 13 has a mounting portion on the floor 53 bulging upward on both sides, and a servo motor is incorporated therein.
It is connected to 5. The pylon gear 45 meshes with a rotary gear 47 formed above the motor support 59.
The support piece of the motor support 59 is rotatably supported by the motor rotation shafts 46 attached to the pylons on both sides. Therefore, the motor support 59 is rotated about the motor rotation shaft 46 by the rotation gear 47 via the pylon gear 45 by the amount of rotation of the servo motor, and the propulsion motor 12 is rotated.
Change the vertical angle of. As a result, the propelling direction of the propeller is also changed vertically. As a result, when slippage of the rear drive wheels is detected, if the front part of the propulsion motor 12 is lowered, the front part of the dolly becomes lighter and a reverse load is applied to the rear part to eliminate slippage. The slippage of the front drive wheels can be reversed. Between the propulsion motor 12 and the drive wheel 4, there is a guide shaft 41 that penetrates inside a guide vane 42 having a blade-shaped cross section. Both sides of the guide shaft 41 are supported by guide legs 40, and guide wheels 11 are rotatably mounted on both outer sides of the guide shaft 41. The guide vanes reinforce the guide shaft and also generate lift, reducing the weight on the wheels. The pantograph of this example has a spring plate 6
As the material for 2, hinge 63, etc., a metal such as phosphor bronze which is a good conductor and hard and rich in elasticity is preferable. Phosphor bronze can be used for the contact plate, but it is preferable to select a new sintered alloy material. 13, 14, 15, 16 and 17, the wind pressure resistant pantograph includes a pair of sliding plates 61, a spring plate 62 for fixing the sliding plates, left and right hinges 63 having the spring plates fixed to one side, On the other side of the left and right hinges, both ends of a spring plate 62 having a support plate 64 fixed to the center are integrally fixed. The contact plate 61 has both ends of a short round bar formed thin to have rivet holes, and two linings are arranged side by side and fixed to the spring plate 62 with rivets 65. The spring plate 62 is bent at about 45 degrees in the same direction with a radius on both sides except for the central portion to which the contact plate is fixed. The facing spring plates are also bent and formed in the same shape. Both ends of the above-mentioned two spring plates are fixed to each of the two hinges to form the outer shape. An air hole 69 is formed between the two sliding plates 61 which are spring plates to which a large wind pressure is applied. This pantograph 6
0 is attached to a predetermined position of the vehicle by a pair of pressing plates 6
6 are fixed in parallel with each other with a gap matching the width of the support plate 64 of the pantograph. Next, the supporting plate is pushed laterally between the two pressing plates that are attached in parallel, and the pressing holes 67 are screwed to complete the process. If the material of the pantograph is a good conductor, the electrodes may be attached to the pressing plate for wiring. This pantograph becomes lower as shown by the broken line in FIG. 15 when the contact plate 61 is pressed, and is restored instantly when the pressure is removed, so that it can follow the changes in height of the trolley wire well, and when the contact plate is removed, The wind pressure only affects the thickness of the plate of the component, and the wide point of the spring plate is the air hole 6
Since air escapes at 9, it has a strong characteristic against wind pressure. If the screw of the pressing hole 67 is removed, the pantograph can be easily removed by sliding in the direction of arrow P. This pantograph can also be used face down, so it can also be used as a current collecting shoe. As described above, the pantograph of this example has a small number of parts, has a simple structure, is light in weight, and has a quick reaction.

【実施例4】 (図18、19、20 参照) 本例は小型模型の1例で、標的を積載して高速走行せし
めるタイプで、軽量化のために車両の後方にだけ1個の
駆動輪4を配したもので、駆動装置は両ツバ型駆動装置
を用いてある。本例は、プロペラ推進力を大きくして僅
かに浮上せしめるために、駆動装置その他の機器を限界
迄少なくしてある。車両側面の外観は翼型になっていて
下面後方には一個の駆動輪4を設けてあり、更に前方の
左右に各一個の案内輪11が横軸41で設けてあり、中
央に縦軸で破線の案内輪11が設けてある。駆動輪4は
ツバ歯車55を形成してあり、後方にモータパイロン1
3が垂れ下げてあり、プロペラ14が取り付けてある。
前方の案内軸41は車両の底部内で支持され、両外端部
に案内輪11が1個づつ合計2個を回転自在に取り付け
てあり、駆動輪の不安定な姿勢を支えて回転しつつ案内
する。運転席の後方には、標的70が搭載してあり、特
定の光線にヒットした時にサインを発する構成である。
他の装置類は既述例と同じである。 上述の飛行式の軌
道車は、案内体の上限に案内輪が接触するまで、浮上可
能であり、ツバ歯車の踏面は深くて、案内体で案内輪が
規制されているので、脱輪しない。航空機のようにエン
ジンを搭載して高速時にプロペラ推進だけで浮上状態で
飛行制御するのに適した型である。左右対称型車輪駆動
装置及びプロペラ推進装置に強力なモータを使用し、プ
ロペラ飛行機のような飛走行が可能である。
[Embodiment 4] (See FIGS. 18, 19 and 20) This is an example of a small model, which is a type in which a target is loaded and driven at high speed, and one drive wheel is provided only behind the vehicle for weight reduction. 4 are arranged, and the driving device is a double brim type driving device. In this example, in order to increase the propeller propelling force to slightly raise the propeller, the number of driving devices and other devices is reduced to the limit. The exterior of the side of the vehicle is wing-shaped, and one drive wheel 4 is provided at the rear of the lower surface, and one guide wheel 11 is provided at the left and right in the front by a horizontal axis 41, and the vertical axis is at the center. A broken guide wheel 11 is provided. The drive wheel 4 forms a bevel gear 55, and the motor pylon 1 is located at the rear.
3 is hanging and a propeller 14 is attached.
The front guide shaft 41 is supported in the bottom of the vehicle, and two guide wheels 11 are attached rotatably to both outer ends of the vehicle, so that the guide wheels 41 rotate while supporting the unstable posture of the drive wheels. invite. A target 70 is mounted behind the driver's seat and is configured to emit a signature when a specific ray is hit.
The other devices are the same as the above-mentioned examples. The flight-type rail car described above can float until the guide wheel comes into contact with the upper limit of the guide body, the tread of the flange gear is deep, and the guide wheel regulates the guide wheel. This type is suitable for controlling the flight in a levitating state by only propeller propelling at high speed with an engine mounted like an aircraft. A powerful motor is used for the left-right symmetric wheel drive device and the propeller propulsion device, and it can fly like a propeller airplane.

【実施例5】 (図21、22、23 参照) 本例の飛行式の軌道車は前例とは逆に前後に駆動輪4を
設けて重量物の積載にも耐える構造で、車輪駆動力を大
としてある。プロペラは最後部に一対ある。各種機器は
既述例の如く用途により構成してあり、車両の側面の外
形は前後とも同一で丸くなっている(図21)。前方よ
りみて案内輪11の左右は台車の両側で僅かに出っ張っ
ていて縦軸の水平回転である。車両の底面は曲面と平面
で構成去れ、航空機のように空気抵抗が小さく高速性が
大である。安定性があるので、前進と後進ともに貨物を
積み長距離走行させることができる。
Fifth Embodiment (Refer to FIGS. 21, 22, and 23) The flight-type rail car of this example has a structure in which driving wheels 4 are provided in the front and rear to conversely load heavy objects, contrary to the preceding example, and the wheel driving force is Large as it is. There is a pair of propellers at the end. The various devices are configured according to their uses as described above, and the outer shape of the side surface of the vehicle is the same in both front and rear and is round (FIG. 21). When viewed from the front, the left and right sides of the guide wheel 11 slightly project on both sides of the carriage and are horizontal rotations on the vertical axis. The bottom surface of the vehicle is curved and flat, and has low air resistance and high speed like an aircraft. Due to its stability, cargo can be loaded and run long distances both forward and backward.

【実施例6】 (図24 参照) 図24に於いて、長円形状の軌道73が複数設定してあ
り、標的を搭載した飛行式の軌道車1が走行している。
該模型に好ましい競技システムの一例をのべる。該軌道
73と適宜の距離に設定した回転台72に1乃至複数の
狙撃装置71を設けてある。 該飛行式の軌道車1の標
的は特定の光線のヒットに対して所定のサインをだした
り或いはカウントする。矢印のように、該軌道車と回転
台72を逆にも回転せしめ得るし、回転スピードを早め
たり、傾けたり、揺動させたりできる。 複数の狙撃者
で狙撃のヒット数を競争できる。標的のサインには、メ
ロディー音・点滅光・色の変化・形態の変更・物体を発
射する等多くの種類がある。
Sixth Embodiment (Refer to FIG. 24) In FIG. 24, a plurality of elliptical orbits 73 are set, and a flight type rail car 1 carrying a target is running.
An example of a preferred competition system for the model is given below. One or a plurality of sniper devices 71 are provided on a turntable 72 set at an appropriate distance from the track 73. The target of the flight-type rail car 1 gives a predetermined sign or counts for a specific ray hit. As indicated by the arrow, the rail car and the turntable 72 can be rotated in reverse, and the rotation speed can be increased, tilted, or swung. Multiple snipers can compete for sniper hits. There are many types of target signs such as melody sounds, flashing lights, color changes, shape changes, and object firing.

【実施例7】 (図25 参照) 本例は本発明による飛行式の軌道車の一例で、車体上に
もプロペラ14とその推進装置が設けてある。案内輪1
1は、車両が傾いたとき、その側に幾分掛かるが、主な
荷重は中央の駆動輪に掛かるし、案内モータ81は案内
軸と直結され車両スピードと同一に回転制御されている
が、実施例1に記述した技術範囲で本発明に含まれる。
H鋼製の案内体24は断面溝型の立ち上がり壁を案内
体と合体させたもので、案内体の重量に比較して強度が
あり、好ましい。その他、従来のレール状、断面円形や
角型のパイプによる案内体等にツバ車輪の案内輪を組み
合わせるように、本発明の含む構造の組合せ方法は多く
ある。このように、本発明による実施例では、軽量性を
限界まで求めてエネルギー消費を抑制せんとするもの
で、大型ではプロペラ飛行機のような高速性を具有し、
小型模型は高速性と相当程度の重量物の可載性を具備す
るので、リモートコントロールあるいは、自動制御装置
を組み込んで、自動搬送装置、遊戯装置等広範囲の用途
に利用できる。
Seventh Embodiment (See FIG. 25) This embodiment is an example of a flight-type rail car according to the present invention, in which the propeller 14 and its propulsion device are also provided on the vehicle body. Guide wheel 1
No. 1 is somewhat applied to the side of the vehicle when the vehicle leans, but the main load is applied to the central drive wheel, and the guide motor 81 is directly connected to the guide shaft and is controlled to rotate at the same speed as the vehicle. The technical scope described in Example 1 is included in the present invention.
The guide body 24 made of H steel is a combination of a rising wall having a groove-shaped cross section with the guide body, and has strength as compared with the weight of the guide body, which is preferable. In addition, there are many methods of combining the structures included in the present invention such that the guide wheel of the brim wheel is combined with the conventional guide body having a rail-shaped, circular cross-section, or rectangular pipe. As described above, in the embodiment according to the present invention, it is intended to suppress the energy consumption by seeking the lightness to the limit, and the large size has a high speed like a propeller airplane,
Since the small model has high speed and is capable of loading heavy objects to a considerable extent, it can be used in a wide range of applications such as an automatic carrying device and an amusement device by incorporating a remote control or an automatic control device.

【0006】[0006]

【発明の効果】以上説明したように本発明の軌道は他の
軌道車の車両重量と比較して約5分の1で、掛かる負荷
が小さいので、高架でも特殊な場所を除けば支柱及びそ
の基礎は小規模で簡単であるから、部材は量産し易く高
架上のコンクリート打ち込みのような長期工事は必要な
く、工期も早い。最大の効果は軌道の建設用地の買収が
不要になり、既存の高速道路沿い或いは鉄道上等にも小
規模の工事により高架で架設できることである。軌道は
1条のレール上を単列の車輪が転がるので、進行方向へ
の慣性が大になるので高速性が大になり、左右のレール
の不整による蛇行動や振動がなくレールへの負荷が小で
あり、レールの不整の保守点検が不要となり、両ツバ車
輪のツバは高くでき、案内輪に上限があるので脱輪がな
く、左右の車輪を支える重量車軸がないので構造が簡単
で軽量化でき、車輪駆動装置は左右対称型車輪駆動制動
装置では、両側のサイドカバーを外して大歯車と小歯車
を点検できるし、左右対称だから一対の小型の駆動モー
タを使用して台車の厚さを薄く軽量化できて、空気抵抗
上も好ましく、両側からディスクブレーキで制動できて
高速時には使用しない等で保守点検の手間が僅かですむ
し、油潤滑が可能で高速性がある。案内体にトロリー線
を取付ければ、起伏が小で離線を僅かにし、集電靴が車
輌の下方にあるので、該靴で生じた乱流が車輌下面で揚
力を生み高速浮上走行に好都合である。。ツバ歯車駆動
装置では部品点数が少なく、無給油でも走れるので、整
備の手間が省けてランニングコストが安くなり、小型化
が容易にできる。プロペラ推進では、車輪のすべりを検
知して推進力を増大せしめることができるので車輪駆動
の限界以上に高速性を高めることができるし、高速時の
制動では車輪によらないのですべりがなくて車輪やレー
ルの偏磨耗が生じないから保守の手間が省ける。更に、
モータパイロンの上下への推進方向の調節構造により上
述の効果を高められる。バーベル型緩衝装置はカーブ区
間で車体を内方へ傾けるので、高速安定性を高めるし、
部品点数が少ないから軽量化できる。縦型2段引き込み
式アーク扉は空気抵抗を小とし、高速性をたかめる。パ
ンタグラフは超小型化と軽量化が可能で集電靴としても
使用でき、かつ風圧に強くトロリー線への追随性がよい
ので、高速での集電を可能とし、車両の高速走行を実現
せしめる。更に小型の模型に使用してショートによる故
障を防ぐことができる。上記の如く、本発明による軌道
構造・単列車輪駆動軌道車・飛行式の軌道車・左右対称
式車輪駆動制動装置・両ツバ歯車駆動装置・薄板製のパ
ンタグラフ・バーベル式緩衝装置・プロペラ推進システ
ム等によれば、高速大量輸送システムが安い費用で土地
の買収なしで早い工期で供用でき、模型或いは遊戯シス
テム以外でも、小型で従来と全く異なった高性能の飛行
式の軌道車ができるので、閉鎖空間内をリモートコント
ロールで飛走行する長距離高速輸送システム、例えば郵
便物の、が提供でき輸送コストの大幅な削減や省エネル
ギーを実現できる。
As described above, the track of the present invention is about one fifth of the vehicle weight of other rail cars, and the load applied is small. Since the foundation is small and simple, it is easy to mass-produce the material, and long-term construction such as concrete driving on an elevated structure is not required and the construction period is fast. The greatest effect is that the acquisition of land for track construction is no longer necessary, and it can be installed over the existing highways or on railways by a small-scale construction. The track has a single row of wheels rolling on a single rail, so the inertia in the direction of travel is large, so the speed is high, and there is no snake action or vibration due to irregularity of the left and right rails It is small and does not require irregular maintenance of the rails, the brim of both brim wheels can be made high, there is no derailment because the guide wheel has an upper limit, and there is no heavy axle supporting the left and right wheels, so the structure is simple and lightweight. In the wheel drive braking system, the side covers on both sides can be removed to inspect the large and small gears, and because the wheels are symmetrical, a pair of small drive motors can be used to increase the thickness of the truck. Can be made thinner and lighter, and has good air resistance. It can be braked from both sides and not used at high speeds, so maintenance and inspection is a little troublesome, and oil lubrication is possible and it has high speed. If a trolley wire is attached to the guide, the undulations will be small and the separation will be slight, and the current collecting shoes will be below the vehicle, so the turbulence generated in the shoes will generate lift on the underside of the vehicle, which is convenient for high-speed floating running is there. . Since the flange gear drive device has a small number of parts and can be run without oiling, maintenance work can be saved, running costs can be reduced, and miniaturization can be facilitated. With propeller propulsion, it is possible to increase the propulsive force by detecting the slip of the wheels, so it is possible to increase the speed higher than the limit of driving the wheels, and braking at high speed does not rely on the wheels, so there is no slip. Since there is no uneven wear of the rail or rail, maintenance work can be saved. Furthermore,
The above-mentioned effect can be enhanced by the structure for adjusting the propulsion direction of the motor pylon up and down. Since the barbell type shock absorber tilts the car body inward in the curve section, it improves high-speed stability,
The number of parts is small, so the weight can be reduced. The vertical two-stage retractable arc door has low air resistance and high speed. The pantograph can be made extremely compact and lightweight, can also be used as current-collecting shoes, and is strong against wind pressure and has good followability to the trolley wire, which enables current collection at high speed and enables high-speed running of the vehicle. Furthermore, it can be used for a small model to prevent breakdown due to short circuit. As described above, the track structure according to the present invention, the single-row wheel driven track car, the flight type track car, the symmetrical wheel drive braking device, the double-branch gear drive device, the thin plate pantograph, the barbell type shock absorber, and the propeller propulsion system. According to et al., The high-speed mass transportation system can be used at a low cost at an early construction period without the acquisition of land, and besides the model or the play system, a small and highly efficient flight type rail car can be made, It is possible to provide a long-distance high-speed transportation system, such as mail, that can fly by remote control in an enclosed space, and realize a significant reduction in transportation costs and energy saving.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による実施例1の軌道装置と飛行式の軌
道車の遠景部分側面図、
FIG. 1 is a side view showing a distant view of a track device according to a first embodiment of the present invention and a flight-type track car;

【図2】図1の車輌の概略拡大正面図、2 is a schematic enlarged front view of the vehicle of FIG. 1,

【図3】本発明による実施例2の高架軌道と飛行式の軌
道車の遠景側面図、
FIG. 3 is a distant view side view of an elevated track and a flight type track car according to a second embodiment of the present invention;

【図4】図3の飛行式の軌道車の拡大側面図、FIG. 4 is an enlarged side view of the flight-type track car of FIG. 3;

【図5】図4の車輌の底面図、5 is a bottom view of the vehicle of FIG. 4,

【図6】図4中のa−・−a′の位置での車輌の拡大断
面と、該車輌と関連する軌道の部分断面図、
FIG. 6 is an enlarged cross-sectional view of the vehicle at a --- a 'position in FIG. 4 and a partial cross-sectional view of a track associated with the vehicle;

【図7】図6中の軌道のカーブ区間での傾斜調節完成
図、
FIG. 7 is a completed view of tilt adjustment in a curve section of the track in FIG.

【図8】図6中の左右対称式車輪駆動制動装置の拡大
図、
FIG. 8 is an enlarged view of the left-right symmetrical wheel drive braking device in FIG.

【図9】バーベル式空気バネ緩衝装置の斜視図、FIG. 9 is a perspective view of a barbell type air spring cushioning device,

【図10】図9の装置の分解図、10 is an exploded view of the device of FIG. 9,

【図11】ツバ歯車駆動装置による模型の飛行式の軌道
車の車両の一部を前後方向の中心線での部分縦断面図、
FIG. 11 is a partial longitudinal cross-sectional view of a part of a model flight-type track car driven by a flange gear drive device, taken along the longitudinal centerline;

【図12】図11中の一点鎖線b−・−b′の位置での
車両の断面図、
FIG. 12 is a cross-sectional view of the vehicle at the position indicated by alternate long and short dash line b -.- b 'in FIG.

【図13】本発明によるパンタグラフの取り付け状態の
斜視図、
FIG. 13 is a perspective view of a mounted state of a pantograph according to the present invention,

【図14】図13でのパンタグラフを外した状態、14 is a state in which the pantograph in FIG. 13 is removed,

【図15】図13のパンタグラフの正面図、FIG. 15 is a front view of the pantograph of FIG.

【図16】図13の平面図、16 is a plan view of FIG.

【図17】図13の側面図、FIG. 17 is a side view of FIG.

【図18】実施例4のの飛行式の軌道車が軌道に停止し
ている側面図、
FIG. 18 is a side view in which the flight-type railcar according to the fourth embodiment is stopped on the track;

【図19】図18の車両の底面図、19 is a bottom view of the vehicle of FIG. 18,

【図20】図18の車両の背面図、20 is a rear view of the vehicle of FIG. 18,

【図21】実施例5の飛行式の軌道車が軌道に停止して
いる側面図、
FIG. 21 is a side view in which the flight type rail car of Example 5 is stopped on the track;

【図22】図21の車両の背面図、22 is a rear view of the vehicle of FIG. 21,

【図23】図21の車両の底面図、23 is a bottom view of the vehicle of FIG. 21,

【図24】実施例6の説明図で、飛行式の軌道車による
狙撃ゲームの説明図である。
FIG. 24 is an explanatory diagram of the sixth embodiment and is an explanatory diagram of a sniper game using a flight type rail car.

【図25】実施例7の説明図で、その概略正面図であ
る。
FIG. 25 is an explanatory diagram of Example 7 and a schematic front view thereof.

【符号の説明】 1 飛行式の軌道車、2 車体、 3 台車、
4 駆動輪、5 大歯車、 6 小歯車、
7 駆動軸、 8 駆動モータ9 たわみ軸
継手、 10 ギアーボックス、11 案内輪、12
推進モータ、 13 モータパイロン、14 プロペ
ラ、 15 穴付支持函、16 カバー支持函、 17
連結棒、 18 空気バネ 19 パイロン台、 20 支持体、 21 碍
子、 22 支持アーク、23 レール、
24 案内体、 25 固定アーク、 26 固定
具、27 支柱、 28 集電子、 29
トロリー線、30 バーベル式空気バネ緩衝装置、
31 レール支持体、32 小歯車カバー、 33
サイドカバー 34 軸受、 35 ブレーキ、3
6 ナット、 37 緩衝ボルト、38 小歯車
軸、39 クッション、40 案内脚、 41
案内軸、 42 案内翼、 43 扉、44 連結
具、 45 パイロン歯車、 4
6 モータ回動軸 47 回動歯車、 48 レール台、 49 横
梁、 50 支柱、51 固定肢、 52
天板、 53 床、 54 床台 55 ツバ歯車、 56 コイルバネ、57 棚、
58 固着具、59 モータ支持片、 60
パンタグラフ、 61 すり板、62
バネ板、 63 丁番、 64 支え板、
65 鋲、66 押さえ板、 67 押さえ孔、
68 ストッパー、69 風孔、70 標的、
71 回転台、 72 狙撃装置、 73 軌道
装置、74 案内体固定板、 75 留板、 76
踏面、 77 ツバ、78 ネジ、 7
9 モータ軸、 80 耳 81 案内モータ 82 レール押さえ、 83 緩衝軸受 84 ボル
ト孔である。
[Explanation of code] 1 flight type rail car, 2 vehicle bodies, 3 bogies,
4 drive wheels, 5 large gears, 6 small gears,
7 Drive shaft, 8 Drive motor 9 Flexible shaft coupling, 10 Gear box, 11 Guide wheel, 12
Propulsion motor, 13 motor pylon, 14 propeller, 15 support box with holes, 16 cover support box, 17
Connecting rod, 18 Air spring, 19 Pylon stand, 20 Support, 21 Insulator, 22 Support arc, 23 Rail,
24 guide body, 25 fixed arc, 26 fixing tool, 27 column, 28 current collector, 29
Trolley wire, 30 barbell type air spring shock absorber,
31 rail support, 32 pinion cover, 33
Side cover 34 bearing, 35 brake, 3
6 nuts, 37 buffer bolts, 38 small gear shafts, 39 cushions, 40 guide legs, 41
Guide shaft, 42 guide vanes, 43 door, 44 connecting tool, 45 pylon gear, 4
6 Motor Rotation Shaft 47 Rotation Gear, 48 Rail Platform, 49 Cross Beam, 50 Strut, 51 Fixed Limb, 52
Top plate, 53 floors, 54 floor stand 55 flange gears, 56 coil springs, 57 shelves,
58 fasteners, 59 motor support pieces, 60
Pantograph, 61 scraper, 62
Spring plate, 63 hinge, 64 support plate,
65 studs, 66 holding plate, 67 holding hole,
68 stoppers, 69 air holes, 70 targets,
71 turntable, 72 sniper device, 73 track device, 74 guide fixing plate, 75 retaining plate, 76
Tread, 77 collar, 78 screw, 7
9 motor shaft, 80 ears 81 guide motor 82 rail retainer, 83 buffer bearing 84 bolt hole.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 ─────────────────────────────────────────────────────
[Fig. 2] ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年10月22日[Submission date] October 22, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 飛行式の軌道車とその軌道装置Title: Flight type rail car and its rail device

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主として低速時に車輪駆
動であり、プロペラ推進で高速性を増大せしめる飛行式
の軌道車及びその軌道システムに関する。より詳細に
は、一条の軌道上を転がる1乃至複数の支持輪を車両の
前後方向の中央線の下方に設け、該支持輪の一個乃至複
数を軌道車に搭載した原動機に連結し、該軌道車に左右
の案内輪を設けて左右の案内体に案内せしめて成る中央
列車輪駆動軌道車と、該軌道車を含む車輪駆動軌道車に
プロペラ推進装置を設けて成る複合進行式の飛行式の軌
道車、及びそれらの運航を支持する軌道システムと、前
記中央列車輪駆動軌道車或いは飛行式の軌道車に各種の
装置を設けて成る小型のリモートコントロール式高速輸
送システム、科学模型、或いは遊戯装置等の構造とシス
テム等に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flight-type track car which is driven mainly by wheels at a low speed and which can increase a high speed by propeller propulsion, and a track system therefor. More specifically, one or a plurality of support wheels that roll on a single track are provided below the center line in the front-rear direction of the vehicle, and one or a plurality of the support wheels are connected to a prime mover mounted on the track car, A central row wheel drive rail car that is provided with left and right guide wheels on the vehicle and is guided by the left and right guide bodies, and a composite traveling flight type vehicle that is equipped with a propeller propulsion device on a wheel drive rail car including the rail car. A rail car, a rail system for supporting the operation of the rail car, and a small remote-controlled high-speed transportation system, a scientific model, or a play device in which various devices are provided on the center-row wheel-drive rail car or the flight rail car. Etc. regarding the structure and system.

【0002】[0002]

【従来の技術】従来の高速軌道システム、例えば新幹線
・常伝導磁気浮上車システム・超伝導磁気浮上車システ
ム等、に於いては、車両一台の重量は軽くとも10数ト
ン以上30数トンもある。人間一人60キロと仮定した
定員によれば、車重/人数>200キロであり、この値
を単位車両重量と呼ぶこととすると、この重量車両を支
持する軌道の負担が大きすぎて多くの問題が生じる。即
ち、大重量車輛の故に、直線的で広い幅で土地収用をし
て堅固に軌道を構築する必要があり、建設用地の確保が
至難となってきている。そのため現実には、高速軌道の
建設は棚上げされ、在来線の高速化や中速の地下鉄、モ
ノレール等を多くの費用と年数を費やして建設するか、
小間切れの供用でも使える道路の建設が主であり、エネ
ルギーを過消費し、かつ大気汚染が問題な航空機に限ら
れてきている。しかるに、高速の交通システムの研究
は、超軽量車両が軌道架設を容易にする利点がありか
つ、エネルギー消費を少なくするのに最も重要であるの
を重視せず、他の要素に重点をおいて為されてきてい
る。その結果、電力エネルギーの消費を大幅に減らせる
との予測で研究が進められてきた超伝導磁気浮上走行シ
ステムは、幾つかの理由で軽量化が無理で、省エネルギ
ーのシステムとは考え難くなってきている。車両を軽量
化して、軽便な軌道で市街地に架設する目的で出願した
本願人による昭和58年特許願第094869号−飛行
車は、プロペラ推進によるもので、レールの長手方向に
下向きに設けた係止面と、該面に転動する最高位接触面
とが停止時において、所定間隔開けてある案内輪を少な
くとも二個有す軌道車であり、かつ該軌道車の車両を所
定速度以上で浮上する構造となし、該車両に設けたプロ
ペラ又はジェットで駆動せしめられて成る飛行車であ
る。が、停止時や発車時、低速時には、車輪駆動を併用
できる構造でないので高速時には空気を引っ張らない長
所があるが、プロペラ制動だけでは低速時には風害とか
停車の維持手段等での問題があった。更に、2本の平行
レールの車輪駆動と制動とを併用せしめれば、重量車両
となり、軽量化ができなかった。
2. Description of the Related Art In conventional high-speed track systems, such as the Shinkansen, normal-conducting magnetic levitation vehicle system, and superconducting magnetic levitation vehicle system, the weight of one vehicle is as low as 10 tons to 30 tons. is there. According to the capacity assuming that one person is 60 kg, the vehicle weight / the number of people> 200 kg, and if this value is called the unit vehicle weight, the burden on the track supporting this heavy vehicle is too large and many problems occur. Occurs. In other words, because of the heavy vehicle, it is necessary to acquire the land in a straight and wide width to build a solid track, which makes it difficult to secure the land for construction. Therefore, in reality, the construction of high-speed tracks will be shelved, speeding up conventional lines, medium-speed subways, monorails, etc.
Mainly the construction of roads that can be used even during short periods of service has been limited to aircraft that consume too much energy and have problems with air pollution. However, research on high-speed transportation systems does not emphasize that ultralight vehicles have the advantages of facilitating track erection and is most important for reducing energy consumption, but focuses on other factors. It has been done. As a result, the superconducting magnetic levitation system, which has been researched with the expectation that the consumption of electric power energy can be significantly reduced, cannot be considered to be an energy-saving system because it cannot be lightened for several reasons. ing. The application filed by the applicant for the purpose of lightening the vehicle so that it can be installed in an urban area on a light rail track, in Japanese Patent Application No. 094869 in 1983-The flying vehicle is propeller-propelled and is installed downward in the longitudinal direction of the rail. When the stop surface and the highest contact surface rolling on the stop surface are stopped, it is a rail car that has at least two guide wheels that are spaced apart by a predetermined distance, and the vehicle of the rail car is levitated at a predetermined speed or more. It is a flight vehicle that is driven by a propeller or a jet provided in the vehicle. However, it has the advantage that it does not pull the air at high speed because it is not a structure that can drive the wheels at the same time when it is stopped, started, or at low speed, but there is a problem with wind damage or maintenance means for stopping at low speed with propeller braking alone. Furthermore, if the driving and braking of the two parallel rails are used together, it becomes a heavy vehicle and the weight cannot be reduced.

【0003】[0003]

【発明が解決しようとする課題】本発明は前述の交通シ
ステムの欠点を解消するために、車輛重量を軽くするこ
と、その装置類の数を減らすこと、複雑で重い装置を新
しく開発した簡単で軽量の装置に置き換えること、省エ
ネルギーの鋼鉄製車輪駆動の従来の軌道車に、より以上
の高速性を加えること等を課題とする。即ち、現在、実
用中、或いは開発テスト中の高速の交通システムでは、
駆動装置が大規模で重くて嵩張り、制御機器も同様であ
るから単位車両重量が200キロ以上である。従来の車
輛は車重が大きいので、急カーブの高速走行は危険であ
り、軌道は大径のカーブか直線状であり、加えて堅固に
軌道を敷設する必要があるため、直線状の広い土地の収
用に膨大な費用がかかり、新規の建設が困難になってい
る。特に新幹線は、大量輸送が可能でエネルギー消費が
少ない長所が大きいのに、急制動で車輪の偏磨耗を生
じ、制動により生じたレールの凹凸を平滑にするための
連夜の研磨が必要である。 片ツバ車輪に対する並行支
持軌道であるから、左右相互のレール間隔の拡張力が常
に加わり、平行度の不整による左右への振動や、台車の
蛇行動が生じる欠点があり、深夜の保守作業が大変で経
費がかかる。車重が大なので、出発抵抗が大となり、低
速駆動力を大にするための機器の数も多く重量も大で、
その制動装置も複雑で重くなる。 一台の駆動車輪が8
個も必要であり、長くて重い車軸が4本も用いてある。
その重車輛の走行騒音は遠距離の地域にもその被害を
及ぼす。常伝導や超伝導の磁気浮上システムは、低騒音
で振動が少ないが、軌道敷設では上記重量車両の弱点が
あるので堅固につくらねばならず、加えて、エネルギー
の消費量は大きく高速走行では、航空機に近い水準とな
り省エネルギー技術とは云いがたい。。特に超伝導方式
の場合、強力な磁力が遺伝子に変異を起こすので、客室
の遮蔽体の重量を加えねばならず軽量化は無理で、駆動
部分以外の機器のエネルギー消費が大きい。現実に、地
球上で、車を多く用いる地域は化石燃料の大量消費によ
り、常に雨乞い現象があるので多雨となり、一方車を殆
ど使用せず燃料消費の少ない地域、例えばゴビ砂漠・ア
フリカの大部分は、エネルギー消費の多い地域への大量
の降雨のために、降水量が減少している。 加えて、車
のための道路建設を主とした自然破壊による緑地の減少
や、車或いは航空機による化石燃料の大量消費による炭
酸ガスの増加で、魚類の食する藻類が減少し、炭酸カル
シュウム成分を多く生成して食用にならずに浅海底を覆
う貝類の増殖で、海洋の砂漠化が日本或いは南米等にも
進行しつつあるため、魚類資源も将来枯渇すると考えら
れるが、地球規模の気候の変動による生存環境悪化への
根本的な対策=エネルギー消費の抑制及び自然の緑地保
全=は実行されるに至らず、目前の便益が優先されてき
ている。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks of the transportation system by reducing vehicle weight, reducing the number of devices, and newly developing a complicated and heavy device. The challenges are to replace it with a light-weight device, to add more speed to the conventional railcars with energy-saving steel wheels, and so on. That is, in a high-speed transportation system currently in practical use or under development test,
Since the driving device is large and heavy and bulky, and the control device is the same, the unit vehicle weight is 200 kg or more. Since conventional vehicles have heavy vehicle weight, it is dangerous to drive at high speed on a sharp curve, and the track has a large-diameter curve or a straight line. The cost of expropriation is huge and new construction is difficult. In particular, the Shinkansen has the advantages of being able to be transported in large quantities and consuming less energy, but it requires uneven grinding of the wheels due to sudden braking, and requires night-long polishing to smooth the unevenness of the rails caused by braking. Since it is a parallel support track for one brim wheel, the expansion force of the rail spacing between the left and right is always applied, and there are drawbacks such as left and right vibrations due to uneven parallelism and snake movement of the truck, which makes maintenance work at midnight difficult. It costs money. Since the vehicle weight is large, the starting resistance becomes large, and the number of devices for increasing the low speed driving force is large and the weight is also large.
The braking device is also complicated and heavy. 8 drive wheels
It also requires four pieces and uses four long and heavy axles.
The running noise of the heavy vehicle also damages a long-distance area. Normal and superconducting magnetic levitation systems have low noise and little vibration, but they have to be made solidly because of the weaknesses of the above heavy vehicles in track laying, and in addition, energy consumption is large and high speed running, It is hard to say that it is an energy-saving technology because the level is close to that of an aircraft. . In particular, in the case of the superconducting system, the strong magnetic force causes mutations in the gene, so the weight of the passenger compartment shield must be added to reduce the weight, and the energy consumption of equipment other than the driving part is large. Actually, on the earth, regions where a lot of cars are used have heavy rain due to the constant begging phenomenon due to the large consumption of fossil fuels, while on the other hand, the regions where the cars are rarely used and the fuel consumption is low, for example, most of the Gobi Desert and Africa. Has reduced rainfall due to heavy rainfall in areas of high energy consumption. In addition, the decrease in green space due to natural destruction mainly due to the construction of roads for cars and the increase in carbon dioxide due to the large consumption of fossil fuels by cars and aircraft will reduce the algae eaten by fish and reduce the calcium carbonate component. It is considered that fish resources will be depleted in the future because the desertification of the ocean is progressing to Japan and South America due to the proliferation of shellfish that cover a shallow seabed without being produced and used for food. The fundamental measures against the deterioration of the living environment due to fluctuations = suppression of energy consumption and conservation of natural green areas = have not been implemented, and the immediate benefits have been prioritized.

【0004】[0004]

【課題を解決するための手段】本発明の主な目的は、軌
道の建設用地収用を小ならしめ、市街地の交通施設、例
えば道路上、高速道路上、既存の軌道上等の空間にも建
設可能な軽量軌道による高速の交通手段を提供し、緑地
の破壊を防ぐことである。本発明の次の主たる目的は、
従来の軌道車の単位車両重量に比較して5分の1以下に
車輛を軽量化した全てのプロペラ推進装置を設けた車輪
駆動軌道車に於いて、駆動輪のすべり或いは空転が生じ
て車輪の駆動力が低下したとき或いはその低下が予測さ
れる時に他の加速手段を車輛に具備させて燃料を使用す
る全ての交通手段の中で、最も省エネルギーで大気汚染
の少ない高速の大量輸送手段を提供することである。よ
り詳細には、本発明の第一の目的は、エネルギー消費を
少なくすることであり、そのために転がり抵抗を減らす
歪みの小さい素材、例えば鋼鉄、で形成した駆動輪を用
いたり、駆動モータと車輪を一体に構成して駆動機構を
簡略にし軽量化したり、更にそれらの駆動輪を中央の単
列にして数を減らして成る中央列車輪駆動方式と、該方
式に併用して効果の高い大型の高速車に適したバランス
の良い左右対称式車輪駆動制動方式や小型車輛或いは模
型等に適したツバ歯車駆動方式等の提供である。 本発
明の第2の目的は、中央列車輪駆動軌道車を最小のトル
クで安定走行させるために、等速逆回転式・自在回転式
・強制弾力接触式等の案内システムの提供である。本発
明の第3の目的は、車輪駆動車は急制動で車輪が偏磨耗
するが、その欠点のないプロペラ制動に、制動効果の高
い形状のプロペラを用いて、制動装置の負荷を軽くして
軽量化し、制動性と高速性を高める複合進行方式の提供
である。本発明の第4の目的は、駆動輪のすべり又は空
転を検知して、プロペラ推進装置の推力又は駆動輪の回
転数を増大して加速するシステムを提供して車輪駆動軌
道車に一層の高速性を加えることである。本発明の第5
の目的は従来の高速の軌道車の緩衝装置では複雑で重く
なるので、安全に安定して走行出来る軽量の車体傾斜調
節緩衝装置であるバーベル式空気バネ緩衝装置により、
車体のカーブ内側への自動傾斜構造を軌道車に提供する
ことである。本発明の第6の目的は、間隔を離した左右
の案内体にトロリー線を取付けて高圧での給電を可能と
し、上空の高架線装置のない軽便な軌道構造により、量
産による安価な組立て部材を供給し、高架軌道を安いコ
ストで工期を早く提供することである。本発明の第7の
目的は、カーブ位置で高架建設が容易で、かつ量産可能
の軌道支持構造の提供であり、レールの支持骨材をカー
ブと直線区間を同一の部材で架設可能にし、現場で適宜
に傾斜度を調節できる構造を提供することである。本発
明の第8の目的は、飛行式の軌道車の下方にプロペラ推
進装置を設けたプロペラ推進の地面効果の高い車輛の提
供である。本発明の第9の目的は、良伝導性・耐腐食性
・強靭性・弾力性を具有する金属薄板を構成材料に使用
して、小型で軽量で着脱が容易で風圧の影響が小で、外
形が20ミリ立方角位より300ミリ立方角程度の大き
さでトロリー線からの集電効果の高いパンタグラフ又は
集電靴の提供である。本発明の第10の目的は、時速約
30キロ以上で長時間走行が可能な模型或いは小型の自
動搬送装置としての飛行軌道車システムの提供である。
本発明の第11の目的は、模型の飛行式の軌道車に標的
を設け、該標的を適宜の距離から、狙撃装置で加撃可能
となし、的中時に標的からサイン或いは反応して作動せ
しめる遊戯システムの提供である。本発明の第12の目
的は、軌道と案内体と案内支持骨材及び支持部材を組立
て及び解体自在に構成して成る模型セットの提供であ
る。本発明は、断面が溝型の構築体のに一条又は複数の
のレールを設けるとともに、該構築体の左右の立ち上が
り壁に案内体を設けて成る軌道装置による中央列車輪駆
動軌道車又は前記案内体のレールに転がるI乃至複数の
案内輪を有する車輪駆動軌道車及び該軌道車にプロペラ
推進装置を加えて成る飛行式の軌道車及びその関連する
装置類とシステム等に関する。より詳細には、断面が溝
型の構築体は、地上に於いては鉄筋コンクリートで構築
し得る(図1、2 後述)。高架方式では、本発明によ
る架設部材は、主として強度が大で低価格の鉄を塗装不
要にした複合材例えば、ジシクロペンタジエンとの複合
成形部材を使用するのが望ましく、レールの支持骨材は
カーブ、直線区間とも同一の部材を用いて、現場で適宜
にレールの傾斜度を調節できる構成が望ましい。高架軌
道は、レールを支持するレール支持体の接続部毎に、コ
ンクリート製或いは、鋼鉄製の支柱を構築する。次に該
支柱の上部にレール支持体を延々と置いて固定し、該レ
ール支持体の上部に、アーク固定体の中央部分の下部を
一体に固定した固定肢を、一体に固定する(後述)。
更に該アーク固定体の上方に鉄骨或いは鉄筋入りのコン
クリート製の支持アークを所定の角度(後述)で固定具
で取り付け、該支持アークにレール及び左右の案内体を
所定の位置に取り付けてある。該案内体の上部には碍子
を介して高圧給電用のトロリー線が取付けてある。又、
隣り合う支持装置間とレール支持体及び案内体とで囲ま
れる面には壁体が取付けてある。 この壁体は外部と隔
離して危険を避ける為に設けるが、プロペラ推進風力を
直接うけて地面効果を車輛に与えて高速性を高めるし、
金網或いは多孔板を主体で構成することで、台風の横風
の風圧を減じるし、積雪を溶かし易いので好ましい。
該壁体のレール寄りに、融雪装置例えばヒーター、温水
パイプ等をを取りつけて、凍結時に加熱可能にするのが
好ましい。トロリー線は間隔の広い左右の案内体に碍子
を介して取付けると高圧送電もでき、車輛上空の架線よ
り高低差を小にできるし、コストが安く軽便で好まし
い。駆動装置として1例をあげると、(1) 高速車用
としての駆動装置は左右の対称型が風圧に対して左右の
バランスが良く、ギアーボックスに格納して油潤滑が十
分できるのに加えて歯車装置の点検が容易にできる構造
が望ましい。本発明による左右対称型車輪駆動制動装置
は前記の条件を満たすので高速車に適していて、車輛の
中央線の下方に設けて、台車との結合が緩衝的にできて
いる(後述)。 (2) 主として小型の模型用では、一体に構成した歯
車を有する駆動輪に伝動歯車を係合し、該歯車を車輛に
搭載した原動機で駆動回転せしめる駆動方法の好ましい
1例には、両ツバ車輪のツバに歯車を構成し、ナイロン
駆動歯車を上方で咬み合せしめるツバ歯車駆動装置があ
り、軽量で部品が少なく無給油で回せる。案内体は従来
のレール型とかその他多種の断面形状があり、複合構成
も可能であるが、切り替えポイント、簡単さ、施工コス
ト等で鋼製の単体が望ましい。案内輪は車両の両側に設
ける。縦軸、横軸、斜軸等で設け得るが、縦軸で水平に
回転自在であれば、横揺れを制御するのに好ましい。車
両を車体と台車とで構成する場合は、台車の両側に少な
くとも各一個、望ましくは2個づつ左右を並行して設け
るのがこのましい。 その他、案内輪を両ツバ型の低ト
ルクの駆動輪に構成して駆動力の不足をプロペラ推進力
で補うのも好ましい。これらの案内輪は、高速車に於い
ては、左右の案内輪を車輛に設けた原動機で駆動して車
輛の速度と等速で回転せしめて案内体に接触せしめてす
べりを防ぐのが望ましく、その主な構造は、左右の案内
輪を (1) 案内モータで車輛速度と等速に制御し、
一方の案内輪を案内体に接触せしめるもの、(2) 両
ツバ型駆動輪と成して不足する駆動力はプロペラ推力で
補う、 (3) 自在回転式で一方の案内輪の外周を案
内体に接触回転せしめるもの、 (4) 強制弾力接蝕
式で、案内輪のそれぞれの軸間距離を拡大する圧力を弾
力装置で加えて、双方の案内輪の外周を案内体に強制接
触せしめて回転案内せしめる等で、モータで案内輪を車
輛速度と等速に回転制御するのが、車両の高速での安定
走行に望ましい。横軸による案内輪は、(1) 強制回
転型と (2) 自在回転型に大別できる。レールと案
内体との高低差が大であれば、姿勢の制御が完全な縦軸
型が望ましく、高低差が小になるほど、横軸の案内輪が
効果的に姿勢の制御がし易くなる。しかし横軸では、
(1) 車高を低くすれば、プロペラ推進装置は車輛の
下方に設定できないので、前後方又は上方に設定する以
外になく、プロペラ回転の危険性とか、連結の不利と
か、或いは地面効果の低下等の問題が生じるし、(2)
車高を高くすれば、横軸の支持体を下方に大きく幅広く
構成せねばならず、強度を大にするとき軽量化が犠牲に
なる。車体と台車の緩衝装置では、軸ばね或いはまくら
ばねにダンパーを並べて取り付けるのもよいが、自動的
に車体を傾斜せしめる緩衝装置:カーブで車体の遠心力
の掛かる側が高まり反対側が低く沈む=バーベル式空気
バネ緩衝装置を用いて軽量化し、カーブでの安定性と高
速性を高めるのが好ましい。本発明によるバーベル式空
気バネ緩衝装置は主として、(1) 連結棒の両端部に
ボール状の膨大部を取付けて成るバーベル形状の連結棒
と (2) 該膨大部を収容し、かつ所定角度内で回動
自在に支持するとともに、膨大部より小径の軸受を取付
けた離脱制止縁を開口部に設けた回動支持室を半分づつ
有する上下の穴付支持函とカバー支持函各1個とを合体
して構成した回動支持函と、(3)前記連結棒を貫通せ
しめる中央孔を有するドーナツ形状のゴム製の空気バ
ネ、とで構成してある。 更に、支持棒が外方には傾か
ない角度で回動支持函を台車に取り付けるとともに、車
体には支持棒の上方の間隔を狭くし、かつ下方の間隔を
適宜に広くして他方の回動支持函を取り付け、カーブ区
間で車体に遠心力が掛かれば、遠心側を高くし、求心側
を低く沈ませて、走行安定性を高めるのが好ましい。プ
ロペラ推進では、従来の鉄道車輛その他の車輪駆動軌道
車とプロペラ推進との複合進行方式の軌道車に於いて、
低速時は車輪駆動力の加速力の増大に有効であり、高速
では駆動輪の回転速度と車体の速度の差より駆動輪の滑
り或いは空転を検知してプロペラによる推力を適切に増
大して駆動力以上の高速性を車輛に具備せしめ得る。
その検知は、1例をあげると、新幹線の方式があり、更
に他の1例をあげれば、軌道に一定間隔に設けた標識例
えばある種の光線の反射体を標識として設け、一定時間
に通過した該標識の数をカウントして車輛の実速度を計
り、他方では車軸の回転数より車輪の回転速度を計る方
法で、実速度と回転速度との差を検知装置で測定し、一
定の許容範囲より前記の差が大になった時、実速度が大
の場合では駆動回転数を増大し、回転速度が大の場合で
はプロペラ推力を増大して高速走行を実現する。
又、プロペラ推力の上下方向を調節し、車輛重量の前後
の負荷のバランスを保てる。 プロペラ推進の前後方向
は、パイロン台の回転で推力の方向を逆にできる。プロ
ペラ制動は高速時に主として使用し、(1) パイロン
台の回転、(2)プロペラを可変翼にする、(3) プ
ロペラの翼のひねり角を45度程度に構成して推進モー
タを逆転せしめる等で行なえる。プロペラの形状はひね
り角を約45度にして、幅を広く、短径に形成すると、
回転数に比して推力と制動力が大となり、風切量が減り
低騒音となり、更にその翼を後退させてあれば、空気を
押す圧力の積が大となり、推力が増大する。集電装置
は、軽量で小型が望ましく 着脱自在の耐風圧型のパン
タグラフとしても使える集電靴の一例をあげる。本発明
の集電靴は、軽量化のためにすり板以外は、良電導性、
高弾力性耐腐食性、強靭性を全て具備する肉薄の金属
板、例えば燐青銅板の如きを素材として用いて、構成す
る。進行方向には、構成する薄板の厚みの断面とすり板
の側面を向けるだけで、すり板間に風穴を設けて空気を
抜けるし、揚力を生じ難くするのでので好ましい。 そ
の取付けは、保守性を高めるために、数本のネジの締め
付けで可能に構成して成る。この集電靴では、トロリー
線の高低差が小さいので、外形の大きさが約20ミリ立
方から300ミリ立法の大きさの範囲で構成して小型の
模型より大型の高速車輛にまで対応せしめるのが軽量化
及び空気抵抗を小にするために望ましい。すり板を上方
に向けて取付ければ集電靴として使用できる。 数本の
ネジで着脱自在なので、交換・修理等が容易である。小
型の飛行式の軌道車は科学模型にできる。高速で大型の
遠距離の交通システムとしてだけではなく、搬送システ
ムとしても例えば、一定区間の郵便物専用で断面が約1
平方メートルの高架軌道を高速道路或いは在来鉄道沿い
に設ければ、時間的メリットがあるばかりか、遠距離の
運搬車輛が不要になり、世界的にも省エネルギーが実行
できる。或いは標的を積載して周回軌道を高速走行せし
め狙撃台からの命中率を競うシステムのような遊戯装置
その他等にも使用できる。
The main object of the present invention is to minimize land acquisition for track construction, and to construct it in urban transportation facilities such as roads, highways, and existing tracks. The aim is to provide high-speed transportation by possible lightweight tracks and prevent the destruction of green spaces. The next main object of the present invention is to
In a wheel-drive railcar equipped with all propeller propulsion devices that reduce the vehicle weight to less than one-fifth of the unit vehicle weight of conventional railcars, slippage or idling of the drive wheels occurs and Providing the most energy-saving, high-speed, mass-transport means of all transportation methods that use fuel by equipping the vehicle with other accelerating means when the driving force decreases or is predicted to decrease It is to be. More specifically, a first object of the present invention is to reduce energy consumption, for which purpose a drive wheel made of a material with low distortion, which reduces rolling resistance, such as steel, is used, or a drive motor and a wheel are used. The central row wheel drive system in which the driving mechanism is simplified to reduce the weight and the number of the driving wheels is reduced to a single row in the center, and a large-sized large-scale system which is highly effective in combination with the system. It provides a well-balanced symmetrical wheel drive braking system suitable for high-speed vehicles and a flange gear drive system suitable for small vehicles or models. A second object of the present invention is to provide a guide system of constant speed reverse rotation type, free rotation type, forced elastic contact type or the like in order to stably drive a center row wheel driven rail car with minimum torque. A third object of the present invention is to reduce the load on the braking device by using a propeller having a shape with a high braking effect for propeller braking which does not have the disadvantage that the wheels are unevenly worn due to sudden braking in a wheel drive vehicle. It is a provision of a complex traveling system that reduces weight and enhances braking performance and high speed. A fourth object of the present invention is to provide a system for detecting slippage or idling of a drive wheel to increase the thrust of a propeller propulsion device or the rotational speed of the drive wheel to accelerate the wheel drive railcar. It is to add sex. Fifth of the present invention
Since the purpose of the above is complicated and heavy in the conventional high-speed rail car shock absorber, by the barbell type air spring shock absorber which is a lightweight vehicle body tilt adjustment shock absorber that can safely and stably travel,
The purpose of the present invention is to provide a rail car with a structure for automatically inclining a vehicle body inside a curve. A sixth object of the present invention is to install a trolley wire on the left and right guide bodies which are spaced apart from each other to enable high-voltage power supply, and to provide an inexpensive track assembly without an overhead overhead wire device, which is an inexpensive assembly member for mass production. Is to supply the elevated tracks and to provide the elevated tracks at a low cost and early construction period. A seventh object of the present invention is to provide a track support structure which is easy to construct an elevated structure at a curved position and can be mass-produced, and allows a rail support aggregate to be erected in the same member in a curve and a straight line section. The purpose is to provide a structure in which the inclination can be adjusted appropriately. An eighth object of the present invention is to provide a vehicle with a high ground effect for propeller propulsion, in which a propeller propulsion device is provided below a flight type rail car. A ninth object of the present invention is to use a metal thin plate having good conductivity, corrosion resistance, toughness, and elasticity as a constituent material, and to be small and lightweight, easy to attach and detach, and less affected by wind pressure. It is an object to provide a pantograph or shoes with a high outer current collecting effect from a trolley wire, the outer shape of which is about 300 mm cubic from about 20 mm cubic. A tenth object of the present invention is to provide a flight orbit vehicle system as a model or a small-sized automatic carrier capable of running for a long time at a speed of about 30 km / hour or more.
An eleventh object of the present invention is to provide a target on a model flight-type track car, and to make it possible to hit the target from an appropriate distance with a sniper device, and to activate it by signing or reacting from the target at the time of hitting. It is the provision of a play system. A twelfth object of the present invention is to provide a model set including a track, a guide body, a guide support aggregate and a support member that can be assembled and disassembled. The present invention provides a center row wheel-driven rail car or a guide system using a track device, which comprises a rail having a groove-shaped cross section and a plurality of rails, and guides provided on right and left rising walls of the rail. TECHNICAL FIELD The present invention relates to a wheel drive railcar having I to a plurality of guide wheels rolling on a body rail, a flight railcar having a propeller propulsion device added to the railcar, and related devices and systems thereof. More specifically, a grooved cross-section structure may be constructed of reinforced concrete on the ground (see FIGS. 1 and 2 below). In the elevated system, the erection member according to the present invention is preferably a composite material mainly having high strength and low cost, which does not require coating, for example, a composite molded member with dicyclopentadiene. It is desirable that the same member is used for both the curved section and the straight section so that the inclination of the rail can be appropriately adjusted on site. In the elevated track, columns made of concrete or steel are constructed for each connection portion of the rail supports that support the rails. Next, a rail support is placed endlessly on the upper part of the column and fixed, and a fixed limb integrally fixing the lower part of the central part of the arc fixing body is integrally fixed to the upper part of the rail support (described later). .
Further, a supporting arc made of steel or concrete containing reinforcing bars is attached above the arc fixing body at a predetermined angle (described later) with a fixing tool, and rails and left and right guide bodies are attached to the supporting arc at predetermined positions. A trolley wire for high-voltage power supply is attached to the upper part of the guide body through an insulator. or,
A wall is attached to the surface surrounded by the adjacent support devices and between the rail support and the guide. This wall is installed to avoid danger by separating it from the outside, but it receives the propeller propelling wind force directly to give the ground effect to the vehicle and enhances the high speed,
It is preferable to mainly configure the wire net or the perforated plate because the wind pressure of the cross wind of the typhoon can be reduced and snow can be easily melted.
It is preferable to attach a snow melting device such as a heater or a hot water pipe to the rail of the wall so that the wall can be heated during freezing. The trolley wire can be used for high-voltage power transmission if it is attached to the left and right guide bodies with wide intervals via insulators, and the height difference can be made smaller than the overhead wire above the vehicle. As an example of the drive device, (1) In the drive device for high-speed vehicles, the left-right symmetrical type has a good left-right balance with respect to the wind pressure, and in addition to being stored in the gear box, sufficient oil lubrication is possible. A structure that allows easy inspection of the gear unit is desirable. The symmetrical wheel drive braking device according to the present invention is suitable for high-speed vehicles because it satisfies the above-mentioned conditions, and is provided below the center line of the vehicle so that it can be buffered with the vehicle (described later). (2) Mainly for a small model, a preferable example of a driving method in which a driving gear having an integrally formed gear is engaged with a transmission gear and the gear is driven and rotated by a prime mover mounted on a vehicle There is a brim gear drive that configures a gear on the brim of a wheel and engages a nylon drive gear at the top. It is lightweight, has few parts, and can be rotated without lubrication. The guide body has various cross-sectional shapes such as the conventional rail type, and a composite structure is possible, but a single steel body is preferable in view of switching points, simplicity, construction cost, and the like. Guide wheels are provided on both sides of the vehicle. It may be provided on a vertical axis, a horizontal axis, an oblique axis, or the like, but if it can be rotated horizontally on the vertical axis, it is preferable for controlling the horizontal vibration. When the vehicle is composed of a vehicle body and a bogie, it is preferable to provide at least one, preferably two left and right sides in parallel on both sides of the bogie. In addition, it is also preferable that the guide wheel is a double-branch type low-torque drive wheel, and the insufficient propelling force is compensated by the propeller propulsion force. In a high-speed vehicle, these guide wheels are preferably driven by the motors provided on the left and right guide wheels to rotate at a speed equal to the speed of the vehicle so as to contact the guide body to prevent slippage. The main structure is that the left and right guide wheels are (1) controlled by a guide motor at the same speed as the vehicle,
One guide wheel is brought into contact with the guide body, (2) The driving force which is insufficient due to the double-branch drive wheel is compensated by the propeller thrust, and (3) the free rotation type outer circumference of one guide wheel. (4) Forced elastic erosion, pressure is applied by the elastic device to expand the distance between the guide wheels, and the outer circumferences of both guide wheels are forcibly brought into contact with the guides to rotate. It is desirable for stable running at a high speed of the vehicle to control the rotation of the guide wheel at the same speed as the vehicle speed by using a motor to guide the vehicle. The guide wheel on the horizontal axis can be roughly divided into (1) forced rotation type and (2) free rotation type. If the height difference between the rail and the guide body is large, it is desirable to use the vertical axis type for complete posture control. The smaller the height difference, the easier the horizontal axis guide wheel is to effectively control the posture. But on the horizontal axis,
(1) If the vehicle height is lowered, the propeller propulsion device cannot be set below the vehicle, so there is no choice but to set it to the front or rear or above, and there is a risk of propeller rotation, a disadvantage of connection, or a decrease in ground effect. Problems such as (2)
If the vehicle height is increased, the support of the horizontal axis has to be configured to be wide and wide downward, and the weight reduction is sacrificed when the strength is increased. In the shock absorbers of the car body and the bogie, dampers may be attached side by side to the shaft springs or pillow springs, but the shock absorbers that automatically tilt the car body: The side of the car body on which centrifugal force is applied increases and the opposite side sinks low = barbell type It is preferable to use an air spring cushioning device to reduce the weight and improve stability and high speed on a curve. The barbell type air spring shock absorber according to the present invention mainly includes (1) a barbell-shaped connecting rod formed by attaching ball-shaped enlarged portions to both ends of the connecting rod, and (2) accommodating the enlarged portion and within a predetermined angle. And a support box with holes and a cover support box each having half rotation support chambers each having a release stop edge with a bearing having a diameter smaller than that of the enlarged portion provided in the opening. It is composed of a rotation support box constructed by combining, and (3) a donut-shaped rubber air spring having a central hole through which the connecting rod penetrates. Further, the rotation support box is attached to the trolley at an angle at which the support rod does not tilt outward, and the space above the support rod is narrowed and the space below the support rod is appropriately widened on the vehicle body to rotate the other side. When a support box is attached and centrifugal force is applied to the vehicle body in a curved section, it is preferable to raise the centrifugal side and lower the centripetal side to enhance running stability. In propeller propulsion, in a conventional railroad vehicle or other wheel drive railcar and a composite traveling railcar with propeller propulsion,
At low speeds, it is effective in increasing the acceleration of the wheel driving force.At high speeds, the slip or idling of the drive wheels is detected from the difference between the rotational speed of the drive wheels and the speed of the vehicle body, and the thrust of the propeller is appropriately increased to drive. It is possible to equip the vehicle with a speed higher than the force.
For example, there is a Shinkansen system for the detection, and for another example, a marker provided at a certain interval on the track, for example, a reflector of a certain light beam is used as a marker, and the traffic is passed at a certain time. By measuring the actual speed of the vehicle by counting the number of said signs, and measuring the rotational speed of the wheel from the rotational speed of the axle on the other hand, the difference between the actual speed and the rotational speed is measured by a detection device, and a certain allowable When the difference becomes larger than the range, the drive rotation speed is increased when the actual speed is large, and the propeller thrust is increased when the rotation speed is large to realize high speed traveling.
In addition, the vertical direction of the propeller thrust can be adjusted to keep the load balance before and after the vehicle weight. The forward and backward directions of propeller propulsion can be reversed by the rotation of the pylon table. Propeller braking is mainly used at high speeds: (1) rotation of the pylon stand, (2) variable blades of the propeller, (3) twist angle of the propeller blades is set to about 45 degrees to reverse the propulsion motor, etc. Can be done with. The propeller has a twist angle of about 45 degrees, a wide width and a short diameter.
The thrust and braking force are large compared to the rotation speed, the amount of wind cut is reduced and the noise is reduced, and if the blades are retracted, the product of the pressure for pushing the air is large and the thrust is increased. It is desirable that the current collector is lightweight and small, and one example is a current-collecting shoe that can be used as a detachable wind-resistant pantograph. The current-collecting shoe of the present invention has good electrical conductivity except for the sliding plate for weight reduction.
A thin metal plate having high elasticity, corrosion resistance, and toughness, for example, a phosphor bronze plate is used as a material. In the direction of travel, it is preferable to simply direct the cross section of the thickness of the thin plate to be formed and the side surface of the sliding plate to provide air holes between the sliding plates to allow air to escape and to make lift less likely to occur. The mounting is made possible by tightening a few screws in order to improve maintainability. Since the height difference of the trolley wire is small in this current collecting shoe, the outer size can be configured in the range of about 20 mm3 to 300 mm3 cubic to accommodate a large-scale high-speed vehicle rather than a small model. Are desirable to reduce weight and air resistance. It can be used as a current-collecting shoe by attaching the contact plate facing upward. Since it is removable with a few screws, it is easy to replace and repair. A small flight car can be a scientific model. Not only as a high-speed and large-distance transportation system, but also as a transportation system.
If an elevated track of square meters is installed along a highway or a conventional railroad, not only will there be a time advantage, but a long-distance carrier vehicle will not be required, and energy saving can be implemented globally. Alternatively, it can be used as a game device or the like such as a system in which a target is loaded and the orbit is run at a high speed to compete for accuracy from a sniper.

【0005】[0005]

【実施例1】 (図1、図2 参照) 図面は本発明によるI実施例の概略図で、昭和58年特
許願第094869号発明の名称飛行車を改良して本発
明による駆動輪のすべり或いは空転を検知してプロペラ
推力を増減する機構を設けた飛行式の軌道車で、図Iは
コンクリート製の軌道と飛行式の軌道車の遠景側面図
で、該軌道は断面凹型で底部には一定間隔で距離の標識
95を設けてあり、中央上面にレール(図2中破線2
3)を敷設すれば、中央列車輪駆動軌道車の軌道として
使える(後述)。 該軌道の両側内の棚の溝にレール2
3の下部をボルトとナット36で固定してあり、最上部
には案内体24がナット36で固定してある。 該案内
体の上部には碍子21を介してトロリー線29が設けて
あり、台車の中央底面には標識95のカウンター96が
取付けてある(図2)。飛行式の軌道車1は、上方の車
体2が、台車3に直結してあり、台車3の下方の左右の
駆動軸7は各々回転速度の検知装置43を台車3の内壁
に設け、駆動輪4側で軸受34に支持され、中央で他端
を軸受34で支持されている。 この駆動軸は前記検知
装置43の内側の駆動モータ8で駆動回転せしめられ
る。 駆動輪4は両ツバ型で、下方のレール23上を転
がり、浮上がったときは案内体24の内端の下縁に当た
り、脱輪を規制している。 該駆動輪4にすべり或いは
空転が生じた時には既述の如く検知装置43及びその他
車輛内に搭載した計測装置等により、台車3の下方に設
けたモータパイロン13に取付けた推進モータ12に固
定したプロペラ14の推力を増大したり、又は駆動モー
タの回転数を大にしてより一層の高速走行を実現する。
駆動輪と駆動装置は本例以外の構成でも本発明を適用
して駆動輪の駆動力の限界以上にプロペラ推進で加速で
きる。本例の軌道はトロリー線の間隔が広くて、高圧配
電が可能で、軌道の内側でプロペラ推進気流は地面効果
を大きく得られ、車輛の高速性を一層増大する。
Embodiment 1 (Refer to FIGS. 1 and 2) The drawings are schematic views of Embodiment I according to the present invention, in which the name of the invention of Japanese Patent Application No. 094869 of 1983 is improved to improve the sliding of the drive wheels according to the present invention. Alternatively, FIG. I is a side view of a concrete track and a flight-type track car provided with a mechanism for detecting a slip and increasing / decreasing the propeller thrust. The track is a concave section with a concave section at the bottom. Distance signs 95 are provided at regular intervals, and rails (broken line 2 in FIG.
If 3) is laid, it can be used as a track for a center row wheel drive rail car (described later). Rail 2 in the groove of the shelf on both sides of the track
The lower part of 3 is fixed by bolts and nuts 36, and the guide body 24 is fixed by nuts 36 at the uppermost part. A trolley wire 29 is provided on the upper part of the guide body via an insulator 21, and a counter 96 for a mark 95 is attached to the center bottom surface of the carriage (FIG. 2). In a flight-type rail car 1, an upper vehicle body 2 is directly connected to a trolley 3, and right and left drive shafts 7 below the trolley 3 are provided with respective rotational speed detection devices 43 on the inner wall of the trolley 3 and drive wheels. It is supported by the bearing 34 on the 4 side, and the other end is supported by the bearing 34 at the center. This drive shaft is driven and rotated by the drive motor 8 inside the detection device 43. The drive wheel 4 is of a double-bran type and rolls on the lower rail 23. When the drive wheel 4 floats, the drive wheel 4 hits the lower edge of the inner end of the guide body 24 to regulate the removal of the wheel. When the drive wheel 4 slips or slips, it is fixed to the propulsion motor 12 attached to the motor pylon 13 provided below the carriage 3 by the detection device 43 and other measuring devices mounted in the vehicle as described above. The thrust of the propeller 14 is increased, or the rotational speed of the drive motor is increased to realize higher speed traveling.
The present invention can be applied to the drive wheels and the drive device other than this example to accelerate the propeller propelling beyond the limit of the drive force of the drive wheels. In the track of this example, the trolley wires are widely spaced so that high-voltage power distribution is possible, and the propeller-propelled airflow inside the track provides a large ground effect, further increasing the speed of the vehicle.

【実施例2】 (図3より図14まで及び図16参照) 図面は本発明による1実施例の略図で、図3は高架軌道
と飛行式の軌道車1の遠景である。該高架軌道は下方の
コンクリート台座で固定した支柱50を所定間隔で配置
してあり、その上部にH鋼製のレール支持体31が延々
と置いて固定してある。該レール支持体31にはアーク
固定体25の中央下部のゲート状の左右の固定肢51の
横梁49が一体に固定してある。該左右の固定肢51は
レール支持体31を挟んで下方に下がり、支柱50の上
部に固定してある(図6)。該アーク固定体25の上面
には、鉄筋コンクリート製の支持アーク22を置いて、
固定具26で固定してある。カーブ区間では、カーブの
勾配に応じた所定の傾きで支持アークを固定してある
(図7)。この支持アーク22の上方内側にはレール2
3が取り付けてある。レール底面とレール支持体31と
の間には、レール台48があり、該レール台48の上面
はアーク状でレールがカーブで傾けて取り付けてあって
も、レール23の底面の左右端縁が密着するアーク状面
になっている(図6、7)。 従ってレール押さえ82
でレール台48にレール支持体の傾斜角と等しい傾斜で
レール23を取付できる。 レールを支持している前記
支持アーク22の両側上方の内側には案内体24が置か
れ、上方が案内体固定具74で押さえてあり、内側の下
方は留板75で留めてある。さらに前記案内体24の上
部には碍子21が取付けてあり、トロリー線29を支持
している(図3、6、7)。集電は在来線の如き架線か
らでもよいが、本例では間隔を離した案内体に碍子を取
付けているので、従来の第3軌条方式より高圧の給電が
可能であり架線とその柱がなく、レール支持体・レール
台を除く他の部材はカーブ区間も直線区間と同一の部材
で架設可能であるし、レール支持体・レール台等も工場
生産可能であるから、工期も早く建設用地が小さくてす
む。組立式模型では、図15に示す如く、アーク固定体
25の底面の形態を平面上に定置可能に構成すればカー
ブの傾斜も調節できるから、一定の長さの軌道セットを
組み立て解体自在に製作できる。より詳細には、図3よ
り図13に於いて、飛行式の軌道車1の車両は車体2と
台車3とからなる。 車体1は断面が半円形で、運転室
の直後及び最後部の両側にアーク形の扉がある。 該車
体2を支持する台車3はバーベル式空気バネ緩衝装置3
0により弾力的に台車3に結合してある。バーベル式空
気バネ緩衝装置は両端部に取付けたボール状の膨大部を
持つバーベル状の連結棒17と、該膨大部を所定範囲の
角度で回動自在に支持しつつ収容し、該連結棒を回動自
在かつ滑動自在に支持する軸受を取付けた離脱制止縁を
開口部に設けた回動支持室を有する上下の回動支持函各
1個と、前記連結棒17を貫通せしめる中央孔を有する
ゴム製のドーナツ状の空気バネ18とで構成してある。
該回動支持函は穴付支持函15とカバー支持函16の
合体で成り、かつ回動支持函の少なくとも一方(本例で
は下方の回動支持函)の回動支持室の奥が膨大部を所定
の深さまで引っ込ませ得る大きさで形成せしめて成る
(図6、図9、図10)。 このバーベル式空気バネ緩
衝装置の組み立ては、前記空気バネ18の空気を抜き、
その中心の穴に連結棒17を通しておく。 そして、穴
付支持函15を両端に通してその後、両端にボール状の
膨大部を取付ける。 該ボール部分を残るカバー支持函
16で囲ってボルト孔84を通してボルト締めする。こ
のバーベル式空気バネ緩衝装置の取付けは、左右の装置
の支持棒の間隔が、上方がせまくて下方が広くなる傾斜
取付方式が望ましい。 そうすれば、図11に示す如く
台車の上面線Bと車体の下面線Aが直線走行区間では平
行になるように調節してあり、カーブ区間で車体が遠心
力で矢印Pの方向に押されると、車体の下面は該緩衝装
置の上部のボール状部は前記下面線Aより一定の高さα
に於いて回動自在であるので、左側のボール状部はDよ
りD′に、また右側のボール状部はEよりE′に移動す
ることとなり、破線A′で示す如く車体の下面は遠心側
が高くなり、求心側が低くなる。 その結果、カーブで
は車体の遠心側が高まり、求心側が沈むので車輛の安定
性が高まる(図6、図11)。台車3には中央列車輪駆
動装置に制動装置を加えた左右対称型駆動制動装置とプ
ロペラ推進装置が設けてある。中央列車輪駆動装置は空
気抵抗のバランスを得るため左右対称が好ましい。左右
対称型駆動制動装置は図8に於いて、台車の前後方向中
心線の下方に駆動輪4が2個ある。 駆動軸7は中央に
前記駆動輪4を一個嵌殺してあり、該駆動輪4の両側と
も同じ順序でブレーキ35、支持体20の軸受34、大
歯車5、軸受34の順に嵌込んであり、ナット36で両
端を止めてあり、該支持体20はクッション39を介し
て台車3の天板52にボルトとナット36で取付けてあ
る。左右のギアーケース10は前記左右の支持体20の
外側に一体に固定してあり、該ケース内の下方に納まる
大歯車5の軸孔の内周は内歯車が形成してあり、駆動軸
7の継手歯車と咬み合っているので、駆動輪35と、大
歯車5及び駆動軸7は同体で回転する。 前記左右の大
歯車5はそれぞれ左右のギアーケース10内で上方の小
歯車6と咬み合っている。 該小歯車6の中心に嵌殺し
た小歯車軸6の内端部は支持体20の上方の軸受34に
回転自在に支持されていて、他端は小歯車カバー32に
固定した軸受を貫通してギアーケースの外で、たわみ軸
継手9に連結してある。下方のサイドカバー33は上方
以外の周縁をギアーケースと一体にビスとナット36で
シールを挿んで締め付けてあり、上方の床53の直下で
小歯車カバー32の下端の折り縁とシールを挾んでネジ
止めしてある。 該小歯車カバーも周縁を前記ギアーケ
ースにシールを挿んでネジ78止めしてある。又、前記
たわみ軸継手9には小歯車軸38の反対側に駆動モータ
8のモータ軸79の軸端が連結してあり、該駆動モータ
8はクッション39を介して台車の床53に取付けてあ
る。ブレーキ35は両側の支持体20の内方に取付けて
ある。上記の如く、駆動装置の各機器は、駆動モータ以
外は支持体20に支持され、支持体20は強化した台車
の天板52に弾性体39を介してボルトとナット36で
取り付けてあるし(図8)、該支持体20は前後に突出
せしめた固定片80で台車の床53に下方からクッショ
ンを介してボルト締めしてある(図4)。駆動モータ
は、別のクッション39を介して台車の床に取り付けて
あるから、そのモータ軸は支持体に軸受を介して支持さ
れている小歯車軸38の振動のリズムと同一でないが、
たわみ軸継手9が緩和するし、蛇行動や激しい振動の発
生を構造的に内包する左右の片ツバ車輪を平行レールで
転がす方式とは異なり、本発明の中央列駆動輪の振動或
いは横揺れは小であり、かつ大径の車輪故に早いリズム
の衝撃は生じにくい。従って、モータに対する衝撃は平
行レールの軌道車より極めて小なので、簡単な緩衝構造
で軽量化して実施できる。上記の駆動装置はギアーケー
ス10内に於いて、油潤滑が可能で大型の高速車に用い
るのが望ましい。尚、上記の駆動歯車の点検作業では、
第Iにサイドカバー33を外し、第2に駆動軸のナット
を外して直ぐ横の軸受及び大歯車を抜きとり、第3に台
車底面の底蓋28を梁54から外し、第4に小歯車軸を
たわみ軸継手から外し、第5に小歯車カバーとギアーケ
ースのネジを外してから、小歯車カバーと小歯車とを同
時に外せばよい。このあとで、一方の支持体を外すと駆
動輪と駆動軸も外せる。組立ては前記と逆の段取りでで
きる。プロペラ推進装置は図4、5、14、15、16
に於いて、台車3の底部に回転可能にして設けたパイロ
ン台19から下がるモータパイロンの下方に推進モータ
12を取付け、該モータの軸に取り付けた固着具58に
プロペラ14を取付けてある。 車両の逆進時は図5中
の破線のプロペラ14のように矢印の方向にパイロン台
19の180度の回転により逆方向に推進させることが
できる。その制御システムは車輪の回転数と車両の実
速、例えば一定時間内の標識の通過数をカウントして車
輛の実速を計測し、駆動軸の回転数を検知して駆動輪の
回転速度を計測し、双方の差が一定の範囲の値を超えた
場合、例えば実速が駆動輪の回転速度より早いときプロ
ペラ推力が大なので駆動回転数を大にし、その逆ではプ
ロペラ推力を大にする等の調節で駆動輪のすべりが生じ
ない範囲に制御する。該装置による制動は、プロペラの
逆回転又はパイロン台19の180度回転でできる。特
に高速時は車輪制動より衝撃が少ないし、制動のための
複雑な制御機器を殆ど必要としないので、コストは安く
軽量化に適している。案内装置は図4、5、6に於いて
は、案内輪11が台車3の底部の前後に左右一対で設け
てある。 該案内輪11は台車3の底面と同一水準に下
面を合わせて縦軸であり、左右の案内輪の上部に設けた
プーリーにベルト27を係合して等速逆回転構造であ
る。従って一方の案内輪が案内体に接触して回転すると
き、他方の案内輪も逆に等速で回転し、台車が揺れて反
対側に傾いた時に反対側の案内輪が案内体に接触してす
べりを生じない。 この案内輪11を台車に搭載した案
内モータ81で車両のスピードと等速に図5中の矢印の
如く逆方向に回転制御することが可能であり、高速性を
高めるので一層好ましい。上述の案内輪11は最高位置
が、案内体に規制されているので台車はそれ以上は浮上
しないし、駆動輪の両ツバ77は高く踏面76が深く、
レール23より少し離れて浮いても、脱輪しない位置に
レールがあるように駆動輪が取り付けてある(図6)。
従って、推進力を大にして駆動力の限界以上の速度が出
せる。尚、本発明による案内方式として好ましい他の一
例をあげると、強制弾力接触式に於いて、図12、図1
3では左右の案内輪11は外側で案内体24の案内面に
弾力的に接触せしめられている。その構成は弾性体のゴ
ムチューブより成るドーナッツ状の空気バネ18は中央
の円筒突起97に中央を嵌めてある。又、台車3の底部
に設けたスライド溝91の前後の立ち上がり壁にはスト
ッパー94が前後の左右に1個づつ所定位置に設けてあ
る。該溝に嵌まっているスライドケース98は空気バネ
43で圧迫されてストッパーの中側にスライドケースの
くぼみ99の内側に接するまで、外方に突出せしめられ
ている。左右の案内面の間隔は一定(平行度の誤差はあ
るが)に構成してある(図12)。 又、該スライドケ
ースに回転自在に支持されている案内輪11は台車が矢
印Qの方向に傾いたとき、右側の案内輪Oは案内面に
押しつけられ、スライドケースの内側は空気クッション
を矢印Nの方向に押して左のスライドケースのくぼみ9
9がストッパー94に当たるまで弾力的に押す。このと
き左右の案内輪は何れも案内面と接触している(図1
3)。 従って、台車が一方に傾いても案内面には空気
バネの弾性によりソフトに案内面への接触を保ち車輛に
衝撃をあたえない。又、案内モータで車輛速度と等速に
回転を制御するのが、より好ましい。
Second Embodiment (See FIGS. 3 to 14 and FIG. 16) The drawings are schematic views of one embodiment according to the present invention, and FIG. 3 is a distant view of an elevated track and a flight type track car 1. On the elevated track, columns 50 fixed by a concrete pedestal below are arranged at a predetermined interval, and a rail support 31 made of H steel is placed endlessly and fixed on the upper part thereof. The rail support 31 is integrally fixed with lateral beams 49 of left and right gate-shaped fixed limbs 51 at the lower center of the arc fixing body 25. The left and right fixed limbs 51 are lowered to sandwich the rail support 31 and are fixed to the upper part of the column 50 (FIG. 6). A supporting arc 22 made of reinforced concrete is placed on the upper surface of the arc fixing body 25,
It is fixed by a fixture 26. In the curve section, the supporting arc is fixed at a predetermined inclination according to the gradient of the curve (Fig. 7). The rail 2 is located above the supporting arc 22.
3 is attached. A rail base 48 is provided between the rail bottom surface and the rail support 31, and the top surface of the rail base 48 is arc-shaped. It has an arc-shaped surface that is in close contact (Figs. 6 and 7). Therefore, the rail holder 82
Thus, the rail 23 can be attached to the rail base 48 at an inclination equal to the inclination angle of the rail support. Guide bodies 24 are placed inside both sides of the supporting arc 22 supporting the rails, the upper side is pressed by a guide body fixing tool 74, and the inner lower side is fixed by a retaining plate 75. Further, an insulator 21 is attached to the upper part of the guide body 24 and supports a trolley wire 29 (FIGS. 3, 6, and 7). The current may be collected from an overhead line such as a conventional line, but in this example, since the insulators are attached to the guide bodies spaced apart from each other, it is possible to supply a higher voltage than the conventional third rail system, and Other than the rail support / rail base, the curved section can be installed with the same member as the straight section, and the rail support / rail base etc. can be produced at the factory, so the construction period is fast Can be small. In the assembled model, as shown in FIG. 15, if the shape of the bottom surface of the arc fixing body 25 can be set on a flat surface, the inclination of the curve can be adjusted, so that a set of orbits of a certain length can be assembled and disassembled freely. it can. More specifically, in FIGS. 3 to 13, the vehicle of the flight type rail car 1 includes a vehicle body 2 and a carriage 3. The vehicle body 1 has a semi-circular cross section, and has arc-shaped doors immediately after the cab and on both sides of the rearmost portion. A truck 3 for supporting the vehicle body 2 is a barbell type air spring cushioning device 3
It is elastically connected to the carriage 3 by 0. The barbell type air spring shock absorber accommodates a barbell-shaped connecting rod 17 having ball-shaped enlarging parts attached to both ends, and accommodating while supporting the enlarging part rotatably at an angle within a predetermined range. Each of the upper and lower rotation support boxes has a rotation support chamber having a release stop edge attached to a bearing for rotatably and slidably supporting the opening, and a central hole through which the connecting rod 17 is inserted. It is composed of a rubber donut-shaped air spring 18.
The rotation support box is a combination of the hole support box 15 and the cover support box 16, and the inside of the rotation support chamber of at least one of the rotation support boxes (the lower rotation support box in this example) has an enlarged portion. Is formed in a size that allows it to be retracted to a predetermined depth (FIGS. 6, 9, and 10). To assemble this barbell type air spring cushioning device, the air of the air spring 18 is removed,
The connecting rod 17 is passed through the hole at the center. Then, the support box 15 with holes is passed through both ends, and thereafter, ball-shaped enlarged portions are attached to both ends. The ball portion is surrounded by the remaining cover support box 16 and bolted through the bolt hole 84. The barbell-type air spring cushioning device is preferably mounted in an inclined mounting system in which the distance between the support rods of the left and right devices is narrow in the upper part and wide in the lower part. Then, as shown in FIG. 11, the upper surface line B of the bogie and the lower surface line A of the vehicle body are adjusted to be parallel in the straight running section, and the vehicle body is pushed in the direction of arrow P by the centrifugal force in the curved section. And the lower surface of the vehicle body is such that the ball-shaped portion above the shock absorber has a constant height α from the lower surface line A.
Since the ball-shaped portion on the left side moves from D to D'and the ball-shaped portion on the right side moves from E to E ', the lower surface of the vehicle body is centrifugal as shown by the broken line A'. The side becomes high and the centripetal side becomes low. As a result, in the curve, the centrifugal side of the vehicle body rises and the centripetal side sinks, so the stability of the vehicle increases (FIGS. 6 and 11). The trolley 3 is provided with a left-right symmetrical drive braking device in which a braking device is added to a center row wheel driving device and a propeller propulsion device. The center row wheel drive device is preferably symmetrical in order to obtain a balance of air resistance. The left-right symmetric drive braking device has two drive wheels 4 below the center line in the front-rear direction of the carriage in FIG. One of the drive wheels 4 is fitted in the center of the drive shaft 7, and the brake 35, the bearing 34 of the support 20, the large gear 5, and the bearing 34 are fitted in this order on both sides of the drive wheel 4 in the same order. Both ends are fixed with nuts 36, and the support 20 is attached to the top plate 52 of the trolley 3 with bolts and nuts 36 via a cushion 39. The left and right gear cases 10 are integrally fixed to the outside of the left and right supports 20, and an internal gear is formed on the inner periphery of the shaft hole of the large gear 5 that is housed in the lower part of the case, and the drive shaft 7 The drive wheel 35, the large gear 5, and the drive shaft 7 rotate as a single body because they mesh with the joint gear of FIG. The left and right large gears 5 mesh with the upper small gear 6 in the left and right gear cases 10, respectively. The inner end portion of the pinion gear shaft 6 fitted in the center of the pinion gear 6 is rotatably supported by a bearing 34 above the support 20, and the other end penetrates the bearing fixed to the pinion gear cover 32. Is connected to the flexible shaft coupling 9 outside the gear case. The lower side cover 33 is fastened by inserting a seal with screws and nuts 36 integrally with the gear case on the periphery other than the upper side, and sandwiching the folding edge and the seal at the lower end of the pinion gear cover 32 just below the upper floor 53. It is screwed on. The small gear cover also has a peripheral edge fixed with a screw 78 by inserting a seal into the gear case. A shaft end of a motor shaft 79 of a drive motor 8 is connected to the flexible shaft coupling 9 on the side opposite to the pinion shaft 38, and the drive motor 8 is attached to the floor 53 of the truck via a cushion 39. is there. The brakes 35 are mounted inside the supports 20 on both sides. As described above, each device of the drive device is supported by the support body 20 except the drive motor, and the support body 20 is attached to the reinforced truck top plate 52 through the elastic body 39 with the bolts and nuts 36 ( 8), the supporting body 20 is bolted from below to the floor 53 of the trolley via a cushion with a fixing piece 80 projecting forward and backward (FIG. 4). Since the drive motor is attached to the floor of the trolley via another cushion 39, its motor shaft is not the same as the vibration rhythm of the pinion shaft 38 supported by the support through the bearing,
Unlike the method in which the left and right brim wheels, which flexibly reduce the flexible shaft coupling 9 and structurally include the occurrence of snake action and intense vibration, are rolled by parallel rails, the vibration or rolling of the center row drive wheels of the present invention does not occur. Due to the small size and large diameter of the wheels, it is difficult for a quick rhythm shock to occur. Therefore, since the impact on the motor is extremely smaller than that of the parallel rail track car, the weight can be reduced with a simple buffer structure. It is desirable that the above-mentioned drive device be used in a large high-speed vehicle because oil can be lubricated in the gear case 10. In addition, in the above inspection work of the drive gear,
Firstly, the side cover 33 is removed, secondly, the nut of the drive shaft is removed, the horizontal bearing and the large gear are immediately removed, thirdly, the bottom lid 28 on the bottom of the bogie is removed from the beam 54, and fourthly, the small gear. The shaft may be removed from the flexible shaft coupling, and fifthly, the small gear cover and the gear case screws may be removed, and then the small gear cover and the small gear may be simultaneously removed. After that, when one of the supports is removed, the drive wheel and the drive shaft can also be removed. Assembly can be done by the reverse of the above. The propeller propulsion device is shown in FIGS.
In this case, the propulsion motor 12 is attached below the motor pylon which descends from the pylon base 19 rotatably provided on the bottom of the carriage 3, and the propeller 14 is attached to the fixing tool 58 attached to the shaft of the motor. When the vehicle is moving in the reverse direction, it can be propelled in the reverse direction by rotating the pylon table 19 by 180 degrees in the direction of the arrow, as indicated by the broken line propeller 14 in FIG. The control system measures the actual speed of the vehicle by counting the number of rotations of the wheels and the actual speed of the vehicle, for example, the number of passing signs in a certain period of time, and detects the number of rotations of the drive shaft to determine the rotation speed of the drive wheels. Measure and if the difference between the two exceeds a certain range, for example, when the actual speed is faster than the rotation speed of the drive wheels, the propeller thrust is large, so the drive speed is increased, and vice versa. Control the range such that the drive wheels do not slip by adjusting such as. The braking by the device can be performed by the reverse rotation of the propeller or the 180-degree rotation of the pylon table 19. Particularly at high speed, the impact is less than that of wheel braking, and since a complicated control device for braking is hardly required, the cost is low and it is suitable for weight reduction. 4, 5 and 6, the guide device is provided with guide wheels 11 in a pair of left and right in front of and behind the bottom of the carriage 3. The guide wheel 11 has its lower surface aligned with the bottom surface of the trolley 3 and its vertical axis, and has a constant-velocity reverse rotation structure in which a belt 27 is engaged with pulleys provided on the upper portions of the left and right guide wheels. Therefore, when one guide wheel comes into contact with the guide body and rotates, the other guide wheel also rotates at the same speed, and when the bogie shakes and leans to the opposite side, the opposite guide wheel comes into contact with the guide body. It does not slip. This guide wheel 11 can be rotationally controlled in the opposite direction as indicated by the arrow in FIG. 5 at the same speed as the vehicle by the guide motor 81 mounted on the trolley, which is more preferable because the high speed is enhanced. Since the highest position of the guide wheel 11 is regulated by the guide body, the dolly does not float further, both the brims 77 of the drive wheels are high, and the tread 76 is deep.
The drive wheels are attached so that the rails are located at positions where they will not be removed even if they float a little apart from the rails 23 (FIG. 6).
Therefore, it is possible to increase the propulsive force and obtain a speed exceeding the limit of the driving force. Incidentally, as another preferred example of the guide system according to the present invention, in the forced elastic contact system, as shown in FIGS.
In Fig. 3, the left and right guide wheels 11 are elastically brought into contact with the guide surface of the guide body 24 on the outside. The air spring 18 in the form of a donut, which is made of an elastic rubber tube, is fitted in the central cylindrical projection 97. Further, stoppers 94 are provided at predetermined positions on the front and rear rising walls of the slide groove 91 provided at the bottom of the carriage 3, one at each of the front and rear right and left. The slide case 98 fitted in the groove is pushed outward by the air spring 43 until it contacts the inside of the recess 99 of the slide case on the inside of the stopper. The distance between the left and right guide surfaces is fixed (although there is an error in parallelism) (FIG. 12). Further, the guide wheel 11 rotatably supported on the slide case is pressed against the guide surface by the right guide wheel O 2 when the carriage is tilted in the direction of the arrow Q, and the inside of the slide case is indicated by the arrow of the air cushion. Press in the direction of N, and the indentation 9 on the left slide case
Push 9 elastically until it hits the stopper 94. At this time, both the left and right guide wheels are in contact with the guide surface (Fig. 1
3). Therefore, even if the carriage tilts to one side, the elasticity of the air spring keeps the guide surface softly in contact with the guide surface and does not give a shock to the vehicle. Further, it is more preferable that the guide motor controls the rotation at the same speed as the vehicle speed.

【実施例3】 (図14より図20まで参照) 本例は模型の一例で、軌道装置は支持アーク22が固定
アーク25上で固定具26で一体に固定され、この状態
で地上でも固定できる。高架軌道ではレール23は支持
アークの中央の溝に防音のためのクッションを挾んで差
し込んである。 アーク固定体25の内側には規制突起
93があり、支持アークの下面の溝でレール方向へずれ
るのを規制している。 該レールは縦幅が広く、案内体
24は案内体固定具74で支持アークに締め付けてあ
る。この車両は台車と車体が一体に固定してあり、下方
の台車の空洞内に駆動モータ8、小歯車6が納まってい
る。更に、両側の支持体の上方の左右の固定片80が台
車の床53に取付けてある。車体の前部には標的70が
中板57に取り付けて、上半分を透明板を通して目視し
やすくなっていて、光線がヒットすると所定のサインを
発する構成になっている。駆動輪4は左右のツバ部分を
歯車に形成してあり(図14)、駆動軸7で両側の支持
体20間に軸受34を介して回転自在に支持されてい
る。該駆動輪4のツバ歯車に噛み合う伝動小歯車6は前
記台車の空洞内に於いて、小歯車軸38により左右のピ
ローブロック85内の軸受に回転自在に支持されてい
る。この小歯車軸は両側のピローブロック85の外方に
のびていて、その両端部がたわみ軸継手9に連結してあ
る。該たわみ軸継手9は両外側の駆動モータ8に連結し
てある。駆動モータ8はクッション37を介して床53
に取り付けてあり、そのモータ軸は前記の如くたわみ軸
継手9を介して前記小歯車軸38と連結せしめてある。
小歯車は無給油でツバ歯車と噛合えるナイロン製であ
り、たわみ軸継手とクッシヨン39により、駆動輪から
の衝撃は緩和され、衝撃を受けるのは支持体20とそれ
を取付けた台車の床に限定される。 上述のツバ歯車駆
動装置は本発明による1実施例で駆動輪に歯車を一体に
付属せしめる方法は他の一例では、その外周を中高にし
て歯車を形成して小歯車に噛合わせ、両側で平行レール
面に転がらす等もあるが、極めて少ない部品でコストが
安く、無給油でも相当程度の速度で走行でき、低騒音で
ある。プロペラ推進装置は、図14、16で駆動輪4の
前方にあり、プロペラは固着具58により推進モータ1
2の後方に突出したモータ軸と一体に固定してある。推
進モータ12はモータパイロン13で支持され、該モー
タパイロンは台車の床に設けた回転装置で支持されてい
る。モータパイロン13はサーボモータが内在せしめて
あり、該サーボモータはパイロン歯車45に連結してあ
る。該パイロン歯車45はモータ支持体59の上方に構
成した回動歯車47に咬み合っている。モータ支持体5
9の支持片は、両側のパイロンに取り付けてあるモータ
回動軸46で回動自在に支持されている。従って、モー
タ支持体59はサーボモータが回転した分だけパイロン
歯車45を介して、回動歯車47により、モータ回動軸
46を中心に回動して推進モータ12の上下角を変化さ
せる。それにより、プロペラの推進方向も上下方向が変
化せしめられる。その結果後部駆動輪のすべりを検知し
た場合には推進モータ12の前部が下がるようにする
と、車輛前部に揚力が増え、後部に荷重が増す結果、台
車の前部が軽くなり後部に逆の荷重かかり、すべりをな
くせる。前部の駆動輪のすべりはその逆でなくせる。モ
ータパイロンの回転装置は台車の床53に設けてある
(図16)。回転角度を定めるサーボモータ88のモー
タ軸は回転台71の中心に固定してあり、該回転台71
の下面にはモータパイロン13の上面を合わせて一体に
固定してある。この回転台71は下面の外周に軸受け3
4が当接し、回転自在に支持され、該軸受は回転支持ケ
ース87の内周下方に嵌殺してあり、該回転支持ケース
は外周を環状固定具86で床53に固定してある。従っ
てサーボモータを回転させた角度だけモータパイロンも
回転し、プロペラの向きを逆の方向に変えることができ
る。本発明に於いて集電装置は軽量化のために小型で部
品点数が少なく架線又はトロリー線への追随製のよいも
のがのぞましく、その一例として本発明による耐風圧型
のパンタグラフは、バネ板62、丁番63等の素材とし
て良伝導体で、かつ硬質で弾性に富む、例えば燐青銅の
如き金属が好ましい。すり板には、燐青銅も使えるが、
焼結合金の新素材を選ぶのが、望ましい。図17より図
21に於いて、耐風圧式パンタグラフは、一対のすり板
61、該すり板を固定するバネ板62、該バネ板を片側
に固着せしめた左右の丁番63、該左右の丁番の他側に
は、中央に支え板64を固着したバネ板62の両端部が
一体に固定してある。すり板61は短い丸棒の両端部を
薄肉に形成して鋲孔を穿ってあり、2本を並べてバネ板
62に鋲65止めしてある。バネ板62は、すり板を固
定した中央部を残して両側をアールをつけて同じ方向に
約45度で曲げてある。対面しているバネ板も支え板の
両側をやや余して同一の形状に曲げて形成してある。上
記の2枚のバネ板の両端部がそれぞれ2枚の丁番の一片
づつに固着してあって外形ができている。そして風圧が
大きくかかるバネ板の2本のすり板61の間に風孔69
が穿ってある。このパンタグラフ60の取り付けは、車
両の所定の位置に絶縁体42を介して一対の押さえ板6
6をパンタグラフの支え板64の幅に合う隙を開けて平
行に固定する。次には、2枚の平行に取り付けた押さえ
板の間に支え板を横方向から押し込み、押さえ孔67に
より、ビス止めすれば完了する。該パンタグラフの素材
が良伝導体であれば、この押さえ板に電極を取り付けて
配線すればよい。このパンタグラフは、すり板61が押
圧されると、図19の破線の如く低くなり、圧力を除く
と瞬時に復元するので、トロリー線の高低の変化に良く
追随できるし、すり板を除くと、風圧は構成部品の板の
厚みにかかるのみであり、バネ板の幅の広い点は風孔6
9で空気が抜けるので、風圧に強い特徴がある。尚、前
記の押さえ孔67のビスを外せば、矢印P方向にスライ
ドさせてパンタグラフを簡単に外すことができる。この
パンタグラフは下向きにも使えるので、集電靴にもな
る。かくの如く、本例のパンタグラフは部品点数が少な
く、簡単な構造なので軽量で反応が早いから集電靴とし
てもトロリー線への追随性が良く、離線を防止し易い。
Third Embodiment (See FIGS. 14 to 20) This example is an example of a model. In the track device, the supporting arc 22 is integrally fixed on the fixed arc 25 by the fixing tool 26, and in this state, it can also be fixed on the ground. . On the elevated track, the rail 23 has a cushion for sound insulation inserted in a groove in the center of the supporting arc. There is a restriction projection 93 inside the arc fixing body 25, and the groove on the lower surface of the support arc restricts the deviation in the rail direction. The rail has a large vertical width, and the guide body 24 is fastened to the supporting arc by a guide body fixture 74. In this vehicle, the bogie and the vehicle body are integrally fixed, and the drive motor 8 and the pinion 6 are housed in the cavity of the bogie below. Further, left and right fixing pieces 80 above the supporting bodies on both sides are attached to the floor 53 of the truck. The target 70 is attached to the middle plate 57 at the front part of the vehicle body so that the upper half can be easily seen through the transparent plate, and a predetermined sign is emitted when the light beam hits. The drive wheel 4 has left and right flanges formed as gears (FIG. 14), and is rotatably supported by the drive shaft 7 between the supports 20 on both sides via bearings 34. The transmission small gear 6 meshing with the flange gear of the drive wheel 4 is rotatably supported by bearings in the left and right pillow blocks 85 by the small gear shaft 38 in the cavity of the carriage. The pinion shaft extends outside the pillow blocks 85 on both sides, and both ends thereof are connected to the flexible shaft joint 9. The flexible shaft coupling 9 is connected to both outer drive motors 8. The drive motor 8 receives the floor 53 through the cushion 37.
The motor shaft is connected to the small gear shaft 38 via the flexible shaft coupling 9 as described above.
The small gear is made of nylon that can be engaged with a brim gear without lubrication, and the impact from the drive wheels is mitigated by the flexible shaft coupling and the cushion 39, and the impact is received on the support 20 and the floor of the truck to which it is attached. Limited. The flange gear driving device described above is an embodiment according to the present invention in which the gear is integrally attached to the drive wheel. In another example, the outer circumference is set to a middle height to form a gear, which meshes with a small gear and is parallel on both sides. Although it can be rolled on the rail surface, the cost is low with extremely few parts, it can run at a considerable speed even without oiling, and it has low noise. The propeller propulsion device is located in front of the drive wheel 4 in FIGS. 14 and 16, and the propeller is fixed by the fastener 58 to the propulsion motor 1.
It is fixed integrally with the motor shaft projecting to the rear of 2. The propulsion motor 12 is supported by a motor pylon 13, which is supported by a rotating device provided on the floor of the truck. A servomotor is incorporated in the motor pylon 13, and the servomotor is connected to the pylon gear 45. The pylon gear 45 meshes with a rotary gear 47 formed above the motor support 59. Motor support 5
The support piece 9 is rotatably supported by motor rotation shafts 46 attached to the pylons on both sides. Therefore, the motor support 59 is rotated about the motor rotation shaft 46 by the rotation gear 47 via the pylon gear 45 by the amount of rotation of the servo motor to change the vertical angle of the propulsion motor 12. As a result, the propelling direction of the propeller is also changed vertically. As a result, when slippage of the rear drive wheels is detected, if the front part of the propulsion motor 12 is lowered, lift is increased in the front part of the vehicle and the load is increased in the rear part. It is possible to eliminate the slip and the load. The slippage of the front drive wheels can be reversed. The rotating device of the motor pylon is provided on the floor 53 of the truck (FIG. 16). The motor shaft of the servomotor 88 that determines the rotation angle is fixed to the center of the turntable 71.
The upper surface of the motor pylon 13 is aligned with the lower surface of the above and is integrally fixed. This rotary table 71 has a bearing 3 on the outer periphery of the lower surface.
4 is abutted and rotatably supported, and the bearing is fitted into the lower part of the inner circumference of the rotation support case 87, and the outer circumference of the rotation support case is fixed to the floor 53 by an annular fixture 86. Therefore, the motor pylon is also rotated by the angle at which the servo motor is rotated, and the direction of the propeller can be changed to the opposite direction. In the present invention, it is desirable that the current collector is small in size for the sake of weight reduction and has a small number of parts, which is easily manufactured to follow an overhead line or a trolley wire, and as one example thereof, the wind pressure resistant pantograph according to the present invention is a spring. As a material for the plate 62, the hinge 63, etc., a metal such as phosphor bronze which is a good conductor and hard and rich in elasticity is preferable. Phosphor bronze can also be used for the scraping board,
It is desirable to choose a new material for the sintered alloy. In FIG. 17 to FIG. 21, a wind pressure resistant pantograph includes a pair of sliding plates 61, a spring plate 62 for fixing the sliding plates, left and right hinges 63 with the spring plates fixed to one side, and left and right hinges. On the other side, both ends of a spring plate 62 having a support plate 64 fixed to the center are integrally fixed. The contact plate 61 has both ends of a short round bar formed thin to have rivet holes, and two linings are arranged side by side and fixed to the spring plate 62 with rivets 65. The spring plate 62 is bent at about 45 degrees in the same direction with a radius on both sides except for the central portion to which the contact plate is fixed. The facing spring plates are also formed by bending both sides of the supporting plate into the same shape with a little margin. Both ends of the above-mentioned two spring plates are fixed to each of the two hinges to form the outer shape. The air hole 69 is provided between the two sliding plates 61, which are spring plates to which a large wind pressure is applied.
Is worn. The attachment of the pantograph 60 is carried out at a predetermined position of the vehicle through the insulator 42 through the pair of pressing plates 6.
6 are fixed in parallel with each other with a gap matching the width of the support plate 64 of the pantograph. Next, the supporting plate is pushed laterally between the two pressing plates that are attached in parallel, and the pressing holes 67 are screwed to complete the process. If the material of the pantograph is a good conductor, the electrodes may be attached to the pressing plate for wiring. This pantograph becomes lower as shown by the broken line in FIG. 19 when the contact plate 61 is pressed, and restores instantly when the pressure is removed, so it can follow the changes in height of the trolley wire well, and when the contact plate is removed, The wind pressure only affects the thickness of the plate of the component, and the wide point of the spring plate is the air hole 6
Since air escapes at 9, it has a strong characteristic against wind pressure. If the screw of the pressing hole 67 is removed, the pantograph can be easily removed by sliding in the direction of arrow P. This pantograph can also be used face down, so it can also be used as a current collecting shoe. As described above, the pantograph of this example has a small number of parts, has a simple structure, and is light in weight and has a quick reaction.

【実施例4】 (図22、23、24 参照) 本例の飛行式の軌道車は前後に駆動輪4を設けて重量物
の積載にも耐える構造で、車輪駆動力を大としてある。
プロペラは最後部に一対ある。 各種機器は既述例の
如く用途により構成してあり、車両の側面の外形は前後
とも同一で丸くなっている(図22)。 前方よりみて
案内輪11の左右は台車の両側で僅かに出っ張っていて
縦軸の水平回転である。車両の底面は曲面と平面で構成
され、航空機のように空気抵抗が小さく高速性が大であ
る。安定性があるので前進と後進ともに貨物を積み長距
離走行させることができる。
Fourth Embodiment (Refer to FIGS. 22, 23 and 24) The flight type rail car of the present embodiment has a structure in which front and rear drive wheels 4 are provided to withstand the loading of heavy objects, and the wheel driving force is large.
There is a pair of propellers at the end. The various devices are configured according to the applications as described above, and the outer shape of the side surface of the vehicle is the same in both front and rear and is round (FIG. 22). When viewed from the front, the left and right sides of the guide wheel 11 slightly project on both sides of the carriage and are horizontal rotations on the vertical axis. The bottom surface of the vehicle is composed of a curved surface and a flat surface, and has low air resistance and high speed like an aircraft. Because of its stability, cargo can be loaded forward and backward for long-distance travel.

【実施例5】 (図25 参照) 図24に於いて、長円形状の軌道73が複数設定してあ
り、標的を搭載した飛行式の軌道車1が走行している。
該模型に好ましい競技システムの一例をのべる。該軌道
73と適宜の距離に設定した回転スタンド72に1乃至
複数の狙撃台40を設けてある。 該飛行式の軌道車1
の標的70は特定の光線のヒットに対して所定のサイン
をだしたり或いはカウントする。矢印のように、該軌道
車と回転スタンド72を逆にも回転せしめ得るし、回転
スピードを早めたり、傾けたり、揺動させたりできる。
複数の狙撃者で狙撃のヒット数を競争できる。標的の
サインには、メロディー音・点滅光・色の変化・形態の
変更・物体を発射する等多くの種類がある。
Fifth Embodiment (see FIG. 25) In FIG. 24, a plurality of elliptical orbits 73 are set, and a flight type rail car 1 carrying a target is running.
An example of a preferred competition system for the model is given below. One or a plurality of sniper tables 40 are provided on the rotation stand 72 set at an appropriate distance from the track 73. The flight-type rail car 1
The target 70 emits or counts a predetermined sign for a specific ray hit. As shown by the arrow, the rail car and the rotation stand 72 can be rotated in reverse, and the rotation speed can be increased, tilted, or swung.
Multiple snipers can compete for sniper hits. There are many types of target signs such as melody sounds, flashing lights, color changes, shape changes, and object firing.

【実施例6】 (図26 参照) 本例は本発明による飛行式の軌道車の一例で、車体上に
もプロペラ14とその推進装置が設けてある。案内輪1
1は、車両が傾いたとき、その側に幾分掛かるが、主な
荷重は中央の駆動輪4に掛かるし、案内モータ81は案
内軸と直結され車両スピードと同一に回転制御されてい
るが、実施例1に記述した技術範囲で本発明に含まれ
る。 H鋼製の案内体24は断面溝型の立ち上がり壁を
案内体となしたもので、案内体の重量に比較して強度が
あり、好ましい。その他、従来のレール状、断面円形や
角型のパイプによる案内体等にツバ車輪の案内輪を組み
合わせるように、本発明の含む構造の組合せ方法は多く
ある。 そして車輛の進行中、案内輪は案内面との接触
時に空転やすべりを防ぐ手段、例えば案内モータで車輛
速度と等速で回転させておく、を加えてあるのが望まし
いし、特に高速車輛には重要である。又、その材質は騒
音が生じず衝撃を弱め摩擦係数の小さいことが望まれ
る。従って、鋼鉄・合成ゴム・合成樹脂・セラミックス
等やそれらの複合素材を目的に応じて案内輪の外周に使
用するのが望ましい。このように、本発明による実施例
では、軽量性を限界まで求めてエネルギー消費を抑制せ
んとするもので、大型ではプロペラ飛行機のような高速
性を具有し、小型模型でも高速性と相当程度の重量物の
可載性を具備するので、リモートコントロール或いは、
大量輸送の交通機関として、又自動制御装置を組み込ん
で、自動搬送装置、遊戯装置等広範囲の用途に利用でき
る。
Sixth Embodiment (see FIG. 26) This embodiment is an example of a flight-type rail car according to the present invention, in which the propeller 14 and its propulsion device are also provided on the vehicle body. Guide wheel 1
No. 1 is applied to the side of the vehicle when the vehicle is tilted, but the main load is applied to the center drive wheel 4, and the guide motor 81 is directly connected to the guide shaft and is controlled to rotate at the same speed as the vehicle. The technical scope described in Example 1 is included in the present invention. The guide body 24 made of H steel is a guide body having a rising wall having a groove-shaped cross section, and is stronger than the weight of the guide body, which is preferable. In addition, there are many methods of combining the structures included in the present invention such that the guide wheel of the brim wheel is combined with the conventional guide body having a rail-shaped, circular cross-section, or rectangular pipe. And while the vehicle is in progress, it is desirable that the guide wheel be provided with a means for preventing idling and slippage when it comes into contact with the guide surface, for example, by rotating the guide wheel at a speed equal to the vehicle speed by a guide motor, especially in a high-speed vehicle. Is important. Further, it is desired that the material does not generate noise, weakens impact, and has a small friction coefficient. Therefore, it is desirable to use steel, synthetic rubber, synthetic resin, ceramics, etc. or their composite materials on the outer circumference of the guide wheel according to the purpose. As described above, in the embodiment according to the present invention, it is intended to suppress the energy consumption by seeking the lightness to the limit, and the large size has a high speed like a propeller airplane, and the small model has a high speed and a considerable speed. Since it has the ability to load heavy objects, it can be controlled remotely or
It can be used for a wide range of purposes such as an automatic carrier and amusement machine as a mass transit transportation system or by incorporating an automatic control device.

【0006】[0006]

【発明の効果】以上説明したように本発明の軌道は他の
軌道車の車両重量と比較して約5分の1で、掛かる負荷
が小さいので、高架でも特殊な場所を除けば支柱及びそ
の基礎は小規模で簡単であるから、部材は量産し易く高
架上のコンクリート打ち込みのような長期工事は必要な
く、工期も早い。最大の効果は軌道の建設用地の買収が
不要になり、既存の高速道路沿い或いは鉄道上等にも小
規模の工事により高架で架設できることである。軌道は
1条のレール上を単列の車輪が転がるので、進行方向へ
の慣性が大になるので高速性が大になり、左右のレール
の不整による蛇行動や振動がなくレールへの負荷が小で
あり、レールの不整の保守点検が不要となり、両ツバ車
輪のツバは高くでき、案内輪に上限があるので脱輪がな
く、案内輪の強制弾力接触式では車輛の揺れをソフトに
変化させて乗り心地を良くし、左右の車輪を支える重量
車軸がないので構造が簡単で軽量化でき、車輪駆動装置
は左右対称型車輪駆動制動装置では、両側のサイドカバ
ーを外して大歯車と小歯車を点検できるし、左右対称だ
から一対の小型の駆動モータを使用して台車の厚さを薄
くできて、空気抵抗上も好ましく、両側からディスクブ
レーキで制動できて高速時には使用しない等で保守点検
の手間が僅かですむし、油潤滑が可能で高速性がある。
案内体にトロリー線を取付ければ、起伏が小で離線を僅
かにし、集電靴が車輛の下方にあるので、該靴で生じた
乱流が車輛下面で揚力を生み高速浮上走行に好都合であ
る。。ツバ歯車駆動装置では部品点数が少なく、簡単な
構造で無給油でも走れるので、整備の手間が省けてラン
ニングコストが安くなり、小型化が容易にできる。プロ
ペラ推進では、プロペラのひねり角が大で、翼の幅が広
いので、空気を掻く量の積が大で大推力が得られるから
車輪のすべりを検知して高回転により推進力を増大せし
めることができるが、小径なので風切量が少なく騒音が
小さく、車輪駆動の限界以上に高速性を高めることがで
きるし、高速時の制動では車輪によらないのですべりが
なくて車輪やレールの偏磨耗が生じないから、保守の手
間が省ける。更に、モータパイロンの上下への推進方向
の調節構造により上述の効果を高められる。バーベル型
緩衝装置はカーブ区間で車体を内方へ傾けるので、高速
安定性を高めるし、部品点数が少ないから軽量化でき
る。集電靴は超小型化と軽量化が可能で耐風型パンタグ
ラフとしても使用でき、かつトロリー線への追随性がよ
いので、高速での集電を可能とし、車両の高速走行を実
現せしめる。更に小型の模型に使用してショートによる
故障を防ぐことができる。又、小型の模型にはアーク固
定体と固定アークにより、カーブ区間も同じ部品で調整
して組立てできるので、コストが安く、車体にはツバ歯
車駆動装置により簡単で部品数が少なく安価な模型セッ
トを提供できる。上記の如く、本発明による軌道構造・
単列車輪駆動軌道車・飛行式の軌道車・左右対称式車輪
駆動制動装置・両ツバ歯車駆動装置・案内システム・薄
板製の集電靴・バーベル式緩衝装置・プロペラ・プロペ
ラ推進と制動システム等によれば、高速大量輸送システ
ムが安い費用で土地の買収なしで早い工期で供用でき、
模型或いは遊戯システム以外でも、小型で従来と全く異
なった高性能の飛行式の軌道車ができるので、閉鎖空間
内をリモートコントロールで飛走行する長距離高速輸送
システム、例えば郵便物や小荷物等の、が提供でき輸送
コストの大幅な削減や省エネルギーを実現できる。
As described above, the track of the present invention is about one fifth of the vehicle weight of other rail cars, and the load applied is small. Since the foundation is small and simple, it is easy to mass-produce the material, and long-term construction such as concrete driving on an elevated structure is not required and the construction period is fast. The greatest effect is that the acquisition of land for track construction is no longer necessary, and it can be installed over the existing highways or on railways by a small-scale construction. The track has a single row of wheels rolling on a single rail, so the inertia in the direction of travel is large and the speed is high, so there is no snake action or vibration due to the irregularity of the left and right rails, and there is no load on the rail. Since it is small, there is no need for irregular maintenance of the rails, the brim of both brim wheels can be made high, and there is no derailment because there is an upper limit on the guide wheel, and the forced elastic contact type of the guide wheel changes the vehicle shake softly The structure is simple and lightweight because there is no heavy axle to support the left and right wheels, and the wheel drive system is a symmetrical wheel drive braking system. The gears can be inspected, and since it is symmetrical, the thickness of the trolley can be thinned by using a pair of small drive motors, the air resistance is also favorable, and it can be braked from both sides by disc brakes and not used at high speeds for maintenance inspection Has little effort It requires only, there is a possible high-speed oil lubrication.
If you install a trolley wire to the guide, the undulations are small and the separation is slight, and the current collecting shoes are below the vehicle, so the turbulence generated in the shoes creates lift on the underside of the vehicle and is convenient for high-speed levitation. is there. . Since the flange gear drive device has a small number of parts and has a simple structure and can run without lubrication, maintenance work can be saved, running costs can be reduced, and miniaturization can be facilitated. In propeller propulsion, since the twist angle of the propeller is large and the width of the blade is wide, the product of the amount of scratching the air is large and a large thrust can be obtained, so it is possible to detect the slip of the wheel and increase the propulsion force by high rotation. However, because it has a small diameter, there is little wind cut and noise is small, it is possible to enhance high speed beyond the limit of wheel drive, and braking at high speed does not rely on wheels, so there is no slip and uneven wear of wheels and rails Since it does not occur, maintenance work can be saved. Furthermore, the above-mentioned effect can be enhanced by the structure for adjusting the propulsion direction of the motor pylon up and down. Since the barbell type shock absorber leans the vehicle body inward in the curved section, high-speed stability is enhanced and the number of parts is small, so that the weight can be reduced. The current-collecting shoes can be made extremely compact and lightweight, can be used as a wind-resistant pantograph, and follow the trolley wire well, enabling high-speed current collection and high-speed running of the vehicle. Furthermore, it can be used for a small model to prevent breakdown due to short circuit. In addition, a small model can be assembled by adjusting the arc fixed body and fixed arc in the curved section with the same parts, so the cost is low, and the car body drive device is simple and the number of parts is small and the model set is inexpensive. Can be provided. As described above, the track structure according to the present invention
Single-row wheel drive railcars, flying railcars, symmetrical wheel drive brakes, double-branch gear drive, guide system, thin-plate current collecting shoes, barbell shock absorbers, propellers, propeller propulsion and braking systems, etc. According to the high-speed mass transit system, it can be used in a short period of time at a low cost without land acquisition,
In addition to a model or play system, it is possible to create a small-sized, high-performance flight-type rail car that is completely different from the conventional ones. Therefore, a long-distance high-speed transportation system that runs by remote control in an enclosed space, such as mail and small parcels, , Can provide a significant reduction in transportation cost and energy saving.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による実施例1の軌道装置と飛行式の軌
道車の遠景部分側面図、
FIG. 1 is a side view showing a distant view of a track device according to a first embodiment of the present invention and a flight-type track car;

【図2】図1の車輛の一点鎖線a−・−a′での概略拡
大断面図、
2 is a schematic enlarged cross-sectional view taken along one-dot chain line a -.- a 'of the vehicle of FIG.

【図3】本発明による実施例2の高架軌道と飛行式の軌
道車の遠景側面図、
FIG. 3 is a distant view side view of an elevated track and a flight type track car according to a second embodiment of the present invention;

【図4】図3の飛行式の軌道車の拡大側面図、FIG. 4 is an enlarged side view of the flight-type track car of FIG. 3;

【図5】図4の車輛の底面図、5 is a bottom view of the vehicle of FIG. 4,

【図6】図4中のb−・−b′の位置での車輛及び軌道
の概略部分拡大断面図、
FIG. 6 is a schematic partial enlarged cross-sectional view of a vehicle and a track at positions b- and -b 'in FIG.

【図7】図6中の軌道のカーブ区間での傾斜調節完成
図、
FIG. 7 is a completed view of tilt adjustment in a curve section of the track in FIG.

【図8】図6中の左右対称式車輪駆動制動装置の拡大
図、
FIG. 8 is an enlarged view of the left-right symmetrical wheel drive braking device in FIG.

【図9】バーベル式空気バネ緩衝装置の斜視図、FIG. 9 is a perspective view of a barbell type air spring cushioning device,

【図10】図9の装置の分解図、10 is an exploded view of the device of FIG. 9,

【図11】バーベル式空気バネ緩衝装置の作用の説明
図、
FIG. 11 is an explanatory view of the action of the barbell type air spring shock absorber,

【図12】案内輪の強制弾力接触式の直線区間の状態の
説明図、
FIG. 12 is an explanatory view of a state of a forced elastic contact type straight section of the guide wheel,

【図13】図12中の案内輪のカーブ区間での状態図、13 is a state diagram of the guide wheel in a curve section in FIG. 12,

【図14】実施例3のツバ歯車駆動装置による模型の飛
行式の軌道車の近景側面図、
FIG. 14 is a close-up side view of a model flight-type rail car driven by the flange gear driving device according to the third embodiment;

【図15】図14中の一点鎖線c−・−c′の位置での
車両の断面図、
15 is a cross-sectional view of the vehicle at the position of alternate long and short dash line c -.- c 'in FIG.

【図16】図14の車輛の前後方向の中心線での縦断面
図、
16 is a vertical cross-sectional view taken along the center line in the front-rear direction of the vehicle shown in FIG.

【図17】本発明による集電靴のの取り付け状態の斜視
図、
FIG. 17 is a perspective view of a state in which the current collecting shoe according to the present invention is attached,

【図18】図17での集電靴を取り除いた状態図、FIG. 18 is a state diagram in which the current collecting shoes in FIG. 17 are removed,

【図19】図17の集電靴の縮小正面図、FIG. 19 is a reduced front view of the current collecting shoe of FIG.

【図20】図19の集電靴の平面図、20 is a plan view of the current collecting shoe of FIG.

【図21】図19の集電靴の側面図、21 is a side view of the current collecting shoe of FIG.

【図22】実施例4の飛行式の軌道車が軌道に停止して
いる側面図、
FIG. 22 is a side view of the flight-type railcar of Example 4 stopped on the track;

【図23】図22の車両の背面図、23 is a rear view of the vehicle of FIG. 22,

【図24】図23の車両の底面図、FIG. 24 is a bottom view of the vehicle shown in FIG. 23,

【図25】実施例5の飛行式の軌道車による狙撃ゲーム
の説明図、
FIG. 25 is an explanatory diagram of a sniper game using a flight-type track car of Example 5;

【図26】実施例6の飛行式の軌道車とその軌道の概略
正面図である。
FIG. 26 is a schematic front view of a flight-type track car of Example 6 and its track.

【符号の説明】 1 飛行式の軌道車、2 車体、 3 台車、
4 駆動輪、5 大歯車、 6 小歯車、
7 駆動軸、 8 駆動モータ 9 たわみ軸継手、 10 ギアーケースス、11 案
内輪、12 推進モータ、 13 モータパイロン、1
4 プロペラ、 15 穴付支持函、16 カバー支持
函、 17 連結棒、 18 空気バネ、19 パイ
ロン台、 20 支持体、 21 碍子、 22
支持アーク、23 レール、 24 案内体、
25 アーク固定体、26 固定具、27 ベルト、
28 底蓋、 29 トロリー線、30 バー
ベル式空気バネ緩衝装置、 31 レール支持体、3
2 小歯車カバー、 33 サイドカバー 34 軸
受、 35 ブレーキ、36 ナット、 37 緩
衝ボルト、38 小歯車軸、 39 クッション、40
狙撃台、 41 案内軸、 42 絶縁体、
43 検知装置、44 レール接続具、 45
パイロン歯車、 46 モータ回動軸 47 回動歯車、 48 レール台、 49 横梁、
50 支柱、51 固定肢、 52 天
板、 53 床、 54 梁 55 ツバ歯車、 56 コイルバネ、57 中
板、 58 固着具、59 モータ支持体、 60
集電靴、 61 すり板、62 バネ板、
63 丁番、 64 支え板 65 鋲、6
6 押さえ板、 67 押さえ孔、 68 ストッ
パー、 69 風孔、70 標的、 71 回転
台、 72 回転スタンド、73 軌道装置、74
案内体固定具、 75 留板、 76 踏面、
77 ツバ、78 ネジ、 79 モータ
軸、 80 固定片、 81 案内モータ 82 レール押さえ、 83 緩衝軸受 84 ボル
ト孔、 85 ピローブロック 86 環状固定具、 87 回転支持ケース 88
サーボモータ、89 軸受ケース 90 案内体支持具、 91 スライド溝、92 規制
溝、 93 規制突起、94 ストッパー、 95
標識、 96 カウンター 97 円筒突起、9
8 スライドケース、99 くぼみ。
[Explanation of code] 1 flight type rail car, 2 vehicle bodies, 3 bogies,
4 drive wheels, 5 large gears, 6 small gears,
7 Drive Shaft, 8 Drive Motor 9 Flexible Shaft Coupling, 10 Gear Cases, 11 Guide Wheels, 12 Propulsion Motors, 13 Motor Pylons, 1
4 propellers, 15 support box with hole, 16 cover support box, 17 connecting rod, 18 air spring, 19 pylon stand, 20 support, 21 insulator, 22
Support arc, 23 rails, 24 guides,
25 arc fixing body, 26 fixing tool, 27 belt,
28 bottom lid, 29 trolley wire, 30 barbell type air spring shock absorber, 31 rail support, 3
2 small gear cover, 33 side cover 34 bearing, 35 brake, 36 nut, 37 buffer bolt, 38 small gear shaft, 39 cushion, 40
Sniper, 41 guide shaft, 42 insulator,
43 detection device, 44 rail connection tool, 45
Pylon gear, 46 Motor rotation shaft 47 Rotation gear, 48 Rail base, 49 Cross beam,
50 columns, 51 fixed limbs, 52 top plate, 53 floor, 54 beams 55 flange gears, 56 coil springs, 57 middle plate, 58 fasteners, 59 motor support, 60
Current collecting shoes, 61 friction plates, 62 spring plates,
63 hinges, 64 support plates 65 tacks, 6
6 holding plate, 67 holding hole, 68 stopper, 69 air hole, 70 target, 71 turntable, 72 turn stand, 73 track device, 74
Guide body fixture, 75 fastening plate, 76 tread,
77 flange, 78 screw, 79 motor shaft, 80 fixing piece, 81 guide motor 82 rail retainer, 83 buffer bearing 84 bolt hole, 85 pillow block 86 annular fixing tool, 87 rotation support case 88
Servo motor, 89 Bearing case 90 Guide support, 91 Slide groove, 92 Restriction groove, 93 Restriction protrusion, 94 Stopper, 95
Signs, 96 counters, 97 cylindrical protrusions, 9
8 slide cases, 99 recesses.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図9】 [Figure 9]

【図11】 FIG. 11

【図19】 FIG. 19

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

【図20】 FIG. 20

【図21】 FIG. 21

【図24】 FIG. 24

【図6】 [Figure 6]

【図7】 [Figure 7]

【図10】 [Figure 10]

【図12】 [Fig. 12]

【図22】 FIG. 22

【図8】 [Figure 8]

【図13】 [Fig. 13]

【図14】 FIG. 14

【図23】 FIG. 23

【図25】 FIG. 25

【図15】 FIG. 15

【図16】 FIG. 16

【図17】 FIG. 17

【図18】 FIG. 18

【図26】 ─────────────────────────────────────────────────────
FIG. 26 ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年11月8日[Submission date] November 8, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 飛行式の軌道車とその軌道装置Title: Flight type rail car and its rail device

【特許請求の範囲】[Claims]

【請求鋼17】 縦軸で設けた左右の案内輪を等速逆回
転構造となし、何れか一方の案内輪の外周を案内体に接
触せしめて走行する請求項1乃至3の何れかに記載の軌
道車。
17. The steel according to claim 1, wherein the left and right guide wheels provided on the vertical axis have a constant-velocity reverse rotation structure, and the outer periphery of one of the guide wheels is brought into contact with the guide body to travel. Rail car.

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主として低速時に車輪駆
動であり、プロペラ推進で高速性を増大せしめる飛行式
の軌道車及びその軌道システムに関する。より詳細に
は、一条の軌道上を転がる1乃至複数の支持輪を車両の
前後方向の中央線の下方に設け、該支持輪の一個乃至複
数を軌道車に搭載した原動機に連結し、該軌道車に左右
の案内輪を設けて軌道に設けた左右の案内体に案内せし
めて成る中央列車輪駆動軌道車と、該軌道車を含む車輪
駆動軌道車にプロペラ推進装置を設けて成る複合進行式
の飛行式の軌道車、及びそれらの運航を支持する軌道シ
ステムと、前記中央列車輪駆動軌道車或いは飛行式の軌
道車に各種の装置を設けて成る小型のリモートコントロ
ール式高速輸送システム、科学模型、或いは遊戯装置等
の構造とシステム等に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flight-type track car which is driven mainly by wheels at a low speed and which can increase a high speed by propeller propulsion, and a track system therefor. More specifically, one or a plurality of support wheels that roll on a single track are provided below the center line in the front-rear direction of the vehicle, and one or a plurality of the support wheels are connected to a prime mover mounted on the track car, A central row wheel drive rail car that is provided with left and right guide wheels on a vehicle and is guided by left and right guide bodies provided on a track, and a compound traveling type that is provided with a propeller propulsion device for a wheel drive rail car including the rail car. Flight-type rail cars, and a track system that supports their operation, and a small remote-controlled high-speed transportation system that is equipped with various devices on the center-row wheel-drive rail cars or flight-type rail cars, scientific model Alternatively, the present invention relates to the structure and system of a game device or the like.

【0002】[0002]

【従来の技術】従来の高速軌道システム、例えば新幹線
・常伝導磁気浮上車システム・超伝導磁気浮上車システ
ム等は、車両一台の重量は軽くとも10数トン以上30
数トンもある。人間一人60キロと仮定した定員によれ
ば、車重/人数>200キロで、この値を単位車両重量
と呼ぶこととすると、この重量車両を支持する軌道の負
担が大きすぎて多くの問題が生じる。即ち、大重量車輛
の故に、直線的広幅で土地収用をして堅固に軌道を構築
する必要があり、建設用地の確保が至難となってきてい
る。そのため現実に、高速軌道の建設は棚上げされ、在
来線の高速化や中速の地下鉄、モノレール等を多くの費
用と年数を費やして建設するか、小間切れの供用でも使
える道路の建設が主であり、エネルギーを過消費しかつ
大気汚染が問題な航空機に限られてきている。しかる
に、高速の交通システムの研究は、超軽量車両が軌道架
設を容易にする利点がありかつ、エネルギー消費を少な
くするのに最も重要であるのを重視せず、他の要素に重
点をおいて為されてきている。その結果、電力エネルギ
ーの消費を大幅に減らせるとの予測で研究が進められて
きた超伝導磁気浮上走行システムは、幾つかの理由で軽
量化が無理で、省エネルギーのシステムとは考え難くな
ってきている。車両を軽量化して、軽便な軌道を市街地
に架設する目的で出願した本願人による昭和58年特許
願第094869号−飛行車は、プロペラ推進によるも
ので、レールの長手方向に下向きに設けた係止面と、該
面に転動する最高位接触面とが停止時において、所定間
隔開けてある案内輪を少なくとも二個有す軌道車であ
り、かつ該軌道車の車両を所定速度以上で浮上する構造
となし、該車両に設けたプロペラ又はジェットで駆動せ
しめられて成る飛行車であるが、停止時や発車時、低速
時には、車輪駆動を併用できないので高速時には空気を
引っ張らない長所があるが、プロペラ制動だけでは低速
時には風害、停車の維持手段等での問題があった。更
に、2本の平行レールの車輪駆動と制動とを併用せしめ
れば、重量車両となり、軽量化ができなかった。
2. Description of the Related Art Conventional high-speed track systems, such as the Shinkansen, normal-conducting magnetic levitation vehicle system, and superconducting magnetic levitation vehicle system, have a weight of 10 tons or more, even if the weight of one vehicle is light.
There are several tons. According to the capacity assuming that one person is 60 kg, the vehicle weight / the number of people> 200 kg, and if this value is called the unit vehicle weight, the burden on the track supporting this heavy vehicle is too large and many problems occur. Occurs. In other words, because of the heavy vehicle, it is necessary to acquire the land in a wide straight line and construct a solid track, which makes it difficult to secure the land for construction. Therefore, in reality, the construction of high-speed tracks is shelved, and high-speed conventional lines, medium-speed subways, monorails, etc. are spent at high cost and years, or roads that can be used even in short breaks are mainly constructed. Yes, it has been limited to aircraft that are energy consuming and have problems with air pollution. However, research on high-speed transportation systems does not emphasize that ultralight vehicles have the advantages of facilitating track erection and is most important for reducing energy consumption, but focuses on other factors. It has been done. As a result, the superconducting magnetic levitation system, which has been researched with the expectation that the consumption of electric power energy can be significantly reduced, cannot be considered to be an energy-saving system because it cannot be lightened for several reasons. ing. The applicant applied for the purpose of lightening the vehicle and constructing a convenient track in the city area. Patent application No. 094869 of 1983 by the present applicant-The flight vehicle is propeller-propelled and is installed downward in the longitudinal direction of the rail. When the stop surface and the highest contact surface rolling on the stop surface are stopped, it is a rail car that has at least two guide wheels that are spaced apart by a predetermined distance, and the vehicle of the rail car is levitated at a predetermined speed or more. Although it is a flight vehicle that is driven by a propeller or a jet provided in the vehicle, it has the advantage that it does not pull air at high speed because it can not be used together with wheel drive at stop, departure and low speed. , Propeller braking alone had problems with wind damage at low speeds and means for maintaining a stop. Furthermore, if the driving and braking of the two parallel rails are used together, it becomes a heavy vehicle and the weight cannot be reduced.

【0003】[0003]

【発明が解決しようとする課題】本発明は前述の交通シ
ステムの弱点を解消するために、車輛重量を軽くするこ
と、その装置類の数を減らすこと、複雑で重い装置を新
しく開発した簡単で軽量の装置に置き換えること、省エ
ネルギーの鋼鉄製車輪駆動の従来の軌道車に、より以上
の省エネ性を加えること等を課題とする。即ち、現在、
実用中、或いは開発テスト中の高速の交通システムで
は、駆動装置が大規模で重くて嵩張り、制御機器も同様
であるから前述の如く単位車両重量が200キロ以上で
ある。従来の車輛は車重が大きいので、急カーブの高速
走行は危険であり、軌道は大径のカーブか直線状であ
り、加えて堅固に軌道を敷設する必要があるため、広い
土地の収用に膨大な費用がかかり、新規の建設が困難に
なっている。特に新幹線は、大量輸送が可能でエネルギ
ー消費が少ない長所が大きいのに、急制動で車輪の偏磨
耗を生じ、制動により生じたレールの凹凸を平滑にする
ための連夜の研磨が必要である。 片ツバ車輪に対する
並行支持軌道であるから、左右相互のレール間隔の拡張
力が常に加わり、平行度の不整による左右への振動や、
台車の蛇行動が生じる弱点があり、深夜の保守作業が大
変で経費がかかる。車重が大なので、出発抵抗が大とな
り、低速駆動力を大にするための機器の数も多く重量も
大で、その制動装置も複雑で重い。 一台の駆動車輪が
8個も必要であり、重い車軸が4本も用いてある。 そ
の重車輛の走行騒音は遠距離の地域にも被害を及ぼす。
常伝導や超伝導の磁気浮上システムは、低騒音で振動が
少ないが、軌道敷設では上記重量車両の弱点があるので
堅固につくらねばならず、加えて、エネルギーの消費量
は大きく高速走行では、航空機に近い水準となり省エネ
ルギー技術とは云い難い。特に超伝導方式では、強力な
磁力が遺伝子に変異を起こすので、客室の遮蔽体の重量
を加えねばならず軽量化は無理で、駆動部分以外の機器
のエネルギー消費も大きい。現実に、地球上で、車を多
く用いる地域は化石燃料の大量消費により、常に雨乞い
現象があるので多雨となり、一方車を殆ど使用せず燃料
消費の少ない地域、例えばゴビ砂漠・アフリカの大部分
は、エネルギー消費の多い地域への大量の降雨のため
に、降水量が減少している。 加えて、車のための道路
建設を主とした自然破壊による緑地の減少や、車或いは
航空機による化石燃料の大量消費による炭酸ガスの増加
で、魚類の食する藻類が減少し、炭酸カルシュウム成分
を多く生成して食用にならずに浅海底を覆う貝類の増値
で、海洋の砂漠化が日本或いは南米等にも進行しつつあ
り、魚類資源も将来枯渇すると考えられるが、地球規模
の気候の変動による生存環境悪化への根本的な対策=エ
ネルギー消費の抑制及び自然の緑地保全=は殆ど実行さ
れるに至らず、目前の便益が優先されてきている。
SUMMARY OF THE INVENTION In order to overcome the above-mentioned weaknesses of the transportation system, the present invention reduces the vehicle weight, reduces the number of devices, and newly develops a complicated and heavy device. The challenges are to replace it with a light-weight device and to add more energy saving to the conventional railcars driven by energy-saving steel wheels. That is, currently
In a high-speed transportation system under practical use or under development test, the driving device is large and heavy and bulky, and the control device is also the same. Therefore, the unit vehicle weight is 200 kg or more as described above. Conventional vehicles have a heavy vehicle weight, so it is dangerous to drive at high speed in a sharp curve, and the track has a large-diameter curve or straight line. The huge cost makes it difficult to construct a new building. In particular, the Shinkansen has the advantages of being able to be transported in large quantities and consuming less energy, but it requires uneven grinding of the wheels due to sudden braking, and requires night-long polishing to smooth the unevenness of the rails caused by braking. Since it is a parallel support track for one brim wheel, the expansion force of the rail spacing between the left and right is always applied, and the left and right vibrations due to the uneven parallelism,
There is a weak point that the snake's snake behavior occurs, and maintenance work at midnight is difficult and expensive. Since the vehicle weight is heavy, the starting resistance becomes large, the number of devices for increasing the low speed driving force is large, and the weight is large, and the braking device is complicated and heavy. It requires as many as eight drive wheels and four heavy axles. The running noise of the heavy vehicle also damages a long-distance area.
The normal or superconducting magnetic levitation system has low noise and little vibration, but it has to be made solid because of the weakness of the above heavy vehicle in track laying, and in addition, it consumes a large amount of energy and runs at high speed. It is close to that of an aircraft, and it is hard to say that it is an energy-saving technology. Especially in the superconducting system, the strong magnetic force causes mutations in the gene, so the weight of the shield in the passenger compartment must be added to reduce the weight, and the energy consumption of equipment other than the driving part is large. Actually, on the earth, regions where a lot of cars are used have heavy rain due to the constant begging phenomenon due to the large consumption of fossil fuels, while on the other hand, the regions where the cars are rarely used and the fuel consumption is low, for example, most of the Gobi Desert and Africa. Has reduced rainfall due to heavy rainfall in areas of high energy consumption. In addition, the decrease in green space due to natural destruction mainly due to the construction of roads for cars and the increase in carbon dioxide due to the large consumption of fossil fuels by cars and aircraft will reduce the algae eaten by fish and reduce the calcium carbonate component. Due to the increase in the value of shellfish that cover a shallow seafloor that does not become edible because it is produced in large quantities, the desertification of the ocean is progressing to Japan and South America, etc., and it is considered that fish resources will be depleted in the future. The fundamental measures against the deterioration of the living environment due to fluctuations = suppression of energy consumption and conservation of natural green areas = have hardly been implemented, and the immediate benefits have been prioritized.

【0004】[0004]

【課題を解決するための手段】本発明の主な目的は、軌
道の建設用地収用を大幅に小ならしめ、市街地の交通施
設、例えば道路上、高速道路上、既存の軌道上等の空間
にも建設可能な軽量軌道による高速の交通手段を提供
し、緑地の破壊を防ぐことである。本発明の次の主たる
目的は、従来の軌道車の単位車両重量に比較して大幅に
車輛を軽量化し、プロペラ推進の加速により車輪駆動力
の限界以上の高速性を有する飛行式軌道車を提供して、
省エネルギーで大気汚染の少ない高速の大量輸送交通シ
ステムを実現することである。より詳細には、本発明の
第一の目的は、駆動モータと車輪を一体に構成して駆動
機構を簡略にし、駆動輪を中央の単列にして数を減らす
中央列車輪駆動方式として、 左右対称式車輪駆動制
動方式、 ツバ歯車駆動方式等を提供し、大型の高速
車輛より小型の運搬車輛或いは模型等に適用して簡単な
機構で大幅に軽量化して車輛コストを安くし、省エネル
ギーを実現することである。本発明の第2の目的は、中
央列車輪駆動軌道車に、 等速逆回転式、 自在回
転式、 強制弾力接触式等の案内システムを提供し
て、車輛の姿勢を直立的に安定させ、高速走行を可能に
することである。本発明の第3の目的は、飛行式の軌道
車の制動に制動効果の高い形状のプロペラを用いたプロ
ペラ制動方式を提供し、高速時の車輪制動で生じる車輪
の偏磨耗を防ぎ、車輪制動装置の負荷を軽くして軽量化
するとともに、高速制動性の高い複合進行方式を実現す
ることである。本発明の第4の目的は、駆動輪のすべり
又は空転を検知して、プロペラ推進装置の推力又は駆動
輪の回転数を増大する加速システムを提供して車輪駆動
軌道車の限界以上の高速性を飛行式の軌道車に具有させ
ることである。本発明の第5の目的はバーベル式空気バ
ネ緩衝装置を提供して、軽量の車体傾斜調節緩衝構造を
実現し中央列車輪駆動軌道車を軽量化するとともにカー
ブでの安定走行を実現することである。本発明の第6の
目的は、間隔を離した左右の案内体又は軌道支持体に碍
子を介してトロリー線を取付けて高圧での給電を可能と
し、上空の高架線装置のない軽便な軌道構造を提供し、
量産による安価な組立て部材を供給し、高架軌道を安い
コストで工期を早く完成可能にすることである。本発明
の第7の目的は、枕木のようにレールを支え、かつ左右
に案内体を取付ける構成であって、底面にアーク状の固
定部を有する支持アークと該支持アークを固定するアー
ク固定体との組合せを提供し、レールの支持骨材をカー
ブと直線区間を同一の部材で架設可能にし、現場で適宜
に傾斜度を調節できるレール支持構造により、コストが
安く工期の早い高架軌道方式を実現することである。本
発明の第8の目的は、下方にプロペラ推進装置を設けた
飛行式の軌道車を提供し、プロペラ推進の地面効果の高
い車輛を実現することである。本発明の第9の目的は、
良伝導性・耐腐食性・強靭性・弾力性を具有する金属薄
板を構成材料に使用して、小型で軽量で着脱が容易で、
外形が20ミリ立方角位より300ミリ立方角程度の大
きさのパンタグラフ又は集電靴を提供し、大型の高速車
より小型の模型に至るまで風圧の影響を小さくし、架線
又はトロリー線への追随性を良好にし、集電効果を高め
て高速走行を実現することである。本発明の第10の目
的は、時速約30キロ程度以上で長時間走行が可能な模
型或いは小型の自動搬送装置としての軌道車システム或
いは飛行軌道車システムを提供し省エネルギーを実現
し、本格的な科学教育模型をコストを安く製作せしめる
ことである。本発明の第11の目的は、模型の飛行式の
軌道車に標的を設け、該標的を適宜の距離から、狙撃装
置で加撃可能となし、的中時に標的からサイン或いは反
応して所定の作動を行なわしめる遊戯システムの提供で
ある。本発明の第12の目的は、軌道と案内体と案内支
持骨材及び支持部材を組立て及び解体自在に構成して成
る模型ケットの提供である。本発明は、断面が溝型のコ
ンクリート或いは鉄等の構造材による構築体に、一条又
は複数のレールを設けるとともに、該構築体の左右の立
ち上がり壁に案内体を設けて成る軌道装置或いは、左右
に取付けた案内体の中央下方にレールをも取付ける支持
装置の多数を所定間隔で固定して成る軌道装置及び該装
置類に運航せしめる中央列車輪駆動方式の軌道車及び該
軌道車にプロペラ推進装置を加えて成る飛行式の軌道車
及びその関連する装置類とシステム等に関する。高架方
式では、本発明による架設部材は、主として強度が大で
低価格の鉄を塗装不要にした複合材例えば、ジシクロペ
ンタジエンとの複合成形部材を使用し、レールの支持骨
材はカーブ、直線区間とも同一の部材を用いて、現場で
適宜にレールの傾斜度を調節できる構成が望ましい。高
架軌道は、車輛の垂直荷重を支持するレールを支持する
レール支持体の接続部毎に、コンクリート製或いは、鋼
鉄製の支柱を構築する。次に該支柱の上部にレール支持
体を延々と置いて固定し、該レール支持体の上部に、ア
ーク固定体の中央部分の下部を一体に固定した固定肢
を、一体に固定する(後述)。 更に該アーク固定体の
上方に鉄骨或いは鉄筋入りのコンクリート製の支持アー
クを所定の角度(後述)で固定具で取り付け、該支持ア
ークにレール及び左右の案内体を取り付けてある。該案
内体の上部には碍子を介して高圧給電用のトロリー線が
取付けてある。 又、隣り合う支持装置間とレール支持
体及び案内体とで囲まれる面には壁体が取付けてある。
この壁体は外部と隔離して危険を避ける為に設ける
が、プロペラ推進風力を直接うけて地面効果を車輛に与
えて高速性を高めるし、金網或いは多孔板を主体で構成
することで、台風の横風の風圧を減じるし、積雪を溶か
し易いので好ましい。 該壁体のレール寄りに、融雪装
置例えばヒーター、温水パイプ等を取りつけて、凍結時
に加熱可能にするのが好ましい。トロリー線はレールの
上方の間隔の広い左右の案内体又は軌道支持体例えば支
持アークの両側上部に碍子を介して取付けると高圧送電
もでき、車輛上空の架線より高低差を小にできるし、コ
ストが安く軽便で好ましい。駆動装置として1例をあげ
ると、(1) 高速車には、左右が対称で風圧に対して
左右のバランスが良く、駆動歯車機構をギアーケース内
に納めて油潤滑の可能なことが望ましく、左右対称型車
輪駆動制動装置が適している例である。 (2) 小型車或いは模型等には、一体に構成した歯車
を有する駆動輪に伝動歯車を係合し、該伝動歯車を車輛
に搭載した原動機で駆動回転せしめる歯車車輪駆動方式
は小型車輛に適していて、その1例をあげると、両ツバ
車輪のツバに歯車を構成し、ナイロン伝動歯車を上方で
咬み合せしめるツバ歯車駆動装置があり、軽量で部品が
少なく無給油で回せる。案内体の作用は、車輛の姿勢を
直立的に安定させるもので、車輛の左右に設けた案内輪
を介して案内体で車輛を安定させる。従来のレール型と
かその他多種の断面形状があり、複合構成も可能であ
る。案内輪は上記案内体の案内面に接触して車輛の姿勢
を直立的に支持する。車両の両側に縦軸、横軸、斜軸等
で設け得るが、縦軸で水平に回転自在であれば、横揺れ
を制御するのに好ましい。車両を車体と台車とで構成す
る場合は、台車の両側に少なくとも各一個、望ましくは
2個づつ左右を並行して設けるのが好ましいしい。 そ
の他、案内輪を両ツバ型の低トルクの駆動輪に構成して
駆動力の不足をプロペラ推進力で補うのも好ましい。こ
れらの案内輪は、高速車に於いては、左右の案内輪を車
輛に設けた原動機で駆動して車輛の速度と等速で回転せ
しめて案内体に接触せしめてすべりを防ぐのが望まし
く、その主な構成は、左右の案内輪を (1) 左右を
等速かつ逆回転に係合し片方を案内体に接触せしめて案
内させる、(2) 案内モータで車輛速度と等速に制御
し、一方の案内輪を案内体に接触せしめ案内させる、
(3) 強制弾力接触式で、案内輪のそれぞれの軸間距
離を拡大する圧力を弾力装置で加えて、双方の案内輪の
外周を案内体に強制接触せしめて回転案内せしめる等
で、車両の高速での安定走行に望ましい。又、模型・小
型車輛等には自在回転型が構造が簡単で軽量化しやすい
ので好ましい。横軸による案内輪は、(1) 強制回転
型と (2) 自在回転型に大別できる。レールと案内
体との高低差が大であれば、姿勢の制御が完全な縦軸型
が望ましく、高低差が小になるほど、横軸の案内輪が効
果的に姿勢の制御がし易くなる。しかし横軸では、車高
を低くすれば、プロペラ推進装置は車輛の下方に設定で
きない。前後方又は上方に設定するとプロペラ回転の危
険性、連結の不利、或いは地面効果の低下等の問題が生
じる。車高を高くすれば、横軸の支持体を下方に大きく
幅広く構成せねばならず、強度を大にするとき軽量化が
犠牲になる。車体と台車の緩衝装置では、軸ばね或いは
まくらばねにダンパーを並べて取り付けるのもよいが、
自動的に車体を傾斜せしめる緩衝装置=カーブで車体の
遠心力の掛かる側が高まり反対側が低く沈む=バーベル
式空気バネ緩衝装置を用いて軽量化し、カーブでの安定
性と高速性を高めるのが好ましい。本発明によるバーベ
ル式空気バネ緩衝装置は、主として、(1) 連結棒の
両端部にボール状の膨大部を取付けて成るバーベル形状
の連結棒と (2) 該膨大部を収容し、かつ所定角度
内で回動自在に支持するとともに、膨大部より小径の軸
受を取付けた離脱制止縁を開口部に設けた回動支持室を
半分づつ有する上下の穴付支持函と、カバー支持函各1
個とを合体して構成した回動支持函と、(3) 前記連
結棒を貫通せしめる中央孔を有するドーナツ形状のゴム
製の空気バネ、とで構成してある。 更に、支持棒が外
方には傾かない角度で回動支持函を台車に取り付けると
ともに、車体には支持棒の上方の間隔を狭くし、かつ下
方の間隔を適宜に広くして他方の回動支持函を取り付
け、カーブ区間で車体に遠心力が掛かれば、遠心側を高
くし、求心側を低く沈ませて、走行安定性を高めるのが
好ましい。プロペラ推進では、従来の鉄道車輛その他の
車輪駆動軌道車とプロペラ推進との複合進行方式の軌道
車に於いて、低速時は車輪駆動力の加速力の増大に有効
であり、高速では駆動輪の回転速度と車体の速度の差よ
り駆動輪の滑り或いは空転を検知してプロペラ推力を適
切に増大して駆動力以上の高速性を車輛に具備せしめ得
る。 その検知は、1例をあげると、新幹線の方式があ
り、更に他の1例をあげれば、軌道に一定間隔に設けた
標識例えばある種の光線の反射体を標識として設け、一
定時間に通過した該標識の数をカウントして車輛の実速
度を計り、他方では車軸の回転数より車輪の回転速度を
計り、実速度と回転速度との差を検知装置で測定し、一
定の許容範囲より前記の差が大になった時、実速度が大
の場合では駆動回転数を増大し、回転速度が大の場合で
はプロペラ推力を増大して高速走行を実現する。
又、(1) プロペラ推力の上下方向を調節し、車輛重
量の前後の負荷のバランスを保てる、(2) カーブ区
間では具有する左右のプロペラの内側の推力を小にし、
外側の推力を適度に大に制御してカーブでの安定走行を
高められ、(3) プロペラ推進の前後方向は、パイロ
ン台の回転で推力の方向を逆にできるし、又 プロペラ
のピッチ角を翼弦幅最大の位置で約45度にして逆回転
にする、(3) 推進モータの逆回転等で行なえる。プ
ロペラ制動は高速時に主として使用し、(1) パイロ
ン台の回転、(2)プロペラを可変翼にする、(3)
プロペラの翼のひねり角を45度程度に構成して推進モ
ータを逆転せしめる等で行なえる。プロペラの形状はひ
ねり角を約45度にして、幅を広く、短径に形成する
と、回転数に比して推力と制動力が大となり、風切量が
減り低級音となり、更にその翼を後退させてあれば、空
気を押す圧力の積が大となり、推力が増大する。集電装
置は、軽量で小型が望ましく 着脱自在の耐風圧型のパ
ンタグラフとしても使える集電靴の一例をあげる。本発
明の集電靴は、軽量化のためにすり板以外は、良電導
性、高弾力性耐腐食性、強靭性を全て具備する肉薄の金
属板、例えば燐青銅板の如きを素材として用いて、構成
する。進行方向には、構成する薄板の厚みの断面とすり
板の側面を向けるだけで、すり板間に風穴を設けて空気
を抜けるし、揚力を生じ難くするので好ましい。 その
取付けは、保守性を高めるために、数本のネジ、ボル
ト、ナットの類での締め付けで可能に構成するのが望ま
しい。本発明の集電靴では、トロリー線の高低差が小さ
いので、外形の大きさが約20ミリ立方から300ミリ
立方の大きさの範囲で構成して小型の模型より大型の高
速車輛にまで対応せしめるのが軽量化し空気抵抗を小に
するために望ましい。すり板を上方に向けて取付ければ
パンタグラフとして使用できる。 数本のネジで着脱自
在なので、小型の模型にも使用できて交換・修理等が容
易である。高速で大型の遠距離の交通システムとしてだ
けではなく、搬送システムとしても例えば、一定区間の
郵便物専用で断面が約1平方メートルの高架軌道を高速
道路或いは在来鉄道沿いに設ければ、スピードが早くて
時間的メリットがあるばかりか、遠距離の運搬自動車が
不要になり、省エネルギーが実行できる。或いは標的を
積載して周回軌道を高速走行せしめ狙撃台からの命中率
を競うシステムのような遊戯装置その他等にも使用でき
る。
The main object of the present invention is to significantly reduce the land acquisition for construction of tracks, and to provide transportation facilities in urban areas, such as roads, highways, and existing tracks. Is to provide high-speed transportation by light-weight tracks that can be constructed and prevent the destruction of green spaces. The next main object of the present invention is to provide a flight-type track car that has a significantly reduced vehicle weight compared to the unit vehicle weight of a conventional track car and has a high speed that exceeds the limit of the wheel driving force by acceleration of propeller propulsion. do it,
It is to realize a high-speed mass transportation system that is energy-saving and has little air pollution. More specifically, a first object of the present invention is to provide a central row wheel drive system in which a drive motor and wheels are integrally formed to simplify a drive mechanism and the number of drive wheels is reduced to a single row in the center. By providing symmetrical wheel drive braking system, flange gear drive system, etc., it can be applied to small transport vehicles or models rather than large high-speed vehicles, with a simple mechanism to significantly reduce weight, reduce vehicle cost, and save energy. It is to be. A second object of the present invention is to provide a center row wheel-driven rail car with a guide system such as a constant-velocity reverse rotation type, a freely rotating type, and a forced elastic contact type to stabilize the posture of the vehicle upright. It is to enable high speed running. A third object of the present invention is to provide a propeller braking system using a propeller having a shape having a high braking effect for braking a flight-type track car, preventing uneven wear of the wheels caused by wheel braking at high speed, and preventing wheel braking. It is to realize a composite traveling system with high speed braking performance while reducing the load on the device to reduce the weight. A fourth object of the present invention is to provide an acceleration system that detects slippage or idling of a drive wheel to increase the thrust of a propeller propulsion device or the rotational speed of the drive wheel to provide a high-speed performance exceeding the limit of a wheel drive rail car. Is to be included in a flight-type rail car. A fifth object of the present invention is to provide a barbell type air spring cushioning device to realize a lightweight vehicle body tilt adjustment cushioning structure to reduce the weight of a center row wheel driven rail car and to realize stable running on a curve. is there. A sixth object of the present invention is to provide a high-voltage power supply by attaching trolley wires to left and right guide bodies or track supports spaced apart from each other via insulators, and a convenient track structure without an overhead overhead line device in the sky. Provide
It is to supply inexpensive assembly members by mass production and to complete the construction of the elevated tracks at a low cost and quickly. A seventh object of the present invention is to support rails like a sleeper and to attach guide bodies to the left and right, and a supporting arc having an arc-shaped fixing portion on the bottom surface and an arc fixing body for fixing the supporting arc. With the rail support structure that allows the rail support aggregate to be installed on the curve and the straight section with the same member, and the inclination can be adjusted appropriately at the site, an elevated track system with low cost and fast construction period can be used. It is to be realized. An eighth object of the present invention is to provide a flight-type rail car having a propeller propulsion device provided below, and to realize a vehicle having a high ground effect for propeller propulsion. A ninth object of the present invention is to
By using a thin metal plate with good conductivity, corrosion resistance, toughness and elasticity as a constituent material, it is small, lightweight and easy to attach and detach,
We provide pantographs or current-collecting shoes whose outer dimensions are about 20 mm cubic to 300 mm cubic, and reduce the influence of wind pressure from large high-speed cars to small models, and to the overhead wire or trolley wire. It is to realize high-speed running by improving followability and collecting effect. A tenth object of the present invention is to provide a railcar system or flight railcar system as a model or a small automatic carrier capable of traveling for a long time at a speed of about 30 km / h or more, to realize energy saving, and to realize a full-scale operation. It is to make the science education model cheap. An eleventh object of the present invention is to provide a target on a model flight-type rail car, and to make it possible to hit the target from an appropriate distance with a sniper device. It is the provision of a game system that can be operated. A twelfth object of the present invention is to provide a model kit which is constructed by assembling and disassembling the track, the guide body, the guide supporting aggregate and the supporting member. The present invention provides a railroad track device or a left and right rail system in which a construction body made of a structural material such as concrete or iron having a groove-shaped cross section is provided with one or more rails, and guide bodies are provided on the left and right rising walls of the construction body. A rail track device having a plurality of supporting devices fixed to a lower part of the center of a guide body mounted at a fixed interval at a predetermined interval, and a center-row wheel-driven rail car for operating these devices and a propeller propulsion device for the rail car. The present invention relates to a flight-type railroad car and a related equipment and system. In the elevated system, the erection member according to the present invention is mainly composed of a composite material having high strength and low cost that does not require coating of iron, for example, a composite molded member with dicyclopentadiene, and the rail supporting aggregate is curved or straight. It is desirable to use the same member for each section so that the inclination of the rail can be appropriately adjusted on site. In the elevated track, columns made of concrete or steel are constructed for each connection portion of rail support members that support rails that support the vertical load of the vehicle. Next, a rail support is placed endlessly on the upper part of the column and fixed, and a fixed limb integrally fixing the lower part of the central part of the arc fixing body is integrally fixed to the upper part of the rail support (described later). . Further, a supporting arc made of steel or concrete containing reinforcing bars is attached above the arc fixing body at a predetermined angle (described later) with a fixing tool, and rails and left and right guide bodies are attached to the supporting arc. A trolley wire for high-voltage power supply is attached to the upper part of the guide body through an insulator. A wall is attached to the surface surrounded by the adjacent support devices and between the rail support and the guide.
This wall is installed to avoid danger by being isolated from the outside, but by directly receiving the propeller propelling wind force to give the ground effect to the vehicle to improve high speed, it is mainly composed of wire mesh or perforated plate This is preferable because it reduces the wind pressure of the side wind and easily melts snow. It is preferable that a snow melting device such as a heater or a hot water pipe is attached near the rail of the wall so that the wall can be heated during freezing. The trolley wire can be used for high-voltage power transmission if it is mounted on the left and right guide bodies or track supports with a wide space above the rails, for example, on the upper sides of both sides of the support arc via insulators. Is cheap and convenient because it is convenient. As an example of the drive device, (1) it is desirable that a high-speed vehicle has left-right symmetry and has a good left-right balance with respect to wind pressure, and that the drive gear mechanism can be housed in a gear case for oil lubrication. This is an example in which a symmetrical wheel drive braking device is suitable. (2) For a small vehicle or model, a gear wheel drive system in which a drive gear having an integrally formed gear is engaged with a drive gear and the drive gear is driven and rotated by a prime mover mounted on the vehicle is suitable for a small vehicle. As one example, there is a brim gear driving device in which gears are formed on the brim of both brim wheels and a nylon transmission gear is engaged with the brim above, which is lightweight, has few parts, and can be rotated without lubrication. The action of the guide body is to stabilize the posture of the vehicle upright, and the guide body stabilizes the vehicle through the guide wheels provided on the left and right sides of the vehicle. There are various types of cross-sectional shapes such as the conventional rail type, and composite configurations are possible. The guide wheel comes into contact with the guide surface of the guide body to vertically support the vehicle posture. It may be provided on both sides of the vehicle with a vertical axis, a horizontal axis, an oblique axis, etc., but if it can be rotated horizontally on the vertical axis, it is preferable for controlling roll. When the vehicle is composed of a vehicle body and a bogie, it is preferable to provide at least one, preferably two left and right sides in parallel on both sides of the bogie. In addition, it is also preferable that the guide wheel is a double-branch type low-torque drive wheel, and the insufficient propelling force is compensated by the propeller propulsion force. In a high-speed vehicle, these guide wheels are preferably driven by the motors provided on the left and right guide wheels to rotate at a speed equal to the speed of the vehicle so as to contact the guide body to prevent slippage. The main structure is that the left and right guide wheels are (1) left and right engaged at a constant speed and reverse rotation, and one of them is brought into contact with the guide body to guide it, and (2) a guide motor controls the vehicle speed at the same speed. , One guide wheel is brought into contact with the guide body to guide it,
(3) In the forced elastic contact type, by applying a pressure to expand the distance between the guide wheels by an elastic device, the outer circumferences of both guide wheels are forcibly brought into contact with the guide bodies to guide the rotation of the vehicle. It is desirable for stable driving at high speed. In addition, a freely rotatable type is preferable for models and small vehicles because the structure is simple and the weight can be easily reduced. The guide wheel on the horizontal axis can be roughly divided into (1) forced rotation type and (2) free rotation type. If the height difference between the rail and the guide body is large, it is desirable to use the vertical axis type for complete posture control. The smaller the height difference, the easier the horizontal axis guide wheel is to effectively control the posture. However, on the horizontal axis, if the vehicle height is lowered, the propeller propulsion device cannot be set below the vehicle. If it is set to the front or rear or above, problems such as danger of propeller rotation, disadvantage of connection, and reduction of ground effect occur. If the vehicle height is increased, the support of the horizontal axis has to be configured to be wide and wide downward, and the weight reduction is sacrificed when the strength is increased. In the shock absorbers for the car body and the bogie, it is also possible to mount the dampers side by side with the shaft spring or the pillow spring,
Cushioning device that automatically tilts the vehicle body = The side of the vehicle body on which centrifugal force is applied rises and the other side sinks low = It is preferable to use a barbell type air spring cushioning device to reduce the weight and improve stability and high speed on the curve . The barbell-type air spring shock absorber according to the present invention mainly includes (1) a barbell-shaped connecting rod formed by attaching ball-shaped enlarged portions to both ends of the connecting rod, and (2) accommodating the enlarged portion and a predetermined angle. A support box with upper and lower holes that rotatably support the inside of the support box and that has half rotation support chambers each having a release stop edge provided with a bearing having a diameter smaller than that of the enlarged portion at the opening, and a cover support box each 1
It is composed of a rotation support box formed by combining the individual pieces, and (3) a donut-shaped rubber air spring having a central hole for penetrating the connecting rod. Further, the rotation support box is attached to the trolley at an angle at which the support rod does not tilt outward, and the space above the support rod is narrowed and the space below the support rod is appropriately widened on the vehicle body to rotate the other side. When a support box is attached and centrifugal force is applied to the vehicle body in a curved section, it is preferable to raise the centrifugal side and lower the centripetal side to enhance running stability. Propeller propulsion is effective in increasing the acceleration of wheel drive force at low speeds in conventional railroad vehicles and other hybrid drive type track cars of wheel drive railcars and propeller propulsion, and at high speeds It is possible to detect slippage or idling of the drive wheels from the difference between the rotational speed and the speed of the vehicle body and appropriately increase the propeller thrust to provide the vehicle with a high speed higher than the drive force. For example, there is a Shinkansen system for the detection, and for another example, a marker provided at a certain interval on the track, for example, a reflector of a certain light beam is used as a marker, and the traffic is passed at a certain time. The actual speed of the vehicle is measured by counting the number of said signs, on the other hand, the rotational speed of the wheel is measured from the rotational speed of the axle, and the difference between the actual speed and the rotational speed is measured by a detection device, and within a certain allowable range. When the difference becomes large, the driving rotation speed is increased when the actual speed is large, and the propeller thrust is increased when the rotation speed is large to realize high speed traveling.
In addition, (1) the vertical direction of the propeller thrust can be adjusted to maintain the load balance before and after the vehicle weight. (2) In the curved section, the thrust inside the left and right propellers is reduced,
The outer thrust is controlled to a moderately large value to enhance stable running on a curve. (3) The forward and backward directions of propeller propulsion can be reversed by the rotation of the pylon table, and the pitch angle of the propeller can be changed. At the position where the chord width is the maximum, the rotation is about 45 degrees and reverse rotation is performed. Propeller braking is mainly used at high speeds, (1) rotation of pylon stand, (2) variable propeller, (3)
This can be done by setting the twist angle of the propeller blades to about 45 degrees and reversing the propulsion motor. When the propeller shape is formed with a twist angle of about 45 degrees and a wide width and a short diameter, the thrust and braking force are large compared to the number of revolutions, the amount of wind cut is reduced, and the sound becomes lower, If it is retracted, the product of the pressure that pushes the air becomes large, and the thrust increases. It is desirable that the current collector is lightweight and small, and one example is a current-collecting shoe that can be used as a detachable wind-resistant pantograph. The current-collecting shoe of the present invention uses a thin metal plate having good electrical conductivity, high elasticity, corrosion resistance, and toughness as a raw material, such as a phosphor bronze plate, as a material except for the sliding plate for weight reduction. And configure. In the traveling direction, it is preferable to simply direct the cross section of the thickness of the thin plate and the side surface of the sliding plate to form air holes between the sliding plates to let out air and to make it difficult to generate lift. It is desirable that the mounting is made possible by tightening with a few screws, bolts, nuts or the like in order to improve maintainability. In the current collecting shoe of the present invention, since the height difference of the trolley wire is small, the outer size is configured in the range of about 20 mm cube to 300 mm cube, and it corresponds to a high speed vehicle larger than a small model. It is desirable to reduce the weight and the air resistance. It can be used as a pantograph by mounting the contact plate facing upward. Since it can be attached and detached with a few screws, it can be used for small models and is easy to replace and repair. Not only as a high-speed and large-distance transportation system, but also as a transportation system. For example, if an elevated track with a cross section of about 1 square meter for a certain section of mail is installed along a highway or a conventional railway, the speed will increase. Not only is it quick and time-saving, but it also saves energy by eliminating the need for long-distance transportation vehicles. Alternatively, it can be used as a game device or the like such as a system in which a target is loaded and the orbit is run at a high speed to compete for accuracy from a sniper.

【0005】[0005]

【実施例1】 (図1、図2 参照) 図面は本発明によるI実施例の概略図で、昭和58年特
許願第094869号発明の名称飛行車を改良して本発
明による駆動輪のすべり或いは空転を検知してプロペラ
推力を増減する機構を設けた飛行式の軌道車で、図Iは
コンクリート製の軌道と飛行式の軌道車の遠景側面図
で、該軌道は断面凹型で底部には一定間隔で距離の標識
95を設けてあり、中央上面にレール(図2中破線2
3)を敷設すれば、中央列車輪駆動軌道車の軌道として
使える(後述)。 該軌道の両側内の棚の溝にレール2
3の下部をボルトとナット36で固定してあり、最上部
には案内体24がナット36で固定してある。 該案内
体の上部には碍子21を介してトロリー線29が設けて
あり、台車の中央底面には標識95のカウンター96が
取付けてある(図2)。飛行式の軌道車1は、上方の車
体2が、台車3に直結してあり、台車3の下方の左右の
駆動軸7は各々回転速度の検知装置43を台車3の内壁
に設け、駆動輪4側で軸受34に支持され、中央で他端
を軸受34で支持されている。 この駆動軸は前記検知
装置43の内側の駆動モータ8で駆動回転せしめられ
る。 駆動輪4は両ツバ型で、下方のレール23上を転
がり、浮上がったとき案内輪11は案内体24の内端の
下縁に当たり、脱輪を規制している。 該駆動輪4にす
べり或いは空転が生じた時には既述の如く検知装置43
及びその他車輛内に搭載した計測装置或いはモータ等の
制御により、台車3の下方に設けたモータパイロン13
に取付けた推進モータ12に固定したプロペラ14の推
力を増大したり、又は駆動モータの回転数を大にしてよ
り一層の高速走行を実現する。 駆動輪と駆動装置は本
例以外の構成でも本発明を適用して駆動輪の駆動力の限
界以上にプロペラ推進で加速できる。本例の軌道はトロ
リー線の間隔が広くて、高圧給電が可能で、軌道の内側
でプロペラ推進気流は地面効果を大きく得られ、車輛の
高速性を一層増大する。
Embodiment 1 (Refer to FIGS. 1 and 2) The drawings are schematic views of Embodiment I according to the present invention, in which the name of the invention of Japanese Patent Application No. 094869 of 1983 is improved to improve the sliding of the drive wheels according to the present invention. Alternatively, FIG. I is a side view of a concrete track and a flight-type track car provided with a mechanism for detecting a slip and increasing / decreasing the propeller thrust. The track is a concave section with a concave section at the bottom. Distance signs 95 are provided at regular intervals, and rails (broken line 2 in FIG.
If 3) is laid, it can be used as a track for a center row wheel drive rail car (described later). Rail 2 in the groove of the shelf on both sides of the track
The lower part of 3 is fixed by bolts and nuts 36, and the guide body 24 is fixed by nuts 36 at the uppermost part. A trolley wire 29 is provided on the upper part of the guide body via an insulator 21, and a counter 96 for a mark 95 is attached to the center bottom surface of the carriage (FIG. 2). In a flight-type rail car 1, an upper vehicle body 2 is directly connected to a trolley 3, and right and left drive shafts 7 below the trolley 3 are provided with respective rotational speed detection devices 43 on the inner wall of the trolley 3 and drive wheels. It is supported by the bearing 34 on the 4 side, and the other end is supported by the bearing 34 at the center. This drive shaft is driven and rotated by the drive motor 8 inside the detection device 43. The drive wheel 4 is of a double-bran type and rolls on the lower rail 23, and when lifted up, the guide wheel 11 abuts on the lower edge of the inner end of the guide body 24 to regulate the removal of the wheel. When the drive wheels 4 slip or slip, as described above, the detection device 43
And a motor pylon 13 provided below the carriage 3 under the control of a measuring device or a motor mounted in the vehicle.
The thrust of the propeller 14 fixed to the propulsion motor 12 attached to the vehicle is increased, or the rotational speed of the drive motor is increased to realize higher speed traveling. The present invention can be applied to the drive wheels and the drive device other than this example to accelerate the propeller propelling beyond the limit of the drive force of the drive wheels. In the track of this example, the trolley wires are widely spaced so that high-voltage power supply is possible, and the propeller-propelled airflow inside the track provides a large ground effect, further increasing the speed of the vehicle.

【実施例2】 (図3より図14まで及び図16参照) 図面は本発明による1実施例の略図で、図3は高架軌道
と飛行式の軌道車1の遠景である。該高架軌道は下方の
コンクリート台座で固定した支柱50を所定間隔で配置
してあり、その上部にH鋼製のレール支持体31が延々
と置いて固定してある。該レール支持体31にはアーク
固定体25の中央下部のゲート状の左右の固定肢51の
横梁49が一体に固定してある。 該左右の固定肢51
はレール支持体31を挟んで下方に下がり、支柱50の
上部に固定してある(図6)。該アーク固定体25の上
面には、鉄筋コンクリート製の支持アーク22を置い
て、固定具26で固定してある。カーブ区間では、カー
ブの勾配に応じた所定の傾きで支持アークを固定してあ
る(図7)。この支持アーク22の上方内側にはレール
23が取り付けてある。レール底面とレール支持体31
との間には、レール台48があり、該レール台48の上
面はアーク状でレールがカーブで傾けて取り付けてあっ
ても、レール23の底面の左右端縁が密着するアーク状
面になっている(図6、7)。 従ってレール押さえ8
2でレール台48にレール支持体の傾斜角と等しい傾斜
でレール23を取付できる。 レールを支持している前
記支持アーク22の両側上方の内側には案内体24が置
かれ、上方が案内体固定具74で押さえてあり、内側の
下方は留板75で留めてある。さらに前記案内体24の
上部には碍子21が取付けてあり、トロリー線29を支
持している(図3、6、7)。集電は在来線の如き架線
からでもよいが、本例では間隔を離した案内体に碍子を
取付けているので、従来の第3軌条方式より高圧の給電
が可能であり架線とその柱がなく、レール支持体・レー
ル台を除く他の部材はカーブ区間も直線区間と同一の部
材で架設可能であるし、レール支持体・レール台等も工
場生産可能であるから、工期も早く建設用地が小さくて
すむ。組立式模型では、図15に示す如く、アーク固定
体25の底面の形態を平面上に定置可能に構成すればカ
ーブの傾斜も調節できるから、一定の長さの軌道セット
を組み立て解体自在に製作できる。より詳細には、図3
より図13に於いて、飛行式の軌道車1の車両は車体2
と台車3とからなる。 車体1は断面が半円形で、運転
室の直後及び最後部の両側にアーク形の扉がある。 該
車体2を支持する台車3はバーベル式空気バネ緩衝装置
30により弾力的に台車3に結合してある。バーベル式
空気バネ緩衝装置は両端部に取付けたボール状の膨大部
を持つバーベル状の連結棒17と、該膨大部を所定範囲
の角度で回動自在に支持しつつ収容し、該連結棒を回動
自在かつ滑動自在に支持する軸受を取付けた離脱制止緑
を開口部に設けた回動支持室を有する上下の回動支持函
各1個と、前記連結棒17を貫通せしめる中央孔を有す
るゴム製のドーナツ状の空気バネ18とで構成してあ
る。 該回動支持函は穴付支持函15とカバー支持函1
6の合体で成り、かつ回動支持函の少なくとも一方(本
例では下方の回動支持函)の回動支持室の奥が膨大部を
所定の深さまで引っ込ませ得る大きさで形成せしめて成
る(図6、図9、図10)。 このバーベル式空気バネ
緩衝装置の組み立ては、前記空気バネ18の空気を抜
き、その中心の穴に連結棒17を通しておく。 そし
て、穴付支持函15を両端に通してその後、両端にボー
ル状の膨大部を取付ける。 該ボール部分を残るカバー
支持函16で囲ってボルト孔84を通してボルト締めす
る。このバーベル式空気バネ緩衝装置の取付けは、左右
の装置の支持棒の間隔が、上方がせまくて下方が広くな
る傾斜取付方式が望ましい。 そうすれば、図11に示
す如く台車の上面線Bと車体の下面線Aが直線走行区間
では平行になるように調節してあり、カーブ区間で車体
が遠心力で矢印Pの方向に押されると、車体の下面は該
緩衝装置の上部のボール状部は前記下面線Aより一定の
高さαに於いて回動自在であるので、左側のボール状部
はDよりD′に、また右側のボール状部はEよりE′に
移動することとなり、破線A′で示す如く車体の下面は
遠心側が高くなり、求心側が低くなる。 その結果、カ
ーブでは車体の遠心側が高まり、求心側が沈むので車輛
の安定性が高まる(図6、図11)。台車3には中央列
車輪駆動装置に制動装置を加えた左右対称型駆動制動装
置とプロペラ推進装置が設けてある。中央列車輪駆動装
置は空気抵抗のバランスを得るため左右対称が好まし
い。左右対称型の中央列車輪駆動制動装置は図7、8に
於いて、台車の前後方向中心線の下方に駆動輪4が2個
ある。 駆動軸7は中央に前記駆動輪4を一個嵌殺して
あり、該駆動輪4の両側とも同じ順序でブレーキ35、
支持体20の軸受34、大歯車5、軸受34の順に嵌込
んであり、ナット36で両端を止めて固定してあり、該
支持体20は上方で左右に分割してあり、それぞれは上
方で差し込んで位置を定め、クッション39を介して台
車3の天板52にボルトとナット36で取付けてある。
左右のギアーケース10は前記左右の支持体20の外
側に一体に固定してあり、該ケース内の下方に納まる大
歯車5の軸孔の内周は内歯車が形成してあり、駆動軸7
の継手歯車と咬み合っているので、駆動輪35と、大歯
車5及び駆動軸7は同体で回転する。 前記左右の大歯
車5はそれぞれ左右のギアーケース10内で上方の小歯
車6と咬み合っている。 該小歯車6の中心に嵌殺した
小歯車軸6の内端部は支持体20とギアーケースの上方
の軸受34に回転自在に支持されていて、他端は小歯車
カバー32に固定した軸受を貫通してギアーケースの外
で、たわみ軸継手9に連結してある。下方のサイドカバ
ー33は上部以外の周縁をギアーケースと一体にビスと
ナット36でシールを挿んで締め付けてあり、上方の床
53の直下で小歯車カバー32の下端の折り縁とシール
を挾んでネジ止めしてある。 該小歯車カバーも周縁を
前記ギアーケースにシールを挿んでネジ78止めしてあ
る。 又、前記たわみ軸継手9には小歯車軸38の反対
側に駆動モータ8のモータ軸79の軸端が連結してあ
り、該駆動モータ8はクッション39を介して台車の床
53に取付けてある。ブレーキ35は両側の支持体20
の内方に取付けてある。上記の如く、駆動装置の各機器
は、駆動モータ以外は支持体20に支持され、支持体2
0は強化した台車の天板52に弾性体39を介してボル
トとナット36で取り付けてあり(図8)、前後に突出
せしめた固定片80で台車の床53に下方からクッショ
ンを介してボルト締めしてある(図4)。駆動モータ
は、別のクッション39を介して台車の床に取り付けて
あるから、そのモータ軸は支持体に軸受を介して支持さ
れている小歯車軸38の振動のリズムと同一でないが、
たわみ軸継手9が緩和するし、蛇行動や激しい振動の発
生を構造的に内包する左右の片ツバ車輪を平行レールで
転がす従来の鉄道方式とは異なり、本発明の中央列駆動
輪の振動或いは横揺れは小であり、かつ大径の車輪故に
早いリズムの衝撃は生じにくい。従って、モータに対す
る衝撃は平行レールの片ツバ車輪の軌道車より極めて小
なので、簡単な緩衝構造で軽量化できる。 上記の駆動
装置はギアーケース10内に於いて、油潤滑が可能で大
型の高速車に用いられる。尚、上記の駆動歯車の点検作
業では、図8に於いて、第Iにサイドカバー33を外
し、第2に駆動軸のナットを外して降接の軸受及び大歯
車を抜きとり、第3に台車底面の底蓋28を梁54から
外し、第4に小歯車軸をたわみ軸継手から外し、第5に
小歯車カバーとギアーケースのネジを外してから、小歯
車カバー、スラスト型の軸受け、コロ型の軸受け、小歯
車の順に外せばよい。このあとで、一方の支持体を外す
と駆動輪と駆動軸も外せる。組立ては前記と逆の段取り
でできる。駆動装置は非対称式を含めて多くある。その
中でも本例では1駆動輪に左右計2個の小型の駆動モー
タによるので台車の天井を低くでき、その分車高を低く
断面の小型化で空気抵抗を減らせるので、高速性と省エ
ネルギーを大にする。プロペラ推進装置は図4、5、1
4、15、16に於いて、台車3の底部に回転可能にし
て設けたパイロン台19から下がるモータパイロンの下
方に推進モータ12を取付け、該モータの軸に取り付け
た固着具58にプロペラ14を取付けてある。 車両の
逆進時は図5中の破線のプロペラ14のように矢印の方
向にパイロン台19の180度の回転により逆方向に推
進させることができる。その制御システムは車軸の回転
数と車両の実速の差、例えば一定時間内の標識の通過数
をカウントして車輛の実速を計測し、駆動軸の回転数を
検知して駆動輪の回転速度を計測し、双方の差が一定の
範囲の値を超えた場合、例えば実速が駆動輪の回転速度
より早いときプロペラ推力が大なので駆動回転数を大に
し、その逆ではプロペラ推力を大にする等の調節で駆動
輪のすべりが生じない範囲に制御する。該装置による制
動は、プロペラの逆回転又はパイロン台19の180度
回転でできる。特に高速時は車輪制動より衝撃が少なく
車輪の偏磨耗が生じないので制動のための複雑な制御機
器を必要とせず、コストは安く軽量化に適している。案
内装置は図4、5、6に於いては、案内輪11が台車3
の底部の前後に左右一対で設けてある。 該案内輪11
は台車3の底面と同一水準に下面を合わせて縦軸であ
り、左右の案内輪の上部に設けたプーリーにベルト27
を係合して等速逆回転構造である。従って一方の案内輪
が案内体に接触して回転するとき、他方の案内輪も逆に
等速で回転し、台車が揺れて反対側に傾いた時に反対側
の案内輪が案内体に接触してすべりを生じない。 この
案内輪11を台車に搭載した案内モータ81で車両のス
ピードと等速に図5中の矢印の如く逆方向に回転制御す
ることが可能であり、高速性及び安定性を高めるので一
層好ましい。上述の案内輪11は最高位置が、案内体に
規制されているので台車はそれ以上は浮上しないし、駆
動輪の両ツバ77は高く踏面76が深く、レール23よ
り少し離れて浮いても、案内体で案内輪の上限を規制す
るので、その限度内では駆動輪のツバが脱輪しない位置
にレールがあるように駆動輪が取り付けてある(図
6)。従って、少々駆動輪が浮いても推進力を大にして
駆動力の限界以上の速度が出せる。尚、本発明による案
内方式として好ましい他の一例をあげると、強制弾力接
触式に於いて、図12、図13では左右の案内輪11は
外側で案内体24の案内面に弾力的に接触せしめられて
いる。その構成は台車3の底部に設けたスライド溝91
の前後の立ち上がり壁にはストッパー94が前後の左右
に1個づつ所定位置に設けてある。該溝に嵌まっている
スライドケース98は空気バネ43で圧迫されてストッ
パーの中側にスライドケースのくぼみ99の中央で、空
気バネの弾性により外方に突出せしめられているが、左
右の案内面に押されて台車3の左右側壁トケースの外端
とが両側で合わされている。左右の案内面の間隔は一定
(平行度の誤差はあるが)に構成してある(図12)。
又、該スライドケースに回転自在に支持されている案
内輪11は台車が矢印Qの方向に傾いたとき、右側の案
内輪Oは右側の案内面に強く押しつけられ、スライド
ケースの内側は空気バネ43を矢印Nの方向に押して左
のスライドケースのくぼみ99がストッパー94に当た
るまで弾力的に押す。同時に左側のスライドケースは空
気バネ43の膨張力に押されて左側の案内面と案内輪の
間に生じる隙間を埋めるのに十分な膨張力を空気バネよ
り加えられていて外方に僅かにαだけ押し出される。こ
のとき左右の案内輪は何れも案内面と接触している(図
13)。 この作用が連続して生じ案内輪と案内面は接
触を続けて車輛の走行を安定させる。 従って、台車が
一方に傾いても案内面には空気バネの弾性によりソフト
に案内面への接触を保ち車輛に衝撃をあたえない。又、
案内モータで車輛速度と等速に回転を制御するのが、よ
り好ましい。
Second Embodiment (See FIGS. 3 to 14 and FIG. 16) The drawings are schematic views of one embodiment according to the present invention, and FIG. 3 is a distant view of an elevated track and a flight type track car 1. On the elevated track, columns 50 fixed by a concrete pedestal below are arranged at a predetermined interval, and a rail support 31 made of H steel is placed endlessly and fixed on the upper part thereof. The rail support 31 is integrally fixed with lateral beams 49 of left and right gate-shaped fixed limbs 51 at the lower center of the arc fixing body 25. The left and right fixed limbs 51
Is fixed to the upper part of the support column 50 by dropping downward with the rail support 31 sandwiched therebetween (FIG. 6). A supporting arc 22 made of reinforced concrete is placed on the upper surface of the arc fixing body 25 and fixed by a fixing tool 26. In the curve section, the supporting arc is fixed at a predetermined inclination according to the gradient of the curve (Fig. 7). A rail 23 is attached to the upper inside of the support arc 22. Rail bottom and rail support 31
A rail base 48 is provided between the rail base 48 and the rail base 48, and the top surface of the rail base 48 is arc-shaped. (Figs. 6 and 7). Therefore, rail holder 8
In step 2, the rail 23 can be attached to the rail base 48 at an inclination equal to the inclination angle of the rail support. Guide bodies 24 are placed inside both sides of the supporting arc 22 supporting the rails, the upper side is pressed by a guide body fixing tool 74, and the inner lower side is fixed by a retaining plate 75. Further, an insulator 21 is attached to the upper part of the guide body 24 and supports a trolley wire 29 (FIGS. 3, 6, and 7). The current may be collected from an overhead line such as a conventional line, but in this example, since the insulators are attached to the guide bodies spaced apart from each other, it is possible to supply a higher voltage than the conventional third rail system, and Other than the rail support / rail base, the curved section can be installed with the same member as the straight section, and the rail support / rail base etc. can be produced at the factory, so the construction period is fast Can be small. In the assembled model, as shown in FIG. 15, if the shape of the bottom surface of the arc fixing body 25 can be set on a flat surface, the inclination of the curve can be adjusted, so that a set of orbits of a certain length can be assembled and disassembled freely. it can. More specifically, FIG.
As shown in FIG. 13, the vehicle of the flight type rail car 1 is a vehicle body 2
And trolley 3. The vehicle body 1 has a semi-circular cross section, and has arc-shaped doors immediately after the cab and on both sides of the rearmost portion. A carriage 3 supporting the vehicle body 2 is elastically coupled to the carriage 3 by a barbell type air spring cushioning device 30. The barbell type air spring shock absorber accommodates a barbell-shaped connecting rod 17 having ball-shaped enlarging parts attached to both ends, and accommodating while supporting the enlarging part rotatably at an angle within a predetermined range. Each of the upper and lower rotation support boxes has a rotation support chamber having a detachment stop green provided at its opening, which is provided with a bearing that supports the rotation and the slide, and a central hole through which the connecting rod 17 is passed. It is composed of a rubber donut-shaped air spring 18. The rotation support box includes a support box with a hole 15 and a cover support box 1
6 and the inner part of the rotation support chamber of at least one of the rotation support boxes (the lower rotation support box in this example) is formed to have a size capable of retracting the enlarged portion to a predetermined depth. (FIG. 6, FIG. 9, FIG. 10). In assembling this barbell type air spring cushioning device, the air of the air spring 18 is evacuated and the connecting rod 17 is passed through the hole at the center thereof. Then, the support box 15 with holes is passed through both ends, and thereafter, ball-shaped enlarged portions are attached to both ends. The ball portion is surrounded by the remaining cover support box 16 and bolted through the bolt hole 84. The barbell-type air spring cushioning device is preferably mounted in an inclined mounting system in which the distance between the support rods of the left and right devices is narrow in the upper part and wide in the lower part. Then, as shown in FIG. 11, the upper surface line B of the bogie and the lower surface line A of the vehicle body are adjusted to be parallel in the straight running section, and the vehicle body is pushed in the direction of arrow P by the centrifugal force in the curved section. On the lower surface of the vehicle body, since the ball-shaped portion on the upper side of the shock absorber is rotatable at a constant height α from the lower surface line A, the ball-shaped portion on the left side is D'from D and the ball-shaped portion on the right side. The ball-shaped portion of E moves from E to E ', and the lower surface of the vehicle body becomes higher on the centrifugal side and lower on the centripetal side as shown by the broken line A'. As a result, in the curve, the centrifugal side of the vehicle body rises and the centripetal side sinks, so the stability of the vehicle increases (FIGS. 6 and 11). The trolley 3 is provided with a left-right symmetrical drive braking device in which a braking device is added to a center row wheel driving device and a propeller propulsion device. The center row wheel drive device is preferably symmetrical in order to obtain a balance of air resistance. The left and right symmetrical center row wheel drive braking device has two drive wheels 4 below the longitudinal center line of the carriage in FIGS. The drive shaft 7 has one drive wheel 4 inserted in the center thereof, and the brakes 35,
The bearing 34, the large gear 5, and the bearing 34 of the support 20 are fitted in this order, fixed at both ends by nuts 36, and the support 20 is divided into upper and left parts, and It is inserted to determine the position, and is attached to the top plate 52 of the trolley 3 with the bolts and nuts 36 through the cushion 39.
The left and right gear cases 10 are integrally fixed to the outside of the left and right supports 20, and an internal gear is formed on the inner periphery of the shaft hole of the large gear 5 that is housed in the lower part of the case, and the drive shaft 7
The drive wheel 35, the large gear 5, and the drive shaft 7 rotate as a single body because they mesh with the joint gear of FIG. The left and right large gears 5 mesh with the upper small gear 6 in the left and right gear cases 10, respectively. The inner end portion of the small gear shaft 6 fitted in the center of the small gear 6 is rotatably supported by the support 20 and the bearing 34 above the gear case, and the other end is fixed to the small gear cover 32. And is connected to the flexible shaft coupling 9 outside the gear case. The lower side cover 33 is fastened by inserting a seal with a screw and a nut 36 integrally with the gear case on the periphery except the upper part, and sandwiching the folding edge and the seal at the lower end of the pinion gear cover 32 directly below the upper floor 53. It is screwed on. The small gear cover also has a peripheral edge fixed with a screw 78 by inserting a seal into the gear case. A shaft end of a motor shaft 79 of a drive motor 8 is connected to the flexible shaft coupling 9 on the side opposite to the pinion shaft 38, and the drive motor 8 is attached to the floor 53 of the truck via a cushion 39. is there. The brake 35 is a support 20 on both sides.
It is installed inside. As described above, each device of the drive device is supported by the support 20 except the drive motor.
No. 0 is attached to the top plate 52 of the reinforced bogie with the bolts and nuts 36 through the elastic body 39 (FIG. 8), and is fixed to the floor 53 of the bogie with a fixing piece 80 protruding from the front and the bottom via a cushion. It has been tightened (Fig. 4). Since the drive motor is attached to the floor of the trolley via another cushion 39, its motor shaft is not the same as the vibration rhythm of the pinion shaft 38 supported by the support through the bearing,
Unlike the conventional railway system in which the left and right brim wheels, which structurally include the occurrence of serpentine motion and severe vibration, are rolled by parallel rails, the vibration of the central row drive wheels of the present invention or Rolling is small, and because of the large diameter wheels, quick rhythmic impact is unlikely to occur. Therefore, since the impact on the motor is extremely smaller than that of the rail car of the single brim wheel of the parallel rail, the weight can be reduced with a simple buffer structure. The above-mentioned drive device can be oil-lubricated in the gear case 10 and is used for a large high-speed vehicle. In the inspection work of the drive gear described above, in FIG. 8, the side cover 33 is removed first, the nut of the drive shaft is removed secondly, the bearing of the descending contact and the large gear are extracted, and thirdly, in FIG. The bottom cover 28 on the bottom of the bogie is removed from the beam 54, fourthly, the pinion shaft is removed from the flexible shaft coupling, and fifthly, the pinion cover and the gear case are unscrewed, and then the pinion cover and the thrust type bearing, It is sufficient to remove the roller type bearing and the small gear in this order. After that, when one of the supports is removed, the drive wheel and the drive shaft can also be removed. Assembly can be done by the reverse of the above. There are many drives, including asymmetrical. Among them, in this example, one driving wheel uses two small drive motors on the left and right, so the ceiling of the trolley can be lowered, and the vehicle height can be reduced by that amount, and the air resistance can be reduced by reducing the size of the cross section. Therefore, high speed and energy saving are achieved. Make big The propeller propulsion device is shown in Figs.
4, 15, and 16, the propulsion motor 12 is attached below the motor pylon that descends from the pylon base 19 that is rotatably provided on the bottom of the carriage 3, and the propeller 14 is attached to the fastener 58 attached to the shaft of the motor. It is installed. When the vehicle is moving in the reverse direction, it can be propelled in the reverse direction by rotating the pylon table 19 by 180 degrees in the direction of the arrow, as indicated by the broken line propeller 14 in FIG. The control system measures the actual speed of the vehicle by counting the difference between the number of rotations of the axle and the actual speed of the vehicle, for example, the number of passages of a sign within a certain time, and detects the number of rotations of the drive shaft to rotate the drive wheels. When the speed is measured and the difference between the two exceeds a certain range, for example, when the actual speed is faster than the rotational speed of the drive wheels, the propeller thrust is large, so the drive speed is increased, and vice versa. By adjusting the setting, etc., control is performed within a range where the drive wheels do not slip. The braking by the device can be performed by the reverse rotation of the propeller or the 180-degree rotation of the pylon table 19. Especially at high speeds, the impact is less than that of wheel braking and uneven wear of the wheels does not occur, so a complicated control device for braking is not required, the cost is low and it is suitable for weight reduction. As for the guide device, in FIGS. 4, 5 and 6, the guide wheel 11 is the carriage 3
A pair of left and right is provided in front of and behind the bottom of the. The guide wheel 11
Is the vertical axis when the bottom surface is aligned with the bottom surface of the trolley 3 and the belt 27 is attached to the pulleys provided on the left and right guide wheels.
Is a constant speed reverse rotation structure. Therefore, when one guide wheel comes into contact with the guide body and rotates, the other guide wheel also rotates at the same speed, and when the bogie shakes and leans to the opposite side, the opposite guide wheel comes into contact with the guide body. It does not slip. This guide wheel 11 can be rotationally controlled in the opposite direction as indicated by the arrow in FIG. 5 at the same speed as the vehicle by the guide motor 81 mounted on the trolley, which is more preferable because the high speed and stability are enhanced. Since the highest position of the guide wheel 11 is regulated by the guide body, the dolly does not float further, and both the brims 77 of the drive wheels are high and the treads 76 are deep, and even if they float a little away from the rail 23, Since the guide body regulates the upper limit of the guide wheel, the drive wheel is attached so that the rail is located at a position where the brim of the drive wheel does not come off within the limit (FIG. 6). Therefore, even if the drive wheels are slightly floated, the propulsive force can be increased and the speed exceeding the limit of the drive force can be obtained. As another preferred example of the guide system according to the present invention, in the forced elastic contact type, the left and right guide wheels 11 in FIG. 12 and FIG. 13 are elastically brought into contact with the guide surface of the guide body 24 outside. Has been. The structure is a slide groove 91 provided at the bottom of the carriage 3.
Stoppers 94 are provided at predetermined positions on the front and rear rising walls, one on the front and one on the rear. The slide case 98 fitted in the groove is pressed by the air spring 43 and is protruded outward by the elasticity of the air spring at the center of the recess 99 of the slide case toward the inside of the stopper. The left and right side walls of the trolley 3 are pushed by the surface and are aligned with the outer ends of the case on both sides. The distance between the left and right guide surfaces is fixed (although there is an error in parallelism) (FIG. 12).
Further, the guide wheel 11 rotatably supported by the slide case is strongly pressed against the right guide surface by the right guide wheel O 2 when the carriage is tilted in the direction of arrow Q, and the inside of the slide case is air-conditioned. The spring 43 is pushed in the direction of the arrow N and elastically pushed until the recess 99 of the left slide case hits the stopper 94. At the same time, the left slide case is pushed by the expansion force of the air spring 43, so that the expansion force sufficient to fill the gap between the left guide surface and the guide ring is applied by the air spring, and it is slightly outward. Just pushed out. At this time, both the left and right guide wheels are in contact with the guide surface (Fig. 13). This action continuously occurs and the guide wheel and the guide surface continue to be in contact with each other to stabilize the traveling of the vehicle. Therefore, even if the carriage tilts to one side, the elasticity of the air spring keeps the guide surface softly in contact with the guide surface and does not give a shock to the vehicle. or,
It is more preferable to control the rotation at the same speed as the vehicle speed by the guide motor.

【実施例3】 (図14より図20まで参照) 本例は模型の一例で、軌道装置は支持アーク22が固定
アーク25上で固定具26で一体に固定され、この状態
で地上でも固定できる。高架軌道ではレール23は支持
アークの中央の溝に防音のためのクッションを挾んで差
し込んである。 アーク固定体25の内側には規制突起
93があり、支持アークの下面の溝でレール方向へずれ
るのを規制している。 該レールは縦幅が広く、案内体
24は案内体固定具74で支持アークに締め付けてあ
る。この車両は台車と車体が一体に固定してあり、下方
の台車の空洞内に駆動モータ8、小歯車6が納まってい
る。更に、両側の支持体の上方の左右の固定片80が台
車の床53に取付けてある。車体の前部には標的70が
中板57に取り付けて、上半分を透明板を通して目視し
やすくなっていて、光線がヒットすると所定のサインを
発する構成になっている。駆動輪4は左右のツバ部分を
歯車に形成してあり(図14)、駆動軸7で両側の支持
体20間に軸受34を介して回転自在に支持されてい
る。 駆動軸7は両側の支持体20にナット36で固定
してある。 該駆動輪4のツバ歯車に噛み合う伝動小歯
車6は前記台車の空洞内に於いて、小歯車軸38により
左右のピローブロック85内の軸受に回転自在に支持さ
れている。 この小歯車軸は両側のビローブロック85
の外方にのびていて、その両端部がたわみ軸継手9に連
結してある。 該たわみ軸継手9は両外側の駆動モータ
8に連結してある。駆動モータ8はクッション37を介
して床53に取り付けてあり、そのモータ軸は前記の如
くたわみ軸継手9を介して前記小歯車軸38と連結せし
めてある。従って、駆動モータが回転すると、たわみ軸
継手9を介して小歯車軸により小歯車が回転し、該小歯
車は鋼鉄性のツバ歯車と噛み合ってツバ歯車駆動輪を駆
動回転せしめるが、小歯車は無給油でツバ歯車と緩衝的
に噛合えるナイロン製であり、たわみ軸継手とクッシヨ
ン39により、駆動輪からの衝撃は緩和され、衝撃を受
けるのは支持体20とそれを取付けた台車の床に限定さ
れる。 上述のツバ歯車駆動装置は本発明による1実施
例で駆動輪に歯車を一体に付属せしめる方法は他の一例
では、その外周を中高にして歯車を形成して小歯車に噛
合わせ、両側で平行レール面に転がらす等もあるが、極
めて少ない部品でコストが安く、無給油でも相当程度の
速度で走行でき、低級音である。プロペラ推進装置は、
図14、16で駆動輪4の前方にあり、プロペラは固着
具58により推進モータ12の後方に突出したモータ軸
と一体に固定してある。推進モータ12はモータパイロ
ン13で支持され、該モータパイロンは台車の床に設け
た回転装置で支持されている。モータパイロン13には
サーボモータが内在せしめてあり、該サーボモータはパ
イロン歯車45に連結してある。該パイロン歯車45は
モータ支持体59の上方に構成した回動歯車47に咬み
合っている。モータ支持体59の支持片は、両側のパイ
ロンに取り付けてあるモータ回動軸46で回動自在に支
持されている。従って、モータ支持体59はサーボモー
タが回転した分だけパイロン歯車45を介して、回動歯
車47により、モータ回動軸46を中心に回動して推進
モータ12の上下角を変化させる。それにより、プロペ
ラの推進方向も上下方向が変化せしめられる。その結果
後部駆動輪のすべりを検知した場合には推進モータ12
の前部を下げると、車輛前部に揚力が増え、後部に荷重
が増す結果、台車の前部が軽くなり後部に逆の荷重かか
り、すべりをなくせる。前部の駆動輪のすべりはその逆
でなくせる。モータパイロンの回転装置は台車の床53
に設けてある(図16)。回転角度を定めるサーボモー
タ88のモータ軸は回転台71の中心に固定してあり、
該回転台71の下面にはモータパイロン13の上面を合
わせて一体に固定してある。この回転台71は下面の外
周に軸受け34が当接し、回転自在に支持され、該軸受
は回転支持ケース87の内周下方に嵌殺してあり、該回
転支持ケースは外周を環状固定具86で床53に固定し
てある。従ってサーボモータを回転させた角度だけモー
タパイロンも回転し、プロペラの向きを逆の方向に変え
ることができる。本発明に於いて集電装置は糧量化のた
めに小型で部品点数が少なく架線又はトロリー線への追
随製のよいものがのぞましく、その一例として本発明に
よる集電靴は、バネ板62、丁番63等の素材として良
伝導体で、かつ硬質で弾性に富む、例えば燐青銅の如き
金属が好ましい。すり板には、燐青銅も使えるが、焼結
合金の新素材を選ぶのが、望ましい。図17より図21
に於いて、集電靴60は、一対のすり板61、該すり板
を固定するバネ板62、該バネ板を片側に固着せしめた
左右の丁番63、該左右の丁番の他側には、中央に支え
板64を固着したバネ板62の両端部が一体に固定して
ある。すり板61は短い丸棒の両端部を薄肉に形成して
鋲孔を穿ってあり、2本を並べてバネ板62に鋲65止
めしてある。バネ板62は、すり板を固定した中央部を
残して両側をアールをつけて同じ方向に約45度で曲げ
てある。対面しているバネ板も支え板の両側をやや余し
て同一の形状に曲げて形成してある。上記の2枚のバネ
板の両端部がそれぞれ2枚の丁番の一片づつに固着して
あって外形ができている。そして風圧が大きくかかるバ
ネ板の2本のすり板61の間に風孔69が穿ってある。
この集電靴60の取り付けは、車両の所定の位置に絶縁
体42を介して一対の押さえ板66を集電靴60の支え
板64の幅に合う隙を開けて平行に固定する。次には、
2枚の平行に取り付けた押さえ板の間に支え板を横方向
から押し込み、押さえ孔67により、ビス止めすれば完
了する。該集電靴の素材が良伝導体であれば、この押さ
え板に電極を取り付けて配線すればよい。尚、本例では
すり板が両端の鋲65迄の長さであるが、左右方向に延
長してトロリー線に幅広く対応できるし、不要の時、折
畳む構成にすると一層よい。この集電靴は、すり板61
が押圧されると、図19の破線の如く低くなり、圧力を
除くと瞬時に復元するので、トロリー線の高低の変化に
良く追随できるし、すり板以外では、風圧は構成部品の
板の厚みにかかるのみであり、風圧に強い特徴がある。
尚、前記の押さえ孔67のビスを外せば、矢印P方向に
スライドさせて集電靴を簡単に外すことができるし、上
向きにも使えるので、パンタグラフにもなる。かくの如
く、部品点数が少なく、簡単な構造なので軽量で反応が
早いからトロリー線への追随性が良く、離線を防止し易
い。
Third Embodiment (See FIGS. 14 to 20) This example is an example of a model. In the track device, the supporting arc 22 is integrally fixed on the fixed arc 25 by the fixing tool 26, and in this state, it can also be fixed on the ground. . On the elevated track, the rail 23 has a cushion for sound insulation inserted in a groove in the center of the supporting arc. There is a restriction projection 93 inside the arc fixing body 25, and the groove on the lower surface of the support arc restricts the deviation in the rail direction. The rail has a large vertical width, and the guide body 24 is fastened to the supporting arc by a guide body fixture 74. In this vehicle, the bogie and the vehicle body are integrally fixed, and the drive motor 8 and the pinion 6 are housed in the cavity of the bogie below. Further, left and right fixing pieces 80 above the supporting bodies on both sides are attached to the floor 53 of the truck. The target 70 is attached to the middle plate 57 at the front part of the vehicle body so that the upper half can be easily seen through the transparent plate, and a predetermined sign is emitted when the light beam hits. The drive wheel 4 has left and right flanges formed as gears (FIG. 14), and is rotatably supported by the drive shaft 7 between the supports 20 on both sides via bearings 34. The drive shaft 7 is fixed to the supports 20 on both sides with nuts 36. The transmission small gear 6 meshing with the flange gear of the drive wheel 4 is rotatably supported by bearings in the left and right pillow blocks 85 by the small gear shaft 38 in the cavity of the carriage. This pinion shaft has billow blocks 85 on both sides
Of the flexible shaft joint 9 is connected to the flexible shaft joint 9 at both ends. The flexible shaft coupling 9 is connected to both outer drive motors 8. The drive motor 8 is attached to the floor 53 via a cushion 37, and its motor shaft is connected to the pinion shaft 38 via the flexible shaft coupling 9 as described above. Therefore, when the drive motor rotates, the small gear is rotated by the small gear shaft via the flexible shaft coupling 9, and the small gear meshes with the steel-made flange gear to drive and rotate the flange gear drive wheel. It is made of nylon that can be engaged with the flange gears without oiling, and the impact from the drive wheels is mitigated by the flexible shaft joint and cushion 39. The impact is received on the support 20 and the floor of the truck to which it is attached. Limited. The flange gear driving device described above is an embodiment according to the present invention in which the gear is integrally attached to the drive wheel. In another example, the outer circumference is set to a middle height to form a gear, which meshes with a small gear and is parallel to both sides Although it can be rolled on the rail surface, the cost is low with very few parts, it can run at a considerable speed without lubrication, and it is a low-grade sound. Propeller propulsion device
In FIGS. 14 and 16, the propeller is located in front of the drive wheel 4, and the propeller is integrally fixed to the motor shaft protruding rearward of the propulsion motor 12 by a fastener 58. The propulsion motor 12 is supported by a motor pylon 13, which is supported by a rotating device provided on the floor of the truck. A servomotor is built in the motor pylon 13, and the servomotor is connected to the pylon gear 45. The pylon gear 45 meshes with a rotary gear 47 formed above the motor support 59. The support piece of the motor support 59 is rotatably supported by the motor rotation shafts 46 attached to the pylons on both sides. Therefore, the motor support 59 is rotated about the motor rotation shaft 46 by the rotation gear 47 via the pylon gear 45 by the amount of rotation of the servo motor to change the vertical angle of the propulsion motor 12. As a result, the propelling direction of the propeller is also changed vertically. As a result, when slippage of the rear drive wheels is detected, the propulsion motor 12
Lowering the front part of the vehicle increases the lift on the front part of the vehicle and increases the load on the rear part. As a result, the front part of the dolly becomes lighter and the reverse load is applied to the rear part to eliminate slip. The slippage of the front drive wheels can be reversed. The rotating device of the motor pylon is the floor 53 of the truck.
(Fig. 16). The motor shaft of the servo motor 88 that determines the rotation angle is fixed to the center of the turntable 71,
The upper surface of the motor pylon 13 is aligned with the lower surface of the rotary table 71 and integrally fixed. The rotary table 71 is rotatably supported by the bearing 34 abutting on the outer circumference of the lower surface thereof, and the bearing is fitted to the lower part of the inner circumference of the rotary support case 87. It is fixed to the floor 53. Therefore, the motor pylon is also rotated by the angle at which the servo motor is rotated, and the direction of the propeller can be changed to the opposite direction. In the present invention, it is desirable that the current collector is small in size and has a small number of parts so that the current collector can easily follow an overhead wire or a trolley wire. For example, the current collector shoe according to the present invention is a spring plate. As the material of 62, hinge 63, etc., a metal such as phosphor bronze, which is a good conductor and hard and rich in elasticity, is preferable. Phosphor bronze can be used for the contact plate, but it is preferable to select a new sintered alloy material. FIG. 21 to FIG.
In the current collecting shoe 60, a pair of sliding plates 61, spring plates 62 for fixing the sliding plates, left and right hinges 63 with the spring plates fixed to one side, and the other side of the left and right hinges are provided. Has both ends of a spring plate 62 having a support plate 64 fixed to the center fixed integrally. The contact plate 61 has both ends of a short round bar formed thin to have rivet holes, and two linings are arranged side by side and fixed to the spring plate 62 with rivets 65. The spring plate 62 is bent at about 45 degrees in the same direction with a radius on both sides except for the central portion to which the contact plate is fixed. The facing spring plates are also formed by bending both sides of the supporting plate into the same shape with a little margin. Both ends of the above-mentioned two spring plates are fixed to each of the two hinges to form the outer shape. An air hole 69 is formed between the two sliding plates 61 which are spring plates to which a large wind pressure is applied.
To attach the current collecting shoes 60, a pair of pressing plates 66 are fixed in parallel at a predetermined position of the vehicle through the insulator 42 with a gap matching the width of the supporting plate 64 of the current collecting shoes 60. Next,
The supporting plate is pushed laterally between the two pressing plates that are attached in parallel, and the pressing holes 67 are used to fasten with screws. If the material of the current collecting shoe is a good conductor, electrodes may be attached to the pressing plate for wiring. In this example, the contact plate has a length up to the tacks 65 at both ends, but it can be extended in the left-right direction to accommodate a wide range of trolley wires, and it is more preferable to fold it when unnecessary. This current collecting shoe has a sliding plate 61
When is pressed, it becomes low as shown by the broken line in FIG. 19, and it recovers instantly when the pressure is removed, so it can follow the changes in height of the trolley wire well. It has a strong characteristic against wind pressure.
It should be noted that if the screw of the pressing hole 67 is removed, the current collecting shoe can be easily removed by sliding it in the direction of the arrow P, and since it can be used upward, it becomes a pantograph. As described above, since the number of parts is small and the structure is simple, it is light in weight and has a quick reaction. Therefore, it is easy to follow the trolley wire, and it is easy to prevent disconnection.

【実施例4】 (図22、23、24 参照) 本例の飛行式の軌道車の軌道は、既述のごとき構成であ
る。車輛は前後に長く、車体を支持する枕梁枠100の
下方の前後に設けた各1台の台車のそれぞれは、少なく
とも一対の案内輪と1乃至複数の駆動装置及び台車軸9
7を具備し、該枕梁枠100に支持される台車軸97を
中心に所定角回動自在である。該案内輪は案内体に案内
されて台車をレール方向にならわしる。即ち、前後各1
台の回転式の台車3の前後方向の中央線の下方には駆動
輪4が各2個づつ設けてあり、該駆動輪4は、既述の中
央列車輪駆動制動装置に組み込まれていて、前後何れの
回転式の台車にも2組の前記駆動装置が搭載してある。
該前後の回転式の台車に於いて、前部の台車3の前部に
は前述例の強制弾力接触式の案内輪11を左右一対で設
けてあり、該案内輪の後方には単列で駆動輪4が2個前
後に並んでいて駆動装置に組み入れてある。 直線区間
で該案内輪は図24に示すように車輛と同じ向きに台車
3も破線の方向を向くが、曲線区間では台車3は案内輪
により、台車軸97を中心に回動して実線で示す台車3
の方向に回され、車軸に傾斜した角度となり、レールの
カーブに沿った方角に向かわされる。 同様に後部の台
車も図24のように後方の案内輪11でレールにならっ
て回動させられレールに沿った方向に向いて転がる。
従って、4個の駆動輪の狭い幅の踏面でもレールのカー
ブに追従して転がり、ツバの破壊のような問題が生じな
い。 仮に、本例の台車が固定してあれば、直線区間で
は問題がないが、急カーブでは両ツバ間の踏面からレー
ルがはみ出ることとなり、ツバを破壊するとか、駆動装
置を破壊する等の問題がおきる。 従って、本例の回転
式の台車は車輛が長い形であれば、車輛の前後に設け
て、カーブでの安定走行に重要である。本例の回転式台
車に駆動装置がなくて支持輪4個を駆動輪に代えて設け
れば、長い車輛の牽引式の貨車としてカーブでも安定し
て高速性が向上する。
Fourth Embodiment (Refer to FIGS. 22, 23 and 24) The orbit of the flight type rail car of this example has the above-described configuration. The vehicle is long in the front-rear direction, and each of the trolleys provided in the front-rear direction below the bolster frame 100 that supports the vehicle body has at least one pair of guide wheels, one or more drive devices, and the trolley axle 9.
7 and is rotatable about a carriage shaft 97 supported by the bolster frame 100 by a predetermined angle. The guide wheel guides the carriage along the rail direction by being guided by the guide body. That is, 1 for each before and after
Two drive wheels 4 are provided below the center line in the front-rear direction of the rotary trolley 3 of the pedestal. The drive wheels 4 are incorporated in the center row wheel drive braking device described above. Two sets of the above-mentioned drive devices are mounted on both front and rear rotary carriages.
In the front and rear rotary trolleys, a pair of left and right forced elastic contact type guide wheels 11 of the above-described example are provided at the front of the front trolley 3, and a single row is provided behind the guide wheels. Two drive wheels 4 are arranged side by side in front of and behind the drive wheel. In the straight line section, the guide wheels face the direction of the broken line in the same direction as the vehicle as shown in FIG. 24. However, in the curved section, the trolleys 3 are rotated by the guide wheels about the trolley shaft 97 to form a solid line. Trolley 3
It is turned in the direction of, and becomes an angle inclined to the axle, and is directed in the direction along the curve of the rail. Similarly, the rear carriage is also rotated by the rear guide wheel 11 following the rail as shown in FIG. 24, and rolls in the direction along the rail.
Therefore, even the narrow tread surface of the four drive wheels rolls following the curve of the rail, and there is no problem such as breakage of the brim. If the truck of this example is fixed, there will be no problem in a straight section, but in a sharp curve the rail will stick out from the tread between the two brims, causing problems such as breaking the brim or destroying the drive device. Occurs. Therefore, if the vehicle has a long shape, the rotary carriage of this example is provided before and after the vehicle and is important for stable traveling on a curve. If the rotary trolley of this example does not have a drive device and four support wheels are provided instead of the drive wheels, the high speed performance can be improved stably even in a curve as a long vehicle towed wagon.

【実施例5】 (図25 参照) 図24に於いて、長円形状の軌道73が複数設定してあ
り、飛行式の軌道車1は標的を搭載している。 該模型
に好ましい競技システムの一例を述べる。該軌道73と
適宜の距離に設定した回転スタンド72に、1乃至複数
の狙撃台40を設けてある。 該飛行式の軌道車1の標
的70は特定の光線のヒットに対して所定のサインをだ
したり或いはカウントする。矢印のように、該軌道車と
回転スタンド72を逆にも回転せしめ得るし、回転スピ
ードを早めたり、傾けたり、揺動させたりできる。 複
数の狙撃者で狙撃のヒット数を競争できる。標的のサイ
ンには、メロディー音・点滅光・色の変化・形態の変更
・物体を発射する等多くの種類がある。
Fifth Embodiment (Refer to FIG. 25) In FIG. 24, a plurality of elliptical orbits 73 are set, and the flight-type rail car 1 is equipped with a target. An example of a preferred competition system for the model will be described. One or a plurality of sniper tables 40 are provided on the rotation stand 72 set at an appropriate distance from the track 73. The target 70 of the flight-type rail car 1 gives a predetermined sign or counts a hit of a specific light ray. As shown by the arrow, the rail car and the rotation stand 72 can be rotated in reverse, and the rotation speed can be increased, tilted, or swung. Multiple snipers can compete for sniper hits. There are many types of target signs such as melody sounds, flashing lights, color changes, shape changes, and object firing.

【実施例6】 (図26 参照) 本例は本発明による飛行式の軌道車の一例で、車体上に
もプロペラ14とその推進装置が設けてある。案内輪1
1は、車両が傾いたとき、その側に車輛重量が幾分掛か
るが、主な荷重は中央の駆動輪4に掛かる。案内モータ
81は案内軸と直結され車両スピードと同一に回転制御
されている。H鋼製の案内体24は立ち上がり壁を案内
体となしたもので、案内体の重量に比較して強度があ
る。その他、従来のレール状、断面円形や角型のパイプ
による案内体等にツバ車輪の案内輪を組み合わせるよう
に、本発明の含む構造の組合せ方法は多くある。 案内
輪の材質は騒音が生じず衝撃を弱め摩擦係数の小さいこ
とが望まれる。従って、鋼鉄・合成ゴム・合成樹脂・セ
ラミックス等やそれらの複合素材を目的に応じて案内輪
の外周に使用するのが望ましい。
Sixth Embodiment (see FIG. 26) This embodiment is an example of a flight-type rail car according to the present invention, in which the propeller 14 and its propulsion device are also provided on the vehicle body. Guide wheel 1
No. 1 has some vehicle weight on its side when the vehicle leans, but the main load is on the central drive wheel 4. The guide motor 81 is directly connected to the guide shaft and is controlled to rotate at the same speed as the vehicle. The guide body 24 made of H steel has a rising wall as a guide body and has strength as compared with the weight of the guide body. In addition, there are many methods of combining the structures included in the present invention such that the guide wheel of the brim wheel is combined with the conventional guide body having a rail-shaped, circular cross-section, or rectangular pipe. It is desirable that the material of the guide wheel is such that it does not generate noise, reduces impact, and has a small friction coefficient. Therefore, it is desirable to use steel, synthetic rubber, synthetic resin, ceramics, etc. or their composite materials on the outer circumference of the guide wheel according to the purpose.

【実施例7】 (図27より32まで参照) 従来、プロペラは羽根の長さを大にするのが推力を大き
くするのに最善だと考えられ、単発のプロペラ機では翼
弦幅比の小なプロペラの軸を僅かにスラストさせてプロ
ペラ回転のねじれ作用の悪影響が除けた。 しかし短径
でも、翼弦幅を大にしピッチ角を45度に近づけると空
気をかく量が大になるが軸に働くねじれの力の傾きが大
き過ぎて不安定になる。従って対称のプロペラの一対を
並べて相互を逆転させれば、ねじれの力の相当部分を推
力に転化せしめて機体を安定できる。 そこで本発明の
飛行式の軌道車では、左右一対のプロペラを短径で、翼
弦幅を大で、ピッチ角を45度に近づけ、回転数をあげ
て、大きな推力を出させるのが好ましい。上記の目的を
実施するには、(1) プロペラ14の中心の軸孔支持
部を除いた羽根の片側の長さLと翼弦の最大幅Wとの比
が0.8L≦W≦1.2Lの如く、翼の全周を小とな
し、(2) 最大翼弦幅の位置でのピッチ角を35度よ
り50度の範囲内の値で形成し、(3) 左右の一対を
並べて逆回転で駆動するのが好ましい。即ち、プロペラ
の軸孔102の支持部認識線(破線S)で示される支持
部が軸孔の周囲を囲撓し、その外方に羽根が伸びてい
て、本例では∠POQ=α°はπ/2であり、最も幅
が広い部分WはW−・−Wで示され、羽根の片側の
長さLは図27中のL−・−Lで示されている。
そして、最も幅の広い翼弦部分は半径の約60〜70%
の位置にあるが、そのピッチは∠POQ×1/2=π
/2となしてあり、正しいピッチ角はπ/2より小と成
るが、ほぼπ/2である。 このプロペラの外形は全周
を最小に近づけるために丸くなっていて、一層空気の抵
抗が小となり、回転時の騒音の発生も小となる。 その
素材は一例をあげると、グラスウール、バルサ材、FR
P、エポキシ樹脂アルミニュームとマグネシュームを主
とした合金、チタン合金等を単独或いは複合して加工す
る。このように、本発明による実施例では、従来の鉄道
の振動或いは蛇行動の原因を除いてあり、軽量の構造材
例えば、アルミ合金、アルミとマグネシュウムを主とし
た合金、グラスウール強化合成樹脂例えば、FRP・エ
ポキシ樹脂、バルサ材等で航空機の車体構造を適用して
高速性をたかめ、エネルギー消費を抑制せんとするもの
で、大量輸送の交通機関として、又自動制御装置を組み
込んで、自動搬送装置、遊戯装置等広範囲の用途に利用
できる。尚、既述例で、原動機は電動モータによってい
るが、他の原動機例えば、内燃機関を用いて本発明を実
施できることは明白である。
Seventh Embodiment (See FIGS. 27 to 32) Conventionally, it has been considered that it is best for the propeller to increase the length of the blade in order to increase the thrust. In the single-propeller machine, the chord width ratio is small. The thrust of the propeller shaft was slightly thrusted to eliminate the adverse effect of the twisting action of the propeller rotation. However, even with a short diameter, if the chord width is increased and the pitch angle is brought close to 45 degrees, the amount of air to be covered increases, but the inclination of the twisting force acting on the shaft becomes too large and becomes unstable. Therefore, by arranging a pair of symmetrical propellers side by side and reversing them, a considerable portion of the twisting force can be converted into thrust and the airframe can be stabilized. Therefore, in the flight type rail car of the present invention, it is preferable that the pair of left and right propellers have a short diameter, a large chord width, a pitch angle close to 45 degrees, and the number of revolutions be increased to generate a large thrust. In order to carry out the above object, (1) the ratio of the length L on one side of the blade excluding the central axial hole support portion of the propeller 14 and the maximum width W of the chord is 0.8L ≦ W ≦ 1. As in 2L, the entire circumference of the blade is made small, (2) The pitch angle at the position of the maximum chord width is formed with a value within the range of 35 degrees to 50 degrees, and (3) the left and right pairs are arranged side by side and inverted. It is preferably driven by rotation. That is, the support portion indicated by the support portion recognition line (broken line S) of the shaft hole 102 of the propeller bends around the shaft hole, and the blade extends outward, and in this example, ∠P 1 OQ = α. Is π / 2, the widest portion W is indicated by W 1 − · −W 2 , and the length L on one side of the blade is indicated by L 1 − · −L 2 in FIG. 27. .
And the widest chord is about 60-70% of the radius
, But the pitch is ∠P 1 OQ × 1/2 = π
The correct pitch angle is smaller than π / 2, but it is almost π / 2. The outer shape of this propeller is rounded in order to make the entire circumference as close as possible to the minimum, so that the resistance of the air is further reduced and the noise generated during rotation is also reduced. The materials are, for example, glass wool, balsa wood, FR
P, an alloy mainly composed of epoxy resin aluminum and magnesium, a titanium alloy or the like is processed alone or in combination. Thus, in the embodiment according to the present invention, the cause of the conventional railroad vibration or snake behavior is excluded, lightweight structural materials, for example, aluminum alloys, alloys mainly composed of aluminum and magnesium, glass wool reinforced synthetic resin, for example, By applying the body structure of the aircraft with FRP / epoxy resin, balsa material, etc. to increase the speed and suppress energy consumption, it can be used as a mass transportation system or as an automatic control device with an automatic control device incorporated. It can be used for a wide range of purposes such as amusement machines. In the example described above, the prime mover is an electric motor, but it is obvious that the present invention can be implemented using another prime mover, for example, an internal combustion engine.

【0006】[0006]

【発明の効果】以上説明したように、本発明の軌道は従
来の他の軌道車の車両重量と比較して大幅に軽量化でき
るから、掛かる負荷が小さく、高架でも急カーブ等の特
殊な場所を除けば支柱及びその基礎は小規模で簡単であ
り、部材は量産し易く、高架の大規模なコンクリート打
ち込みのような長期工事は必要なく、工期が早い。最大
の効果は軌道の建設用地の買収が大幅に少なくなり、枕
木に相当する支持アークの数が少なく、既存の高速道路
沿い或いは鉄道上等にも小規模の工事により高架で架設
できることである。車輛は1条のレール上を単列の車輪
が転がるので、進行方向への慣性が大になるので高速性
が大になり、軌道は左右のレールの不整による蛇行動や
振動がなくレールへの負荷が小であり、レールの不整の
保守点検が不要となり、両ツバ車輪のツバは高くでき案
内輪に上限があるので脱輪がなく、案内輪の強制弾力接
触式では車輛の揺れをソフトに変化させて乗り心地を良
くし、左右の車輪を支える重量車軸がないので構造が簡
単で軽量化でき、車輛駆動装置は左右対称型車輪駆動制
動装置では、両側のサイドカバーを外して大歯車と小歯
車を点検できるし、左右対称だから一対の小型の駆動モ
ータを使用して台車の厚さを薄くできるので断面を小に
して空気抵抗を減らして高速性と省エネルギーを大にで
き、両側からディスクブレーキで制動できて高速時には
使用しない等で保守点検の手間が僅かですむし、油潤滑
が可能で高速性がある。案内体にトロリー線を取付けれ
ば、起伏が小で離線を僅かにし、集電靴が車輛の下方に
あるので、該靴で生じた乱流が車輛下面で揚力を生み高
速浮上走行に好都合である。ツバ歯車駆動装置では部品
点数が少なく、簡単な構造で無給油でも走れるので、整
備の手間が省けてランニングコストが安くなり、小型化
が容易にできる。プロペラ推進では、プロペラのひねり
角が大で、翼の幅が広いので、空気を掻く量の積が大で
大推力が得られるから車輪のすべりを検知して高回転に
より推進力を増大せしめることができるが、小径なので
風切量が少なく騒音が小さく、車輪駆動の限界以上に高
速性を高めることができるし、高速時の制動では車輪に
よらないのですべりがなくて車輪やレールの偏磨耗が生
じないから、保守の手間が省ける。更に、モータパイロ
ンの上下への推進方向の調節構造により上述の効果を高
められる。バーベル型緩衝装置はカーブ区間で車体を内
方へ傾けるので、高速安定性を高めるし、部品点数が少
ないから軽量化できる。集電靴は超小型化と軽量化が可
能で耐風型パンタグラフとしても使用でき、かつトロリ
ー線への追随性がよいので、高速での集電を可能とし、
車両の高速走行を実現せしめる。更に小型の模型に使用
してショートによる故障を防ぐことができる。又、小型
の模型には支持アークと固定アークにより、カーブ区間
も同じ部品で調整して組立てできるので、コストが安
く、車体はツバ歯車駆動装置により簡単で部品数が少な
く安価な模型セットを提供できる。尚、叙述例で、原動
機は電動モータによっているが、他の原動機例えば内燃
エンジンを用いて本発明を実施できるのは明白である。
上記の如く、本発明による軌道構造・単列車輪駆動軌道
車・飛行式の軌道車・左右対称式車輪駆動制動装置・両
ツバ歯車駆動装置・案内システム・薄板製の集電靴・バ
ーベル式緩衝装置・プロペラ・プロペラ推進と制動シス
テム等によれば、従来の鉄道の振動或いは蛇行動の原因
を除いてあり、航空機に使用する構造材と構成を本発明
の車輛に適用可能であり、大幅に軽量化して高速性と省
エネルギー性を高め、軽量の高架軌道の有利さがあり、
高速大量輸送システムを土地の買収が僅かで早い工期で
供用でき、模型或いは遊戯システム以外でも、小型で従
来と全く異なった高性能の飛行式の軌道車ができるの
で、閉鎖空間内をリモートコントロールで飛走行する長
距離高速輸送システム例えば郵便物或いは小荷物等の、
が提供でき輸送コストの大幅な削減と交通難の打開が実
現できる。
As described above, the track of the present invention can be made significantly lighter than the weight of other conventional rail cars, so that the load applied is small, and even in an elevated place a special place such as a sharp curve is required. Except for the above, the pillar and its foundation are small and simple, the members are easy to mass-produce, and long-term construction such as large-scale elevated concrete driving is not necessary and the construction period is fast. The greatest effect is that the acquisition of land for track construction will be significantly reduced, the number of supporting arcs equivalent to sleepers will be small, and it will be possible to construct an elevated structure along existing highways or on railways by a small-scale construction. Since a single row of wheels rolls on a single rail of the vehicle, the inertia in the direction of travel is large and the speed is high, and the track has no snake action or vibration due to the irregularity of the left and right rails. Since the load is small, there is no need for maintenance and inspection of rail irregularities, the brim of both brim wheels can be made high, and there is no upper limit on the guide wheel, so there is no derailment, and the forced elastic contact type of the guide wheel softens the shaking of the vehicle The structure is simple and lightweight because there is no heavy axle supporting the left and right wheels, and the vehicle drive system is a symmetrical wheel drive braking system. The small gears can be inspected, and because the mirror drive is symmetrical, the thickness of the trolley can be reduced by using a pair of small drive motors, so the cross section can be made smaller to reduce air resistance and speed and energy saving can be greatly increased. Brake Huang at the time of high-speed and is only the trouble of maintenance and inspection in like you do not want to use insect, there is a possible high-speed oil lubrication. If you install a trolley wire to the guide, the undulations are small and the separation is slight, and the current collecting shoes are below the vehicle, so the turbulence generated in the shoes creates lift on the underside of the vehicle and is convenient for high-speed levitation. is there. Since the flange gear drive device has a small number of parts and has a simple structure and can run without lubrication, maintenance work can be saved, running costs can be reduced, and miniaturization can be facilitated. In propeller propulsion, since the twist angle of the propeller is large and the width of the blade is wide, the product of the amount of scratching the air is large and a large thrust can be obtained, so it is possible to detect the slip of the wheel and increase the propulsion force by high rotation. However, because it has a small diameter, there is little wind cut and noise is small, it is possible to enhance high speed beyond the limit of wheel drive, and braking at high speed does not rely on wheels, so there is no slip and uneven wear of wheels and rails Since it does not occur, maintenance work can be saved. Furthermore, the above-mentioned effect can be enhanced by the structure for adjusting the propulsion direction of the motor pylon up and down. Since the barbell type shock absorber leans the vehicle body inward in the curved section, high-speed stability is enhanced and the number of parts is small, so that the weight can be reduced. The current-collecting shoes can be made ultra-compact and lightweight, can be used as a windproof pantograph, and have good followability to the trolley wire, enabling high-speed current collection,
Realizes high-speed running of the vehicle. Furthermore, it can be used for a small model to prevent breakdown due to short circuit. Also, for a small model, the curve section can be adjusted and assembled with the same parts by using the support arc and the fixed arc, so the cost is low, and the car body is simple with the flange gear drive, and the model set provides a small number of parts and an inexpensive model set. it can. Although the prime mover is an electric motor in the described example, it is obvious that the present invention can be implemented using another prime mover, for example, an internal combustion engine.
As described above, the track structure according to the present invention, the single-row wheel-driven track car, the flight-type track car, the symmetrical wheel drive brake device, the double-branch gear drive device, the guide system, the thin-plate current collecting shoes, and the barbell-type cushion. According to the device, propeller, propeller propulsion and braking system, etc., the cause of the conventional railroad vibration or snake action is removed, and the structural materials and configurations used for aircraft can be applied to the vehicle of the present invention, Lightening to improve speed and energy saving, there is the advantage of a lightweight elevated track,
A high-speed mass transportation system can be used in a short construction period with a few land acquisitions, and a small, high-performance flight-type rail car other than a model or play system can be created. Flying long-distance high-speed transportation system, such as mail or parcels,
It is possible to reduce the transportation cost and solve the traffic difficulty.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による実施例1の軌道装置と飛行式の軌
道車の遠景部分側面図、
FIG. 1 is a side view showing a distant view of a track device according to a first embodiment of the present invention and a flight-type track car;

【図2】図1の車輛の一点鎖線a−・−a′での概略拡
大断面図、
2 is a schematic enlarged cross-sectional view taken along one-dot chain line a -.- a 'of the vehicle of FIG.

【図3】本発明による実施例2の高架軌道と飛行式の軌
道車の遠景側面図、
FIG. 3 is a distant view side view of an elevated track and a flight type track car according to a second embodiment of the present invention;

【図4】図3の飛行式の軌道車の拡大側面図、FIG. 4 is an enlarged side view of the flight-type track car of FIG. 3;

【図5】図4の車輛の底面図、5 is a bottom view of the vehicle of FIG. 4,

【図6】図4中のb−・−b′の位置での車輛及び軌道
の概略部分拡大断面図、
FIG. 6 is a schematic partial enlarged cross-sectional view of a vehicle and a track at positions b- and -b 'in FIG.

【図7】図6中の軌道のカーブ区間での傾斜調節完成
図、
FIG. 7 is a completed view of tilt adjustment in a curve section of the track in FIG.

【図8】図6中の左右対称式車輪駆動制動装置の拡大
図、
FIG. 8 is an enlarged view of the left-right symmetrical wheel drive braking device in FIG.

【図9】バーベル式空気バネ緩衝装置の斜視図、FIG. 9 is a perspective view of a barbell type air spring cushioning device,

【図10】図9の装置の分解図、10 is an exploded view of the device of FIG. 9,

【図11】バーベル式空気バネ緩衝装置の作用の説明
図、
FIG. 11 is an explanatory view of the action of the barbell type air spring shock absorber,

【図12】案内輪の強制弾力接触式の直線区間の状態の
説明図、
FIG. 12 is an explanatory view of a state of a forced elastic contact type straight section of the guide wheel,

【図13】図12中の案内輪のカーブ区間での状態図、13 is a state diagram of the guide wheel in a curve section in FIG. 12,

【図14】実施例3のツバ歯車駆動装置による模型の飛
行式の軌道車の近景側面図、
FIG. 14 is a close-up side view of a model flight-type rail car driven by the flange gear driving device according to the third embodiment;

【図15】図14中の一点鎖線c−・−c′の位置での
車両の断面図、
15 is a cross-sectional view of the vehicle at the position of alternate long and short dash line c -.- c 'in FIG.

【図16】図14の車輛の前後方向の中心線での拡大縦
断面図、
16 is an enlarged vertical cross-sectional view of the vehicle of FIG. 14 taken along the center line in the front-rear direction,

【図17】本発明による集電靴の取り付け状態の斜視
図、
FIG. 17 is a perspective view of an attached state of the current collecting shoe according to the present invention;

【図18】図17での集電靴を取り除いた状態図、FIG. 18 is a state diagram in which the current collecting shoes in FIG. 17 are removed,

【図19】図17の集電靴の縮小正面図、FIG. 19 is a reduced front view of the current collecting shoe of FIG.

【図20】図19の集電靴の平面図、20 is a plan view of the current collecting shoe of FIG.

【図21】図19の集電靴の側面図、21 is a side view of the current collecting shoe of FIG.

【図22】実施例4の飛行式の軌道車の側面図、FIG. 22 is a side view of the flight-type track car of Example 4;

【図23】図22の車両の底面図、23 is a bottom view of the vehicle of FIG. 22,

【図24】回転式の台車のカーブ区間での状態の説明
図、
FIG. 24 is an explanatory view of a state of a rotary trolley in a curved section,

【図25】実施例5の飛行式の軌道車による狙撃ゲーム
の説明図、
FIG. 25 is an explanatory diagram of a sniper game using a flight-type track car of Example 5;

【図26】実施例6の飛行式の軌道車とその軌道の概略
正面図、
FIG. 26 is a schematic front view of a flight-type track car of Example 6 and its track;

【図27】本発明に用いるプロペラのI実施例で、縮小
側面図、
FIG. 27 is a reduced side view of the I embodiment of the propeller used in the present invention,

【図28】図27のプロペラの正面図、28 is a front view of the propeller of FIG. 27, FIG.

【図29】図27のプロペラの背面図、FIG. 29 is a rear view of the propeller of FIG. 27,

【図30】図27のプロペラの背面斜視図で羽根の翼弦
幅最大部分の直視図、
30 is a rear perspective view of the propeller of FIG. 27, which is a direct view of the maximum chord width portion of the blade,

【図31】図27のプロペラの立面図、31 is an elevation view of the propeller of FIG. 27, FIG.

【図32】図27のプロペラの断面a−・−a′であ
る。
32 is a cross-section a -.- a 'of the propeller of FIG. 27. FIG.

【符号の説明】 1 飛行式の軌道車、2 車体、 3 台車、
4 駆動輪、5 大歯車、 6 小歯車、
7 駆動軸、 8 駆動モータ 9 たわみ軸継手、 10 ギアーケース、11案内
輪、12 推進モータ、13 モータパイロン、14
プロペラ、15穴付支持函、16 カバー支持函、 1
7 連結棒、 18 空気バネ、19 パイロン
台、 20 支持体、 21 碍子、 22 支持ア
ーク、23 レール、 24 案内体、 25 ア
ーク固定体、26 固定具、27 ベルト、 28
底蓋、 29 トロリー線、30 バーベル式空気
バネ緩衝装置、 31 レール支持体、32 小歯車カ
バー、 33 サイドカバー 34 軸受、35 ブレ
ーキ、36 ナット、 37 緩衝ボルト、 38 小
歯車軸、 39 クッション、40 狙撃台、 41
案内軸、 42 絶縁体、 43 検知装置、4
4 レール接続具、 45 パイロン歯車、
46 モータ回動軸、47 回動歯車、 48 レ
ール台、 49 横梁、 50 支柱、51 固定
肢、 52 天板、 53 床、 54
梁、55 ツバ歯車、 56 コイルバネ、57
中板、 58 固着具、59 モータ支持体、 6
0 集電靴、、 61 すり板、 62 バネ板、63
丁番、 64 支え板、 65 鋲、
66 押さえ番、67 押さえ孔、 68 スト
ッパー、69 風孔、 70 標的、71 回転台、
72 回転スタンド、 73軌道
装置、74 案内体固定具、 75 留板、 76
踏面、 77 ツバ、78 ネジ、 79
モータ軸、 80 固定片、 81 案内モータ 82 レール押さえ、83 緩衝軸受 84 ボルト
孔、85ピローブロック、86 環状固定具、 87
回転支持ケース、 88 サーボモータ、89 軸
受ケース、 90 案内体支持具91 スライド溝、
92 規制溝、93 規制突起、 94 ストッパ
ー、95 標識、 96 カウンター97 台車軸、
98 スライドケース、 99 く
ぼみ、100 枕梁枠、 101軸孔。
[Explanation of code] 1 flight type rail car, 2 vehicle bodies, 3 bogies,
4 drive wheels, 5 large gears, 6 small gears,
7 Drive Shaft, 8 Drive Motor 9 Flexible Shaft Coupling, 10 Gear Case, 11 Guide Wheel, 12 Propulsion Motor, 13 Motor Pylon, 14
Propeller, support box with 15 holes, 16 cover support box, 1
7 connecting rod, 18 air spring, 19 pylon stand, 20 support, 21 insulator, 22 supporting arc, 23 rail, 24 guide, 25 arc fixing body, 26 fixing tool, 27 belt, 28
Bottom lid, 29 trolley wire, 30 barbell type air spring shock absorber, 31 rail support, 32 small gear cover, 33 side cover 34 bearing, 35 brake, 36 nut, 37 buffer bolt, 38 small gear shaft, 39 cushion, 40 Sniper, 41
Guide shaft, 42 insulator, 43 detector, 4
4 rail connector, 45 pylon gear,
46 motor rotating shaft, 47 rotating gear, 48 rail base, 49 lateral beam, 50 support column, 51 fixed limb, 52 top plate, 53 floor, 54
Beam, 55 bevel gear, 56 Coil spring, 57
Middle plate, 58 fasteners, 59 motor support, 6
0 current collecting shoes, 61 friction plates, 62 spring plates, 63
Hinge, 64 support plate, 65 tack,
66 presser numbers, 67 presser holes, 68 stoppers, 69 air holes, 70 targets, 71 turntables,
72 rotation stand, 73 track device, 74 guide body fixture, 75 fastening plate, 76
Tread, 77 collar, 78 screw, 79
Motor shaft, 80 fixing piece, 81 Guide motor 82 Rail retainer, 83 Buffer bearing 84 Bolt hole, 85 Pillow block, 86 Annular fixing tool, 87
Rotation support case, 88 servo motor, 89 bearing case, 90 guide body support tool 91 slide groove,
92 restriction groove, 93 restriction protrusion, 94 stopper, 95 marker, 96 counter 97 bogie axle,
98 slide case, 99 hollow, 100 pillow beam frame, 101 shaft hole.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図9】 [Figure 9]

【図19】 FIG. 19

【図29】 FIG. 29

【図32】 FIG. 32

【図4】 [Figure 4]

【図5】 [Figure 5]

【図6】 [Figure 6]

【図7】 [Figure 7]

【図21】 FIG. 21

【図31】 FIG. 31

【図8】 [Figure 8]

【図10】 [Figure 10]

【図11】 FIG. 11

【図12】 [Fig. 12]

【図13】 [Fig. 13]

【図18】 FIG. 18

【図14】 FIG. 14

【図15】 FIG. 15

【図17】 FIG. 17

【図20】 FIG. 20

【図25】 FIG. 25

【図28】 FIG. 28

【図16】 FIG. 16

【図22】 FIG. 22

【図23】 FIG. 23

【図24】 FIG. 24

【図27】 FIG. 27

【図30】 FIG. 30

【図26】 ─────────────────────────────────────────────────────
FIG. 26 ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年11月12日[Submission date] November 12, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 飛行式の軌道車とその軌道装置Title: Flight type rail car and its rail device

【特許請求の範囲】[Claims]

【請求鋼17】 縦軸で設けた左右の案内輪を等速逆回
転構造となし、何れか一方の案内輪の外周を案内体に接
触せしめて走行する請求項1乃至3の何れかに記載の軌
道車。
17. The steel according to claim 1, wherein the left and right guide wheels provided on the vertical axis have a constant-velocity reverse rotation structure, and the outer periphery of one of the guide wheels is brought into contact with the guide body to travel. Rail car.

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主として低速時に車輪駆
動であり、プロペラ推進で高速性を増大せしめる飛行式
の軌道車及びその軌道システムに関する。より詳細に
は、一条の軌道上を転がる1乃至複数の支持輪を車両の
前後方向の中央線の下方に設け、該支持輪の一個乃至複
数を軌道車に搭載した原動機に連結し、該軌道車に左右
の案内輪を設けて軌道に設けた左右の案内体に案内せし
めて成る中央列車輪駆動軌道車と、該軌道車を含む車輪
駆動軌道車にプロペラ推進装置を設けて成る複合進行式
の飛行式の軌道車、及びそれらの運航を支持する軌道シ
ステムと、前記中央列車輪駆動軌道車或いは飛行式の軌
道車に各種の装置を設けて成る小型のリモートコントロ
ール式高速輸送システム、科学模型、或いは遊戯装置等
の構造とシステム等に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flight-type track car which is driven mainly by wheels at a low speed and which can increase a high speed by propeller propulsion, and a track system therefor. More specifically, one or a plurality of support wheels that roll on a single track are provided below the center line in the front-rear direction of the vehicle, and one or a plurality of the support wheels are connected to a prime mover mounted on the track car, A central row wheel drive rail car that is provided with left and right guide wheels on a vehicle and is guided by left and right guide bodies provided on a track, and a compound traveling type that is provided with a propeller propulsion device for a wheel drive rail car including the rail car. Flight-type rail cars, and a track system that supports their operation, and a small remote-controlled high-speed transportation system that is equipped with various devices on the center-row wheel-drive rail cars or flight-type rail cars, scientific model Alternatively, the present invention relates to the structure and system of a game device or the like.

【0002】[0002]

【従来の技術】従来の高速軌道システム、例えば新幹線
・常伝導磁気浮上車システム・超伝導磁気浮上車システ
ム等は、車両一台の重量は軽くとも10数トン以上30
数トンもある。人間一人60キロと仮定した定員によれ
ば、車重/人数>200キロで、この値を単位車両重量
と呼ぶこととすると、この重量車両を支持する軌道の負
担が大きすぎて多くの問題が生じる。即ち、大重量車輛
の故に、直線的広幅で土地収用をして堅固に軌道を構築
する必要があり、建設用地の確保が至難となってきてい
る。そのため現実に、高速軌道の建設は棚上げされ、在
来線の高速化や中速の地下鉄、モノレール等を多くの費
用と年数を費やして建設するか、小間切れの供用でも使
える道路の建設が主であり、エネルギーを過消費しかつ
大気汚染が問題な航空機に限られてきている。しかる
に、高速の交通システムの研究は、超軽量車両が軌道架
設を容易にする利点がありかつ、エネルギー消費を少な
くするのに最も重要であるのを重視せず、他の要素に重
点をおいて為されてきている。その結果、電力エネルギ
ーの消費を大幅に減らせるとの予測で研究が進められて
きた超伝導磁気浮上走行システムは、幾つかの理由で軽
量化が無理で、省エネルギーのシステムとは考え難くな
ってきている。車両を軽量化して、軽便な軌道を市街地
に架設する目的で出願した本願人による昭和58年特許
願第094869号−飛行車は、プロペラ推進によるも
ので、レールの長手方向に下向きに設けた係止面と、該
面に転動する最高位接触面とが停止時において、所定間
隔開けてある案内輪を少なくとも二個有す軌道車であ
り、かつ該軌道車の車両を所定速度以上で浮上する構造
となし、該車両に設けたプロペラ又はジェットで駆動せ
しめられて成る飛行車であるが、停止時や発車時、低速
時には、車輪駆動を併用できないので高速時には空気を
引っ張らない長所があるが、プロペラ制動だけでは低速
時には風害、停車の維持手段等での問題があった。更
に、2本の平行レールの車輪駆動と制動とを併用せしめ
れば、重量車両となり、軽量化ができなかった。
2. Description of the Related Art Conventional high-speed track systems, such as the Shinkansen, normal-conducting magnetic levitation vehicle system, and superconducting magnetic levitation vehicle system, have a weight of 10 tons or more, even if the weight of one vehicle is light.
There are several tons. According to the capacity assuming that one person is 60 kg, the vehicle weight / the number of people> 200 kg, and if this value is called the unit vehicle weight, the burden on the track supporting this heavy vehicle is too large and many problems occur. Occurs. In other words, because of the heavy vehicle, it is necessary to acquire the land in a wide straight line and construct a solid track, which makes it difficult to secure the land for construction. Therefore, in reality, the construction of high-speed tracks is shelved, and high-speed conventional lines, medium-speed subways, monorails, etc. are spent at high cost and years, or roads that can be used even in short breaks are mainly constructed. Yes, it has been limited to aircraft that are energy consuming and have problems with air pollution. However, research on high-speed transportation systems does not emphasize that ultralight vehicles have the advantages of facilitating track erection and is most important for reducing energy consumption, but focuses on other factors. It has been done. As a result, the superconducting magnetic levitation system, which has been researched with the expectation that the consumption of electric power energy can be significantly reduced, cannot be considered to be an energy-saving system because it cannot be lightened for several reasons. ing. The applicant applied for the purpose of lightening the vehicle and constructing a convenient track in the city area. Patent application No. 094869 of 1983 by the present applicant-The flight vehicle is propeller-propelled and is installed downward in the longitudinal direction of the rail. When the stop surface and the highest contact surface rolling on the stop surface are stopped, it is a rail car that has at least two guide wheels that are spaced apart by a predetermined distance, and the vehicle of the rail car is levitated at a predetermined speed or more. Although it is a flight vehicle that is driven by a propeller or a jet provided in the vehicle, it has the advantage that it does not pull air at high speed because it can not be used together with wheel drive at stop, departure and low speed. , Propeller braking alone had problems with wind damage at low speeds and means for maintaining a stop. Furthermore, if the driving and braking of the two parallel rails are used together, it becomes a heavy vehicle and the weight cannot be reduced.

【0003】[0003]

【発明が解決しようとする課題】本発明は前述の交通シ
ステムの弱点を解消するために、車輛重量を軽くするこ
と、その装置類の数を減らすこと、複雑で重い装置を新
しく開発した簡単で軽量の装置に置き換えること、省エ
ネルギーの鋼鉄製車輪駆動の従来の軌道車に、より以上
の省エネ性を加えること等を課題とする。即ち、現在、
実用中、或いは開発テスト中の高速の交通システムで
は、駆動装置が大規模で重くて嵩張り、制御機器も同様
であるから前述の如く単位車両重量が200キロ以上で
ある。従来の車輛は車重が大きいので、急カーブの高速
走行は危険であり、軌道は大径のカーブか直線状であ
り、加えて堅固に軌道を敷設する必要があるため、広い
土地の収用に膨大な費用がかかり、新規の建設が困難に
なっている。特に新幹線は、大量輸送が可能でエネルギ
ー消費が少ない長所が大きいのに、急制動で車輪の偏磨
耗を生じ、制動により生じたレールの凹凸を平滑にする
ための連夜の研磨が必要である。 片ツバ車輪に対する
並行支持軌道であるから、左右相互のレール間隔の拡張
力が常に加わり、平行度の不整による左右への振動や、
台車の蛇行動が生じる弱点があり、深夜の保守作業が大
変で経費がかかる。車重が大なので、出発抵抗が大とな
り、低速駆動力を大にするための機器の数も多く重量も
大で、その制動装置も複雑で重い。 一台の駆動車輪が
8個も必要であり、重い車軸が4本も用いてある。 そ
の重車輛の走行騒音は遠距離の地域にも被害を及ぼす。
常伝導や超伝導の磁気浮上システムは、低騒音で振動が
少ないが、軌道敷設では上記重量車両の弱点があるので
堅固につくらねばならず、加えて、エネルギーの消費量
は大きく高速走行では、航空機に近い水準となり省エネ
ルギー技術とは云い難い。特に超伝導方式では、強力な
磁力が遺伝子に変異を起こすので、客室の遮蔽体の重量
を加えねばならず軽量化は無理で、駆動部分以外の機器
のエネルギー消費も大きい。現実に、地球上で、車を多
く用いる地域は化石燃料の大量消費により、常に雨乞い
現象があるので多雨となり、一方車を殆ど使用せず燃料
消費の少ない地域、例えばゴビ砂漠・アフリカの大部分
は、エネルギー消費の多い地域への大量の降雨のため
に、降水量が減少している。 加えて、車のための道路
建設を主とした自然破壊による緑地の減少や、車或いは
航空機による化石燃料の大量消費による炭酸ガスの増加
で、魚類の食する藻類が減少し、炭酸カルシュウム成分
を多く生成して食用にならずに浅海底を覆う貝類の増殖
で、海洋の砂漠化が日本或いは南米等にも進行しつつあ
り、魚類資源も将来枯渇すると考えられるが、地球規模
の気候の変動による生存環境悪化への根本的な対策=エ
ネルギー消費の抑制及び自然の緑地保全=は殆ど実行さ
れるに至らず、目前の便益が優先されてきている。
SUMMARY OF THE INVENTION In order to overcome the above-mentioned weaknesses of the transportation system, the present invention reduces the vehicle weight, reduces the number of devices, and newly develops a complicated and heavy device. The challenges are to replace it with a light-weight device and to add more energy saving to the conventional railcars driven by energy-saving steel wheels. That is, currently
In a high-speed transportation system under practical use or under development test, the driving device is large and heavy and bulky, and the control device is also the same. Therefore, the unit vehicle weight is 200 kg or more as described above. Conventional vehicles have a heavy vehicle weight, so it is dangerous to drive at high speed in a sharp curve, and the track has a large-diameter curve or straight line. The huge cost makes it difficult to construct a new building. In particular, the Shinkansen has the advantages of being able to be transported in large quantities and consuming less energy, but it requires uneven grinding of the wheels due to sudden braking, and requires night-long polishing to smooth the unevenness of the rails caused by braking. Since it is a parallel support track for one brim wheel, the expansion force of the rail spacing between the left and right is always applied, and the left and right vibrations due to the uneven parallelism,
There is a weak point that the snake's snake behavior occurs, and maintenance work at midnight is difficult and expensive. Since the vehicle weight is heavy, the starting resistance becomes large, the number of devices for increasing the low speed driving force is large, and the weight is large, and the braking device is complicated and heavy. It requires as many as eight drive wheels and four heavy axles. The running noise of the heavy vehicle also damages a long-distance area.
The normal or superconducting magnetic levitation system has low noise and little vibration, but it has to be made solid because of the weakness of the above heavy vehicle in track laying, and in addition, it consumes a large amount of energy and runs at high speed. It is close to that of an aircraft, and it is hard to say that it is an energy-saving technology. Especially in the superconducting system, the strong magnetic force causes mutations in the gene, so the weight of the shield in the passenger compartment must be added to reduce the weight, and the energy consumption of equipment other than the driving part is large. Actually, on the earth, regions where a lot of cars are used have heavy rain due to the constant begging phenomenon due to the large consumption of fossil fuels, while on the other hand, the regions where the cars are rarely used and the fuel consumption is low, for example, most of the Gobi Desert and Africa. Has reduced rainfall due to heavy rainfall in areas of high energy consumption. In addition, the decrease in green space due to natural destruction mainly due to the construction of roads for cars and the increase in carbon dioxide due to the large consumption of fossil fuels by cars and aircraft will reduce the algae eaten by fish and reduce the calcium carbonate component. Due to the proliferation of shellfish that grows in large numbers and does not become edible and covers the shallow sea floor, the desertification of the ocean is progressing in Japan and South America, and it is considered that fish resources will be exhausted in the future, but global climate change. The fundamental measures against the deterioration of the living environment due to the above-mentioned: suppression of energy consumption and conservation of natural green areas = have hardly been implemented, and the immediate benefits have been prioritized.

【0004】[0004]

【課題を解決するための手段】本発明の主な目的は、軌
道の建設用地収用を大幅に小ならしめ、市街地の交通施
設、例えば道路上、高速道路上、既存の軌道上等の空間
にも建設可能な軽量軌道による高速の交通手段を提供
し、緑地の破壊を防ぐことである。本発明の次の主たる
目的は、従来の軌道車の単位車両重量に比較して大幅に
車輛を軽量化し、プロペラ推進の加速により車輪駆動力
の限界以上の高速性を有する飛行式軌道車を提供して、
省エネルギーで大気汚染の少ない高速の大量輸送交通シ
ステムを実現することである。より詳細には、本発明の
第一の目的は、駆動モータと車輪を一体に構成して駆動
機構を簡略にし、駆動輪を中央の単列にして数を減らす
中央列車輪駆動方式として、左右対称式車輪駆動制動
方式、ツバ歯車駆動方式等を提供し、大型の高速車輛
より小型の運搬車輛或いは模型等に適用して簡単な機構
で大幅に軽量化して車輛コストを安くし、省エネルギー
を実現することである。本発明の第2の目的は、中央列
車輪駆動軌道車に、等速逆回転式、自在回転式、
強制弾力接触式等の案内システムを提供して、車輛の
姿勢を直立的に安定させ、高速走行を可能にすることで
ある。本発明の第3の目的は、飛行式の軌道車の制動に
制動効果の高い形状のプロペラを用いたプロペラ制動方
式を提供し、高速時の車輪制動で生じる車輪の偏磨耗を
防ぎ、車輪制動装置の負荷を軽くして軽量化するととも
に、高速制動性の高い複合進行方式を実現することであ
る。本発明の第4の目的は、駆動輪のすべり又は空転を
検知して、プロペラ推進装置の推力又は駆動輪の回転数
を増大する加速システムを提供して車輪駆動軌道車の限
界以上の高速性を飛行式の軌道車に具有させることであ
る。本発明の第5の目的はバーベル式空気バネ緩衝装置
を提供して、軽量の車体傾斜調節緩衝構造を実現し中央
列車輪駆動軌道車を軽量化するとともにカーブでの安定
走行を実現することである。本発明の第6の目的は、間
隔を離した左右の案内体又は軌道支持体に碍子を介して
トロリー線を取付けて高圧での給電を可能とし、上空の
高架線装置のない軽便な軌道構造を提供し、量産による
安価な組立て部材を供給し、高架軌道を安いコストで工
期を早く完成可能にすることである。本発明の第7の目
的は、枕木のようにレールを支え、かつ左右に案内体を
取付ける構成であって、底面にアーク状の固定部を有す
る支持アークと該支持アークを固定するアーク固定体と
の組合せを提供し、レールの支持骨材をカーブと直線区
間を同一の部材で架設可能にし、現場で適宜に傾斜度を
調節できるレール支持構造により、コストが安く工期の
早い高架軌道方式を実現することである。本発明の第8
の目的は、下方にプロペラ推進装置を設けた飛行式の軌
道車を提供し、プロペラ推進の地面効果の高い車輛を実
現することである。本発明の第9の目的は、良伝導性・
耐腐食性・強靭性・弾力性を具有する金属薄板を構成材
料に使用して、小型で軽量で着脱が容易で、外形が20
ミリ立方角位より300ミリ立方角程度の大きさのパン
タグラフ又は集電靴を提供し、大型の高速車より小型の
模型に至るまで風圧の影響を小さくし、架線又はトロリ
ー線への追随性を良好にし、集電効果を高めて高速走行
を実現することである。本発明の第10の目的は、時速
約30キロ程度以上で長時間走行が可能な模型或いは小
型の自動搬送装置としての軌道車システム或いは飛行軌
道車システムを提供し省エネルギーを実現し、本格的な
科学教育模型をコストを安く製作せしめることである。
本発明の第11の目的は、模型の飛行式の軌道車に標的
を設け、該標的を適宜の距離から、狙撃装置で加撃可能
となし、的中時に標的からサイン或いは反応して所定の
作動を行なわしめる遊戯システムの提供である。本発明
の第12の目的は、軌道と案内体と案内支持骨材及び支
持部材を組立て及び解体自在に構成して成る模型セット
の提供である。本発明は、断面が溝型のコンクリート或
いは鉄等の構造材による構築体に、一条又は複数のレー
ルを設けるとともに、該構築体の左右の立ち上がり壁に
案内体を設けて成る軌道装置或いは、左右に取付けた案
内体の中央下方にレールをも取付ける支持装置の多数を
所定間隔で固定して成る軌道装置及び該装置類に運航せ
しめる中央列車輪駆動方式の軌道車及び該軌道車にプロ
ペラ推進装置を加えて成る飛行式の軌道車及びその関連
する装置類とシステム等に関する。高架方式では、本発
明による架設部材は、主として強度が大で低価格の鉄を
塗装不要にした複合材例えば、ジシクロペンタジエンと
の複合成形部材を使用し、レールの支持骨材はカーブ、
直線区間とも主としてコンクリート製の同一の部材を用
いて、現場で適宜にレールの傾斜度を調節できる構成が
望ましい。レールは在来の鉄道レール形状以外でも、例
えば中ツバ車輪を転がし得るU型レール等、円滑な運航
を支持するすものが望ましい。高架軌道は、車輛の垂直
荷重を支持するレールを支持するレール支持体の接続部
毎に、コンクリート製或いは、鋼鉄製の支柱を構築す
る。次に該支柱の上部にレール支持体を延々と置いて固
定し、該レール支持体の上部に、アーク固定体の中央部
分の下部を一体に固定した固定肢を、一体に固定する
(後述)。 更に該アーク固定体の上方に支持アークを
所定の角度(後述)で固定具で取り付け、該支持アーク
にレール及び左右の案内体を取り付けてある。該案内体
の上部には碍子を介してトロリー線が取付けてある。
又、隣り合う支持装置間とレール支持体及び案内体とで
囲まれる面には壁体が取付けてある。 この壁体は外部
と隔離して危険を避ける為に設けるが、プロペラ推進風
力を直接うけて地面効果を車輛に与えて高速性を高める
し、金網或いは多孔板を主体で構成することで、台風の
横風の風圧を減じるし、積雪を溶かし易い。 該壁体の
レール寄りに、融雪装置例えば温水パイプを取りつけ
て、凍結時に加熱可能にするのが好ましい。トロリー線
はレールの上方の間隔の広い左右の案内体又は軌道支持
体例えば支持アークの両側上部に碍子を介して取付ける
と高圧送電もでき、車輛上空の架線より高低差を小にで
きるし、コストが安く軽便で好ましい。駆動装置の1例
をあげると、(1) 高速車には、左右が対称で風圧に
対して左右のバランスが良く、駆動歯車機構をギアーケ
ース内に納めて油潤滑の可能なことが望ましく、左右対
称型車輪駆動制動装置がI適例で、(2) 小型車或い
は模型等には、一体に構成した歯車を有する駆動輪に伝
動歯車を係合し、該伝動歯車を車輛に搭載した原動機で
駆動回転せしめる歯車車輪駆動方式があり、その1例を
あげると、両ツバ車輪のツバに歯車を構成し、ナイロン
伝動歯車を上方で咬み合せしめるツバ歯車駆動装置があ
り、他には、中ツバ車輪の中ツバを上方のナイロン伝動
歯車で駆動する方式等があるが、軽量で部品が少なく無
給油で回せる。案内体の作用は、車輛の左右に設けた案
内輪を介して案内体で車輛を安定させる。従来のレール
型とかその他多種の断面形状があり、複合構成も可能で
ある。案内輪は上記案内体の案内面に接触して車輛の姿
勢を直立的に支持する。車両の両側に縦軸、横軸、斜軸
等で設け得るが、縦軸で水平回転式が横揺れを制御する
のに好ましい。車体を回転式の台車で支持する場合は、
台車の両側に少なくとも一対、望ましくは2対づつ左右
を並行して設けるのが好ましい。 その他、案内輪を両
ツバ型の低トルクの駆動輪に構成して駆動力の不足をプ
ロペラ推進力で補うのも好ましい。これらの案内輪は、
高速車に於いては、左右の案内輪を車輛に設けた原動機
で駆動して車輛の速度と等速で回転せしめて案内体に接
触せしめてすべりを防ぐのが望ましく、その主な構成
は、左右の案内輪を (1) 左右を等速かつ逆回転に
係合し片方を案内体に接触せしめて案内させる、(2)
案内モータで車輛速度と等速に制御し、一方の案内輪
を案内体に接触せしめ案内させる、(3) 強制弾力接
触式で、案内輪のそれぞれの軸間距離を拡大する圧力を
弾力装置で加えて、双方の案内輪の外周を案内体に強制
接触せしめて回転案内せしめる等で、車両の高速での安
定走行に望ましい。又、模型・小型車輛等には自在回転
型が構造が簡単で軽量化しやすいので好ましい。横軸に
よる案内輪は、(1) 強制回転型と (2) 自在回
転型に大別できる。レールと案内体との高低差が大であ
れば、姿勢の制御が完全な縦軸型が望ましく、高低差が
小になるほど、横軸の案内輪が効果的に姿勢の制御がし
易くなる。しかし横軸では、車高を低くすれば、プロペ
ラ推進装置は車輛の下方に設定できない。前後方又は上
方に設定するとプロペラ回転の危険性、連結の不利、或
いは地面効果の低下等の問題が生じる。車高を高くすれ
ば、横軸の支持体を下方に大きく幅広く構成せねばなら
ず、強度を大にするとき軽量化が犠牲になる。車体と台
車の緩衝装置では、軸ばね或いはまくらばねにダンパー
を並べて取り付けるのもよいが、自動的に車体を傾斜せ
しめる緩衝装置=カーブで車体の遠心力の掛かる側が高
まり反対側が低く沈む=バーベル式空気バネ緩衝装置を
用いて軽量化し、カーブでの安定性と高速性を高めるの
が好ましい。本発明によるバーベル式空気バネ緩衝装置
は、主として、(1) 連結棒の両端部にボール状の膨
大部を取付けて成るバーベル形状の連結棒と (2)
該膨大部を収容し、かつ所定角度内で回動自在に支持す
るとともに、膨大部より小径の軸受を取付けた離脱制止
縁を開口部に設けた回動支持室を半分づつ有する上下の
穴付支持函と、カバー支持函各1個とを合体して構成し
た回動支持函と、(3) 前記連結棒を貫通せしめる中
央孔を有するドーナツ形状のゴム製の空気バネ、とで構
成してある。 更に、支持棒が外方には傾かない角度で
回動支持函を台車に取り付けるとともに、車体には支持
棒の上方の間隔を狭くし、かつ下方の間隔を適宜に広く
して他方の回動支持函を取り付け、カーブ区間で車体に
遠心力が掛かれば、遠心側を高くし、求心側を低く沈ま
せて、走行安定性を高めるのが好ましい。プロペラ推進
では、従来の鉄道車輛その他の車輪駆動軌道車とプロペ
ラ推進との複合進行方式の軌道車に於いて、低速時は車
輪駆動力の加速力の増大に有効であり、高速では駆動輪
の回転速度と車体の速度の差より駆動輪の滑り或いは空
転を検知してプロペラ推力を適切に増大して駆動力以上
の高速性を車輛に具備せしめ得る。 その検知は、1例
をあげると、新幹線の方式があり、更に他の1例をあげ
れば、軌道に一定間隔に設けた標識例えばある種の光線
の反射体を標識として設け、一定時間に通過した該標識
の数をカウントして車輛の実速度を計り、他方では車軸
の回転数より車輪の回転速度を計り、実速度と回転速度
との差を検知装置で測定し、一定の許容範囲より前記の
差が大になった時、実速度が大の場合では駆動回転数を
増大し、回転速度が大の場合ではプロペラ推力を増大し
て高速走行を実現する。 又、(1) プロペラ推力
の上下方向を調節し、車輛重量の前後の負荷のバランス
を保てる、(2) カーブ区間では具有する左右のプロ
ペラの内側の推力を小にし、外側の推力を適度に大に制
御してカーブでの安定走行を高められ、(3) プロペ
ラ推進の前後方向は、パイロン台の回転で推力の方向を
逆にできるし、又 プロペラのピッチ角を翼弦幅最大の
位置で約45度にして逆回転にする、(3) 推進モー
タの逆回転等で行なえる。プロペラ制動は高速時に主と
して使用し、(1) パイロン台の回転、(2)プロペ
ラを可変翼にする、(3) プロペラの翼のひねり角を
45度程度に構成して推進モータを逆転せしめる等で行
なえる。プロペラの形状はひねり角を約45度にして、
幅を広く、短径に形成すると、回転数に比して推力と制
動力が大となり、風切量が減り低騒音となり、更にその
翼を後退させてあれば、空気を押す圧力の積が大とな
り、推力が増大する。集電装置は、軽量で小型が望まし
く 着脱自在の耐風圧型のパンタグラフとしても使える
集電靴の一例をあげる。本発明の集電靴は、軽量化のた
めにすり板以外は、良電導性、高弾力性耐腐食性、強靱
性を全て具備する肉薄の金属板、例えば燐青銅板の如き
を素材として用いて、構成する。進行方向には、構成す
る薄板の厚みの断面とすり板の側面を向けるだけで、す
り板間に風穴を設けて空気を抜けるし、揚力を生じ難く
するので好ましい。 その取付けは、保守性を高めるた
めに、数本のネジ、ボルト、ナットの類での締め付けで
可能に構成するのが望ましい。本発明の集電靴では、ト
ロリー線の高低差が小さいので、外形の大きさが約20
ミリ立方から300ミリ立方の大きさの範囲で構成して
小型の模型より大型の高速車輛にまで対応せしめるのが
軽量化し空気抵抗を小にするために望ましい。すり板を
上方に向けて取付ければパンタグラフとして使用でき
る。 数本のネジで着脱自在なので、小型の模型にも使
用できて交換・修理等が容易である。高速で大型の遠距
離の交通システムとしてだけではなく、搬送システムと
しても例えば、一定区間の郵便物専用で断面が約1平方
メートルの高架軌道を高速道路或いは在来鉄道沿いに設
ければ、スピードが早くて時間的メリットがあるばかり
か、遠距離の運搬自動車が不要になり、省エネルギーが
実行できる。或いは標的を積載して周回軌道を高速走行
せしめ狙撃台からの命中率を競うシステムのような遊戯
装置その他等にも使用できる。
The main object of the present invention is to significantly reduce the land acquisition for construction of tracks, and to provide transportation facilities in urban areas, such as roads, highways, and existing tracks. Is to provide high-speed transportation by light-weight tracks that can be constructed and prevent the destruction of green spaces. The next main object of the present invention is to provide a flight-type track car that has a significantly reduced vehicle weight compared to the unit vehicle weight of a conventional track car and has a high speed that exceeds the limit of the wheel driving force by acceleration of propeller propulsion. do it,
It is to realize a high-speed mass transportation system that is energy-saving and has little air pollution. More specifically, a first object of the present invention is to configure a drive motor and wheels integrally with each other to simplify the drive mechanism. By providing symmetrical wheel drive braking system, flange gear drive system, etc., it can be applied to small transport vehicles or models rather than large high-speed vehicles, and with a simple mechanism to significantly reduce weight, reduce vehicle cost, and save energy. It is to be. A second object of the present invention is to provide a center row wheel drive rail car with a constant speed reverse rotation type, a universal rotation type,
To provide a guidance system such as a forced elastic contact type to stabilize the posture of the vehicle upright and enable high speed traveling. A third object of the present invention is to provide a propeller braking system using a propeller having a shape having a high braking effect for braking a flight-type track car, preventing uneven wear of the wheels caused by wheel braking at high speed, and preventing wheel braking. It is to realize a composite traveling system with high speed braking performance while reducing the load on the device to reduce the weight. A fourth object of the present invention is to provide an acceleration system that detects slippage or idling of a drive wheel to increase the thrust of a propeller propulsion device or the rotational speed of the drive wheel to provide a high-speed performance exceeding the limit of a wheel drive rail car. Is to be included in a flight-type rail car. A fifth object of the present invention is to provide a barbell type air spring cushioning device to realize a lightweight vehicle body tilt adjustment cushioning structure to reduce the weight of a center row wheel driven rail car and to realize stable running on a curve. is there. A sixth object of the present invention is to provide a high-voltage power supply by attaching trolley wires to left and right guide bodies or track supports spaced apart from each other via insulators, and a convenient track structure without an overhead overhead line device in the sky. The purpose is to provide inexpensive assembly members by mass production, and to make it possible to complete the elevated track quickly and at a low cost. A seventh object of the present invention is to support rails like a sleeper and to attach guide bodies to the left and right, and a supporting arc having an arc-shaped fixing portion on the bottom surface and an arc fixing body for fixing the supporting arc. With the rail support structure that allows the rail support aggregate to be installed on the curve and the straight section with the same member, and the inclination can be adjusted appropriately at the site, an elevated track system with low cost and fast construction period can be used. It is to be realized. 8th of this invention
It is an object of the present invention to provide a flight-type rail car with a propeller propulsion device provided below and to realize a vehicle with a high ground effect for propeller propulsion. The ninth object of the present invention is to achieve good conductivity.
A thin metal plate with corrosion resistance, toughness, and elasticity is used as a constituent material, and it is small and lightweight, easy to attach and detach, and has an outer shape of 20.
We provide pantographs or current collecting shoes with a size of about 300 mm cube from the millimeter cubic position, reduce the influence of wind pressure from large high speed cars to small models, and follow the overhead line or trolley line. It is to improve the current collection effect and to achieve high speed running. A tenth object of the present invention is to provide a railcar system or flight railcar system as a model or a small automatic carrier capable of traveling for a long time at a speed of about 30 km / h or more, to realize energy saving, and to realize a full-scale operation. It is to make the science education model cheap.
An eleventh object of the present invention is to provide a target on a model flight-type rail car, and to make it possible to hit the target from an appropriate distance with a sniper device. It is the provision of a game system that can be operated. A twelfth object of the present invention is to provide a model set including a track, a guide body, a guide support aggregate and a support member that can be assembled and disassembled. The present invention provides a railroad track device or a left and right rail system in which a construction body made of a structural material such as concrete or iron having a groove-shaped cross section is provided with one or more rails, and guide bodies are provided on the left and right rising walls of the construction body. A rail track device having a plurality of supporting devices fixed to a lower part of the center of a guide body mounted at a fixed interval at a predetermined interval, and a center-row wheel-driven rail car for operating these devices and a propeller propulsion device for the rail car. The present invention relates to a flight-type railroad car and a related equipment and system. In the elevated system, the erection member according to the present invention mainly uses a composite material having high strength and low cost which does not require coating of iron, for example, a composite molded member with dicyclopentadiene, and a rail supporting aggregate is a curve,
It is desirable that the same section made of concrete is used for both the straight sections and that the inclination of the rail can be appropriately adjusted on site. In addition to the conventional rail shape, it is desirable that the rail supports a smooth operation such as a U-shaped rail capable of rolling the middle brim wheel. In the elevated track, columns made of concrete or steel are constructed for each connection portion of rail support members that support rails that support the vertical load of the vehicle. Next, a rail support is placed endlessly on the upper part of the column and fixed, and a fixed limb integrally fixing the lower part of the central part of the arc fixing body is integrally fixed to the upper part of the rail support (described later). . Further, a supporting arc is attached above the arc fixing body at a predetermined angle (described later) with a fixing tool, and rails and left and right guide bodies are attached to the supporting arc. A trolley wire is attached to the upper part of the guide body through an insulator.
A wall is attached to the surface surrounded by the adjacent support devices and between the rail support and the guide. This wall is installed to avoid danger by being isolated from the outside, but by directly receiving the propeller propelling wind force to give the ground effect to the vehicle to improve high speed, it is mainly composed of wire mesh or perforated plate It reduces the wind pressure of the crosswind and easily melts snow. It is preferable to attach a snow melting device, for example, a hot water pipe, to the rail side of the wall body so that heating can be performed during freezing. The trolley wire can be used for high-voltage power transmission if it is mounted on the left and right guide bodies or track supports with a wide space above the rails, for example, on the upper sides of both sides of the support arc via insulators. Is cheap and convenient because it is convenient. As an example of the drive device, (1) it is desirable that a high-speed vehicle has left-right symmetry and has a good left-right balance with respect to wind pressure, and that the drive gear mechanism can be housed in a gear case for oil lubrication. The right-left symmetrical wheel drive braking device is a suitable example, and (2) in a small car or a model, a drive gear having an integrally formed gear wheel is engaged with a drive gear, and the drive gear is mounted on a vehicle. There is a gear wheel drive system for driving and rotating. For example, there is a brim gear drive device in which gears are formed on the brims of both brim wheels, and a nylon transmission gear is engaged with the brim above. Although there is a method of driving the inner brim of the wheel by the nylon transmission gear above, it is lightweight and has few parts and can be rotated without lubrication. The action of the guide body is to stabilize the vehicle with the guide body via the guide wheels provided on the left and right sides of the vehicle. There are various types of cross-sectional shapes such as the conventional rail type, and composite configurations are possible. The guide wheel comes into contact with the guide surface of the guide body to vertically support the vehicle posture. It may be provided on both sides of the vehicle with a vertical axis, a horizontal axis, an oblique axis, etc., but a horizontal rotary type on the vertical axis is preferable for controlling roll. When supporting the vehicle body with a rotating dolly,
It is preferable to provide at least one pair, preferably two pairs on the left and right sides in parallel on both sides of the carriage. In addition, it is also preferable that the guide wheel is a double-branch type low-torque drive wheel, and the insufficient propelling force is compensated by the propeller propulsion force. These guide wheels are
In high-speed vehicles, it is desirable to drive the left and right guide wheels with a prime mover installed in the vehicle to rotate at a speed equal to the speed of the vehicle and to contact the guide body to prevent slipping, the main configuration of which is (1) The left and right guide wheels are engaged with each other at a constant speed and in reverse rotation, and one of the guide wheels is brought into contact with the guide body for guiding (2).
The guide motor controls the vehicle speed to be the same as the vehicle speed, and one of the guide wheels is brought into contact with the guide to guide it. (3) Forced elastic contact type, which uses an elastic device to increase the pressure to increase the axial distance between the guide wheels. In addition, the outer circumferences of both guide wheels are forcibly brought into contact with the guide body to guide the rotation, which is desirable for stable running of the vehicle at high speed. In addition, a freely rotatable type is preferable for models and small vehicles because the structure is simple and the weight can be easily reduced. The guide wheel on the horizontal axis can be roughly divided into (1) forced rotation type and (2) free rotation type. If the height difference between the rail and the guide body is large, it is desirable to use the vertical axis type for complete posture control. The smaller the height difference, the easier the horizontal axis guide wheel is to effectively control the posture. However, on the horizontal axis, if the vehicle height is lowered, the propeller propulsion device cannot be set below the vehicle. If it is set to the front or rear or above, problems such as danger of propeller rotation, disadvantage of connection, and reduction of ground effect occur. If the vehicle height is increased, the support of the horizontal axis has to be configured to be wide and wide downward, and the weight reduction is sacrificed when the strength is increased. In the shock absorbers of the car body and the bogie, dampers may be mounted side by side on the shaft springs or pillow springs, but the shock absorbers that automatically incline the car body = curved side where centrifugal force is applied to the car body and the opposite side sinks low = barbell type It is preferable to use an air spring cushioning device to reduce the weight and improve stability and high speed on a curve. The barbell type air spring cushioning device according to the present invention mainly comprises (1) a barbell-shaped connecting rod having ball-shaped enlarged portions attached to both ends of the connecting rod, and (2)
With the upper and lower holes that accommodate the enlarged portion and support it rotatably within a predetermined angle, and also have half rotation support chambers each having a release stop edge provided with a bearing having a diameter smaller than that of the enlarged portion at the opening. A support box and a rotation support box formed by combining one cover support box each, and (3) a donut-shaped rubber air spring having a central hole for penetrating the connecting rod. is there. Further, the rotation support box is attached to the trolley at an angle at which the support rod does not tilt outward, and the space above the support rod is narrowed and the space below the support rod is appropriately widened on the vehicle body to rotate the other side. When a support box is attached and centrifugal force is applied to the vehicle body in a curved section, it is preferable to raise the centrifugal side and lower the centripetal side to enhance running stability. Propeller propulsion is effective in increasing the acceleration of wheel drive force at low speeds in conventional railroad vehicles and other hybrid drive type track cars of wheel drive railcars and propeller propulsion, and at high speeds It is possible to detect slippage or idling of the drive wheels from the difference between the rotational speed and the speed of the vehicle body and appropriately increase the propeller thrust to provide the vehicle with a high speed higher than the drive force. For example, there is a Shinkansen system for the detection, and for another example, a marker provided at a certain interval on the track, for example, a reflector of a certain light beam is used as a marker, and the traffic is passed at a certain time. The actual speed of the vehicle is measured by counting the number of said signs, on the other hand, the rotational speed of the wheel is measured from the rotational speed of the axle, and the difference between the actual speed and the rotational speed is measured by a detection device, and within a certain allowable range. When the difference becomes large, the driving rotation speed is increased when the actual speed is large, and the propeller thrust is increased when the rotation speed is large to realize high speed traveling. In addition, (1) the vertical direction of the propeller thrust can be adjusted to maintain the load balance between the front and rear of the vehicle weight. (2) In the curve section, the thrust inside the left and right propellers is reduced and the outside thrust is moderately adjusted. It can be controlled to a large extent to enhance stable running on a curve. (3) The forward and backward directions of propeller propulsion can be reversed by the rotation of the pylon table, and the pitch angle of the propeller can be adjusted to the maximum chord width position. (3) It can be done by reverse rotation of the propulsion motor. Propeller braking is mainly used at high speeds: (1) rotation of the pylon stand, (2) variable blades of the propeller, (3) twist angle of the propeller blades is set to about 45 degrees to reverse the propulsion motor, etc. Can be done with. The propeller shape has a twist angle of about 45 degrees,
If the width is wide and the diameter is short, the thrust and the braking force will be large compared to the rotation speed, the amount of wind cut will be reduced and the noise will be low, and if the blades are retracted, the product of the pressure pushing air will be increased. It becomes large and thrust increases. It is desirable that the current collector is lightweight and small, and one example is a current-collecting shoe that can be used as a detachable wind-resistant pantograph. The current-collecting shoe of the present invention uses, as a material, a thin metal plate having good electrical conductivity, high elasticity, corrosion resistance, and toughness, such as a phosphor bronze plate, except for the sliding plate for weight reduction. And configure. In the traveling direction, it is preferable to simply direct the cross section of the thickness of the thin plate and the side surface of the sliding plate to form air holes between the sliding plates to let out air and to make it difficult to generate lift. It is desirable that the mounting is made possible by tightening with a few screws, bolts, nuts or the like in order to improve maintainability. In the current collecting shoe of the present invention, since the height difference of the trolley wire is small, the outer size is about 20.
It is desirable to configure the size in the range of millimeter cubic to 300 millimeter cubic so that it can be applied to a large-sized high-speed vehicle rather than a small model in order to reduce the weight and the air resistance. It can be used as a pantograph by mounting the contact plate facing upward. Since it can be attached and detached with a few screws, it can be used for small models and is easy to replace and repair. Not only as a high-speed and large-distance transportation system, but also as a transportation system. For example, if an elevated track with a cross section of about 1 square meter for a certain section of mail is installed along a highway or a conventional railway, the speed will increase. Not only is it quick and time-saving, but it also saves energy by eliminating the need for long-distance transportation vehicles. Alternatively, it can be used as a game device or the like such as a system in which a target is loaded and the orbit is run at a high speed to compete for accuracy from a sniper.

【0005】[0005]

【実施例1】 (図1、図2 参照) 図面は本発明によるI実施例の概略図で、昭和58年特
許願第094869号発明の名称飛行車を改良して本発
明による駆動輪のすべり或いは空転を検知してプロペラ
推力を増減する機構を設けた飛行式の軌道車で、図Iは
コンクリート製の軌道と飛行式の軌道車の遠景側面図
で、該軌道は断面凹型で底部には一定間隔で距離の標識
95を設けてあり、中央上面にレール(図2中破線2
3)を敷設すれば、中央列車輪駆動軌道車の軌道として
使える(後述)。 該軌道の両側内の棚の溝にレール2
3の下部をボルトとナット36で固定してあり、最上部
には案内体24がナット36で固定してある。 該案内
体の上部には碍子21を介してトロリー線29が設けて
あり、台車の中央底面には標識95のカウンター96が
取付けてある(図2)。飛行式の軌道車1は、上方の車
体2が、台車3に直結してあり、台車3の下方の左右の
駆動軸7は各々回転速度の検知装置43を台車3の内壁
に設け、駆動輪4側で軸受34に支持され、中央で他端
を軸受34で支持されている。 この駆動軸は前記検知
装置43の内側の駆動モータ8で駆動回転せしめられ
る。 駆動輪4は両ツバ型で、下方のレール23上を転
がり、浮上がったとき案内輪11は案内体24の内端の
下縁に当たり、脱輪を規制している。 該駆動輪4にす
べり或いは空転が生じた時には既述の如く検知装置43
及びその他車輛内に搭載した計測装置或いはモータ等の
制御により、台車3の下方に設けたモータパイロン13
に取付けた推進モータ12に固定したプロペラ14の推
力を増大したり、又は駆動モータの回転数を大にしてよ
り一層の高速走行を実現する。 駆動輪と駆動装置は本
例以外の構成でも本発明を適用して駆動輪の駆動力の限
界以上にプロペラ推進で加速できる。本例の軌道はトロ
リー線の間隔が広くて、高圧給電が可能で、軌道の内側
でプロペラ推進気流は地面効果を大きく得られ、車輛の
高速性を一層増大する。
Embodiment 1 (Refer to FIGS. 1 and 2) The drawings are schematic views of Embodiment I according to the present invention, in which the name of the invention of Japanese Patent Application No. 094869 of 1983 is improved to improve the sliding of the drive wheels according to the present invention. Alternatively, FIG. I is a side view of a concrete track and a flight-type track car provided with a mechanism for detecting a slip and increasing / decreasing the propeller thrust. The track is a concave section with a concave section at the bottom. Distance signs 95 are provided at regular intervals, and rails (broken line 2 in FIG.
If 3) is laid, it can be used as a track for a center row wheel drive rail car (described later). Rail 2 in the groove of the shelf on both sides of the track
The lower part of 3 is fixed by bolts and nuts 36, and the guide body 24 is fixed by nuts 36 at the uppermost part. A trolley wire 29 is provided on the upper part of the guide body via an insulator 21, and a counter 96 for a mark 95 is attached to the center bottom surface of the carriage (FIG. 2). In a flight-type rail car 1, an upper vehicle body 2 is directly connected to a trolley 3, and right and left drive shafts 7 below the trolley 3 are provided with respective rotational speed detection devices 43 on the inner wall of the trolley 3 and drive wheels. It is supported by the bearing 34 on the 4 side, and the other end is supported by the bearing 34 at the center. This drive shaft is driven and rotated by the drive motor 8 inside the detection device 43. The drive wheel 4 is of a double-bran type and rolls on the lower rail 23, and when lifted up, the guide wheel 11 abuts on the lower edge of the inner end of the guide body 24 to regulate the removal of the wheel. When the drive wheels 4 slip or slip, as described above, the detection device 43
And a motor pylon 13 provided below the carriage 3 under the control of a measuring device or a motor mounted in the vehicle.
The thrust of the propeller 14 fixed to the propulsion motor 12 attached to the vehicle is increased, or the rotational speed of the drive motor is increased to realize higher speed traveling. The present invention can be applied to the drive wheels and the drive device other than this example to accelerate the propeller propelling beyond the limit of the drive force of the drive wheels. In the track of this example, the trolley wires are widely spaced so that high-voltage power supply is possible, and the propeller-propelled airflow inside the track provides a large ground effect, further increasing the speed of the vehicle.

【実施例2】 (図3より図14まで及び図16参照) 図面は本発明による1実施例の略図で、図3は高架軌道
と飛行式の軌道車1の遠景である。該高架軌道は下方の
コンクリート台座で固定した支柱50を所定間隔で配置
してあり、その上部にH鋼製のレール支持体31が延々
と置いて固定してある。該レール支持体31にはアーク
固定体25の中央下部のゲート状の左右の固定肢51の
横梁49が一体に固定してある。 該左右の固定肢51
はレール支持体31を挟んで下方に下がり、支柱50の
上部に固定してある(図6)。該アーク固定体25の上
面には、鉄筋コンクリート製の支持アーク22を置い
て、固定具26で固定してある。カーブ区間では、カー
ブの勾配に応じた所定の傾きで支持アークを固定してあ
る(図7)。この支持アーク22の上方内側にはレール
23が取り付けてある。レール底面とレール支持体31
との間には、レール台48があり、該レール台48の上
面はアーク状でレールがカーブで傾けて取り付けてあっ
ても、レール23の底面の左右端縁が密着するアーク状
面になっている(図6、7)。 従ってレール押さえ8
2でレール台48にレール支持体の傾斜角と等しい傾斜
でレール23を取付できる。 レールを支持している前
記支持アーク22の両側上方の内側には案内体24が置
かれ、上方が案内体固定具74で押さえてあり、内側の
下方は留板75で留めてある。さらに前記案内体24の
上部には碍子21が取付けてあり、トロリー線29を支
持している(図3、6、7)。集電は在来線の如き架線
からでもよいが、本例では間隔を離した案内体に碍子を
取付けているので、従来の第3軌条方式より高圧の給電
が可能であり架線とその柱がなく、レール支持体・レー
ル台を除く他の部材はカーブ区間も直線区間と同一の部
材で架設可能であるし、レール支持体・レール台等も工
場生産可能であるから、工期も早く建設用地が小さくて
すむ。組立式模型では、図15に示す如く、アーク固定
体25の底面の形態を平面上に定置可能に構成すればカ
ーブの傾斜も調節できるから、一定の長さの軌道セット
を組み立て解体自在に製作できる。より詳細には、図3
より図13に於いて、飛行式の軌道車1の車両は車体2
と台車3とからなる。 車体1は断面が半円形で、運転
室の直後及び最後部の両側にアーク形の扉がある。 該
車体2を支持する台車3はバーベル式空気バネ緩衝装置
30により弾力的に台車3に結合してある。バーベル式
空気バネ緩衝装置は両端部に取付けたボール状の膨大部
を持つバーベル状の連結棒17と、該膨大部を所定範囲
の角度で回動自在に支持しつつ収容し、該連結棒を回動
自在かつ滑動自在に支持する軸受を取付けた離脱制止縁
を開口部に設けた回動支持室を有する上下の回動支持函
各1個と、前記連結棒17を貫通せしめる中央孔を有す
るゴム製のドーナツ状の空気バネ18とで構成してあ
る。 該回動支持函は穴付支持函15とカバー支持函1
6の合体で成り、かつ回動支持函の少なくとも一方(本
例では下方の回動支持函)の回動支持室の奥が膨大部を
所定の深さまで引っ込ませ得る大きさで形成せしめて成
る(図6、図9、図10)。 このバーベル式空気バネ
緩衝装置の組み立ては、前記空気バネ18の空気を抜
き、その中心の穴に連結棒17を通しておく。 そし
て、穴付支持函15を両端に通してその後、両端にボー
ル状の膨大部を取付ける。 該ボール部分を残るカバー
支持函16で囲ってボルト孔84を通してボルト締めす
る。このバーベル式空気バネ緩衝装置の取付けは、左右
の装置の支持棒の間隔が、上方がせまくて下方が広くな
る傾斜取付方式が望ましい。 そうすれば、図11に示
す如く台車の上面線Bと車体の下面線Aが直線走行区間
では平行になるように調節してあり、カーブ区間で車体
が遠心力で矢印Pの方向に押されると、車体の下面は該
緩衝装置の上部のボール状部は前記下面線Aより一定の
高さαに於いて回動自在であるので、左側のボール状部
はDよりD′に、また右側のボール状部はEよりE′に
移動することとなり、破線A′で示す如く車体の下面は
遠心側が高くなり、求心側が低くなる。 その結果、カ
ーブでは車体の遠心側が高まり、求心側が沈むので車輛
の安定性が高まる(図6、図11)。台車3には中央列
車輪駆動装置に制動装置を加えた左右対称型駆動制動装
置とプロペラ推進装置が設けてある。中央列車輪駆動装
置は空気抵抗のバランスを得るため左右対称が好まし
い。左右対称型の中央列車輪駆動制動装置は図7、8に
於いて、台車の前後方向中心線の下方に駆動輪4が2個
ある。 駆動軸7は中央に前記駆動輪4を一個嵌殺して
あり、該駆動輪4の両側とも同じ順序でブレーキ35、
支持体20の軸受34、大歯車5、軸受34の順に嵌込
んであり、ナット36で両端を止めて固定してあり、該
支持体20は上方で左右に分割してあり、それぞれは上
方で差し込んで位置を定め、クッション39を介して台
車3の天板52にボルトとナット36で取付けてある。
左右のギアーケース10は前記左右の支持体20の外
側に一体に固定してあり、該ケース内の下方に納まる大
歯車5の軸孔の内周は内歯車が形成してあり、駆動軸7
の継手歯車と咬み合っているので、駆動輪35と、大歯
車5及び駆動軸7は同体で回転する。 前記左右の大歯
車5はそれぞれ左右のギアーケース10内で上方の小歯
車6と咬み合っている。 該小歯車6の中心に嵌殺した
小歯車軸6の内端部は支持体20とギアーケースの上方
の軸受34に回転自在に支持されていて、他端は小歯車
カバー32に固定した軸受を貫通してギアーケースの外
で、たわみ軸継手9に連結してある。下方のサイドカバ
ー33は上部以外の周縁をギアーケースと一体にビスと
ナット36でシールを挿んで締め付けてあり、上方の床
53の直下で小歯車カバー32の下端の折り縁とシール
を挾んでネジ止めしてある。 該小歯車カバーも周縁を
前記ギアーケースにシールを挿んでネジ78止めしてあ
る。 又、前記たわみ軸継手9には小歯車軸38の反対
側に駆動モータ8のモータ軸79の軸端が連結してあ
り、該駆動モータ8はクッション39を介して台車の床
53に取付けてある。ブレーキ35は両側の支持体20
の内方に取付けてある。上記の如く、駆動装置の各機器
は、駆動モータ以外は支持体20に支持され、支持体2
0は強化した台車の天板52に弾性体39を介してボル
トとナット36で取り付けてあり(図8)、前後に突出
せしめた固定片80で台車の床53に下方からクッショ
ンを介してボルト締めしてある(図4)。駆動モータ
は、別のクッション39を介して台車の床に取り付けて
あるから、そのモータ軸は支持体に軸受を介して支持さ
れている小歯車輛38の振動のリズムと同一でないが、
たわみ軸継手9が緩和するし、蛇行動や激しい振動の発
生を構造的に内包する左右の片ツバ車輪を平行レールで
転がす従来の鉄道方式とは異なり、本発明の中央列駆動
輪の振動或いは横揺れは小であり、かつ大径の車輪故に
早いリズムの衝撃は生じにくい。従って、モータに対す
る衝撃は平行レールの片ツバ車輪の軌道車より極めて小
なので、箇単な緩衝構造で軽量化できる。 上記の駆動
装置はギアーケース10内に於いて、油潤滑が可能で大
型の高速車に用いられる。尚、上記の駆動歯車の点検作
業では、図8に於いて、第Iにサイドカバー33を外
し、第2に駆動軸のナットを外して隣接の軸受及び大歯
車を抜きとり、第3に台車底面の底蓋28を梁54から
外し、第4に小歯車軸をたわみ軸継手から外し、第5に
小歯車カバーとギアーケースのネジを外してから、小歯
車カバー、スラスト型の軸受け、コロ型の軸受け、小歯
車の順に外せばよい。このあとで、一方の支持体を外す
と駆動輪と駆動軸も外せる。組立ては前記と逆の段取り
でできる。駆動装置は非対称式を含めて多くある。その
中でも本例では1駆動輪に左右計2個の小型の駆動モー
タによるので台車の天井を低くでき、その分車高を低く
断面の小型化で空気抵抗を減らせるので、高速性と省エ
ネルギーを大にする。プロペラ推進装置は図4、5、1
4、15、16に於いて、台車3の底部に回転可能にし
て設けたパイロン台19から下がるモータパイロンの下
方に推進モータ12を取付け、該モータの軸に取り付け
た固着具58にプロペラ14を取付けてある。 車両の
逆進時は図5中の破線のプロペラ14のように矢印の方
向にパイロン台19の180度の回転により逆方向に推
進させることができる。その制御システムは車軸の回転
数と車両の実速の差、例えば一定時間内の標識の通過数
をカウントして車輛の実速を計測し、駆動軸の回転数を
検知して駆動輪の回転速度を計測し、双方の差が一定の
範囲の値を超えた場合、例えば実速が駆動輪の回転速度
より早いときプロペラ推力が大なので駆動回転数を大に
し、その逆ではプロペラ推力を大にする等の調節で駆動
輪のすべりが生じない範囲に制御する。該装置による制
動は、プロペラの逆回転又はパイロン台19の180度
回転でできる。特に高速時は車輪制動より衝撃が少なく
車輪の偏磨耗が生じないので制動のための複雑な制御機
器を必要とせず、コストは安く軽量化に適している。案
内装置は図4、5、6に於いては、案内輪11が台車3
の底部の前後に左右一対で設けてある。 該案内輪11
は台車3の底面と同一水準に下面を合わせて縦軸であ
り、左右の案内輪の上部に設けたプーリーにベルト27
を係合して等速逆回転構造である。従って一方の案内輪
が案内体に接触して回転するとき、他方の案内輪も逆に
等速で回転し、台車が揺れて反対側に傾いた時に反対側
の案内輪が案内体に接触してすべりを生じない。 この
案内輪11を台車に搭載した案内モータ81で車両のス
ピードと等速に図5中の矢印の如く逆方向に回転制御す
ることが可能であり、高速性及び安定性を高めるので一
層好ましい。上述の案内輪11は最高位置が、案内体に
規制されているので台車はそれ以上は浮上しないし、駆
動輪の両ツバ77は高く踏面76が深く、レール23よ
り少し離れて浮いても、案内体で案内輪の上限を規制す
るので、その限度内では駆動輪のツバが脱輪しない位置
にレールがあるように駆動輪が取り付けてある(図
6)。従って、少々駆動輪が浮いても推進力を大にして
駆動力の限界以上の速度が出せる。尚、本発明による案
内方式として好ましい他の一例をあげると、強制弾力接
触式に於いて、図12、図13では左右の案内輪11は
外側で案内体24の案内面に弾力的に接触せしめられて
いる。その構成は台車3の底部に設けたスライド溝91
の前後の立ち上がり壁にはストッパー94が前後の左右
に1個づつ所定位置に設けてある。該溝に嵌まっている
スライドケース98は空気バネ43で圧迫されてストッ
パーの中側にスライドケースのくぼみ99の中央で、空
気バネの弾性により外方に突出せしめられているが、左
右の案内面に押されて台車3の左右側壁トケースの外端
とが両側で合わされている。左右の案内面の間隔は一定
(平行度の誤差はあるが)に構成してある(図12)。
又、該スライドケースに回転自在に支持されている案
内輪11は台車が矢印Qの方向に傾いたとき、右側の案
内輪Oは右側の案内面に強く押しつけられ、スライド
ケースの内側は空気バネ43を矢印 Nの方向に押して
左のスライドケースのくぼみ99がストッパー94に当
たるまで弾力的に押す。同時に左側のスライドケースは
空気バネ43の膨張力に押されて左側の案内面と案内輪
の間に生じる隙間を埋めるのに十分な膨張力を空気バネ
より加えられていて外方に僅かにαだけ押し出される。
このとき左右の案内輪は何れも案内面と接触している
(図13)。 この作用が連続して生じ案内輪と案内面
は接触を続けて車輛の走行を安定させる。 従って、台
車が一方に傾いても案内面には空気バネの弾性によりソ
フトに案内面への接触を保ち車輛に衝撃をあたえない。
又、案内モータで車輛速度と等速に回転を制御するの
が、より好ましい。
Second Embodiment (See FIGS. 3 to 14 and FIG. 16) The drawings are schematic views of one embodiment according to the present invention, and FIG. 3 is a distant view of an elevated track and a flight type track car 1. On the elevated track, columns 50 fixed by a concrete pedestal below are arranged at a predetermined interval, and a rail support 31 made of H steel is placed endlessly and fixed on the upper part thereof. The rail support 31 is integrally fixed with lateral beams 49 of left and right gate-shaped fixed limbs 51 at the lower center of the arc fixing body 25. The left and right fixed limbs 51
Is fixed to the upper part of the support column 50 by dropping downward with the rail support 31 sandwiched therebetween (FIG. 6). A supporting arc 22 made of reinforced concrete is placed on the upper surface of the arc fixing body 25 and fixed by a fixing tool 26. In the curve section, the supporting arc is fixed at a predetermined inclination according to the gradient of the curve (Fig. 7). A rail 23 is attached to the upper inside of the support arc 22. Rail bottom and rail support 31
A rail base 48 is provided between the rail base 48 and the rail base 48, and the top surface of the rail base 48 is arc-shaped. (Figs. 6 and 7). Therefore, rail holder 8
In step 2, the rail 23 can be attached to the rail base 48 at an inclination equal to the inclination angle of the rail support. Guide bodies 24 are placed inside both sides of the supporting arc 22 supporting the rails, the upper side is pressed by a guide body fixing tool 74, and the inner lower side is fixed by a retaining plate 75. Further, an insulator 21 is attached to the upper part of the guide body 24 and supports a trolley wire 29 (FIGS. 3, 6, and 7). The current may be collected from an overhead line such as a conventional line, but in this example, since the insulators are attached to the guide bodies spaced apart from each other, it is possible to supply a higher voltage than the conventional third rail system, and Other than the rail support / rail base, the curved section can be installed with the same member as the straight section, and the rail support / rail base etc. can be produced at the factory, so the construction period is fast Can be small. In the assembled model, as shown in FIG. 15, if the shape of the bottom surface of the arc fixing body 25 can be set on a flat surface, the inclination of the curve can be adjusted, so that a set of orbits of a certain length can be assembled and disassembled freely. it can. More specifically, FIG.
As shown in FIG. 13, the vehicle of the flight type rail car 1 is a vehicle body 2
And trolley 3. The vehicle body 1 has a semi-circular cross section, and has arc-shaped doors immediately after the cab and on both sides of the rearmost portion. A carriage 3 supporting the vehicle body 2 is elastically coupled to the carriage 3 by a barbell type air spring cushioning device 30. The barbell type air spring shock absorber accommodates a barbell-shaped connecting rod 17 having ball-shaped enlarging parts attached to both ends, and accommodating while supporting the enlarging part rotatably at an angle within a predetermined range. Each of the upper and lower rotation support boxes has a rotation support chamber having a release stop edge attached to a bearing for rotatably and slidably supporting the opening, and a central hole through which the connecting rod 17 is inserted. It is composed of a rubber donut-shaped air spring 18. The rotation support box includes a support box with a hole 15 and a cover support box 1
6 and the inner part of the rotation support chamber of at least one of the rotation support boxes (the lower rotation support box in this example) is formed to have a size capable of retracting the enlarged portion to a predetermined depth. (FIG. 6, FIG. 9, FIG. 10). In assembling this barbell type air spring cushioning device, the air of the air spring 18 is evacuated and the connecting rod 17 is passed through the hole at the center thereof. Then, the support box 15 with holes is passed through both ends, and thereafter, ball-shaped enlarged portions are attached to both ends. The ball portion is surrounded by the remaining cover support box 16 and bolted through the bolt hole 84. The barbell-type air spring cushioning device is preferably mounted in an inclined mounting system in which the distance between the support rods of the left and right devices is narrow in the upper part and wide in the lower part. Then, as shown in FIG. 11, the upper surface line B of the bogie and the lower surface line A of the vehicle body are adjusted to be parallel in the straight running section, and the vehicle body is pushed in the direction of arrow P by the centrifugal force in the curved section. On the lower surface of the vehicle body, since the ball-shaped portion on the upper side of the shock absorber is rotatable at a constant height α from the lower surface line A, the ball-shaped portion on the left side is D'from D and the ball-shaped portion on the right side. The ball-shaped portion of E moves from E to E ', and the lower surface of the vehicle body becomes higher on the centrifugal side and lower on the centripetal side as shown by the broken line A'. As a result, in the curve, the centrifugal side of the vehicle body rises and the centripetal side sinks, so the stability of the vehicle increases (FIGS. 6 and 11). The trolley 3 is provided with a left-right symmetrical drive braking device in which a braking device is added to a center row wheel driving device and a propeller propulsion device. The center row wheel drive device is preferably symmetrical in order to obtain a balance of air resistance. The left and right symmetrical center row wheel drive braking device has two drive wheels 4 below the longitudinal center line of the carriage in FIGS. The drive shaft 7 has one drive wheel 4 inserted in the center thereof, and the brakes 35,
The bearing 34, the large gear 5, and the bearing 34 of the support 20 are fitted in this order, fixed at both ends by nuts 36, and the support 20 is divided into upper and left parts, and It is inserted to determine the position, and is attached to the top plate 52 of the trolley 3 with the bolts and nuts 36 through the cushion 39.
The left and right gear cases 10 are integrally fixed to the outside of the left and right supports 20, and an internal gear is formed on the inner periphery of the shaft hole of the large gear 5 that is housed in the lower part of the case, and the drive shaft 7
The drive wheel 35, the large gear 5, and the drive shaft 7 rotate as a single body because they mesh with the joint gear of FIG. The left and right large gears 5 mesh with the upper small gear 6 in the left and right gear cases 10, respectively. The inner end portion of the small gear shaft 6 fitted in the center of the small gear 6 is rotatably supported by the support 20 and the bearing 34 above the gear case, and the other end is fixed to the small gear cover 32. And is connected to the flexible shaft coupling 9 outside the gear case. The lower side cover 33 is fastened by inserting a seal with a screw and a nut 36 integrally with the gear case on the periphery except the upper part, and sandwiching the folding edge and the seal at the lower end of the pinion gear cover 32 directly below the upper floor 53. It is screwed on. The small gear cover also has a peripheral edge fixed with a screw 78 by inserting a seal into the gear case. A shaft end of a motor shaft 79 of a drive motor 8 is connected to the flexible shaft coupling 9 on the side opposite to the pinion shaft 38, and the drive motor 8 is attached to the floor 53 of the truck via a cushion 39. is there. The brake 35 is a support 20 on both sides.
It is installed inside. As described above, each device of the drive device is supported by the support 20 except the drive motor.
No. 0 is attached to the top plate 52 of the reinforced bogie with the bolts and nuts 36 through the elastic body 39 (FIG. 8), and is fixed to the floor 53 of the bogie with a fixing piece 80 protruding from the front and the bottom via a cushion. It has been tightened (Fig. 4). Since the drive motor is attached to the floor of the truck via another cushion 39, its motor shaft is not the same as the vibration rhythm of the pinion gear 38 supported by the support through the bearing,
Unlike the conventional railway system in which the left and right brim wheels, which structurally include the occurrence of serpentine motion and severe vibration, are rolled by parallel rails, the vibration of the central row drive wheels of the present invention or Rolling is small, and because of the large diameter wheels, quick rhythmic impact is unlikely to occur. Therefore, since the impact on the motor is extremely smaller than that of a rail car with a single brim wheel with parallel rails, it is possible to reduce the weight with a single shock absorbing structure. The above-mentioned drive device can be oil-lubricated in the gear case 10 and is used for a large high-speed vehicle. In the inspection work of the drive gear, in FIG. 8, the side cover 33 is removed first, the nut of the drive shaft is removed secondly, the adjacent bearing and the large gear are removed, and the third is the bogie in FIG. The bottom cover 28 on the bottom is removed from the beam 54, fourthly the small gear shaft is removed from the flexible shaft coupling, and fifthly, the small gear cover and the screw of the gear case are removed, and then the small gear cover, the thrust type bearing, and the roller. Remove the bearing of the mold and the pinion in that order. After that, when one of the supports is removed, the drive wheel and the drive shaft can also be removed. Assembly can be done by the reverse of the above. There are many drives, including asymmetrical. Among them, in this example, one driving wheel uses two small drive motors on the left and right, so the ceiling of the trolley can be lowered, and the vehicle height can be reduced by that amount, and the air resistance can be reduced by reducing the size of the cross section. Therefore, high speed and energy saving are achieved. Make big The propeller propulsion device is shown in Figs.
4, 15, and 16, the propulsion motor 12 is attached below the motor pylon that descends from the pylon base 19 that is rotatably provided on the bottom of the carriage 3, and the propeller 14 is attached to the fastener 58 attached to the shaft of the motor. It is installed. When the vehicle is moving in the reverse direction, it can be propelled in the reverse direction by rotating the pylon table 19 by 180 degrees in the direction of the arrow, as indicated by the broken line propeller 14 in FIG. The control system measures the actual speed of the vehicle by counting the difference between the number of rotations of the axle and the actual speed of the vehicle, for example, the number of passages of a sign within a certain time, and detects the number of rotations of the drive shaft to rotate the drive wheels. When the speed is measured and the difference between the two exceeds a certain range, for example, when the actual speed is faster than the rotational speed of the drive wheels, the propeller thrust is large, so the drive speed is increased, and vice versa. By adjusting the setting, etc., control is performed within a range where the drive wheels do not slip. The braking by the device can be performed by the reverse rotation of the propeller or the 180-degree rotation of the pylon table 19. Especially at high speeds, the impact is less than that of wheel braking and uneven wear of the wheels does not occur, so a complicated control device for braking is not required, the cost is low and it is suitable for weight reduction. As for the guide device, in FIGS. 4, 5 and 6, the guide wheel 11 is the carriage 3
A pair of left and right is provided in front of and behind the bottom of the. The guide wheel 11
Is the vertical axis when the bottom surface is aligned with the bottom surface of the trolley 3 and the belt 27 is attached to the pulleys provided on the left and right guide wheels.
Is a constant speed reverse rotation structure. Therefore, when one guide wheel comes into contact with the guide body and rotates, the other guide wheel also rotates at the same speed, and when the bogie shakes and leans to the opposite side, the opposite guide wheel comes into contact with the guide body. It does not slip. This guide wheel 11 can be rotationally controlled in the opposite direction as indicated by the arrow in FIG. 5 at the same speed as the vehicle by the guide motor 81 mounted on the trolley, which is more preferable because the high speed and stability are enhanced. Since the highest position of the guide wheel 11 is regulated by the guide body, the dolly does not float further, and both the brims 77 of the drive wheels are high and the treads 76 are deep, and even if they float a little away from the rail 23, Since the guide body regulates the upper limit of the guide wheel, the drive wheel is attached so that the rail is located at a position where the brim of the drive wheel does not come off within the limit (FIG. 6). Therefore, even if the drive wheels are slightly floated, the propulsive force can be increased and the speed exceeding the limit of the drive force can be obtained. As another preferred example of the guide system according to the present invention, in the forced elastic contact type, the left and right guide wheels 11 in FIG. 12 and FIG. 13 are elastically brought into contact with the guide surface of the guide body 24 outside. Has been. The structure is a slide groove 91 provided at the bottom of the carriage 3.
Stoppers 94 are provided at predetermined positions on the front and rear rising walls, one on the front and one on the rear. The slide case 98 fitted in the groove is pressed by the air spring 43 and is protruded outward by the elasticity of the air spring at the center of the recess 99 of the slide case toward the inside of the stopper. The left and right side walls of the trolley 3 are pushed by the surface and are aligned with the outer ends of the case on both sides. The distance between the left and right guide surfaces is fixed (although there is an error in parallelism) (FIG. 12).
Further, the guide wheel 11 rotatably supported by the slide case is strongly pressed against the right guide surface by the right guide wheel O 2 when the carriage is tilted in the direction of arrow Q, and the inside of the slide case is air-conditioned. The spring 43 is pushed in the direction of arrow N and elastically pushed until the depression 99 of the left slide case hits the stopper 94. At the same time, the left slide case is pushed by the expansion force of the air spring 43, so that the expansion force sufficient to fill the gap between the left guide surface and the guide ring is applied by the air spring, and it is slightly outward. Just pushed out.
At this time, both the left and right guide wheels are in contact with the guide surface (Fig. 13). This action continuously occurs and the guide wheel and the guide surface continue to be in contact with each other to stabilize the traveling of the vehicle. Therefore, even if the carriage tilts to one side, the elasticity of the air spring keeps the guide surface softly in contact with the guide surface and does not give a shock to the vehicle.
Further, it is more preferable that the guide motor controls the rotation at the same speed as the vehicle speed.

【実施例3】 (図14より図20まで参照) 本例は模型の一例で、軌道装置は支持アーク22が固定
アーク25上で固定具26で一体に固定され、この状態
で地上でも固定できる。高架軌道ではレール23は支持
アークの中央の溝に防音のためのクッションを挾んで差
し込んである。 アーク固定体25の内側には規制突起
93があり、支持アークの下面の溝でレール方向へずれ
るのを規制している。 該レールは縦幅が広く、案内体
24は案内体固定具74で支持アークに締め付けてあ
る。この車両は台車と車体が一体に固定してあり、下方
の台車の空洞内に駆動モータ8、小歯車6が納まってい
る。更に、両側の支持体の上方の左右の固定片80が台
車の床53に取付けてある。車体の前部には標的70が
中板57に取り付けて、上半分を透明板を通して目視し
やすくなっていて、光線がヒットすると所定のサインを
発する構成になっている。駆動輪4は左右のツバ部分を
歯車に形成してあり(図14)、駆動軸7で両側の支持
体20間に軸受34を介して回転自在に支持されてい
る。 駆動軸7は両側の支持体20にナット36で固定
してある。 該駆動輪4のツバ歯車に噛み合う伝動小歯
車6は前記台車の空洞内に於いて、小歯車輛38により
左右のピローブロック85内の軸受に回転自在に支持さ
れている。 この小歯車軸は両側のビローブロック85
の外方にのびていて、その両端部がたわみ軸継手9に連
結してある。 該たわみ軸継手9は両外側の駆動モータ
8に連結してある。駆動モータ8はクッション37を介
して床53に取り付けてあり、そのモータ軸は前記の如
くたわみ軸継手9を介して前記小歯車軸38と連結せし
めてある。従って、駆動モータが回転すると、たわみ軸
継手9を介して小歯車軸により小歯車が回転し、該小歯
車は鋼鉄性のツバ歯車と噛み合ってツバ歯車駆動輪を駆
動回転せしめるが、小歯車は無給油でツバ歯車と緩衝的
に噛合えるナイロン製であり、たわみ軸継手とクッシヨ
ン39により、駆動輪からの衝撃は緩和され、衝撃を受
けるのは支持体20とそれを取付けた台車の床に限定さ
れる。 上述のツバ歯車駆動装置は本発明による1実施
例で駆動輪に歯車を一体に付属せしめる方法は他の一例
では、その外周を中高にして歯車を形成して小歯車に噛
合わせ、両側で平行レール面に転がらす等もあるが、極
めて少ない部品でコストが安く、無給油でも相当程度の
速度で走行でき、低騒音である。プロペラ推進装置は、
図14、16で駆動輪4の前方にあり、プロペラは固着
具58により推進モータ12の後方に突出したモータ軸
と一体に固定してある。推進モータ12はモータパイロ
ン13で支持され、該モータパイロンは台車の床に設け
た回転装置で支持されている。モータパイロン13には
サーボモータが内在せしめてあり、該サーボモータはパ
イロン歯車45に連結してある。該パイロン歯車45は
モータ支持体59の上方に構成した回動歯車47に咬み
合っている。モータ支持体59の支持片は、両側のパイ
ロンに取り付けてあるモータ回動軸46で回動自在に支
持されている。従って、モータ支持体59はサーボモー
タが回転した分だけパイロン歯車45を介して、回動歯
車47により、モータ回動軸46を中心に回動して推進
モータ12の上下角を変化させる。それにより、プロペ
ラの推進方向も上下方向が変化せしめられる。その結果
後部駆動輪のすべりを検知した場合には推進モータ12
の前部を下げると、車輛前部に揚力が増え、後部に荷重
が増す結果、台車の前部が軽くなり後部に逆の荷重かか
り、すべりをなくせる。前部の駆動輪のすべりはその逆
でなくせる。モータパイロンの回転装置は台車の床53
に設けてある(図16)。回転角度を定めるサーボモー
タ88のモータ軸は回転台71の中心に固定してあり、
該回転台71の下面にはモータパイロン13の上面を合
わせて一体に固定してある。この回転台71は下面の外
周に軸受け34が当接し、回転自在に支持され、該軸受
は回転支持ケース87の内周下方に嵌殺してあり、該回
転支持ケースは外周を環状固定具86で床53に固定し
てある。従ってサーボモータを回転させた角度だけモー
タパイロンも回転し、プロペラの向きを逆の方向に変え
ることができる。本発明に於いて集電装置は軽量化のた
めに小型で部品点数が少なく架線又はトロリー線への追
随製のよいものがのぞましく、その一例として本発明に
よる集電靴は、バネ板62、丁番63等の素材として良
伝導体で、かつ硬質で弾性に富む、例えば燐青銅の如き
金属が好ましい。すり板には、燐青銅も使えるが、焼結
合金の新素材を選ぶのが、望ましい。図17より図21
に於いて、集電靴60は、一対のすり板61、該すり板
を固定するバネ板62、該バネ板を片側に固着せしめた
左右の丁番63、該左右の丁番の他側には、中央に支え
板64を固着したバネ板62の両端部が一体に固定して
ある。すり板61は短い丸棒の両端部を薄肉に形成して
鋲孔を穿ってあり、2本を並べてバネ板62に鋲65止
めしてある。バネ板62は、すり板を固定した中央部を
残して両側をアールをつけて同じ方向に約45度で曲げ
てある。対面しているバネ板も支え板の両側をやや余し
て同一の形状に曲げて形成してある。上記の2枚のバネ
板の両端部がそれぞれ2枚の丁番の一片づつに固着して
あって外形ができている。そして風圧が大きくかかるバ
ネ板の2本のすり板61の間に風孔69が穿ってある。
この集電靴60の取り付けは、車両の所定の位置に絶縁
体42を介して一対の押さえ板66を集電靴60の支え
板64の幅に合う隙を開けて平行に固定する。次には、
2枚の平行に取り付けた押さえ板の間に支え板を横方向
から押し込み、押さえ孔67により、ビス止めすれば完
了する。該集電靴の素材が良伝導体であれば、この押さ
え板に電極を取り付けて配線すればよい。尚、本例では
すり板が両端の鋲65迄の長さであるが、左右方向に延
長してトロリー線に幅広く対応できるし、不要の時、折
畳む構成にすると一層よい。この集電靴は、すり板61
が押圧されると、図19の破線の如く低くなり、圧力を
除くと軽量のバネ板の弾性で瞬時に復元するので、トロ
リー線の高低の変化に良く追随できるし、すり板以外で
は、風圧は構成部品の板の厚みにかかるのみであり、風
圧に強い特徴がある。尚、前記の押さえ孔67のビスを
外せば、矢印P方向にスライドさせて集電靴を簡単に外
すことができるし、上向きにも使えるので、パンタグラ
フにもなる。かくの如く、部品点数が少なく、簡単な構
造なので軽量で反応が早いからトロリー線への追随性が
良く、離線を防止し易い。
Third Embodiment (See FIGS. 14 to 20) This example is an example of a model. In the track device, the supporting arc 22 is integrally fixed on the fixed arc 25 by the fixing tool 26, and in this state, it can also be fixed on the ground. . On the elevated track, the rail 23 has a cushion for sound insulation inserted in a groove in the center of the supporting arc. There is a restriction projection 93 inside the arc fixing body 25, and the groove on the lower surface of the support arc restricts the deviation in the rail direction. The rail has a large vertical width, and the guide body 24 is fastened to the supporting arc by a guide body fixture 74. In this vehicle, the bogie and the vehicle body are integrally fixed, and the drive motor 8 and the pinion 6 are housed in the cavity of the bogie below. Further, left and right fixing pieces 80 above the supporting bodies on both sides are attached to the floor 53 of the truck. The target 70 is attached to the middle plate 57 at the front part of the vehicle body so that the upper half can be easily seen through the transparent plate, and a predetermined sign is emitted when the light beam hits. The drive wheel 4 has left and right flanges formed as gears (FIG. 14), and is rotatably supported by the drive shaft 7 between the supports 20 on both sides via bearings 34. The drive shaft 7 is fixed to the supports 20 on both sides with nuts 36. The transmission small gear 6 meshing with the flange gear of the drive wheel 4 is rotatably supported by bearings in the left and right pillow blocks 85 by the small gear 38 in the cavity of the carriage. This pinion shaft has billow blocks 85 on both sides
Of the flexible shaft joint 9 is connected to the flexible shaft joint 9 at both ends. The flexible shaft coupling 9 is connected to both outer drive motors 8. The drive motor 8 is attached to the floor 53 via a cushion 37, and its motor shaft is connected to the pinion shaft 38 via the flexible shaft coupling 9 as described above. Therefore, when the drive motor rotates, the small gear is rotated by the small gear shaft via the flexible shaft coupling 9, and the small gear meshes with the steel-made flange gear to drive and rotate the flange gear drive wheel. It is made of nylon that can be engaged with the flange gears without oiling, and the impact from the drive wheels is mitigated by the flexible shaft joint and cushion 39. The impact is received on the support 20 and the floor of the truck to which it is attached. Limited. The flange gear driving device described above is an embodiment according to the present invention in which the gear is integrally attached to the drive wheel. In another example, the outer circumference is set to a middle height to form a gear, which meshes with a small gear and is parallel on both sides. Although it can be rolled on the rail surface, the cost is low with extremely few parts, it can run at a considerable speed even without oiling, and it has low noise. Propeller propulsion device
In FIGS. 14 and 16, the propeller is located in front of the drive wheel 4, and the propeller is integrally fixed to the motor shaft protruding rearward of the propulsion motor 12 by a fastener 58. The propulsion motor 12 is supported by a motor pylon 13, which is supported by a rotating device provided on the floor of the truck. A servomotor is built in the motor pylon 13, and the servomotor is connected to the pylon gear 45. The pylon gear 45 meshes with a rotary gear 47 formed above the motor support 59. The support piece of the motor support 59 is rotatably supported by the motor rotation shafts 46 attached to the pylons on both sides. Therefore, the motor support 59 is rotated about the motor rotation shaft 46 by the rotation gear 47 via the pylon gear 45 by the amount of rotation of the servo motor to change the vertical angle of the propulsion motor 12. As a result, the propelling direction of the propeller is also changed vertically. As a result, when slippage of the rear drive wheels is detected, the propulsion motor 12
Lowering the front part of the vehicle increases the lift on the front part of the vehicle and increases the load on the rear part. As a result, the front part of the dolly becomes lighter and the reverse load is applied to the rear part to eliminate slip. The slippage of the front drive wheels can be reversed. The rotating device of the motor pylon is the floor 53 of the truck.
(Fig. 16). The motor shaft of the servo motor 88 that determines the rotation angle is fixed to the center of the turntable 71,
The upper surface of the motor pylon 13 is aligned with the lower surface of the rotary table 71 and integrally fixed. The rotary table 71 is rotatably supported by the bearing 34 abutting on the outer circumference of the lower surface thereof, and the bearing is fitted to the lower part of the inner circumference of the rotary support case 87. It is fixed to the floor 53. Therefore, the motor pylon is also rotated by the angle at which the servo motor is rotated, and the direction of the propeller can be changed to the opposite direction. In the present invention, it is desirable that the current collector is small in size and has a small number of parts so that it can be easily manufactured to follow an overhead line or a trolley wire. For example, the current collector shoe according to the present invention is a spring plate. As the material of 62, hinge 63, etc., a metal such as phosphor bronze, which is a good conductor and hard and rich in elasticity, is preferable. Phosphor bronze can be used for the contact plate, but it is preferable to select a new sintered alloy material. FIG. 21 to FIG.
In the current collecting shoe 60, a pair of sliding plates 61, spring plates 62 for fixing the sliding plates, left and right hinges 63 with the spring plates fixed to one side, and the other side of the left and right hinges are provided. Has both ends of a spring plate 62 having a support plate 64 fixed to the center fixed integrally. The contact plate 61 has both ends of a short round bar formed thin to have rivet holes, and two linings are arranged side by side and fixed to the spring plate 62 with rivets 65. The spring plate 62 is bent at about 45 degrees in the same direction with a radius on both sides except for the central portion to which the contact plate is fixed. The facing spring plates are also formed by bending both sides of the supporting plate into the same shape with a little margin. Both ends of the above-mentioned two spring plates are fixed to each of the two hinges to form the outer shape. An air hole 69 is formed between the two sliding plates 61 which are spring plates to which a large wind pressure is applied.
To attach the current collecting shoes 60, a pair of pressing plates 66 are fixed in parallel at a predetermined position of the vehicle through the insulator 42 with a gap matching the width of the supporting plate 64 of the current collecting shoes 60. Next,
The supporting plate is pushed laterally between the two pressing plates that are attached in parallel, and the pressing holes 67 are used to fasten with screws. If the material of the current collecting shoe is a good conductor, electrodes may be attached to the pressing plate for wiring. In this example, the contact plate has a length up to the tacks 65 at both ends, but it can be extended in the left-right direction to accommodate a wide range of trolley wires, and it is more preferable to fold it when unnecessary. This current collecting shoe has a sliding plate 61
When it is pressed, it becomes lower as shown by the broken line in FIG. 19, and when the pressure is removed, it is instantly restored by the elasticity of the lightweight spring plate, so it can follow the changes in height of the trolley wire well, and if the pressure is not Has a characteristic of being strong against wind pressure, as it only depends on the thickness of the plate of the component. It should be noted that if the screw of the pressing hole 67 is removed, the current collecting shoe can be easily removed by sliding it in the direction of the arrow P, and since it can be used upward, it becomes a pantograph. As described above, since the number of parts is small and the structure is simple, it is light in weight and has a quick reaction. Therefore, it is easy to follow the trolley wire, and it is easy to prevent disconnection.

【実施例4】 (図22、23、24、25 参照) 本例の飛行式の軌道車の軌道は、既述のごとき構成であ
る。前後に長い車輛の強度を大にして、急カーブを安定
走行せしめるには、車体を支持する枕梁枠100の下方
の前後に設けた各1台の台車のそれぞれを、回転式に構
成するのが望ましい。 即ち、前後各1台の回転式の台
車3の前後方向の中央線の下方には中央の台車軸97の
前後に駆動輪4が各1個づつ設けてあり、更に該前部の
駆動輪の前部及び後部の駆動輪の後部には前述例の強制
弾力接触式の案内輪11を左右一対で設けてある。直線
区間で該前後の案内輪に案内されて図24に示すように
車輛と同じ向きに前部の台車3も破線の方向を向くが、
曲線区間では台車3は案内輪により、台車軸97を中心
に回動して実線で示す台車3の方向に回転させられ、車
輛に傾斜した角度となり、レールのカーブに沿った方角
に向かわされる。 同様に後部の台車も図24のよう
に、前部及び後部の案内輪11により、レールにならっ
て回動させられて、レールに沿った方向に向いて転が
る。従って、該駆動輪の狭い幅の踏面でもレールのカー
ブに追従して転がり、ツバの破壊のような問題が生じな
い。仮に、本例の台車が固定してあれば、直線区間は問
題がないが、急カーブで上述のように両ツバ間の踏面か
らレールがはみ出ることとなり、ツバ若しくは駆動装置
を破壊する等の問題がおきる。 従って、回転式の台車
は車輛が長い形であれば、車輛の前後に設けて、カーブ
での安定走行に重要である。 本例で回転式の台車に支
持輪4個を駆動輪に代えて設ければ、長い車輛の牽引式
の貨車としてカーブでも安定して高速性が向上する。
尚、本例に用いたレールは既述の両ツバ車輪用でよい
が、他の一例をあげれば図25の断面U型のレールに中
ツバ車輪の組合せでも同様に上述の回転式の台車により
円滑に安定した走行ができる。
Fourth Embodiment (Refer to FIGS. 22, 23, 24 and 25) The orbit of the flight type rail car of the present example has the configuration as described above. In order to increase the strength of the vehicle that is long in the front-rear direction and to ensure stable traveling in a sharp curve, each one of the bogies provided in the front and rear below the bolster frame 100 that supports the vehicle body is configured to be rotatable. Is desirable. That is, one drive wheel 4 is provided in front of and behind the central bogie shaft 97 below the center line of the front and rear rotary carriages 3 in the front-rear direction. A pair of left and right guide wheels 11 of the above-mentioned forced elastic contact type are provided at the rear of the front and rear drive wheels. In a straight section, the front and rear guide wheels guide the front carriage 3 in the same direction as the vehicle, as shown in FIG. 24.
In the curved section, the trolley 3 is rotated by the guide wheel about the trolley shaft 97 and rotated in the direction of the trolley 3 shown by the solid line, and becomes an angle inclined to the vehicle, and is directed in the direction along the curve of the rail. . Similarly, as shown in FIG. 24, the rear carriage is also rotated by the front and rear guide wheels 11 following the rail, and rolls in the direction along the rail. Therefore, even a tread surface having a narrow width of the drive wheel rolls following the curve of the rail, and there is no problem such as breakage of the brim. If the trolley of this example is fixed, there is no problem in the straight section, but as a result of a sharp curve, the rail will stick out from the tread between the two brims, and the brim or drive device will be destroyed. Occurs. Therefore, if the vehicle is of a long shape, the rotary trolley is provided in front of and behind the vehicle, and is important for stable running on a curve. In the present example, if four supporting wheels are provided in place of the drive wheels on the rotary dolly, the high speed can be stably improved even in a curve as a long vehicle towed wagon.
The rail used in this example may be for both the brim wheels described above, but as another example, the combination of the middle brim wheel with the U-shaped cross-section rail shown in FIG. You can run smoothly and stably.

【実施例5】 (図26 参照) 図25に於いて、長円形状の軌道73が複数設定してあ
り、飛行式の軌道車1は標的を搭載している。 該模型
に好ましい競技システムの一例を述べる。該軌道73と
適宜の距離に設定した回転スタンド72に、1乃至複数
の狙撃台40を設けてある。 該飛行式の軌道車1の標
的70は特定の光線のヒットに対して所定のサインをだ
したり或いはカウントする。矢印のように、該軌道車と
回転スタンド72を逆にも回転せしめ得るし、回転スピ
ードを早めたり、傾けたり、揺動させたりできる。 複
数の狙撃者で狙撃のヒット数を競争できる。標的のサイ
ンには、メロディー音・点滅光・色の変化・形態の変更
・物体を発射する等多くの種類がある。
Fifth Embodiment (See FIG. 26) In FIG. 25, a plurality of elliptical orbits 73 are set, and the flight-type rail car 1 is equipped with a target. An example of a preferred competition system for the model will be described. One or a plurality of sniper tables 40 are provided on the rotation stand 72 set at an appropriate distance from the track 73. The target 70 of the flight-type rail car 1 gives a predetermined sign or counts a hit of a specific light ray. As shown by the arrow, the rail car and the rotation stand 72 can be rotated in reverse, and the rotation speed can be increased, tilted, or swung. Multiple snipers can compete for sniper hits. There are many types of target signs such as melody sounds, flashing lights, color changes, shape changes, and object firing.

【実施例6】 (図27 参照) 本例は本発明による飛行式の軌道車の一例で、車体上に
もプロペラ14とその推進装置が設けてある。案内輪1
1は、車両が傾いたとき、その側に車両重量が幾分掛か
るが、主な荷重は中央の駆動輪4に掛かる。案内モータ
81は案内軸と直結され車両スピードと同一に回転制御
されている。H鋼製の案内体24は立ち上がり壁を案内
体となしたもので、案内体の重量に比較して強度があ
る。その他、従来のレール状、断面円形や角型のパイプ
による案内体等にツバ車輪の案内輪を組み合わせるよう
に、本発明の含む構造の組合せ方法は多くある。 案内
輪の材質は騒音が生じず衝撃を弱め摩擦係数の小さいこ
とが望まれる。従って、鋼鉄・合成ゴム・合成樹脂・セ
ラミックス等やそれらの複合素材を目的に応じて案内輪
の外周に使用するのが望ましい。
Sixth Embodiment (Refer to FIG. 27) This embodiment is an example of a flight type rail car according to the present invention, in which the propeller 14 and its propulsion device are also provided on the vehicle body. Guide wheel 1
No. 1, when the vehicle leans, some of the vehicle weight is applied to that side, but the main load is applied to the central drive wheel 4. The guide motor 81 is directly connected to the guide shaft and is controlled to rotate at the same speed as the vehicle. The guide body 24 made of H steel has a rising wall as a guide body and has strength as compared with the weight of the guide body. In addition, there are many methods of combining the structures included in the present invention such that the guide wheel of the brim wheel is combined with the conventional guide body having a rail-shaped, circular cross-section, or rectangular pipe. It is desirable that the material of the guide wheel is such that it does not generate noise, reduces impact, and has a small friction coefficient. Therefore, it is desirable to use steel, synthetic rubber, synthetic resin, ceramics, etc. or their composite materials on the outer circumference of the guide wheel according to the purpose.

【実施例7】 (図28より33まで参照) 従来、プロペラは羽根の長さを大にするのが推力を大き
くするのに最善だと考えられ、単発のプロペラ機では翼
弦幅比の小なプロペラの軸を僅かにスラストさせてプロ
ペラ回転のねじれ作用の悪影響が除けた。 しかし短径
でも、翼弦幅を大にしピッチ角を45度に近づけると空
気をかく量が大になるが軸に働くねじれの力の傾きが大
き過ぎて不安定になる。従って対称のプロペラの一対を
並べて相互を逆転させれば、ねじれの力の相当部分を推
力に転化せしめて機体を安定できる。 そこで本発明の
飛行式の軌道車では、左右一対のプロペラを短径で、翼
弦幅を大で、ピッチ角を45度に近づけ、回転数をあげ
て、大きな推力を出させるのが好ましい。上記の目的を
実施するには、(1) プロペラ14の中心の軸孔支持
部を除いた羽根の片側の長さLと翼弦の最大幅Wとの比
が0.8L≦W≦1.2Lの如く、翼の全周を小とな
し、(2) 最大翼弦幅の位置でのピッチ角を35度よ
り50度の範囲内の値で形成し、(3) 左右の一対を
並べて逆回転で駆動するのが好ましい。即ち、プロペラ
の軸孔102の支持部認識線(破線S)で示される支持
部が軸孔の周囲を囲撓し、その外方に羽根が伸びてい
て、本例では∠POQ=α゜はπ/2であり、最も幅
が広い部分WはW−・−Wで示され、羽根の片側の
長さLは図27中のL−・−Lで示されている。
そして、最も幅の広い翼弦部分は半径の約60〜70%
の位置にあるが、そのピッチは∠POQ×1/2=π
/2となしてあり、 正しいピッチ角はπ/2より小と
成るが、ほぼπ/2である。 このプロペラの外形は全
周を最小に近づけるために丸くなっていて、一層空気の
抵抗が小となり、回転時の騒音の発生も小となる。 そ
の素材は一例をあげると、グラスウール、バルサ材、F
RP、エポキシ樹脂アルミニュームとマグネシュームを
主とした合金、チタン合金等を単独或いは複合して加工
する。このように、本発明による実施例では、従来の鉄
道の振動或いは蛇行動の原因を除いてあり、軽量の構造
材例えば、アルミ合金、アルミとマグネシュウムを主と
した合金、グラスウール強化合成樹脂例えば、FRP・
エポキシ樹脂、バルサ材等で航空機の車体構造を適用し
て高速性をたかめ、エネルギー消費を抑制せんとするも
ので、大量輸送の交通機関として、又自動制御装置を組
み込んで、自動搬送装置、遊戯装置等広範囲の用途に利
用できる。尚、既述例で、原動機は電動モータによって
いるが、他の原動機例えば、内燃機関を用いて本発明を
実施できることは明白である。
Seventh Embodiment (Refer to FIGS. 28 to 33) Conventionally, it has been considered that it is best to increase the length of the blade of the propeller to increase the thrust, and the single-propeller machine has a small chord width ratio. The thrust of the propeller shaft was slightly thrusted to eliminate the adverse effect of the twisting action of the propeller rotation. However, even with a short diameter, if the chord width is increased and the pitch angle is brought close to 45 degrees, the amount of air to be covered increases, but the inclination of the twisting force acting on the shaft becomes too large and becomes unstable. Therefore, by arranging a pair of symmetrical propellers side by side and reversing them, a considerable portion of the twisting force can be converted into thrust and the airframe can be stabilized. Therefore, in the flight type rail car of the present invention, it is preferable that the pair of left and right propellers have a short diameter, a large chord width, a pitch angle close to 45 degrees, and the number of revolutions be increased to generate a large thrust. In order to carry out the above object, (1) the ratio of the length L on one side of the blade excluding the central axial hole support portion of the propeller 14 and the maximum width W of the chord is 0.8L ≦ W ≦ 1. As in 2L, the entire circumference of the blade is made small, (2) The pitch angle at the position of the maximum chord width is formed with a value within the range of 35 degrees to 50 degrees, and (3) the left and right pairs are arranged side by side and inverted. It is preferably driven by rotation. That is, the support portion indicated by the support portion recognition line (broken line S) of the shaft hole 102 of the propeller surrounds the shaft hole, and the blade extends outward, and in this example, ∠P 1 OQ = α. Is π / 2, the widest portion W is indicated by W 1 − · −W 2 , and the length L on one side of the blade is indicated by L 1 − · −L 2 in FIG. 27. .
And the widest chord is about 60-70% of the radius
, But the pitch is ∠P 1 OQ × 1/2 = π
/ 2, and the correct pitch angle is smaller than π / 2, but it is almost π / 2. The outer shape of this propeller is rounded in order to make the entire circumference as close as possible to the minimum, so that the resistance of the air is further reduced and the noise generated during rotation is also reduced. The materials are, for example, glass wool, balsa wood, F
RP, an alloy mainly composed of epoxy resin aluminum and magnesium, titanium alloy, etc. are processed individually or in combination. Thus, in the examples according to the present invention, the cause of vibration or snake behavior of the conventional railroad is removed, lightweight structural materials, for example, aluminum alloys, alloys mainly composed of aluminum and magnesium, glass wool reinforced synthetic resin, for example, FRP
Applying the body structure of an aircraft with epoxy resin, balsa material, etc. to enhance high speed and suppress energy consumption, as a means of transportation for mass transportation, and also by incorporating an automatic control device, an automatic carrier device, play It can be used for a wide range of applications such as devices. In the example described above, the prime mover is an electric motor, but it is obvious that the present invention can be implemented using another prime mover, for example, an internal combustion engine.

【0006】[0006]

【発明の効果】以上説明したように、本発明の軌道は従
来の他の軌道車の車両重量と比較して大幅に軽量化でき
るから、掛かる負荷が小さく、高架でも急カーブ等の特
殊な場所を除けば支柱及びその基礎は小規模で簡単であ
り、部材は量産し易く、高架の大規模なコンクリート打
ち込みのような長期工事は必要なく、工期が早い。最大
の効果は軌道の建設用地の買収が大幅に少なくなり、枕
木に相当する支持アークの数が少なく、既存の高速道路
沿い或いは鉄道上等にも小規模の工事により高架で架設
できることである。車輛は1条のレール上を単列の車輪
が転がるので、進行方向への慣性が大になるので高速性
が大になり、軌道は左右のレールの不整による蛇行動や
振動がなくレールへの負荷が小であり、レールの不整の
保守点検が不要となり、両ツバ車輪のツバは高くでき案
内輪に上限があるので脱輪がなく、案内輪の強制弾力接
触式では車輛の揺れをソフトに変化させて乗り心地を良
くし、左右の車輪を支える重量車軸がないので構造が簡
単で軽量化でき、車輪駆動装置は左右対称型車輪駆動制
動装置では、両側のサイドカバーを外して大歯車と小歯
車を点検できるし、左右対称だから一対の小型の駆動モ
ータを使用して台車の厚さを薄くできるので断面を小に
して空気抵抗を減らして高速性と省エネルギーを大にで
き、両側からディスクブレーキで制動できて高速時には
使用しない等で保守点検の手間が僅かですむし、油潤滑
が可能で高速性がある。案内体にトロリー線を取付けれ
ば、起伏が小で離線を僅かにし、集電靴が車輛の下方に
あるので、該靴で生じた乱流が車輛下面で揚力を生み高
速浮上走行に好都合である。ツバ歯車駆動装置では部品
点数が少なく、簡単な構造で無給油でも走れるので、整
備の手間が省けてランニングコストが安くなり、小型化
が容易にできる。プロペラ推進では、プロペラのひねり
角が大で、翼の幅が広いので、空気を掻く量の積が大で
大推力が得られるから車輪のすべりを検知して高回転に
より推進力を増大せしめることができるが、小径なので
風切量が少なく騒音が小さく、車輪駆動の限界以上に高
速性を高めることができるし、高速時の制動では車輪に
よらないのですべりがなくて車輪やレールの偏磨耗が生
じないから、保守の手間が省ける。更に、モータパイロ
ンの上下への推進方向の調節構造により上述の効果を高
められる。バーベル型緩衝装置はカーブ区間で車体を内
方へ傾けるので、高速安定性を高めるし、部品点数が少
ないから軽量化できる。集電靴は超小型化と軽量化が可
能で耐風型パンタグラフとしても使用でき、かつトロリ
ー線への追随性がよいので、高速での集電を可能とし、
車両の高速走行を実現せしめる。更に小型の模型に使用
してショートによる故障を防ぐことができる。又、小型
の模型には支持アークと固定アークにより、カーブ区間
も同じ部品で調整して組立てできるので、コストが安
く、車体はツバ歯車駆動装置により簡単で部品数が少な
く安価な模型セットを提供できる。尚、叙述例で、原動
機は電動モータによっているが、他の原動機例えば内燃
エンジンを用いて本発明を実施できるのは明白である。
上記の如く、本発明による軌道構造・単列車輪駆動軌道
車・飛行式の軌道車・左右対称式車輪駆動制動装置・両
ツバ歯車駆動装置・案内システム・薄板製の集電靴・バ
ーベル式緩衝装置・プロペラ・プロペラ推進と制動シス
テム等によれば、従来の鉄道の振動或いは蛇行動の原因
を除いてあり、航空機に使用する構造材と構成を本発明
の車輛に適用可能であり、大幅に軽量化して高速性と省
エネルギー性を高め、軽量の高架軌道の有利さがあり、
高速大量輸送システムを土地の買収が僅かで早い工期で
供用でき、模型或いは遊戯システム以外でも、小型で従
来と全く異なった高性能の飛行式の軌道車ができるの
で、閉鎖空間内をリモートコントロールで飛走行する長
距離高速輸送システム例えば郵便物或いは小荷物等の、
が提供でき輸送コストの大幅な削減と交通難の打開が実
現できる。
As described above, the track of the present invention can be made significantly lighter than the weight of other conventional rail cars, so that the load applied is small, and even in an elevated place a special place such as a sharp curve is required. Except for the above, the pillar and its foundation are small and simple, the members are easy to mass-produce, and long-term construction such as large-scale elevated concrete driving is not necessary and the construction period is fast. The greatest effect is that the acquisition of land for track construction will be significantly reduced, the number of supporting arcs equivalent to sleepers will be small, and it will be possible to construct an elevated structure along existing highways or on railways by a small-scale construction. Since the vehicle has a single row of wheels rolling on a single rail, the inertia in the direction of travel is large and the speed is high, and the track has no snake action or vibration due to the irregularity of the left and right rails. Since the load is small, irregular maintenance of rails is not required, the brim of both brim wheels can be made high, and there is no upper limit on the guide wheel, so there is no derailment, and the forced elastic contact type of the guide wheel softens the shaking of the vehicle. The structure is simple and lightweight because there is no heavy axle to support the left and right wheels by changing it, and the wheel drive system is a symmetrical wheel drive braking system. The small gears can be inspected, and because the symmetry is symmetrical, the thickness of the trolley can be reduced by using a pair of small drive motors, so the cross section can be made smaller to reduce air resistance and speed and energy saving can be greatly increased. Brake Huang at the time of high-speed and is only the trouble of maintenance and inspection in like you do not want to use insect, there is a possible high-speed oil lubrication. If you install a trolley wire to the guide, the undulations are small and the separation is slight, and the current collecting shoes are below the vehicle, so the turbulence generated in the shoes creates lift on the underside of the vehicle and is convenient for high-speed levitation. is there. Since the flange gear drive device has a small number of parts and has a simple structure and can run without lubrication, maintenance work can be saved, running costs can be reduced, and miniaturization can be facilitated. In propeller propulsion, since the twist angle of the propeller is large and the width of the blade is wide, the product of the amount of scratching the air is large and a large thrust can be obtained, so it is possible to detect the slip of the wheel and increase the propulsion force by high rotation. However, because it has a small diameter, there is little wind cut and noise is small, it is possible to enhance high speed beyond the limit of wheel drive, and braking at high speed does not rely on wheels, so there is no slip and uneven wear of wheels and rails Since it does not occur, maintenance work can be saved. Furthermore, the above-mentioned effect can be enhanced by the structure for adjusting the propulsion direction of the motor pylon up and down. Since the barbell type shock absorber leans the vehicle body inward in the curved section, high-speed stability is enhanced and the number of parts is small, so that the weight can be reduced. The current-collecting shoes can be made ultra-compact and lightweight, can be used as a windproof pantograph, and have good followability to the trolley wire, enabling high-speed current collection,
Realizes high-speed running of the vehicle. Furthermore, it can be used for a small model to prevent breakdown due to short circuit. Also, for a small model, the curve section can be adjusted and assembled with the same parts by using the support arc and the fixed arc, so the cost is low, and the car body is simple with the flange gear drive, and the model set provides a small number of parts and an inexpensive model set. it can. Although the prime mover is an electric motor in the described example, it is obvious that the present invention can be implemented using another prime mover, for example, an internal combustion engine.
As described above, the track structure according to the present invention, the single-row wheel-driven track car, the flight-type track car, the symmetrical wheel drive brake device, the double-branch gear drive device, the guide system, the thin-plate current collecting shoes, and the barbell-type cushion. According to the device, propeller, propeller propulsion and braking system, etc., the cause of the conventional railroad vibration or snake action is removed, and the structural materials and configurations used for aircraft can be applied to the vehicle of the present invention, Lightening to improve speed and energy saving, there is the advantage of a lightweight elevated track,
A high-speed mass transportation system can be used in a short construction period with a few land acquisitions, and a small, high-performance flight-type rail car other than a model or play system can be created. Flying long-distance high-speed transportation system, such as mail or parcels,
It is possible to reduce the transportation cost and solve the traffic difficulty.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による実施例1の軌道装置と飛行式の軌
道車の遠景部分側面図、
FIG. 1 is a side view showing a distant view of a track device according to a first embodiment of the present invention and a flight-type track car;

【図2】図1の車輛の一点鎖線a−.−a′での概略拡
大断面図、
FIG. 2 is an alternate long and short dash line a-. -A 'is a schematic enlarged sectional view,

【図3】本発明による実施例2の高架軌道と飛行式の軌
道車の遠景側面図、
FIG. 3 is a distant view side view of an elevated track and a flight type track car according to a second embodiment of the present invention;

【図4】図3の飛行式の軌道車の拡大側面図、FIG. 4 is an enlarged side view of the flight-type track car of FIG. 3;

【図5】図4の車輛の底面図、5 is a bottom view of the vehicle of FIG. 4,

【図6】図4中のb−・−b′の位置での車輛及び軌道
の概略部分拡大断面図、
FIG. 6 is a schematic partial enlarged cross-sectional view of a vehicle and a track at positions b- and -b 'in FIG.

【図7】図6中の軌道のカーブ区間での傾斜調節完成
図、
FIG. 7 is a completed view of tilt adjustment in a curve section of the track in FIG.

【図8】図6中の左右対称式車輪駆動制動装置の拡大
図、
FIG. 8 is an enlarged view of the left-right symmetrical wheel drive braking device in FIG.

【図9】バーベル式空気バネ緩衝装置の斜視図、FIG. 9 is a perspective view of a barbell type air spring cushioning device,

【図10】図9の装置の分解図、10 is an exploded view of the device of FIG. 9,

【図11】バーベル式空気バネ緩衝装置の作用の説明
図、
FIG. 11 is an explanatory view of the action of the barbell type air spring shock absorber,

【図12】案内輪の強制弾力接触式の直線区間の状態の
説明図、
FIG. 12 is an explanatory view of a state of a forced elastic contact type straight section of the guide wheel,

【図13】図12中の案内輪のカーブ区間での状態図、13 is a state diagram of the guide wheel in a curve section in FIG. 12,

【図14】実施例3のツバ歯車駆動装置による模型の飛
行式の軌道車の近景側面図、
FIG. 14 is a close-up side view of a model flight-type rail car driven by the flange gear driving device according to the third embodiment;

【図15】図14中の一点鎖線c−・−c′の位置での
車両と軌道の断面図、
FIG. 15 is a cross-sectional view of the vehicle and the track at the position of alternate long and short dash line c -.- c 'in FIG. 14;

【図16】図14の車輛の前後方向の中心線での拡大縦
断面図、
16 is an enlarged vertical cross-sectional view of the vehicle of FIG. 14 taken along the center line in the front-rear direction,

【図17】本発明による集電靴の取り付け状態の斜視
図、
FIG. 17 is a perspective view of an attached state of the current collecting shoe according to the present invention;

【図18】図17での集電靴を取り除いた状態図、FIG. 18 is a state diagram in which the current collecting shoes in FIG. 17 are removed,

【図19】図17の集電靴の縮小正面図、FIG. 19 is a reduced front view of the current collecting shoe of FIG.

【図20】図19の集電靴の平面図、20 is a plan view of the current collecting shoe of FIG.

【図21】図19の集電靴の側面図、21 is a side view of the current collecting shoe of FIG.

【図22】実施例4の飛行式の軌道車の側面図、FIG. 22 is a side view of the flight-type track car of Example 4;

【図23】図22の車両の底面図、23 is a bottom view of the vehicle of FIG. 22,

【図24】回転式の台車のカーブ区間での状態の説明
図、
FIG. 24 is an explanatory view of a state of a rotary trolley in a curved section,

【図25】実施例4の中ツバ車輪とU型レールの垂直断
面、
FIG. 25 is a vertical cross section of a middle brim wheel and a U-shaped rail according to the fourth embodiment,

【図26】実施例5の飛行式の軌道車による狙撃ゲーム
の説明図、
FIG. 26 is an explanatory diagram of a sniper game using a flight-type track car of Example 5;

【図27】実施例6の飛行式の軌道車とその軌道の概略
正面図、
FIG. 27 is a schematic front view of a flight-type track car of Example 6 and its track;

【図28】本発明に用いるプロペラのI実施例で、縮小
側面図、
FIG. 28 is a reduced side view of an I embodiment of the propeller used in the present invention;

【図29】図28のプロペラの正面図、29 is a front view of the propeller of FIG. 28,

【図30】図28のプロペラの背面図、FIG. 30 is a rear view of the propeller of FIG. 28,

【図31】図28のプロペラの背面斜視図で羽根の翼弦
幅最大部分の直視図、
FIG. 31 is a rear perspective view of the propeller of FIG. 28, which is a direct view of the maximum chord width portion of the blade;

【図32】図28のプロペラの立面図、32 is an elevation view of the propeller of FIG. 28,

【図33】図28のプロペラの断面a−・−a′であ
る。
FIG. 33 is a cross-section a --- a 'of the propeller of FIG.

【符号の説明】 1 飛行式の軌道車、2 車体、 3 台車、
4 駆動輪、5 大歯車、 6 小歯車、
7 駆動軸、 8 駆動モータ 9 たわみ軸継手、 10 ギアーケース、11 案内
輪、12 推進モータ、 13 モータパイロン、1
4 プロペラ、 15 穴付支持函、16 カバー支持
函、 17 連結棒、 18 空気バネ 19 パイロン台、 20 支持体、 21 碍
子、 22 支持アーク、23 レール、
24 案内体、 25 アーク固定体、 26 固
定具、27 ベルト、 28 底蓋、 29
トロリー線 30 バーベル式空気バネ緩衝装置、 31 レール
支持体 32 小歯車カバー、 33 サイドカバー 34 軸
受、 35 ブレーキ、36 ナット、 37
緩衝ボルト、38 小歯車軸、39 クッション 40 狙撃台、 41 案内軸、 42 絶縁
体、 43 検知装置、44 レール接続具、 45
パイロン歯車、 46 モータ回動軸 47 回動歯車、 48 レール台、 49 横
梁、 50 支柱、51 固定肢、 52 天
板、 53 床、 54 梁、55 ツバ歯
車、 56 コイルバネ、57 中板、 58
固着具、59 モータ支持体、 60 集電靴、、 6
1 すり板、 62 バネ板、63 丁番、
64 支え板、 65 鋲、 66 押さえ板、
67 押さえ孔、 68 ストッパー、69 風
孔、 70 標的、71 回転台、 72 回
転スタンド、 73 軌道装置、74 案
内体固定具、 75 留板、 76 踏面、 7
7 ツバ、78 ネジ、 79 モータ軸、
80 固定片、 81 案内モータ 82 レール押さえ、 83 緩衝軸受 84 ボル
ト孔、85 ピローブロック、86 環状固定具、
87 回転支持ケース、 88 サーボモー
タ、89 軸受ケース、 90 案内体支持具 91
スライド溝、92 規制溝、93 規制突起、
94 ストッパー、95 標識、 96 カウンター 97 台車軸、 98 スライドケース、
99 くぼみ、100枕梁枠、 101軸
孔。
[Explanation of code] 1 flight type rail car, 2 vehicle bodies, 3 bogies,
4 drive wheels, 5 large gears, 6 small gears,
7 Drive Shaft, 8 Drive Motor 9 Flexible Shaft Coupling, 10 Gear Case, 11 Guide Wheel, 12 Propulsion Motor, 13 Motor Pylon, 1
4 propellers, 15 support box with holes, 16 cover support box, 17 connecting rods, 18 air springs 19 pylon stand, 20 supports, 21 insulators, 22 support arcs, 23 rails,
24 guide body, 25 arc fixing body, 26 fixing tool, 27 belt, 28 bottom lid, 29
Trolley wire 30 Barbell type air spring shock absorber, 31 Rail support 32 Small gear cover, 33 Side cover 34 Bearing, 35 Brake, 36 Nut, 37
Buffer bolt, 38 Small gear shaft, 39 Cushion 40 Sniper, 41 Guide shaft, 42 Insulator, 43 Detection device, 44 Rail connection tool, 45
Pylon gear, 46 Motor rotation shaft 47 Rotation gear, 48 Rail base, 49 Cross beam, 50 Struts, 51 Fixed limbs, 52 Top plate, 53 Floor, 54 Beam, 55 Hex gear, 56 Coil spring, 57 Middle plate, 58
Fasteners, 59 motor support, 60 current collecting shoes, 6
1 sliding plate, 62 spring plate, 63 hinge,
64 support plate, 65 tack, 66 press plate,
67 holding holes, 68 stoppers, 69 air holes, 70 targets, 71 rotary bases, 72 rotary stands, 73 track devices, 74 guide body fixtures, 75 fastening plates, 76 treads, 7
7 collar, 78 screw, 79 motor shaft,
80 fixing piece, 81 guide motor 82 rail retainer, 83 buffer bearing 84 bolt hole, 85 pillow block, 86 annular fixing tool,
87 rotation support case, 88 servo motor, 89 bearing case, 90 guide body support tool 91
Slide groove, 92 restriction groove, 93 restriction protrusion,
94 stoppers, 95 signs, 96 counters 97 bogie axles, 98 slide cases,
99 dents, 100 pillow beams, 101 shaft holes.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図9】 [Figure 9]

【図19】 FIG. 19

【図4】 [Figure 4]

【図5】 [Figure 5]

【図7】 [Figure 7]

【図10】 [Figure 10]

【図21】 FIG. 21

【図24】 FIG. 24

【図25】 FIG. 25

【図31】 FIG. 31

【図33】 FIG. 33

【図6】 [Figure 6]

【図11】 FIG. 11

【図12】 [Fig. 12]

【図13】 [Fig. 13]

【図18】 FIG. 18

【図20】 FIG. 20

【図26】 FIG. 26

【図28】 FIG. 28

【図8】 [Figure 8]

【図14】 FIG. 14

【図27】 FIG. 27

【図29】 FIG. 29

【図30】 FIG. 30

【図32】 FIG. 32

【図15】 FIG. 15

【図16】 FIG. 16

【図17】 FIG. 17

【図22】 FIG. 22

【図23】 ─────────────────────────────────────────────────────
FIG. 23 ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年4月28日[Submission date] April 28, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 飛行式の軌道車とその軌道装置Title: Flight type rail car and its rail device

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主として低速時に車輪駆
動であり、プロペラ推進で高速性を増大せしめる飛行式
の軌道車及びその軌道システムに関する。より詳細に
は、一条の軌道上を転がる1乃至複数の支持輪を車両の
前後方向の中央線の下方に設け、該支持輪の一個乃至複
数を軌道車に搭載した原動機に連結し、該軌道車に左右
の案内輪を設けて軌道に設けた左右の案内体に案内せし
めて成る中央列車輪駆動軌道車と、該軌道車を含む車輪
駆動軌道車にプロペラ推進装置を設けて成る複合進行式
の飛行式の軌道車、及びそれらの運航を支持する軌道シ
ステムと、前記中央列車輪駆動軌道車或いは飛行式の軌
道車に各種の装置を設けて成る小型のリモートコントロ
ール式高速輸送システム、科学模型、或いは遊戯装置等
の構造とシステム等に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flight-type track car which is driven mainly by wheels at a low speed and which can increase a high speed by propeller propulsion, and a track system therefor. More specifically, one or a plurality of support wheels that roll on a single track are provided below the center line in the front-rear direction of the vehicle, and one or a plurality of the support wheels are connected to a prime mover mounted on the track car, A central row wheel drive rail car that is provided with left and right guide wheels on a vehicle and is guided by left and right guide bodies provided on a track, and a compound traveling type that is provided with a propeller propulsion device for a wheel drive rail car including the rail car. Flight-type rail cars, and a track system that supports their operation, and a small remote-controlled high-speed transportation system that is equipped with various devices on the center-row wheel-drive rail cars or flight-type rail cars, scientific model Alternatively, the present invention relates to the structure and system of a game device or the like.

【0002】[0002]

【従来の技術】従来の高速軌道システム、例えば新幹線
・常伝導磁気浮上車システム・超伝導磁気浮上車システ
ム等は、車両一台の重量は軽くとも10数トン以上30
数トンもある。人間一人60キロと仮定した定員によれ
ば、車重/人数>200キロで、この値を単位車両重量
と呼ぶこととすると、この重量車両を支持する軌道の負
担が大きすぎて多くの問題が生じる。即ち、大重量車輌
の故に、直線的広幅で土地収用をして堅固に軌道を構築
する必要があり、建設用地の確保が至難となってきてい
る。そのため現実に、高速軌道の建設は棚上げされ、在
来線の高速化や中速の地下鉄、モノレール等を多くの費
用と年数を費やして建設するか、小間切れの供用でも使
える道路の建設が主であり、エネルギーを過消費しかつ
大気汚染が問題な航空機に限られてきている。しかる
に、高速の交通システムの研究は、超軽量車両が軌道架
設を容易にする利点がありかつ、エネルギー消費を少な
くするのに最も重要であるのを重視せず、他の要素に重
点をおいて為されてきている。その結果、電力エネルギ
ーの消費を大幅に減らせるとの予測で研究が進められて
きた超伝導磁気浮上走行システムは、幾つかの理由で軽
量化が無理で、省エネルギーのシステムとは考え難くな
ってきている。車両を軽量化して、軽便な軌道を市街地
に架設する目的で出願した本願人による昭和58年特許
願第094869号−飛行車は、プロペラ推進によるも
ので、レールの長手方向に下向きに設けた係止面と、該
面に転動する最高位接触面とが停止時において、所定間
隔開けてある案内輪を少なくとも二個有す軌道車であ
り、かつ該軌道車の車両を所定速度以上で浮上する構造
となし、該車両に設けたプロペラ又はジェットで駆動せ
しめられて成る飛行車であるが、停止時や発車時、低速
時には、車輪駆動を併用できないので高速時には空気を
引っ張らない長所があるが、プロペラ制動だけでは低速
時には風害、停車の維持手段等での問題があつた。更
に、2本の平行レールの車輪駆動と制動とを併用せしめ
れば、重量車両となり、軽量化ができなかった。
2. Description of the Related Art Conventional high-speed track systems, such as the Shinkansen, normal-conducting magnetic levitation vehicle system, and superconducting magnetic levitation vehicle system, have a weight of 10 tons or more, even if the weight of one vehicle is light.
There are several tons. According to the capacity assuming that one person is 60 kg, the vehicle weight / the number of people> 200 kg, and if this value is called the unit vehicle weight, the burden on the track supporting this heavy vehicle is too large and many problems occur. Occurs. That is, since it is a heavy-duty vehicle, it is necessary to acquire land linearly and broadly to construct a solid track, which makes it extremely difficult to secure land for construction. Therefore, in reality, the construction of high-speed tracks is shelved, and high-speed conventional lines, medium-speed subways, monorails, etc. are spent at high cost and years, or roads that can be used even in short breaks are mainly constructed. Yes, it has been limited to aircraft that are energy consuming and have problems with air pollution. However, research on high-speed transportation systems does not emphasize that ultralight vehicles have the advantages of facilitating track erection and is most important for reducing energy consumption, but focuses on other factors. It has been done. As a result, the superconducting magnetic levitation system, which has been researched with the expectation that the consumption of electric power energy can be significantly reduced, cannot be considered to be an energy-saving system because it cannot be lightened for several reasons. ing. The applicant applied for the purpose of lightening the vehicle and constructing a convenient track in the city area. Patent application No. 094869 of 1983 by the present applicant-The flight vehicle is propeller-propelled and is installed downward in the longitudinal direction of the rail. When the stop surface and the highest contact surface rolling on the stop surface are stopped, it is a rail car that has at least two guide wheels that are spaced apart by a predetermined distance, and the vehicle of the rail car is levitated at a predetermined speed or more. Although it is a flight vehicle that is driven by a propeller or a jet provided in the vehicle, it has the advantage that it does not pull air at high speed because it can not be used together with wheel drive at stop, departure and low speed. , Propeller braking alone caused problems at low speeds such as wind damage and vehicle stop maintenance means. Furthermore, if the driving and braking of the two parallel rails are used together, it becomes a heavy vehicle and the weight cannot be reduced.

【0003】[0003]

【発明が解決しようとする課題】本発明は前述の交通シ
ステムの弱点を解消するために、車輌重量を軽くするこ
と、その装置類の数を減らすこと、複雑で重い装置を新
しく開発した簡単で軽量の装置に置き換えること、省エ
ネルギーの鋼鉄製車輪駆動の従来の軌道車に、より以上
の省エネ性を加えること等を課題とする。即ち、現在、
実用中、或いは開発テスト中の高速の交通システムで
は、駆動装置が大規模で重くて嵩張り、制御機器も同様
であるから前述の如く単位車両重量が200キロ以上で
ある。従来の車輌は車重が大きいので、急カーブの高速
走行は危険であり、軌道は大径のカーブか直線状であ
り、加えて堅固に軌道を敷設する必要があるため、広い
土地の収用に膨大な費用がかかり、新規の建設が困難に
なっている。特に新幹線は、大量輸送が可能でエネルギ
ー消費が少ない長所が大きいのに、急制動で車輪の偏磨
耗を生じ、制動により生じたレールの凹凸を平滑にする
ための連夜の研磨が必要である。片ツバ車輪に対する並
行支持軌道であるから、左右相互のレール間隔の拡張力
が常に加わり、平行度の不整による左右への振動や、台
車の蛇行動が生じる弱点があり、深夜の保守作業にも手
間と経費がかかる。車重が大なので、出発抵抗が大とな
り、低速駆動力を大にするための機器の数も多く重量も
大で、その制動装置も複雑で重い。一台の駆動車輪が8
個も必要であり、重い車軸が4本も用いてある。 その
重車輌の走行騒音は遠距離の地域にも被害を及ぼす。常
伝導や超伝導の磁気浮上システムは、低騒音で振動が少
ないが、軌道敷設では上記重量車両の弱点があるので堅
固につくらねばならず、加えて、エネルギーの消費量は
大きく常伝導方式では航空機に近い水準となり又、超伝
導方式では、強力な磁力が遺伝子に変異を起こすので、
客室を駆動装置から隔離しての遮蔽体の重量を加えねば
ならず軽量化は無理で新幹線の3倍以上のエネルギーを
消費するとされ、省エネルギー技術とは言えない。現実
に、地球上で、車を多く用いる地域は化石燃料の大量消
費により、常に雨乞い現象があるので多雨となり、一方
車を殆ど使用せず燃料消費の少ない地域、例えばゴビ砂
漠・アフリカの大部分は、エネルギー消費の多い地域へ
の大量の降雨のために、降水量が減少している。加え
て、車のための道路建設を主とした自然破壊による緑地
の減少や、車或いは航空機による化石燃料の大量消費に
よる炭酸ガスの増加で、魚類の食する藻類が減少し、炭
酸カルシュウム成分を多く生成して食用にならずに浅海
底を覆う貝類の増殖で、海洋の砂漠化が日本或いは南米
等にも進行しつつあり、魚類資源も将来枯渇すると考え
られるが、地球規模の気候の変動による生存環境悪化へ
の根本的な対策=エネルギー消費の抑制及び自然の緑地
保全=は殆ど実行されるに至らず、目前の便益が優先さ
れてきている。
SUMMARY OF THE INVENTION In order to overcome the above-mentioned weaknesses of the transportation system, the present invention reduces the weight of the vehicle, reduces the number of devices, and newly develops a complicated and heavy device. The challenges are to replace it with a light-weight device and to add more energy saving to the conventional railcars driven by energy-saving steel wheels. That is, currently
In a high-speed transportation system under practical use or under development test, the driving device is large and heavy and bulky, and the control device is also the same. Therefore, the unit vehicle weight is 200 kg or more as described above. Since the conventional vehicle has a heavy vehicle weight, it is dangerous to drive at high speed on a sharp curve, and the track has a large-diameter curve or a straight line. The huge cost makes it difficult to construct a new building. In particular, the Shinkansen has the advantages of being able to be transported in large quantities and consuming less energy, but it requires uneven grinding of the wheels due to sudden braking, and requires night-long polishing to smooth the unevenness of the rails caused by braking. Since it is a parallel support track for one brim wheel, the expanding force of the rail interval between the left and right is always applied, and there is a weakness that vibrations to the left and right due to irregular parallelism and a snake's snake's behavior occur, and also for maintenance work at midnight. It takes time and money. Since the vehicle weight is heavy, the starting resistance becomes large, the number of devices for increasing the low speed driving force is large, and the weight is large, and the braking device is complicated and heavy. 8 drive wheels
It also requires four pieces and uses four heavy axles. The running noise of the heavy vehicle also damages a long-distance area. The normal or superconducting magnetic levitation system has low noise and little vibration, but it has to be made solid because of the weak point of the above heavy vehicle in track laying. The level is close to that of an aircraft, and in the superconducting system, strong magnetic force causes mutations in genes,
It is not possible to say that it is an energy-saving technology because it is impossible to reduce the weight because it is necessary to add the weight of the shield that separates the cabin from the drive unit and consumes more than three times the energy of the Shinkansen. Actually, on the earth, regions where a lot of cars are used have heavy rain due to the constant begging phenomenon due to the large consumption of fossil fuels, while on the other hand, the regions where the cars are rarely used and the fuel consumption is low, for example, most of the Gobi Desert and Africa. Has reduced rainfall due to heavy rainfall in areas of high energy consumption. In addition, the decrease in green space due to natural destruction mainly due to the construction of roads for cars and the increase in carbon dioxide due to the large consumption of fossil fuels by cars and aircraft will reduce the algae eaten by fish and reduce the calcium carbonate component. Due to the proliferation of shellfish that grows in large numbers and does not become edible and covers the shallow sea floor, the desertification of the ocean is progressing in Japan and South America, and it is considered that fish resources will be exhausted in the future, but global climate change. The fundamental measures against the deterioration of the living environment due to the above-mentioned: suppression of energy consumption and conservation of natural green areas = have hardly been implemented, and the immediate benefits have been prioritized.

【0004】[0004]

【課題を解決するための手段】本発明の主な目的は、軌
道の建設用地収用を大幅に小ならしめ、市街地の交通施
設、例えば道路上、高速道路上、既存の軌道上等の空間
にも短期間で建設可能な軽量軌道による高速の交通手段
を提供し、緑地の破壊を防ぐことである。本発明の次の
主たる目的は、従来の軌道車の単位車両重量に比較して
大幅に車輌を軽量化するとともに車両の断面を低くか
つ、底面を滑らかで空気抵抗が小さくて揚力を発生しや
すく形成しプロペラ推進の加速により車輪駆動力の限界
以上の高速性を有する飛行式軌道車を提供して、省エネ
ルギーで大気汚染の少ない高速の大量輸送交通システム
を実現することである。より詳細には、本発明の第一の
目的は、駆動モータと車輪を一体に構成して駆動機構を
簡略にしたり、又は駆動輪を中央の単列にして数を減ら
す中央列車輪駆動方式として、左右対称式車輪駆動制
動方式、ツバ歯車駆動方式等を提供し、大型の高速車
輌より小型の運搬車輌或いは模型等に適用して簡単な機
構で小型断面で軽量化し、底面を平滑にして空気抵抗を
減らすとともに揚力を得やすくし、車輌コストを安くし
省エネルギーを実現することである。本発明の第2の目
的は、中央列車輪駆動軌道車に駆動輪の踏面より高い水
準において、等速逆回転式、自在回転式、強制弾
力接触式等の案内システムを提供して、カーブでの車輌
の傾斜による荷重を案内輪を介して案内体で支持して車
両の姿勢を支持レールに対して直立的に安定させ、高速
走行を可能にすることである。本発明の第3の目的は、
飛行式の軌道車の制動に制動効果の高い形状のプロペラ
を用いたプロペラ制動方式を提供し、高速時の車輪制動
で生じる車輪及びレールの偏磨耗及びレールの微細なひ
び割れ或いは局部的磨耗を防ぎ、車輪制動装置の負荷を
軽くして軽量化するとともに、高速制動性の高い複合進
行方式を実現することである。本発明の第4の目的は、
駆動輪のすべり又は空転を検知して、プロペラ推進装置
の推力又は駆動輪の回転数を増大する加速システムを提
供して浮上しつつ浮上せずに車輪駆動軌道車の限界以上
の高速性を飛行式の軌道車に具有させることである。本
発明の第5の目的は左右の案内輪にかかる負荷の大小を
検知して左右の推進モータの出力を調整して車両の左右
の負荷の大小を平均化し、或いは上下への推力方向の調
整で安定走行を実現することである。本発明の第6の目
的は、バーベル式空気バネ緩衝装置を提供して、軽量の
車体傾斜調節緩衝構造を実現し中央列車輪駆動軌道車を
軽量化するとともにカーブでの安定走行を実現すること
である。本発明の第7の目的は、間隔を離した左右の案
内体又は軌道支持体に碍子を介してトロリー線を取付け
て高圧の給電を可能とし、上空の高架線装置のない軽便
な軌道構造を提供し、量産による安価な組立て部材を供
給し、高架軌道を安いコストで工期を早く完成可能にす
ることである。本発明の第8の目的は、枕木のようにレ
ールを支え、かつ左右に案内体を取付ける構成であっ
て、所定径のアーク上に複数の固定接触部を有する支持
アークと該支持アークを固定するアーク固定体との組合
せを提供し、レールの支持骨材をカーブと直線区間を同
一の部材で架設可能にし、現場で適宜に傾斜度を調節で
きるレール支持構造により、コストが安く工期の早い高
架軌道方式を実現することである。本発明の第9の目的
は、下方にプロペラ推進装置を設けた飛行式の軌道車を
提供し、プロペラ推進の地面効果の高い車輌を実現する
ことである。本発明の第10の目的は、良伝導性・耐腐
食性・強靭性・弾力性を具有する金属薄板を構成材料に
使用して、小型で軽量で着脱が容易で、外形が20ミリ
立方角位より300ミリ立方角程度の大きさのパンタグ
ラフ又は集電靴を提供し、大型の高速車より小型の模型
に至るまで風圧の影響を小さくし、架線又はトロリー線
への追随性を良好にし、集電効果を高めて高速走行を実
現することである。本発明の第11の目的は、時速約3
0キロ程度以上で長時間走行が可能な模型或いは小型の
自動搬送装置としての軌道車システム或いは飛行軌道車
システムを提供して省エネルギーを実現し、本格的な科
学教育模型の製造コストを安くすることである。本発明
の第12の目的は、模型の飛行式の軌道車に標的を設
け、該標的を適宜の距離から、狙撃装置で加撃可能とな
し、的中時に標的からサイン或いは反応して所定の作動
を行なわしめる遊戯システムの提供である。本発明の第
13の目的は、軌道と案内体と案内支持骨材及び支持部
材を組立て及び解体自在に構成して成る模型セットの提
供である。木発明は、断面が溝型のコンクリート或いは
鉄等の構造材による構築体に、一条又は複数のレールを
設けるとともに、該構築体の左右の立ち上がり壁に案内
体を設けて成る軌道装置或いは、左右に取付けた案内体
の中央下方にレールをも取付ける支持装置の多数を所定
間隔で固定して成る軌道装置及び該装置類に運航せしめ
る中央列車輪駆動方式の軌道車及び該軌道車にプロペラ
推進装置を加えて成る飛行式の軌道車及びその関連する
装置類とシステム等に関する。高架方式では、本発明に
よる架設部材は、主として強度が大で低価格の鉄を塗装
不要にした複合材例えば、ジシクロペンタジエンとの複
合成形部材を使用し、レールの支持骨材はカーブ、直線
区間とも主としてコンクリート製或いは鋼鉄製の同一の
部材を用いて、現場で適宜にレールの傾斜度を調節でき
る構成が望ましい。レールは在来の鉄道レール形状以外
でも、例えば中ツバ車輪を転がし得るU型レール等、円
滑な運航を支持できる形状が望ましい。高架軌道は、車
輌の垂直荷重を支持するレールを支持するレール支持体
の接続部毎に、コンクリート製或いは、綱鉄製の支柱を
構築し、次に該支柱の上部にレール支持体を延々と置い
て固定し、該レール支持体の上部に、アーク固定体の中
央部分の下部を一体に固定した固定肢を、一体に固定す
ることもできる(後述)更に該アーク固定体の上方に支
持アークを所定の角度(後述)で固定具で取り付け、該
支持アークにレール及び左右の案内体を取り付けるのも
好ましい。案内体は衝撃と磨耗に強く剛性の高い素材例
えば鋼鉄製の同一の型材を使用し、支持レールの踏面よ
り高い水準でかつ、所定の高さに於いて左右の案内体を
平行に設ける。該案内体の上部又は、支持アークに碍子
を介してトロリー線を取付けるのが望ましい。又、アー
ク固定体と支持アークで構成される支持装置の隣り合う
相互間とレール支持体及び案内体とで囲まれる面には壁
体を取付けるのが好ましく、そうすれば、この壁体は外
部と隔離して危険を避け、、プロペラ推進風力を直接う
けて地面効果を車輌に与えて高速性を高めるし、金網或
いは多孔板を主体で構成することで、台風の横風の風圧
を減じるし、積雪を溶かし易い。該壁体のレール寄り
に、融雪装置例えば温水パイプを取りつけて、凍結時に
加熱可能にするのも好ましい。トロリー線はレールの上
方の間隔の広い左右の案内体又は軌道支持体例えば支持
アークの両側上部に碍子を介して取付けると高圧送電も
でき、車輌上空の架線より高低差を小にできるし、コス
トが安く軽便で好ましい。駆動装置の1例をあげると、
(1)高速車には、左右が対称で風圧に対して左右のバ
ランスが良く、駆動歯車機構をギアーケース内に納めて
油潤滑の可能なことが望ましく、左右対称型車輪駆動制
動装置がI適例で、(2)小型車或いは模型等には、一
体に構成した歯車を有する駆動輪に伝動歯車を係合し、
該伝動歯車を車輌に搭載した原動機で駆動回転せしめる
歯車車輪駆動方式があり、その1例をあげると、両ツバ
車輪のツバに歯車を構成し、ナイロン伝動歯車を上方で
咬み合せしめるツバ歯車駆動装置があり、他にも、中ツ
バ車輪の中ツバを上方のナイロン伝動歯車で駆動する方
式等があるが、軽量で部品が少なく無給油で回せる。案
内体の作用は、車輌の左右に設けた案内輪を介して案内
体で車輌を安定させる。主として鋼鉄或いは鋼鉄とコン
クリートとの複合構成材性の型材を使用し、従来のレー
ル型とかその他多種の断面形状があり、支持レールの踏
面より高い同一水準で平行に側壁或いは軌道支持支持装
置例えば支持アークに取り付ける。案内輪は上記案内体
の案内面に接触して車輌の姿勢を支持レールに対して直
立的に支持する。車両の両側に縦軸、横軸、斜軸等で設
け得るが、縦軸で水平回転式が横揺れを制御するのに好
ましい。車体を回転式の台車で支持する場合は、台車の
両側に少なくとも一対、望ましくは2対づつ左右を並行
して設けるのが好ましい。 その他、案内輪を両ツバ型
の低トルクの自転輪或いは駆動輪に構成して車両速度と
等速に駆動回転せしめ案内輪の接触時の抵抗を解消する
のが一層望ましい。これらの案内輪は、高速車に於いて
は、左右の案内輪を車輌に設けた原動機で駆動して車輌
の速度と等速で回転せしめて案内体に接触せしめて案内
抵抗を減らすとともに案内輪のすべてを防ぐのが望まし
く、その主な構成は、左右の案内輪を(1)左右を等速
かつ逆回転に係合し片方を案内体に接触せしめて案内さ
せる、(2)案内モータで車輌速度と等速に制御し、一
方の案内輪を案内体に接触せしめ案内させる、(3)強
制弾力接触式で、案内輪のそれぞれの軸間距離を拡大す
る圧力を弾力装置で加えて、双方の案内輪の外周を案内
体に強制接触せしめて回転案内せしめる等で、車両の高
速での安定走行に望ましい。又、模型・小型車輌等には
自在回転型が構造が簡単で軽量化しやすいので好まし
い。横軸による案内輪は、(1)強制回転型と(2)自
在回転型に大別できる。レールと案内体との高低差が大
であれば、姿勢の制御が完全な縦軸型が望ましく、高低
差が小になるほど、横軸の案内輪が効果的に姿勢の制御
がし易くなる。しかし横軸では、車高を低くすれば、プ
ロペラ推進装置は車輌の下方に設定できない。前後方又
は上方に設定するとプロペラ回転の危険性、加速時のプ
ロペラ風害、連結の不利、或いは地面効果の低下等の問
題が生じる。車高を高くすれば、横軸の支持体を下方に
大きく幅広く構成せねばならず、強度を大にするとき軽
量化が犠牲になる。車体と台車の緩衝装置では、軸ばね
或いはまくらばねにダンパーを並べて取り付けるのもよ
いが、自動的に車体を傾斜せしめる緩衝装置=カーブで
車体の遠心力の掛かる側が高まり反対側が低く沈む=バ
ーベル式空気バネ緩衝装置を用いて軽量化し、カーブで
の安定性と高速性を高めるのが好ましい。本発明による
バーベル式空気バネ緩衝装置は、主として、(1)連結
棒の両端部にボール状の膨大部を取付けて成るバーベル
形状の連結棒と(2)該膨大部を収容し、かつ所定角度
内で回動自在に支持するとともに、膨大部より小径の軸
受を取付けた離脱制止縁を開口部に設けた回動支持室を
半分づつ有する上下の穴付支持函と、カバー支持函各1
個とを合体して構成した回動支持函と、(3)前記連結
棒を貫通せしめる中央孔を有するドーナツ形状のゴム製
の空気バネ、とで構成してある。更に、支持棒が外方に
は傾かない角度で回動支持函を台車に取り付けるととも
に、車体には支持棒の上方の間隔を狭くし、かつ下方の
間隔を適宜に広くして他方の回動支持函を取り付け、カ
ーブ区間で車体に遠心力が掛かれば、遠心側を高くし、
求心側を低く沈ませて、走行安定性を高めるのが好まし
い。プロペラ推進では、従来の鉄道車輌その他の車輪駆
動軌道車とプロペラ推進との複合進行方式の軌道車に於
いて、低速時は車輪駆動力の加速力の増大に有効であ
り、高速では駆動輪の回転速度と車体の速度の差より駆
動輪の滑り或いは空転を検知してプロペラ推力を適切に
増大して駆動力以上の高速性を車軸に具備せしめ得る。
その検知は、1例をあげると、新幹線の方式があり、更
に他の1例をあげれば、軌道に一定間隔に設けた標識例
えばある種の光線の反射体を標識として設け、一定時間
に通過した該標識の数をカウントして車輌の実速度を計
り、他方では車軸の回転数より車輪の回転速度を計り、
実速度と回転速度との差を検知装置例えば、一定距離の
標識と該標識をセンサーでカウントする方式等、で測定
し、一定の許容範囲より前記の差が大になった時、実速
度が大の場合では駆動回転数を増大し、回転速度が大の
場合ではプロペラ推力を増大して高速走行を実現する。
又、(1)プロペラ推力の上下方向を調節し、車輌重量
の前後の負荷のバランスを保てる、(2)カーブ区間で
は具有する左右のプロペラの内側の推力を小にし、外側
の推力を適度に大に制御してカーブでの安定走行を高め
られ、(3)プロペラ推進の前後方向は、パイロン台の
回転で推力の方向を逆にできるし、又プロペラのピッチ
角を翼弦幅最大の位置で約45度にして逆回転にする、
(3)推進モータの逆回転等で行なえる。プロペラ制動
は高速時に主として使用し、(1)パイロン台の回転、
(2)プロペラを可変翼にする、(3)プロペラの最大
翼弦巾の迎え角を45度程度に構成して推進モータを逆
転せしめる等で行なえる。プロペラの形状は迎え角を約
45度にして、幅を広く、短径に形成すると、回転数に
比して推力と制動力が大となり、風切量が減り低騒音と
なり、更にその翼を後退させてあれば、空気を押す圧力
の積が大となり、推力が増大する。集電装置は、軽量で
小型が望ましく着脱自在の耐風圧型のパンタグラフとし
ても使える集電靴の一例をあげる。本発明の集電靴は、
軽量化のためにすり板以外は、良電導性、強弾力性、耐
腐食性、強靭性を具備する肉薄の金属板、例えば燐青銅
板或いは鍍金した弾性鋼板の如きを素材に用いて構成す
る。進行方向には、構成する薄板の厚みの断面とすり板
の側面を向けるだけで、すり板間に風穴を設けて空気を
抜けるし、揚力を生じ難くするので好ましい。その取付
けは、保守性を高めるために、数本のネジ、ボルト、ナ
ットの類での締め付けで可能に構成するのが望ましい。
本発明の集電靴では、トロリー線の高低差が小さいの
で、外形の大きさが約20ミリ立方から300ミリ立方
の大きさの範囲で構成して小型の模型より大型の高速車
輌にまで対応せしめるのが軽量化し空気抵抗を小にする
ために望ましい。すり板を上方に向けて取付ければパン
タグラフとして使用できる。数本のネジで着脱自在なの
で、小型の模型にも使用できて交換・修理等が容易であ
る。高速で大型の遠距離の交通システムとしてだけでは
なく、搬送システムとしても例えば、一定区間の郵便物
専用で断面が約1平方メートルの高架軌道を高速路或い
は在来鉄道沿いに設ければ、スピードが早くて時間的メ
リットがあるばかりか、遠距離の小型貨物の運搬自動車
が不要になり、省エネルギーが実行できる。或いは標的
を積載して周回軌道を高速走行せしめ狙撃台からの命中
率を競うシステムのような遊戯装置その他等にも使用で
きる。
The main object of the present invention is to significantly reduce the land acquisition for construction of tracks, and to provide transportation facilities in urban areas, such as roads, highways, and existing tracks. The aim is to provide a high-speed transportation system with a lightweight track that can be constructed in a short period of time and prevent the destruction of green spaces. The next main object of the present invention is to significantly reduce the weight of the vehicle as compared with the unit vehicle weight of the conventional rail car, and to make the vehicle section low and the bottom surface smooth and the air resistance small so that lift is easily generated. The object is to provide a flight-type railcar having a high speed exceeding the limit of wheel driving force by accelerating propeller propelling and realizing an energy-saving, high-speed mass transit system with less air pollution. More specifically, a first object of the present invention is to configure a drive motor and wheels integrally to simplify a drive mechanism, or to use a center row wheel drive system in which the number of drive wheels is reduced to a single row in the center. , Symmetrical wheel drive braking system, flange gear drive system, etc. are applied to smaller transport vehicles or models than large high-speed vehicles with a simple mechanism to reduce weight with a small cross section, smooth bottom surface The aim is to reduce resistance, make it easier to obtain lift, reduce vehicle cost, and save energy. A second object of the present invention is to provide a center-row wheel drive rail car with a guide system such as a constant-velocity reverse rotation type, a free rotation type, a forced elastic contact type, etc. at a higher level than the tread surface of the drive wheels, and to provide a curve The load due to the inclination of the vehicle is supported by the guide body via the guide wheel to stabilize the posture of the vehicle upright with respect to the support rails and enable high speed traveling. The third object of the present invention is to
Providing a propeller braking system that uses a propeller with a highly effective shape for braking a flight-type rail car, and prevents uneven wear of wheels and rails and minute cracks or local wear of rails that occur during high-speed wheel braking. The purpose of the present invention is to reduce the load on the wheel braking device and reduce the weight thereof, and to realize a complex traveling system with high-speed braking. A fourth object of the present invention is to
Providing an acceleration system that increases the thrust of the propeller propulsion device or the rotational speed of the drive wheels by detecting slipping or idling of the drive wheels and flying at a speed higher than the limit of wheel-drive railcars without levitating. It is to equip the rail car of the type. A fifth object of the present invention is to detect the magnitude of the load applied to the left and right guide wheels and adjust the outputs of the left and right propulsion motors to average the magnitude of the left and right loads of the vehicle, or to adjust the thrust direction up and down. It is to realize stable running. A sixth object of the present invention is to provide a barbell type air spring cushioning device to realize a lightweight vehicle body tilt adjusting cushioning structure to reduce the weight of a center row wheel driven rail car and to realize stable running on a curve. Is. A seventh object of the present invention is to provide a high-voltage power supply by attaching a trolley wire to left and right guide bodies or track supports spaced apart from each other via insulators, and to provide a convenient track structure without overhead overhead line devices. The purpose is to provide low-priced assembly members by mass production, and to make it possible to quickly complete the elevated track at a low cost. An eighth object of the present invention is a structure in which rails are supported like sleepers and guides are attached to the left and right, and a supporting arc having a plurality of fixed contact portions on an arc having a predetermined diameter and the supporting arc are fixed. By providing a combination with an arc fixing body that allows the rail support aggregate to be installed in the same member for the curve and the straight section, and the rail support structure that can appropriately adjust the inclination at the site, the cost is low and the construction period is fast. It is to realize an elevated track system. A ninth object of the present invention is to provide a flight-type rail car provided with a propeller propulsion device below and to realize a vehicle having a high ground effect for propeller propulsion. A tenth object of the present invention is to use a thin metal plate having good conductivity, corrosion resistance, toughness, and elasticity as a constituent material to make it compact, lightweight, easy to attach and detach, and have an external shape of 20 mm cube. We provide pantographs or current-collecting shoes that are about 300 mm cubed from the position, reduce the influence of wind pressure from large high-speed cars to small models, and make it easier to follow overhead lines or trolley wires, It is to improve the current collection effect and realize high-speed running. The eleventh object of the present invention is about 3 / hour.
To provide energy-saving by providing a railcar system or a flight railcar system as a model or a small automatic carrier that can run for a long time of about 0 km or more, and reduce the manufacturing cost of a full-scale science education model. Is. A twelfth object of the present invention is to provide a target on a model flight-type rail car and enable the target to be hit by a sniper device from an appropriate distance. It is the provision of a game system that can be operated. A thirteenth object of the present invention is to provide a model set including a track, a guide body, a guide support aggregate and a support member that can be assembled and disassembled. The invention of the wood is a railroad device or a left and right rail structure in which one or a plurality of rails are provided on a structure made of a structural material such as concrete or iron having a grooved cross section, and guides are provided on the left and right rising walls of the structure. A rail track device having a plurality of supporting devices fixed to a lower part of the center of a guide body mounted at a fixed interval at a predetermined interval, and a center-row wheel-driven rail car for operating these devices and a propeller propulsion device for the rail car. The present invention relates to a flight-type railroad car and a related equipment and system. In the elevated system, the erection member according to the present invention is mainly composed of a composite material having high strength and low cost that does not require coating of iron, for example, a composite molded member with dicyclopentadiene, and the rail supporting aggregate is curved or straight. It is desirable that the sections are mainly made of the same member made of concrete or steel and that the inclination of the rail can be appropriately adjusted on site. In addition to the conventional rail shape, it is desirable that the rail has a shape capable of supporting smooth operation, such as a U-shaped rail that can roll the middle brim wheel. In the elevated track, a concrete or steel iron support column is constructed for each connecting portion of the rail support supporting the rail supporting the vertical load of the vehicle, and then the rail support is endlessly placed on the top of the support. It is also possible to integrally fix a fixed limb integrally fixing the lower part of the central part of the arc fixing body to the upper part of the rail supporting body (described later). It is also preferable to mount with a fixture at a predetermined angle (described later), and to mount rails and left and right guide bodies on the supporting arc. The guide body is made of the same mold material made of a material that is resistant to impact and abrasion and has high rigidity, for example, steel, and the left and right guide bodies are provided in parallel with each other at a predetermined level and higher than the tread surface of the support rail. It is desirable to attach the trolley wire to the upper portion of the guide body or the supporting arc via an insulator. Further, it is preferable to mount a wall member on a surface surrounded by the rail support member and the guide member between adjacent ones of the supporting devices composed of the arc fixing member and the supporting arc, and the wall member is then attached to the outside. Avoiding danger by isolating it, and directly receiving the propeller propelling wind force to give the ground effect to the vehicle to increase the speed, reduce the wind pressure of the side wind of the typhoon by mainly configuring the wire mesh or perforated plate, It is easy to melt snow. It is also preferable that a snow melting device, for example, a hot water pipe is attached to the rail portion of the wall body so that heating can be performed during freezing. The trolley wire can be used for high-voltage power transmission if it is mounted on the left and right guide bodies or track supports with a wide space above the rails, for example, on both upper sides of the supporting arc via insulators, and the height difference can be made smaller than the overhead wire above the vehicle, and the cost is low. Is cheap and convenient because it is convenient. As an example of the drive device,
(1) In a high-speed vehicle, it is desirable that the left and right are symmetrical and the left and right are well balanced with respect to the wind pressure, and the drive gear mechanism can be housed in a gear case to allow oil lubrication. In a suitable example, (2) for a small car or a model, etc., engage a transmission gear with a drive wheel having an integrally configured gear,
There is a gear wheel drive system in which the transmission gear is driven and rotated by a prime mover mounted on a vehicle. One example is a brim gear drive in which gears are formed on the brims of both brim wheels and a nylon transmission gear is occluded in the upper direction. There is also a device, and there is also a method of driving the middle brim of the middle brim wheel with an upper nylon transmission gear, but it is lightweight and has few parts and can be rotated without oil. The action of the guide body is to stabilize the vehicle with the guide body via the guide wheels provided on the left and right sides of the vehicle. Mainly made of steel or composite material of steel and concrete, and has various cross-sectional shapes such as the conventional rail type, side wall or track support supporting device such as support at the same level parallel to the tread of the support rail. Attach to the arc. The guide wheel contacts the guide surface of the guide body and supports the posture of the vehicle upright with respect to the support rail. It may be provided on both sides of the vehicle with a vertical axis, a horizontal axis, an oblique axis, etc., but a horizontal rotary type on the vertical axis is preferable for controlling roll. When the vehicle body is supported by a rotating dolly, it is preferable to provide at least one pair, preferably two pairs of left and right sides in parallel on both sides of the dolly. In addition, it is more desirable that the guide wheel is a double-branch low-torque rotating wheel or a drive wheel so that the guide wheel is driven to rotate at the same speed as the vehicle speed to eliminate the resistance when the guide wheel comes into contact. In high-speed vehicles, these guide wheels are driven by the motors provided on the left and right guide wheels to rotate at a speed equal to the speed of the vehicle to come into contact with the guide body to reduce the guide resistance and guide wheels. It is desirable to prevent all of the above, and the main configuration is (2) a guide motor that guides the left and right guide wheels by (1) engaging the left and right at constant speed and in reverse rotation and contacting one with the guide body. The speed is controlled to be equal to the vehicle speed, and one guide wheel is brought into contact with the guide body to guide it. (3) It is a forced elastic contact type, and pressure is applied by an elastic device to expand the axial distance of each of the guide wheels, It is desirable for stable running of the vehicle at high speed by forcibly contacting the outer circumferences of both guide wheels with the guide body to guide the rotation. In addition, a freely rotatable type is preferable for a model or a small vehicle because the structure is simple and the weight can be easily reduced. The guide wheel on the horizontal axis can be roughly classified into (1) forced rotation type and (2) free rotation type. If the height difference between the rail and the guide body is large, it is desirable to use the vertical axis type for complete posture control. The smaller the height difference, the easier the horizontal axis guide wheel is to effectively control the posture. However, on the horizontal axis, if the vehicle height is lowered, the propeller propulsion device cannot be set below the vehicle. If it is set to the front or rear or the upper side, problems such as danger of propeller rotation, propeller wind damage at acceleration, disadvantage of connection, and reduction of ground effect occur. If the vehicle height is increased, the support of the horizontal axis has to be configured to be wide and wide downward, and the weight reduction is sacrificed when the strength is increased. In the shock absorbers of the car body and the bogie, dampers may be mounted side by side on the shaft springs or pillow springs, but the shock absorbers that automatically incline the car body = curved side where centrifugal force is applied to the car body and the opposite side sinks low = barbell type It is preferable to use an air spring cushioning device to reduce the weight and improve stability and high speed on a curve. The barbell type air spring shock absorber according to the present invention mainly includes (1) a barbell-shaped connecting rod formed by attaching ball-shaped enlarged portions to both ends of the connecting rod, and (2) accommodating the enlarged portion and a predetermined angle. A support box with upper and lower holes that rotatably support the inside of the support box and that has half rotation support chambers each having a release stop edge provided with a bearing having a diameter smaller than that of the enlarged portion at the opening, and a cover support box each 1
It is composed of a rotation support box formed by combining the individual pieces, and (3) a donut-shaped rubber air spring having a central hole for penetrating the connecting rod. Further, the rotation support box is attached to the trolley at an angle at which the support rod does not tilt outward, and the space above the support rod is narrowed and the space below the support rod is appropriately widened on the vehicle body to rotate the other side. If you attach a support box and centrifugal force is applied to the car body in the curved section, raise the centrifugal side,
It is preferable to lower the centripetal side to enhance running stability. Propeller propulsion is effective for increasing acceleration of wheel drive force at low speeds in conventional railroad cars and other hybrid drive type track cars of wheel drive railcars and propeller propulsion, and at high speeds It is possible to detect slippage or idling of the drive wheels from the difference between the rotational speed and the speed of the vehicle body and appropriately increase the propeller thrust to provide the axle with a high speed higher than the drive force.
For example, there is a Shinkansen system for the detection, and for another example, a marker provided at a certain interval on the track, for example, a reflector of a certain light beam is used as a marker, and the traffic is passed at a certain time. The actual speed of the vehicle is measured by counting the number of said signs, and the rotational speed of the wheel is measured from the rotational speed of the axle on the other hand,
The difference between the actual speed and the rotation speed is measured by a detection device, for example, a marker at a certain distance and a method of counting the marker with a sensor, and the actual speed is measured when the difference becomes larger than a certain allowable range. When the rotation speed is large, the drive rotation speed is increased, and when the rotation speed is large, the propeller thrust is increased to achieve high speed traveling.
In addition, (1) the vertical direction of the propeller thrust can be adjusted to maintain the load balance before and after the vehicle weight. (2) In the curve section, the thrust on the inside of the left and right propellers of the tool can be reduced, and the thrust on the outside can be moderated. It can be controlled to a large extent to enhance stable running on a curve. (3) The forward and backward directions of propeller propulsion can be reversed by the rotation of the pylon table, and the pitch angle of the propeller can be adjusted to the maximum chord width position. To about 45 degrees for reverse rotation,
(3) It can be performed by reverse rotation of the propulsion motor. Propeller braking is mainly used at high speed, (1) rotation of pylon stand,
(2) The propeller can be made variable, and (3) the angle of attack of the maximum chord width of the propeller can be set to about 45 degrees to reverse the propulsion motor. If the propeller shape has an attack angle of about 45 degrees, a wide width, and a short diameter, the thrust and braking force will be large compared to the number of revolutions, and the amount of wind cut will be reduced and noise will be reduced. If it is retracted, the product of the pressure that pushes the air becomes large, and the thrust increases. The current collector is preferably lightweight and small, and an example of the current collector shoe that can also be used as a detachable wind pressure resistant pantograph is given. The current collecting shoes of the present invention are
In order to reduce the weight, other than the friction plate, it is made of a thin metal plate having good electrical conductivity, strong elasticity, corrosion resistance, and toughness, such as a phosphor bronze plate or a plated elastic steel plate. . In the traveling direction, it is preferable to simply direct the cross section of the thickness of the thin plate and the side surface of the sliding plate to form air holes between the sliding plates to let out air and to make it difficult to generate lift. It is desirable that the mounting is made possible by tightening with a few screws, bolts, nuts or the like in order to improve maintainability.
In the current collecting shoe of the present invention, since the height difference of the trolley wire is small, the outer size is configured in the range of about 20 mm cube to 300 mm cube, and it corresponds to a high speed vehicle larger than a small model. It is desirable to reduce the weight and the air resistance. It can be used as a pantograph by mounting the contact plate facing upward. Since it can be attached and detached with a few screws, it can be used for small models and is easy to replace and repair. Not only as a high-speed and large-distance transportation system, but also as a transportation system. For example, if an elevated track with a cross section of about 1 square meter dedicated to mail in a certain section is provided along a high-speed road or a conventional railroad, Not only is it quick and time-saving, but it also saves energy by eliminating the need for long-distance, small-sized cargo carriers. Alternatively, it can be used as a game device or the like such as a system in which a target is loaded and the orbit is run at a high speed to compete for accuracy from a sniper.

【0005】[0005]

【実施例1】 (図1、図2 参照) 図面は本発明によるI実施例の概略図で、昭和58年特
許願第094869号発明の名称飛行車を改良して本発
明による駆動輪のすべり或いは空転を検知してプロペラ
推力を増減する機構を設けた飛行式の軌道車で、図Iは
コンクリート製の軌道と飛行式の軌道車の遠景側面図
で、該軌道は断面凹型で底部には一定間隔で距離の標識
95を設けてあり、中央上面にレール(図2中破線2
3)を敷設すれば、中央列車輪駆動軌道車の軌道として
使える(後述)。該軌道の両側内の棚の溝にレール23
の下部をボルトとナット36で固定してあり、最上部に
は案内体24がナット36で固定してある。該案内体の
上部には碍子21を介してトロリー線29が設けてあ
り、台車の中央底面には標識95のセンサー96が取付
けてある(図2)。飛行式の軌道車1は、上方の車体2
が、台車3に直結してあり、台車3の下方の左右の駆動
軸7は各々回転速度の検知装置43を台車3の内壁に設
け、駆動輪4側で軸受34に支持され、中央で他端を軸
受34で支持されている。この駆動軸は前記検知装置4
3の内側の駆動モータ8で駆動回転せしめられる。駆動
輪4は片ツバ型で、下方のレール23上を転がり、浮上
がったとき、駆動輪4は案内体24の内端の下縁に当た
り、脱輪を規制される。該駆動輪4にすべり或いは空転
が生じた時には既述の如く検知装置43及びその他車輌
に搭載した制御装置による駆動モータの制御により、台
車3の下方に設けたモータパイロン13に設けてある推
進モータ12に取り付けたプロペラ14の推力を増大し
て駆動力の限界以上の高速走行を実現する。駆動輪と駆
動装置は本例以外の構成でも本発明を適用して駆動輪の
駆動力の限界以上にプロペラ推進で加速できる。又、左
右のプロペラのうちの何れかの回転数増大或いは減少さ
せてカーブ或いは風力による車両の一方向への傾斜荷重
を調節して左右の荷重を平均化して安定走行を可能にで
きる(後述)。本例の軌道はトロリー線の間隔が広く
て、高圧給電が可能で、軌道の内側でプロペラ推進気流
は地面効果を大きく得られ、車輌の高速性を一層増大す
る。
Embodiment 1 (Refer to FIGS. 1 and 2) The drawings are schematic views of Embodiment I according to the present invention, in which the name of the invention of Japanese Patent Application No. 094869 of 1983 is improved to improve the sliding of the drive wheels according to the present invention. Alternatively, FIG. I is a side view of a concrete track and a flight-type track car provided with a mechanism for detecting a slip and increasing / decreasing the propeller thrust. The track is a concave section with a concave section at the bottom. Distance signs 95 are provided at regular intervals, and rails (broken line 2 in FIG.
If 3) is laid, it can be used as a track for a center row wheel drive rail car (described later). Rails 23 in the groove of the shelf on both sides of the track
The lower part of is fixed by bolts and nuts 36, and the guide body 24 is fixed by nuts 36 at the uppermost part. A trolley wire 29 is provided on the upper part of the guide body via an insulator 21, and a sensor 96 of a mark 95 is attached to the center bottom surface of the carriage (FIG. 2). The flying railcar 1 has an upper body 2
However, the left and right drive shafts 7 below the trolley 3 are provided with the rotation speed detection devices 43 on the inner wall of the trolley 3, and are supported by the bearing 34 on the drive wheel 4 side and the other at the center. The end is supported by a bearing 34. This drive shaft is the detection device 4
It is driven and rotated by a drive motor 8 inside 3. The drive wheel 4 is a single brim type, and when the drive wheel 4 rolls on the lower rail 23 and floats, the drive wheel 4 comes into contact with the lower edge of the inner end of the guide body 24, and the removal of the drive wheel 4 is restricted. When the drive wheel 4 slips or slips, the propulsion motor provided in the motor pylon 13 provided under the carriage 3 is controlled by the drive motor controlled by the detection device 43 and other control devices mounted on the vehicle as described above. The thrust of the propeller 14 attached to 12 is increased to realize high-speed traveling exceeding the limit of driving force. The present invention can be applied to the drive wheels and the drive device other than this example to accelerate the propeller propelling beyond the limit of the drive force of the drive wheels. Further, it is possible to increase or decrease the rotational speed of one of the left and right propellers to adjust the tilting load in one direction of the vehicle due to a curve or wind force and average the left and right loads to enable stable running (described later). . In the track of this example, the trolley wires are widely spaced so that high-voltage power can be supplied, and the propeller-propelled airflow inside the track can obtain a large ground effect, further increasing the speed of the vehicle.

【実施例2】 (図3より図14まで及び図16参照) 図面は本発明による1実施例の略図で、図3は高架軌道
と飛行式の軌道車1の遠景である。該高架軌道は下方の
コンクリート台座で固定した支柱50を所定間隔で配置
してあり、その上部にH鋼製のレール支持体31が延々
と置いて固定してある。該レール支持体31にはアーク
固定体25の中央下部のゲート状の左右の固定肢51の
横梁49が一体に固定してある。該左右の固定肢51は
レール支持体31を挟んで下方に下がり、支柱50の上
部に固定してある(図6)。該アーク固定体25の上面
には、鉄筋コンクリート製の支持アーク22を置いて、
固定具26で固定してある。カーブ区間では、カーブの
勾配に応じた所定の傾きで支持アークを固定してある
(図7)。この支持アーク22の上方内側にはレール2
3が取り付けてある。レール底面とレール支持体31と
の間には、レール台48があり、該レール台48の上面
はアーク状でレールがカーブで傾けて取り付けてあって
も、レール23の底面の左右端縁が密着するアーク状面
になっている(図6、7)。従ってレール押さえ82で
レール台48にレール支持体の傾斜角と等しい傾斜でレ
ール23を取付できる。レールを支持している前記支持
アーク22の両側上方の内側には案内体24が置かれ、
上方が案内体固定具74で押さえてあり、内側の下方は
留具75で留めてある。さらに前記案内体24の上部に
は碍子21が取付けてあり、トロリー線29を支持して
いる(図3、6、7)。集電は在来線の如き架線からで
もよいが、本例では左右の間隔の離れた支持アークの上
部左右に碍子を介してトロリー線を取付けているし、案
内体に碍子を介して取り付けた場合でも従来の第3軌条
方式より高圧の給電が可能であり架線とその柱がなく、
レール支持体・レール台を除く他の部材はカーブ区間も
直線区間と同一の部材で架設可能であるし、レール支持
体・レール台等も工場生産可能であるから、工期も早く
建設用地が小さくてすむ。組立式模型では、図15に示
す如く、アーク固定体25の底面の形態を平面上に定置
可能に構成すればカーブの傾斜も調節できるから、一定
の長さの軌道セットを組み立て解体自在に製作できる。
より詳細には、図3より図13に於いて、飛行式の軌道
車1の車両は車体2と台車3とからなる。車体1は断面
が半円形で、運転室の直後及び最後部の両側にアーク形
の扉がある。該車体2を支持する台車3はバーベル式空
気バネ緩衝装置30により弾力的に台車3に結合してあ
る。バーベル式空気バネ緩衝装置は両端部に取付けたボ
ール状の膨大部を持つバーベル状の連結棒17と、該膨
大部を所定範囲の角度で回動自在に支持しつつ収容し、
該連結棒を回動自在かつ滑動自在に支持する軸受を取付
けた離脱制止縁を開口部に設けた回動支持室を有する上
下の回動支持函各1個と、前記連結棒17を貫通せしめ
る中央孔を有するゴム製のドーナツ状の空気バネ18と
で構成してある。該回動支持函は穴付支持函15とカバ
ー支持函16の合体で成り、かつ回動支持函の少なくと
も一方(本例では下方の回動支持函)の回動支持室の奥
が膨大部を所定の深さまで引っ込ませ得る大きさで形成
せしめて成る(図6、図9、図10)。このバーベル式
空気バネ緩衝装置の組み立ては、前記空気バネ18の空
気を抜き、その中心の穴に連結棒17を通しておく。そ
して、穴付支持函15を両端に通してその後、両端にボ
ール状の膨大部を取付ける。該ボール部分を残るカバー
支持函16で囲ってボルト孔84を通してボルト締めす
る。このバーベル式空気バネ緩衝装置の取付けは、左右
の装置の支持棒の間隔が、上方がせまくて下方が広くな
る傾斜取付方式が望ましい。そうすれば、図11に示す
如く台車の上面線Bと車体の下面線Aが直線走行区間で
は平行になるように調節してあり、カーブ区間で車体が
遠心力で矢印Pの方向に押されると、車体の下面は該緩
衝装置の上部のボール状部は前記下面線Aより一定の高
さαに於いて回動自在であるので、左側のボール状部は
DよりD′に、また右側のボール状部はEよりE′に移
動することとなり、破線A′で示す如く車体の下面は遠
心側が高くなり、求心側が低くなる。その結果、カーブ
では車体の遠心側が高まり、求心側が沈むので車輌の安
定性が高まる(図6、図11)。台車3には中央列車輪
駆動装置に制動装置を加えた左右対称型駆動制動装置と
プロペラ推進装置が設けてある。中央列車輪駆動装置は
空気抵抗及び重量配分のバランスを得るため左右対称が
好ましい。左右対称型の中央列車輪駆動制動装置は図
7、8に於いて、台車の前後方向中心線の下方に駆動輪
4が2個ある。駆動軸7は中央に前記駆動輪4を一個嵌
殺してあり、該駆動輪4の両側とも同じ順序でブレーキ
35、台車支持枠20の軸受34、大歯車5、軸受34
の順に嵌込んであり、ナット36で両端を止めて固定し
てあり、該台車支持枠20は上方で左右に分割してあ
り、それぞれは上方で差し込んで位置を定め、クッショ
ン39を介して台車3の天板52にボルトとナット36
で取付けてある。左右のギアーケース10は前記左右の
台車支持枠20の外側に一体に固定してあり、該ケース
内の下方に納まる大歯車5の軸孔の内周は内歯車が形成
してあり、駆動軸7の継手歯車と咬み合っているので、
駆動輪35と、大歯車5及び駆動軸7は同体で回転す
る。前記左右の大歯車5はそれぞれ左右のギアーケース
10内で上方の小歯車6と咬み合っている。該小歯車6
の中心に嵌殺した小歯車軸6の内端部は台車支持枠20
とギアーケースの上方の軸受34に回転自在に支持され
ていて、他端は小歯車カバー32に固定した軸受を貫通
してギアーケースの外で、たわみ軸継手9に連結してあ
る。下方のサイドカバー33は上部以外の周縁をギアー
ケースと一体にビスとナット36でシールを挿んで締め
付けてあり、上方の床53の直下で小歯車カバー32の
下端の折り縁とシールを挾んでネジ止めしてある。該小
歯車カバーも周縁を前記ギアーケースにシールを挿んで
ネジ78止めしてある。又、前記たわみ軸継手9には小
歯車軸38の反対側に駆動モータ8のモータ軸79の軸
端が連結してあり、該駆動モータ8はクッション39を
介して台車の床53に取付けてある。ヅレーキ35は両
側の台車支持枠20の内方に取付けてある。上記の如
く、駆動装置の各機器は、駆動モータ以外は台車支持枠
20に支持され、台車支持枠20は強化した台車の天板
52に弾性体39を介してボルトとナット36で取り付
けてあり(図8)、前後に突出せしめた固定片80で台
車の床53に下方からクッションを介してボルト締めし
てある(図4)。駆動モータは、別のクッション39を
介して台車の床に取り付けてあるから、そのモータ軸は
台車支持枠20に軸受を介して支持されている小歯車軸
38の振動のリズムと同一でないが、たわみ軸継手9が
緩和するし、従来の鉄道方式とは異なり、本発明の中央
列車輪駆動方式は構造的にレールの平行度の不整を解消
しているので蛇行動や早いリズムの衝撃的な振動は生じ
難い。従って、モータに対する衝撃は平行レールの片ツ
バ車輪の軌道車より極めて小なので、簡単な緩衝構造で
軽量化できる。上記の駆動装置はギアーケース10内に
於いて、油潤滑が可能で大型の高速車に用いるのが好ま
しい。尚、上記の駆動歯車の点検作業では、図8に於い
て、第Iにサイドカバー33を外し、第2に駆動軸のナ
ットを外して隣接の軸受及び大歯車を抜きとり、第3に
台車底面の底蓋28を梁54から外し、第4に小歯車軸
をたわみ軸継手から外し、第5に小歯車カバーとギアー
ケースのネジを外してから、小歯車カバー、スラスト型
の軸受け、コロ型の軸受け、小歯車の順に外せばよい。
このあとで、一方の台車支持枠を外すと駆動輪と駆動軸
も外せる。組立ては前記と逆の段取りでできる。駆動装
置は非対称式を含めて多くある。その中でも本例では1
駆動輪に左右計2個の小型の駆動モータによるので台車
の天井を低くでき、その分車高を低く断面の小型化で空
気抵抗を減らせるので、高速性と省エネルギーを大にす
る。プロペラ推進装置は図4、5、14、15、16に
於いて、台車3の底部に回転可能にして設けたパイロン
台19から下がるモータパイロンの下方に推進モータ1
2を取付け、該モータの軸に取り付けた固着具58にプ
ロペラ14を取付けてある。車両の逆進時は図5中の破
線のプロペラ14のように矢印の方向にパイロン台19
の180度の回転により逆方向に推進させることができ
る。その制御システムは車軸の回転数と車両の実速の
差、例えば一定時間内の標識95の通過数をセンサー9
6でカウントして車輌の実速を計測し、駆動軸の回転数
を検知して駆動輪の回転速度を計測し、双方の差が一定
の範囲の値を超えた場合、例えば実速が駆動輪の回転速
度より早いときプロペラ推力が大なのでモータコントロ
ーラーで推進モータの駆動回転数を大にし、その逆では
プロペラ推力を大にする等の調節で駆動輪のすべりを可
能な限り小さい範囲に制御する。該装置による制動は、
プロペラの逆回転又はパイロン台19の180度回転で
できる。特に高速制動時は車輪制動より衝撃が少ないの
で、制動のための複雑な制御機器が不要であり、車輪や
レールの偏磨耗が生じないので、コストは安く軽量化に
適している。案内装置は図4、5、6に於いては、案内
輪11が台車3の底部の前後に左右一対で設けてあり、
該案内輪11は台車3の底面と同一水準に下面を合わせ
て縦軸であり、左右の案内輪の上部に設けたプーリーに
ベルト27を係合して等速逆回転構造である。従って一
方の案内輪が案内体に接触して回転するとき、他方の案
内輪も逆に等速で回転し、台車が揺れて反対側に傾いた
時に反対側の案内輪が案内体に接触してすべりを生じな
い。この案内輪11を台車に搭載した案内モータ81で
車両のスピードと等速に図5中の矢印の如く逆方向に回
転制御することが可能であり、高速性及び安定性を高め
るので一層好ましい。上述の案内輪11は最高位置が、
案内体に規制されているので台車はそれ以上は浮上しな
いし、駆動輪の両ツバ77は高く踏面76が深く、レー
ル23より少し離れて浮いても、案内体で案内輪の上限
を規制するので、その限度内では駆動輪のツバが脱輪し
ない位置にレールがあるように駆動輪が取り付けてある
(図6)。従って、少々駆動輪が浮いても脱線もなく推
進力を大にして駆動力の限界以上の速度が出せる。尚、
本発明による案内方式として好ましい他の一例をあげる
と、強制弾力接触式に於いて、図12、図13では左右
の案内輪11は外側で案内体24の案内面に弾力的に接
触せしめられている。その構成は台車3の底部に設けた
スライド溝91の前後の立ち上がり壁にはストッパー9
4が前後の左右に1個づつ所定位置に設けてある。該溝
に嵌まっているスライドケース98は空気バネ43で圧
迫されてストッパーの中側にスライドケースのくぼみ9
9の中央で、空気バネの弾性により外方に突出せしめら
れているが、左右の案内面に押されて台車3の左右側壁
とケースの外端とが両側で合わされている。左右の案内
面の間隔は一定(平行度の誤差はあるが)でかつ同一水
準に構成してある(図12)。又、該スライドケースに
回転自在に支持されている案内輪11は台車が矢印Qの
方向に傾いたき、右側の案内輪Oは右側の案内面に強
く押しつけられ、スライドケースの側は空気バネ43を
矢印Nの方向に押して左のスライドケースのくぼみ99
がストッパー94に当たるまで弾力的に押す。同時に左
側のスライドケースは空気バネ43の膨張力に押されて
左側の案内面と案内輪の間に生じる隙間を埋めるのに十
分な膨張力を空気バネより加えられていて外方に僅かに
αだけ押し出される。このとき左右の案内輪は何れも案
内面と接触している(図13)。この作用が連続して生
じ案内輪と案内面は小さなトルクに於いても殆ど摩擦の
ない回転接触を続けて車輌の走行を安定させる。従っ
て、台車が一方に傾いても案内面には空気バネの弾性に
よりソフトに案内面への回転接触を保ち車輌に衝撃をあ
たえない。又、案内モータで車輌速度と等速に回転を制
御するのが、より好ましく又、この外方に押し出された
αの値のときの左右の案内輪の荷重の差がNのとき、N
の値がゼロになるまで荷重の大きい側のプロペラの推力
を大にすることがモータコントローラーで調節可能なの
で左右の案内体に対する案内輪の傾斜荷重を等しく保っ
て、安定走行が可能になり高速性を増大する。
Second Embodiment (See FIGS. 3 to 14 and FIG. 16) The drawings are schematic views of one embodiment according to the present invention, and FIG. 3 is a distant view of an elevated track and a flight type track car 1. On the elevated track, columns 50 fixed by a concrete pedestal below are arranged at a predetermined interval, and a rail support 31 made of H steel is placed endlessly and fixed on the upper part thereof. The rail support 31 is integrally fixed with lateral beams 49 of left and right gate-shaped fixed limbs 51 at the lower center of the arc fixing body 25. The left and right fixed limbs 51 are lowered to sandwich the rail support 31 and are fixed to the upper part of the column 50 (FIG. 6). A supporting arc 22 made of reinforced concrete is placed on the upper surface of the arc fixing body 25,
It is fixed by a fixture 26. In the curve section, the supporting arc is fixed at a predetermined inclination according to the gradient of the curve (Fig. 7). The rail 2 is located above the supporting arc 22.
3 is attached. A rail base 48 is provided between the rail bottom surface and the rail support 31, and the top surface of the rail base 48 is arc-shaped. It has an arc-shaped surface that is in close contact (Figs. 6 and 7). Accordingly, the rail 23 can be attached to the rail base 48 by the rail retainer 82 at an inclination equal to the inclination angle of the rail support. Guide bodies 24 are placed inside both sides of the supporting arc 22 supporting the rails,
The upper part is pressed by the guide body fixing tool 74, and the inner lower part is fixed by the fastener 75. Further, an insulator 21 is attached to the upper part of the guide body 24 and supports a trolley wire 29 (FIGS. 3, 6, and 7). The current may be collected from an overhead line such as a conventional line, but in this example, trolley wires are attached via insulators to the upper and left sides of the upper portion of the supporting arcs with a left-right spacing, and they are attached to the guide body via insulators. Even in the case, it is possible to supply a higher voltage than the conventional third rail system, and there is no overhead wire and its columns,
Except for the rail support / rail base, the curved section can be erected with the same member as the straight section, and the rail support / rail base, etc. can be manufactured at the factory, so the construction period is small and the construction site is small. End In the assembled model, as shown in FIG. 15, if the shape of the bottom surface of the arc fixing body 25 can be set on a flat surface, the inclination of the curve can be adjusted, so that a set of orbits of a certain length can be assembled and disassembled freely. it can.
More specifically, in FIGS. 3 to 13, the vehicle of the flight type rail car 1 includes a vehicle body 2 and a carriage 3. The vehicle body 1 has a semi-circular cross section, and has arc-shaped doors immediately after the cab and on both sides of the rearmost portion. A carriage 3 supporting the vehicle body 2 is elastically coupled to the carriage 3 by a barbell type air spring cushioning device 30. The barbell type air spring shock absorber accommodates a barbell-shaped connecting rod 17 having ball-shaped enlarging parts attached to both ends and the enlarging part while rotatably supporting the enlarging part at a predetermined range of angle.
The connecting rod 17 is penetrated with each of the upper and lower rotating support boxes having a rotating support chamber having a release stop edge attached to the opening for supporting the connecting rod rotatably and slidably. It is composed of a rubber donut-shaped air spring 18 having a central hole. The rotation support box is a combination of the hole support box 15 and the cover support box 16, and the inside of the rotation support chamber of at least one of the rotation support boxes (the lower rotation support box in this example) has an enlarged portion. Is formed in a size that allows it to be retracted to a predetermined depth (FIGS. 6, 9, and 10). In assembling this barbell type air spring cushioning device, the air of the air spring 18 is evacuated and the connecting rod 17 is passed through the hole at the center thereof. Then, the support box 15 with holes is passed through both ends, and thereafter, ball-shaped enlarged portions are attached to both ends. The ball portion is surrounded by the remaining cover support box 16 and bolted through the bolt hole 84. The barbell-type air spring cushioning device is preferably mounted in an inclined mounting system in which the distance between the support rods of the left and right devices is narrow in the upper part and wide in the lower part. Then, as shown in FIG. 11, the upper surface line B of the bogie and the lower surface line A of the vehicle body are adjusted to be parallel in the straight running section, and the vehicle body is pushed in the direction of arrow P by the centrifugal force in the curved section. On the lower surface of the vehicle body, since the ball-shaped portion on the upper side of the shock absorber is rotatable at a constant height α from the lower surface line A, the ball-shaped portion on the left side is D'from D and the ball-shaped portion on the right side. The ball-shaped portion of E moves from E to E ', and the lower surface of the vehicle body becomes higher on the centrifugal side and lower on the centripetal side as shown by the broken line A'. As a result, in the curve, the centrifugal side of the vehicle body rises and the centripetal side sinks, so that the stability of the vehicle increases (FIGS. 6 and 11). The trolley 3 is provided with a left-right symmetrical drive braking device in which a braking device is added to a center row wheel driving device and a propeller propulsion device. The center row wheel drive is preferably bilaterally symmetrical to obtain a balance of air resistance and weight distribution. The left and right symmetrical center row wheel drive braking device has two drive wheels 4 below the longitudinal center line of the carriage in FIGS. One of the drive wheels 4 is fitted in the center of the drive shaft 7, and the brake 35, the bearing 34 of the carriage supporting frame 20, the large gear 5, and the bearing 34 are arranged in the same order on both sides of the drive wheel 4.
, And both ends are fixed by nuts 36, and the bogie support frame 20 is divided into left and right at the upper side. Each of the bogie support frames 20 is inserted at the upper side to determine the position, and the bogie via the cushion 39. Bolts and nuts 36 on the top plate 52 of 3
It is installed at. The left and right gear cases 10 are integrally fixed to the outside of the left and right bogie supporting frames 20, and an inner gear is formed on the inner periphery of the shaft hole of the large gear 5 that is housed in the lower portion of the case. Since it meshes with the joint gear of 7,
The drive wheel 35, the large gear 5, and the drive shaft 7 rotate together. The left and right large gears 5 mesh with the upper small gear 6 in the left and right gear cases 10, respectively. The small gear 6
The inner end of the pinion gear shaft 6 fitted to the center of the
Is rotatably supported by a bearing 34 above the gear case, and the other end penetrates a bearing fixed to the pinion gear cover 32 and is connected to the flexible shaft coupling 9 outside the gear case. The lower side cover 33 is fastened by inserting a seal with a screw and a nut 36 integrally with the gear case on the periphery except the upper part, and sandwiching the folding edge and the seal at the lower end of the pinion gear cover 32 directly below the upper floor 53. It is screwed on. The small gear cover also has a peripheral edge fixed with a screw 78 by inserting a seal into the gear case. A shaft end of a motor shaft 79 of a drive motor 8 is connected to the flexible shaft coupling 9 on the side opposite to the pinion shaft 38, and the drive motor 8 is attached to the floor 53 of the truck via a cushion 39. is there. The drakes 35 are mounted inside the bogie support frames 20 on both sides. As described above, each device of the drive device is supported by the trolley support frame 20 except the drive motor, and the trolley support frame 20 is attached to the reinforced top plate 52 of the trolley by the bolts and nuts 36 through the elastic body 39. (FIG. 8), bolts are tightened to the floor 53 of the trolley from below by a fixing piece 80 projecting forward and backward through a cushion (FIG. 4). Since the drive motor is attached to the floor of the bogie via another cushion 39, its motor shaft is not the same as the vibration rhythm of the pinion shaft 38 supported by the bogie support frame 20 via bearings. The flexible shaft joint 9 is relaxed, and unlike the conventional railroad system, the center row wheel drive system of the present invention structurally eliminates the irregularity of the parallelism of the rails. Vibration is unlikely to occur. Therefore, since the impact on the motor is extremely smaller than that of the rail car of the single brim wheel of the parallel rail, the weight can be reduced with a simple buffer structure. It is preferable to use the above-described drive device in a large high-speed vehicle that allows oil lubrication in the gear case 10. In the inspection work of the drive gear, in FIG. 8, the side cover 33 is removed first, the nut of the drive shaft is removed secondly, the adjacent bearing and the large gear are removed, and the third is the bogie in FIG. The bottom cover 28 on the bottom is removed from the beam 54, fourthly the small gear shaft is removed from the flexible shaft coupling, and fifthly, the small gear cover and the screw of the gear case are removed, and then the small gear cover, the thrust type bearing, and the roller. Remove the bearing of the mold and the pinion in that order.
After that, if one of the bogie support frames is removed, the drive wheels and the drive shaft can also be removed. Assembly can be done by the reverse of the above. There are many drives, including asymmetrical. Among them, 1 in this example
Since the driving wheels have two left and right small drive motors, the trolley's ceiling can be lowered, and the vehicle height can be reduced by that much, and the air resistance can be reduced by reducing the size of the cross section, resulting in high speed and energy saving. The propeller propulsion device is shown in FIGS. 4, 5, 14, 15, and 16 below the motor pylon which descends from a pylon stand 19 rotatably provided at the bottom of the bogie 3 below the propulsion motor 1
2 is attached, and the propeller 14 is attached to a fastener 58 attached to the shaft of the motor. When the vehicle reverses, the pylon stand 19 is moved in the direction of the arrow as shown by the broken line propeller 14 in FIG.
It can be propelled in the opposite direction by rotating 180 degrees. The control system uses a sensor 9 to detect the difference between the rotation speed of the axle and the actual speed of the vehicle, for example, the number of passages of the sign 95 within a certain time.
The actual speed of the vehicle is measured by counting at 6, the rotation speed of the drive shaft is detected, and the rotation speed of the drive wheels is measured. If the difference between the two exceeds a certain value, for example, the actual speed is driven. When the speed is higher than the rotation speed of the wheels, the propeller thrust is large, so the drive speed of the propulsion motor is increased by the motor controller, and conversely, the propeller thrust is increased to control the slip of the driving wheels to the smallest possible range. To do. Braking by the device is
This can be done by the reverse rotation of the propeller or the 180-degree rotation of the pylon table 19. In particular, during high-speed braking, the impact is less than that of wheel braking, so a complicated control device for braking is not required, and uneven wear of wheels and rails does not occur, so the cost is low and it is suitable for weight reduction. 4, 5 and 6, the guide device is provided with a pair of left and right guide wheels 11 in front of and behind the bottom of the carriage 3.
The guide wheel 11 has its lower surface aligned with the bottom surface of the trolley 3 and its vertical axis, and has a constant-velocity reverse rotation structure in which a belt 27 is engaged with pulleys provided on the upper portions of the left and right guide wheels. Therefore, when one guide wheel comes into contact with the guide body and rotates, the other guide wheel also rotates at the same speed, and when the bogie shakes and leans to the opposite side, the opposite guide wheel comes into contact with the guide body. It does not slip. This guide wheel 11 can be rotationally controlled in the opposite direction as indicated by the arrow in FIG. 5 at the same speed as the vehicle by the guide motor 81 mounted on the trolley, which is more preferable because the high speed and stability are enhanced. The highest position of the guide wheel 11 is
Since the carriage is not regulated by the guide body, the bogie does not rise any further, and both the brims 77 of the drive wheels are high and the tread 76 is deep, and even if the tread 76 floats a little away from the rail 23, the guide body regulates the upper limit of the guide wheel. Therefore, the drive wheel is attached so that the rail is located at a position where the brim of the drive wheel does not fall off within the limit (FIG. 6). Therefore, even if the drive wheels slightly float, there is no derailment, and the propulsive force can be increased to achieve a speed exceeding the limit of the drive force. still,
As another preferred example of the guide system according to the present invention, in the forced elastic contact type, the left and right guide wheels 11 are elastically brought into contact with the guide surface of the guide body 24 on the outside in FIGS. 12 and 13. There is. The structure is such that stoppers 9 are provided on the rising walls before and after the slide groove 91 provided at the bottom of the carriage 3.
4 are provided at predetermined positions, one on each side of the front and rear. The slide case 98 fitted in the groove is pressed by the air spring 43, and the recess 9 of the slide case is formed inside the stopper.
Although it is made to project outward by the elasticity of an air spring at the center of 9, the left and right side walls of the carriage 3 and the outer end of the case are brought together by being pushed by the left and right guide surfaces. The distance between the left and right guide surfaces is constant (although there is an error in parallelism) and they are arranged at the same level (FIG. 12). Further, the guide wheel 11 rotatably supported by the slide case has a carriage inclined in the direction of arrow Q, the right guide wheel O 2 is strongly pressed against the right guide surface, and the slide case side is an air spring. Press 43 in the direction of arrow N to press the recess 99 on the left slide case.
Push it elastically until it hits the stopper 94. At the same time, the left slide case is pushed by the expansion force of the air spring 43, so that the expansion force sufficient to fill the gap between the left guide surface and the guide ring is applied by the air spring, and it is slightly outward. Just pushed out. At this time, both the left and right guide wheels are in contact with the guide surface (Fig. 13). This action occurs continuously, and the guide wheel and the guide surface keep rotating contact with little friction even with a small torque to stabilize the running of the vehicle. Therefore, even if the trolley is tilted to one side, the elasticity of the air spring keeps the rolling contact softly on the guide surface and does not give a shock to the vehicle. Further, it is more preferable to control the rotation at a speed equal to the vehicle speed by the guide motor, and when the difference between the loads of the left and right guide wheels is N when the value of α pushed outward is N,
Since the motor controller can adjust the thrust of the propeller on the side with a large load until the value of becomes zero, the tilting load of the guide wheels with respect to the left and right guide bodies can be kept equal and stable running becomes possible. Increase.

【実施例3】 (図14より図20まで参照) 本例は模型の一例で、軌道装置は支持アーク22が固定
アーク25上で固定具26で一体に固定され、この状態
で地上でも固定できる。高架軌道ではレール23は支持
アークの中央の溝に防音のためのクッションを挾んで差
し込んである。アーク固定体25の内側には規制突起9
3があり、支持アークの下面の溝でレール方向へずれる
のを規制している。該レールは縦幅が広く、案内体24
は案内体固定具74で支持アークに締め付けてある。こ
の車両は台車と車体が一体に固定してあり、下方の台車
の空洞内に駆動モータ8、小歯車6が納まっている。更
に、両側の台車支持枠20の上方の左右の固定片80が
台車の床53に取付けてある。車体の前部には標的70
が中板57に取り付けて、上半分を透明板を通して目視
しやすくなっていて、光線がヒットすると所定のサイン
を発する構成になっている。駆動輪4は左右のツバ部分
を歯車に形成してあり(図14)、駆動軸7で両側の台
車支持枠20間に軸受34を介して回転自在に支持され
ている。駆動軸7は両側の台車支持枠20にナット36
で固定してある。該駆動輪4のツバ歯車に噛み合う伝動
小歯車6は前記台車の空洞内に於いて、小歯車軸38に
より左右のピローブロック85内の軸受に回転自在に支
持されている。この小歯車軸は両側のピローブロック8
5の外方にのびていて、その両端部がたわみ軸継手9に
連結してある。該たわみ軸継手9は両外側の駆動モータ
8に連結してある。駆動モータ8はクッション37を介
して床53に取り付けてあり、そのモータ軸は前記の如
くたわみ軸継手9を介して前記小歯車軸38と連結せし
めてある。従って、駆動モータが回転すると、たわみ軸
継手9を介して小歯車軸により小歯車が回転し、該小歯
車は鋼鉄性のツバ歯車と噛み合ってツバ歯車駆動輪を駆
動回転せしめるが、小歯車は無給油でツバ歯車と緩衝的
に噛合えるナイロン製であり、たわみ軸継手とクッシヨ
ン39により、駆動輪からの衝撃は緩和され、衝撃を受
けるのは台車支持枠20とそれを取付けた台車の床に限
定される。上述のツバ歯車駆動装置は本発明による1実
施例で駆動輪に歯車を一体に付属せしめる方法は他の一
例では、その外周を中高にして歯車を形成して小歯車に
噛合わせ、両側で平行レール面に転がらす等もあるが、
極めて少ない部品でコストが安く、無給油でも相当程度
の速度で走行でき、低騒音である。プロペラ推進装置
は、図14、16で駆動輪4の前方にあり、プロペラは
固着具58により推進モータ12の後方に突出したモー
タ軸と一体に固定してある。推進モータ12はモータパ
イロン13で支持され、該モータパイロンは台車の床に
設けた回転装置で支持されている。モータパイロン13
にはサーボモータが内在せしめてあり、該サーボモータ
はパイロン歯車45に連結してある。該パイロン歯車4
5はモータ支持体59の上方に構成した回動歯車47に
咬み合っている。モータ支持体59の支持片は、両側の
パイロンに取り付けてあるモータ回動軸46で回動自在
に支持されている。従って、モータ支持体59はサーボ
モータが回転した分だけパイロン歯車45を介して、回
動歯車47により、モータ回動軸46を中心に回動して
推進モータ12の上下角を変化させる。それにより、プ
ロペラの推進方向も上下方向が変化せしめられる。その
結果後部駆動輪のすべりを検知した場合には推進モータ
12の前部を下げると、車輌前部に揚力が増え、後部に
荷重が増す結果、台車の前部が軽くなり後部に逆の荷重
かかり、すべりをなくせる。前部の駆動輪のすべりはそ
の逆でなくせる。モータパイロンの回転装置は台車の床
53に設けてある(図16)。回転角度を定めるサーボ
モータ88のモータ軸は回転台71の中心に固定してあ
り、該回転台71の下面にはモータパイロン13の上面
を合わせて一体に固定してある。この回転台71は下面
の外周に軸受け34が当接し、回転自在に支持され、該
軸受は回転支持ケース87の内周下方に嵌殺してあり、
該回転支持ケースは外周を環状固定具86で床53に固
定してある。従ってサーボモータを回転させた角度だけ
モータパイロンも回転し、プロペラの向きを逆の方向に
変えることができる。又、実施例2の如く、左右の推進
力の大きさを調整して台車の一方への傾斜荷重を微小に
して円滑でかつ高速の走行を可能にする。本発明に於い
て集電装置は軽量化のために小型で部品点数が少なく架
線又はトロリー線への追随性のよいものがのぞましく、
その一例として本発明による集電靴は、バネ板62、丁
番63等の素材として良伝導体で、かつ硬質で弾性に富
む、例えば燐青銅の如き金属が好ましい。すり板には、
燐青銅も使えるが、焼結合金の新素材を選ぶのが、望ま
しい。図17より図21に於いて、集電靴60は、一対
のすり板61、該すり板を固定するバネ板62、該バネ
板を片側に固着せしめた左右の丁番63、該左右の丁番
の他側には、中央に支え板64を固着したバネ板62の
両端部が一体に固定してある。すり板61は短い丸棒の
両端部を薄肉に形成して鋲孔を穿ってあり、2本を並べ
てバネ板62に鋲65止めしてある。バネ板62は、す
り板を固定した中央部を残して両側をアールをつけて同
じ方向に約45度で曲げてある。対面しているバネ板も
支え板の両側をやや余して同一の形状に曲げて形成して
ある。上記の2枚のバネ板の両端部がそれぞれ2枚の丁
番の一片づつに固着してあって外形ができている。そし
て風圧が大きくかかるバネ板の2本のすり板61の間に
風孔69が穿ってある。この集電靴60の取り付けは、
車両の所定の位置に絶縁体42を介して一対の押さえ板
66を集電靴60の支え板64の幅に合う隙を開けて平
行に固定する。次には、2枚の平行に取り付けた押さえ
板の間に支え板を横方向から押し込み、押さえ孔67に
より、ビス止めすれば完了する。該集電靴の素材が良伝
導体であれば、この押さえ板に電極を取り付けて配線す
ればよい。尚、本例ではすり板が両端の鋲65迄の長さ
であるが、左右方向に延長してトロリー線に幅広く対応
できるし、不要の時、折畳む構成にすると一層よい。こ
の集電靴は、すり板61が押圧されると、図19の破線
の如く低くなり、圧力を除くと軽量のバネ板の弾性で瞬
時に復元するので、トロリー線の高低の変化に良く追随
できるし、すり板以外では、風圧は構成部品の板の厚み
にかかるのみであり、風圧に強い特徴がある。尚、前記
の押さえ孔67のビスを外せば、矢印P方向にスライド
させて集電靴を簡単に外すことができるし、上向きにも
使えるので、パンタグラフにもなる。かくの如く、部品
点数が少なく、簡単な構造なので軽量で反応が早いから
トロリー線への追随性が良く、離線を防止し易い。
Third Embodiment (See FIGS. 14 to 20) This example is an example of a model. In the track device, the supporting arc 22 is integrally fixed on the fixed arc 25 by the fixing tool 26, and in this state, it can also be fixed on the ground. . On the elevated track, the rail 23 has a cushion for sound insulation inserted in a groove in the center of the supporting arc. A regulation protrusion 9 is provided inside the arc fixing body 25.
3, there is a groove on the lower surface of the support arc to prevent the rail from shifting in the rail direction. The rail has a wide vertical width, and the guide 24
Is fastened to the support arc with guide fixtures 74. In this vehicle, the bogie and the vehicle body are integrally fixed, and the drive motor 8 and the pinion 6 are housed in the cavity of the bogie below. Further, left and right fixing pieces 80 above the bogie supporting frames 20 on both sides are attached to the floor 53 of the bogie. Target 70 on the front of the vehicle
Is attached to the middle plate 57 so that the upper half can be easily seen through the transparent plate, and a predetermined sign is emitted when the light beam hits. The drive wheel 4 has left and right flange portions formed as gears (FIG. 14), and is rotatably supported by the drive shaft 7 between the bogie support frames 20 on both sides via bearings 34. The drive shaft 7 has nuts 36 on the bogie support frames 20 on both sides.
It is fixed at. The transmission small gear 6 meshing with the flange gear of the drive wheel 4 is rotatably supported by bearings in the left and right pillow blocks 85 by the small gear shaft 38 in the cavity of the carriage. This small gear shaft has pillow blocks 8 on both sides.
5 extends outward, and both ends thereof are connected to the flexible shaft coupling 9. The flexible shaft coupling 9 is connected to both outer drive motors 8. The drive motor 8 is attached to the floor 53 via a cushion 37, and its motor shaft is connected to the pinion shaft 38 via the flexible shaft coupling 9 as described above. Therefore, when the drive motor rotates, the small gear is rotated by the small gear shaft through the flexible shaft coupling 9, and the small gear meshes with the steel-made brig gear to drive the brig gear drive wheel. It is made of nylon that can engage with a brim gear in a bufferless manner without any lubrication. The impact from the drive wheels is mitigated by the flexible shaft joint and the cushion 39, and the impact is received by the bogie support frame 20 and the floor of the bogie with it mounted. Limited to The flange gear driving device described above is an embodiment according to the present invention in which the gears are integrally attached to the drive wheels. In another example, the outer circumference of the gears is set to a middle height to form gears that mesh with the small gears and are parallel on both sides. There is also rolling on the rail surface,
The cost is low with very few parts, it can run at a considerable speed without oiling, and it has low noise. The propeller propulsion device is located in front of the drive wheel 4 in FIGS. 14 and 16, and the propeller is integrally fixed to the motor shaft protruding rearward of the propulsion motor 12 by a fastener 58. The propulsion motor 12 is supported by a motor pylon 13, which is supported by a rotating device provided on the floor of the truck. Motor pylon 13
A servomotor is internally provided in the servomotor, and the servomotor is connected to the pylon gear 45. The pylon gear 4
Reference numeral 5 meshes with a rotary gear 47 formed above the motor support 59. The support piece of the motor support 59 is rotatably supported by the motor rotation shafts 46 attached to the pylons on both sides. Therefore, the motor support 59 is rotated about the motor rotation shaft 46 by the rotation gear 47 via the pylon gear 45 by the amount of rotation of the servo motor to change the vertical angle of the propulsion motor 12. As a result, the propelling direction of the propeller is also changed vertically. As a result, when slippage of the rear drive wheels is detected, lowering the front part of the propulsion motor 12 increases lift in the front part of the vehicle and increases the load in the rear part. As a result, the front part of the bogie becomes lighter and the reverse load is applied in the rear part. Takes off and eliminates slippage. The slippage of the front drive wheels can be reversed. The rotating device of the motor pylon is provided on the floor 53 of the truck (FIG. 16). The motor shaft of the servomotor 88 that determines the rotation angle is fixed to the center of the rotary table 71, and the lower surface of the rotary table 71 is integrally fixed to the upper surface of the motor pylon 13. The rotary table 71 is rotatably supported by the bearing 34 abutting on the outer circumference of the lower surface thereof, and the bearing is fitted into the lower part of the inner circumference of the rotary support case 87.
The outer circumference of the rotation support case is fixed to the floor 53 by an annular fixing member 86. Therefore, the motor pylon is also rotated by the angle at which the servo motor is rotated, and the direction of the propeller can be changed to the opposite direction. Further, as in the second embodiment, the magnitude of the left and right propulsive forces is adjusted to make the tilt load on one of the bogies small and to enable smooth and high-speed traveling. In the present invention, it is desirable that the current collector is small in size to reduce the weight and has a small number of parts and good followability to an overhead line or trolley wire,
As an example thereof, the current collecting shoe according to the present invention is preferably made of a metal such as phosphor bronze, which is a good conductor as the material of the spring plate 62, the hinge 63, etc., and which is hard and rich in elasticity. On the scraping board,
Phosphor bronze can be used, but it is preferable to select a new sintered alloy material. 17 to 21, a current collecting shoe 60 includes a pair of contact plates 61, a spring plate 62 for fixing the contact plates, left and right hinges 63 having the spring plates fixed to one side, and left and right fingers. On the other side of the number, both ends of a spring plate 62 having a support plate 64 fixed to the center are integrally fixed. The contact plate 61 has both ends of a short round bar formed thin to have rivet holes, and two linings are arranged side by side and fixed to the spring plate 62 with rivets 65. The spring plate 62 is bent at about 45 degrees in the same direction with a radius on both sides except for the central portion to which the contact plate is fixed. The facing spring plates are also formed by bending both sides of the supporting plate into the same shape with a little margin. Both ends of the above-mentioned two spring plates are fixed to each of the two hinges to form the outer shape. An air hole 69 is formed between the two sliding plates 61 which are spring plates to which a large wind pressure is applied. To attach the current collecting shoes 60,
A pair of pressing plates 66 are fixed in parallel at a predetermined position of the vehicle through an insulator 42 with a gap corresponding to the width of the support plate 64 of the current collecting shoe 60. Next, the supporting plate is pushed laterally between the two pressing plates that are attached in parallel, and the pressing holes 67 are screwed to complete the process. If the material of the current collecting shoe is a good conductor, electrodes may be attached to the pressing plate for wiring. In this example, the contact plate has a length up to the tacks 65 at both ends, but it can be extended in the left-right direction to accommodate a wide range of trolley wires, and it is more preferable to fold it when unnecessary. This current collecting shoe lowers as shown by the broken line in FIG. 19 when the contact plate 61 is pressed, and is instantly restored by the elasticity of the lightweight spring plate when the pressure is removed. Yes, except for the sliding plate, the wind pressure is only applied to the thickness of the plate of the component parts, and has a strong wind pressure resistance. It should be noted that if the screw of the pressing hole 67 is removed, the current collecting shoe can be easily removed by sliding it in the direction of the arrow P, and since it can be used upward, it becomes a pantograph. As described above, since the number of parts is small and the structure is simple, it is light in weight and has a quick reaction. Therefore, it is easy to follow the trolley wire, and it is easy to prevent disconnection.

【実施例4】 (図22、23、24、25 参照) 本例の飛行式の軌道車の軌道は、既述のごとき構成であ
る。車両に於いては、前後に長い車輌の強度を大にし
て、急カーブを安定走行せしめるには、車体を支持する
枕梁枠100の下方の前後に設けた各1台の台車のそれ
ぞれを、回転式に構成するのが望ましい。即ち、前後各
1台の回転式の台車3の前後方向の中央線の下方には中
央の台車軸97の前後に駆動輪4が各1個づつ台車支持
枠20に設けてあり、更に該前部の駆動輪の前部及び後
部の駆動輪の後部には前述例の強制弾力接触式の案内輪
11を左右一対で設けてある。直線区間で該前後の案内
輪に案内されて図24に示すように車輌と同じ向きに前
部の台車3も破線の方向を向くが、曲線区間では台車3
は案内輪により、台車軸97を中心に回動して実線で示
す台車3の方向に回転させられ、車輌に傾斜した角度と
なり、レールのカーブに沿った方角に向かわされる。同
様に後部の台車も図24のように、前部及び後部の案内
輪11により、レールにならって回動させられて、レー
ルに沿った方向に向いて転がる。従って、該駆動輪の狭
い幅の踏面でもレールのカーブに追従して転がり、ツバ
の破壊のような問題が生じない。仮に、本例の台車が固
定してあれば、直線区間は問題がないが、急カーブで上
述のように両ツバ間の踏面からレールがはみ出ることと
なり、ツバ若しくは駆動装置を破壊する等の問題がおき
る。従って、回転式の台車は車輌が長い形であれば、車
輌の前後に設けて、カーブでの安定走行に重要となる。
本例で回転式の台車の台車支持枠に支持輪4個を駆動輪
に代えて設ければ、長い車輌の牽引式の貨車としてカー
ブでも安定して高速性が向上する。尚、本例に用いたレ
ールは既述の両ツバ車輪用でよいが、他の一例をあげれ
ば図25の断面U型のレールに中ツバ車輪の組合せでも
同様に上述の回転式の台車により円滑に安定した走行が
できる。
Fourth Embodiment (Refer to FIGS. 22, 23, 24 and 25) The orbit of the flight type rail car of the present example has the configuration as described above. In the vehicle, in order to increase the strength of the vehicle that is long in the front and rear and allow the vehicle to travel stably in a sharp curve, each one of the bogies provided in the front and rear below the pillow frame 100 that supports the vehicle body, It is desirable to configure the rotary type. That is, one drive wheel 4 is provided in front of and behind the central bogie shaft 97 on the bogie support frame 20 below the center line in the front-rear direction of the front and rear rotary bogies 3, respectively. A pair of left and right guide wheels 11 of the above-mentioned forced elastic contact type are provided at the front of the drive wheels and the rear of the rear drive wheels. In the straight section, the front and rear guide wheels guide the front trolley 3 in the same direction as the vehicle as shown in FIG. 24, but the trolley 3 in the curved section.
The guide wheel is rotated about the bogie shaft 97 by the guide wheel to be rotated in the direction of the bogie 3 shown by the solid line so that the car has an inclined angle and is directed in the direction along the curve of the rail. Similarly, as shown in FIG. 24, the rear carriage is also rotated by the front and rear guide wheels 11 following the rail, and rolls in the direction along the rail. Therefore, even a tread surface having a narrow width of the drive wheel rolls following the curve of the rail, and there is no problem such as breakage of the brim. If the trolley of this example is fixed, there is no problem in the straight section, but as a result of a sharp curve, the rail will stick out from the tread between the two brims, and the brim or drive device will be destroyed. Occurs. Therefore, if the vehicle is long, the rotary dolly is provided in front of and behind the vehicle, and is important for stable running on a curve.
In this example, if four supporting wheels are provided on the bogie supporting frame of the rotary type bogie instead of the driving wheels, the high speed can be stably improved even in a curve as a towed wagon of a long vehicle. The rail used in this example may be for both the brim wheels described above, but as another example, the combination of the middle brim wheel with the U-shaped cross-section rail shown in FIG. You can run smoothly and stably.

【実施例5】 (図26 参照) 図25に於いて、長円形状の軌道73が複数設定してあ
り、飛行式の軌道車1は標的を搭載している。該模型に
好ましい競技システムの一例を述べる。該軌道73と適
宜の距離に設定した回転スタンド72に、1乃至複数の
狙撃台40を設けてある。該飛行式の軌道車1の標的7
0は特定の光線例えばレーザー光線のヒットに対して所
定のサイン例えば点滅或いはカウントする。矢印のよう
に、該軌道車と回転スタンド72を逆にも回転せしめ得
るし、回転スピードを早めたり、傾けたり、揺動させた
り、或いは車両の形状を変化させたりできる。更に、複
数の狙撃者で狙撃のヒット数を競争できる。標的のサイ
ンには、メロデイー音・点滅光・色の変化・形態の変更
・物体を発射する等多くの種類がある。
Fifth Embodiment (See FIG. 26) In FIG. 25, a plurality of elliptical orbits 73 are set, and the flight-type rail car 1 is equipped with a target. An example of a preferred competition system for the model will be described. One or a plurality of sniper tables 40 are provided on the rotation stand 72 set at an appropriate distance from the track 73. Target 7 of the flying rail car 1
0 indicates a predetermined sign such as blinking or counting for hitting a specific light beam such as a laser beam. As indicated by the arrow, the rail car and the rotation stand 72 can be rotated in reverse, and the rotation speed can be increased, tilted, rocked, or the shape of the vehicle can be changed. In addition, multiple snipers can compete for sniper hits. There are many types of target signs such as melody sounds, flashing lights, color changes, shape changes, and object firing.

【実施例6】 (図27 参照) 本例は本発明による飛行式の軌道車の軌道装置と車両の
一例で、実施例2とほぼ同様に支持アーク下方中央に設
けた溝にアーク固定体25のアーク上縁部を差し込んで
固定具26で固定してある。レールは異型の十字型で下
方の突片が支持アーク22の中央の溝に差し込んでレー
ル押さえで押さえてある。車体上にはプロペラ14とそ
の推進装置が設けてある。車体下方に於いても、プロペ
ラ14を直結した推進モータ12は枕梁枠100内に設
けたモータコントローラーで回転速度が制御可能であ
り、支持アーク22の標識95を推進モータ下方のセン
サー96がカウントして車両速度を計出して該モータコ
ントローラーの出力を制御する。車両が傾いたとき、そ
の側の案内輪11に傾斜荷重が掛かるが、案内モータ8
1は案内軸と直結されていて車両スピードと同一に回転
制御されているので鋼製の案内体24の案内面に接触す
るが摩擦現象は殆ど生じない。該案内体の一方の側は垂
直面で他側は支持アーク22の上方左右両内側の棚の壁
にその垂直面を密着させてあり、棚の止具75で下方の
案内体縁が押さえられ、上方では案内体固定具74で支
持アーク上方に取り付けてあり、長手方向に上下に2段
の突出片が設けてあって、該2段の突出片間に溝状の案
内面が形成してあり、該案内面に案内輪11の外周及び
外周の上下に連なる傾斜面が随時回転接触して台車の姿
勢を規制してレールに対して直立的に案内する。該案内
輪の外縁の上下傾斜面は台車の傾斜時に案内体の突出片
の斜面に回転接触し、台車の傾斜を微小にする作用と効
果がある。その他、従来のレール状、断面円形や角型の
パイプによる案内体等にツバ車輪の案内輪を組み合わせ
る、又案内体と案内輪を逆の磁性にして反発力で案内体
の磨耗を防ぐように、本発明の含む構造の組合せ方法は
多くある。案内輪の材質は騒音が生じず衝撃を弱め摩擦
係数の小さいことが望まれる。従って、鋼鉄・合成ゴム
・合成樹脂・セラミックス等やそれらの複合素材を目的
に応じて案内輪の外周に使用するのが望ましい。
Sixth Embodiment (See FIG. 27) This embodiment is an example of a track device and a vehicle of a flight type rail car according to the present invention. The arc fixing body 25 is provided in a groove provided in the lower center of the supporting arc in the same manner as in the second embodiment. The upper edge of the arc is inserted and fixed by the fixture 26. The rail has a modified cross shape, and the lower protruding piece is inserted into the central groove of the supporting arc 22 and is held by the rail holder. A propeller 14 and its propulsion device are provided on the vehicle body. Even in the lower part of the vehicle body, the rotation speed of the propulsion motor 12 directly connected to the propeller 14 can be controlled by the motor controller provided in the bolster frame 100, and the marker 96 of the supporting arc 22 is counted by the sensor 96 below the propulsion motor. Then, the vehicle speed is measured and the output of the motor controller is controlled. When the vehicle is tilted, a tilt load is applied to the guide wheel 11 on that side, but the guide motor 8
Since 1 is directly connected to the guide shaft and controlled to rotate at the same speed as the vehicle, it contacts the guide surface of the steel guide body 24, but the friction phenomenon hardly occurs. One side of the guide body is a vertical surface, and the other side of the guide body is in close contact with the walls of the shelves above and to the left and right of the supporting arc 22, and the lower guide body edges are pressed by the stoppers 75 of the shelves. In the upper part, it is attached above the supporting arc by a guide body fixture 74, and two protruding pieces are provided vertically in the longitudinal direction, and a groove-shaped guide surface is formed between the two protruding pieces. The guide surface is provided with an outer periphery of the guide wheel 11 and an inclined surface extending vertically above and below the outer periphery of the guide wheel 11 to rotate and contact the guide surface at any time to regulate the posture of the carriage and guide the rail upright. The upper and lower inclined surfaces of the outer edge of the guide wheel are brought into rotational contact with the inclined surfaces of the projecting pieces of the guide body when the carriage is tilted, which has the action and effect of making the tilt of the carriage small. In addition, the guide wheel of the brim wheel is combined with the guide body of the conventional rail-shaped, circular cross-section or square pipe, etc., and the guide body and the guide wheel are made to have opposite magnetism to prevent the guide body from being worn by the repulsive force. There are many methods of combining the structures included in the present invention. It is desirable that the material of the guide wheel is such that it does not generate noise, reduces impact, and has a small friction coefficient. Therefore, it is desirable to use steel, synthetic rubber, synthetic resin, ceramics, etc. or their composite materials on the outer circumference of the guide wheel according to the purpose.

【実施例7】 (図28より33まで参照) 従来、プロペラは羽根の数が少ない場合は相当程度に長
い方が推力を大にするのに有利だと考えられ、単発のプ
ロペラ機では翼弦幅比の小なプロペラの軸を僅かにスラ
ストさせてプロペラ回転のねじれ作用による機体への悪
影響を除いた。しかし短径でも、最大翼弦幅の迎え角を
45度に近づけると空気をかく量が大になるが対称のプ
ロペラの一対を並べて相互を逆転させれば、ねじれの力
の相当部分を推力に転化せしめて機体を安定できる。そ
こで本発明の飛行式の軌道車では、左右一対のプロペラ
を短径で、翼弦幅を大で、迎え角を45度に近づけ、回
転数をあげて大きな推力を出させて車両をコンパクト化
するのが望ましい。上記の目的を実施するには、(1)
プロペラ14の中心の軸孔支持部を除いた羽根の片側の
長さLと翼弦の最大幅Wとの比が0.8L≦W≦1.2
Lの如く、翼の全周を小となし、(2)最大翼弦幅の位
置での迎え角を35度より50度の範囲内の値で形成
し、(3)左右の一対を並べて逆回転で駆動するのが好
ましい。即ち、プロペラの軸孔102の支持部認識線
(破線S)で示される支持部が軸孔の周囲を囲撓し、そ
の外方に羽根が伸びていて、本例では∠POQ=α°
はπ/2であり、最も幅が広い部分WはW−・−W
で示され、羽根の片側の長さLは図27中のL−・−
で示されている。そして、最も幅の広い翼弦部分は
半径の約60〜70%の位置にあるが、その迎え角は∠
OQ×1/2=π/2となしてあり、 正しい迎え
角はπ/2より小と成るが、ほぼπ/2である。このプ
ロペラの外形は全周を最小に近づけるために丸くなつて
いて、一層空気の抵抗が小となり、回転時の騒音の発生
も小となる。その素材は一例をあげると、グラスウー
ル、バルサ材、FRP、エポキシ樹脂アルミニユームと
マグネシュームを主とした合金、チタン合金等を単独或
いは複合して加工する。このように、本発明による実施
例では、従来の鉄道の振動或いは蛇行動の原因を除いて
あり、軽量の構造材例えば、アルミ合金、アルミとマグ
ネシュウムを主とした合金、グラスウール強化合成樹脂
例えば、FRP・エポキシ樹脂、バルサ材等で航空機の
車体構造を適用して高速性をたかめ、エネルギー消費を
抑制せんとするもので、大量輸送の交通機関として、又
自動制御装置を組み込んで、自動搬送装置、遊戯装置等
広範囲の用途に利用できる。尚、既述例で、プロペラ推
進装置を除いた中央列車輪駆動軌道車も在来鉄道方式の
如き平行度の不整による蛇行動や早いリズムの横揺れが
発生し難く、進行方向への走行慣性が大であり、断面の
小型化・車両の軽量化が可能なので省エネルギー性と高
速性が一層高くなる。更に原動機は電動モータによって
いるが、他の原動機例えば、内燃機関を用いて本発明を
実施できることは明白である。
Seventh Embodiment (Refer to FIGS. 28 to 33) Conventionally, it is considered that a considerably long propeller is advantageous for increasing thrust when the number of blades is small. The propeller shaft with a small width ratio was slightly thrust to eliminate the adverse effect on the airframe due to the twisting action of the propeller rotation. However, even with a short diameter, if the angle of attack of the maximum chord width approaches 45 degrees, the amount of air will be increased, but if a pair of symmetrical propellers are lined up and reversed to each other, a considerable portion of the twisting force will be used as thrust. The aircraft can be stabilized by converting it. Therefore, in the flight-type railcar of the present invention, the pair of left and right propellers have a short diameter, a large chord width, an angle of attack of 45 degrees, and a large thrust to increase the rotational speed to make the vehicle compact. It is desirable to do. To carry out the above objectives, (1)
The ratio of the length L on one side of the blade excluding the axial hole supporting portion at the center of the propeller 14 and the maximum width W of the chord is 0.8L ≦ W ≦ 1.2.
Like L, the entire circumference of the blade is made small, (2) the angle of attack at the position of the maximum chord width is formed within the range of 35 degrees to 50 degrees, and (3) the left and right pairs are arranged side by side. It is preferably driven by rotation. That is, the support portion indicated by the support portion recognition line (broken line S) of the shaft hole 102 of the propeller bends around the shaft hole, and the blade extends outward, and in this example, ∠P 1 OQ = α. °
Is π / 2, and the widest portion W is W 1 − · −W 2
The length L on one side of the blade is L 1 − · − in FIG.
It is indicated by L 2 . And the widest chord is about 60-70% of the radius, but its angle of attack is ∠
P 1 OQ × 1/2 = π / 2, and the correct angle of attack is smaller than π / 2, but is approximately π / 2. The outer shape of this propeller is rounded in order to make the entire circumference as close as possible to the minimum, which further reduces the air resistance and the generation of noise during rotation. As an example of the material, glass wool, balsa material, FRP, alloy mainly composed of epoxy resin aluminum and magnesium, titanium alloy or the like is processed alone or in combination. Thus, in the embodiment according to the present invention, the cause of the conventional railroad vibration or snake behavior is excluded, lightweight structural materials, for example, aluminum alloys, alloys mainly composed of aluminum and magnesium, glass wool reinforced synthetic resin, for example, By applying the body structure of the aircraft with FRP / epoxy resin, balsa material, etc. to increase the speed and suppress energy consumption, it can be used as a mass transportation system or as an automatic control device with an automatic control device incorporated. It can be used for a wide range of purposes such as amusement machines. It should be noted that, in the above-mentioned example, the center-row wheel-drive railcars, excluding the propeller propulsion device, are unlikely to cause serpentine movements and rapid rhythmic rolls due to irregularities in parallelism as in the conventional railroad system. Since the size is large and the cross section can be made smaller and the vehicle can be made lighter, energy saving and high speed are further enhanced. Furthermore, although the prime mover relies on an electric motor, it is clear that the invention can be implemented with other prime movers, for example internal combustion engines.

【0006】[0006]

【発明の効果】以上説明したように、本発明の軌道車は
従来の車輪駆動の軌道車の車両重量と比較して大幅に軽
量化できるから、軌道にかかる荷重が小さく、急カーブ
その他特殊な場所を除けば支柱及びその基礎は小規模で
簡単であり、部材は量産し易く、在来鉄道のような広い
面積の大規模なコンクリートの打ち込みの長期工事は不
要なので工期が短い。最大の効果は軌道の建設用地の買
収が大幅に少なくなり、枕木の効果をも具有する支持ア
ークの数も相当少なくなり、蛇行動が殆どないのでその
衝撃を防ぐための砕石が不要となり、既存の歩道上、高
速道路或いは、新幹線以外の鉄道沿い等に小規模の工事
で、カーブにも対処して、架設できることである。軌道
は一条のレールなので軌道敷きの巾が狭くて車輪の進行
に支障がある程の積雪がなく雪害の恐れがなくなり、左
右のレールの不整による蛇行動や振動がないので進行方
向への慣性が大となって高速性が高まり、レールの不整
の保守点検が不要となり、案内輪は案内体で上限を規制
されているので車両の極度の浮上による車輪の脱線がな
く、案内輪の強制弾力接触式では車両の揺れをソフトに
変化させて乗り心地を良くし、左右の車輪を貫通する長
大な車軸や4輪を支持する前後の大きくて重い台車枠が
ないので構造が簡単で、かつ車両底面の大部分を滑らか
な平面或いは曲面に形成できるので空気抵抗を減らして
揚力を得やすく軽量となり高速性が高まる。。駆動装置
は左右対象型車輪駆動装置では、両側のサイドカバーを
外して大歯車と小歯車を点検出来るし、左右対称で一対
のモータを組んで用いるのでモータを小型化して、台車
の厚さを薄くし車両断面を小として、風圧の減少と軽量
化が可能で、高速性と省エネルギー性が高まる。支持ア
ーク或いは案内体にトロリー線を取り付ければ起伏が小
となり離線が生じ難くなり集電が容易になり、集電靴が
車体の下方にあるので該靴で生じた乱流で揚力が得られ
て高速性が高まる。ツバ歯車駆動装置では、部品点数が
少なく簡単な構造で無給油でも走らせられるし小型化が
可能で模型に適していてコストが安くなる。プロペラ推
進では、プロペラの迎え角が大で45度前後で翼弦が長
いので短径でも空気を掻く量が大で、左右のプロペラを
対称にして逆転することで、大きな迎え角による車体に
与える捻りのトルクの悪影響を相殺して、推力を大にす
るとともに逆転によりソフトな制動効果が高速時にも得
られ、カーブでは内側の推力を小にして車両を進行方向
に向かわしめて走行を円滑に安定せしめられる。又、小
径で翼弦が長いのでプロペラの周縁の風切量は、空気を
掻く量に比べて、少ないので騒音もその分小さいし、車
輪のすべりを検知して推力を増大し車輪駆動力の限界以
上の加速性或いは高速性を得られる。プロペラの逆転に
よる制動では車輪制動のすべりがないので車輪やレール
の偏磨耗が生じないので保守の手間が省ける。更に、モ
ータパイロンの上下左右えの推進方向の調節により、車
両の上下左右に掛かる荷重を平均化して車両走行を安定
させる効果がある。バーベル型緩衝装置はカーブ区間で
車体を内方へ傾けるので、高速安定性を高めるし、部品
点数が少ないから軽量化できる。集電靴は部品点数が少
なくて簡単であるから小型化が可能でパンタグラフとし
ても使用でき、板バネの弾性で直接トロリー線に接触さ
せるので、追随性がよく高速での集電を可能とし、車両
の高速進行を可能にする。更に、小型の模型に使用して
ショートによる故障を防ぐことができる。又、小型の模
型は支持アークと固定アークによりカーブ区間も同じ部
品で調整して組み立てられるのでコストが安く、その車
体はツバ歯車駆動装置により簡単で部品点数が少なく頑
丈で高速の安価な模型セットを提供できる。尚、上述例
で、原動機は電動モータによっているが、他の原動機例
えば、内燃エンジンを用いて本発明の効果を得られる。
上記の如く、在来鉄道の蛇行動と振動の原因を除いてあ
るので、耐衝撃強度をあまり必要としないので、航空機
の機体構造を大幅に適用して軽量化し、高速性と省エネ
ルギーが実現できる。従って、僅かな土地の買収で早い
工期で軽便な高架軌道が建設できて、高速大量輸送シス
テムを供用できるし、小型でも軽量高速性の特徴によ
り、リモートコントロールで定常的貨物例えば、郵便物
・小荷物等の長距離高速輸送システムを小規模工事で提
供し、輸送コストの大幅な削減と省エネルギーが実現で
きる。
As described above, the rail car of the present invention can be made significantly lighter than the vehicle weight of the conventional wheel-driven rail car, so that the load on the track is small and a sharp curve or other special vehicle is used. The pillars and their foundations are small in size and simple except the place, the members are easy to mass-produce, and the construction period is short because long-term construction of large-scale concrete driving of a large area like conventional railways is unnecessary. The greatest effect is that the acquisition of land for construction of the track is significantly reduced, the number of supporting arcs that have the effect of sleepers is also considerably reduced, and there is almost no snake action, so crushed stones to prevent the impact are unnecessary It is possible to erection on the sidewalks, highways, or along railways other than the Shinkansen by small-scale construction to deal with curves. Since the track is a single rail, the width of the track is narrow and there is no snowfall that hinders the progress of the wheels and there is no fear of snow damage. Larger speed increases, irregular maintenance of rails is not required, and the guide wheels are regulated at the upper limit, so there is no derailment of the wheels due to extreme levitation of the vehicle, and forced elastic contact of the guide wheels In the formula, the swing of the vehicle is softly changed to improve the riding comfort, and the structure is simple because there is no large and heavy bogie frame before and after that supports the long axle and the four wheels that penetrate the left and right wheels. Can be formed on a smooth flat surface or curved surface, which reduces air resistance, makes it easier to obtain lift, is lighter, and has higher speed. . The drive system is a symmetrical type wheel drive system, the side covers on both sides can be removed to inspect the large gear and the small gear.Since a pair of motors are used symmetrically, the motors can be downsized and the thickness of the truck can be reduced. It can be made thinner and the cross section of the vehicle can be made smaller to reduce the wind pressure and reduce the weight, improving high speed and energy saving. If a trolley wire is attached to the supporting arc or the guide body, the undulations will be small and separation will be less likely to occur, and current collection will be easier, and since the current collecting shoe is located below the vehicle body, lift will be obtained by the turbulent flow generated by the shoe. High speed performance is enhanced. The flange gear drive device has a small number of parts, has a simple structure, can be run without lubrication, can be downsized, is suitable for a model, and is low in cost. In propeller propulsion, the angle of attack of the propeller is large, and the chord is long at around 45 degrees, so the amount of scratching air is large even with a short diameter, and the left and right propellers are symmetrically reversed to give a large angle of attack to the vehicle body. By offsetting the adverse effects of the torque of the twist and increasing the thrust, a reverse braking provides a soft braking effect even at high speeds, and at the curve the thrust on the inside is reduced to direct the vehicle in the direction of travel and stabilize the running smoothly. Be punished. In addition, since the diameter is small and the chord is long, the amount of wind cut at the periphery of the propeller is smaller than the amount of scratching the air, so the noise is small accordingly, and the thrust is detected by detecting the slip of the wheel to increase the wheel driving force. Acceleration or speed higher than the limit can be obtained. In braking by the reverse rotation of the propeller, there is no slip of the wheel braking, so uneven wear of the wheels and rails does not occur, so maintenance work can be saved. Further, by adjusting the propulsion direction of the motor pylon vertically and horizontally, there is an effect that the load applied vertically and horizontally to the vehicle is averaged to stabilize the vehicle traveling. Since the barbell type shock absorber leans the vehicle body inward in the curved section, high-speed stability is enhanced and the number of parts is small, so that the weight can be reduced. The current collecting shoe has a small number of parts and is simple, so it can be miniaturized and can also be used as a pantograph.Because the elasticity of the leaf spring directly contacts the trolley wire, it has good followability and enables high-speed current collection. Allows the vehicle to travel at high speed. Furthermore, it can be used for a small model to prevent a failure due to a short circuit. In addition, a small model is cheap because it can be assembled by adjusting the curved section with the same parts by the supporting arc and the fixed arc, and the car body is simple, has few parts and is sturdy and fast and inexpensive due to the brim gear drive. Can be provided. Although the prime mover is an electric motor in the above example, the effect of the present invention can be obtained by using another prime mover, for example, an internal combustion engine.
As mentioned above, the cause of the snake behavior and vibration of the conventional railway is eliminated, so it does not require much impact strength. Therefore, the structure of the aircraft can be greatly applied to reduce the weight and realize high speed and energy saving. .. Therefore, a small amount of land can be purchased to build a light elevated track in a short period of time, and a high-speed mass transportation system can be used. Providing a long-distance high-speed transportation system for luggage, etc. in a small-scale construction, it is possible to realize a significant reduction in transportation costs and energy saving.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による実施例1の軌道装置と飛行式の軌
道車の遠景部分側面図、
FIG. 1 is a side view showing a distant view of a track device according to a first embodiment of the present invention and a flight-type track car;

【図2】図1の車輌の一点鎖線a−・−a′での概略拡
大断面図、
2 is a schematic enlarged cross-sectional view taken along alternate long and short dash line a -.- a 'of the vehicle of FIG.

【図3】本発明による実施例2の高架軌道と飛行式の軌
道車の遠景側面図、
FIG. 3 is a distant view side view of an elevated track and a flight type track car according to a second embodiment of the present invention;

【図4】図3の飛行式の軌道車の拡大側面図、FIG. 4 is an enlarged side view of the flight-type track car of FIG. 3;

【図5】図4の車輌の底面図、5 is a bottom view of the vehicle of FIG. 4,

【図6】図4中のb−・−b′の位置での車輌及び軌道
の概略部分拡大断面図、
FIG. 6 is a schematic partial enlarged cross-sectional view of a vehicle and a track at positions b-, -b 'in FIG. 4;

【図7】図6中の軌道のカーブ区間での傾斜調節完成
図、
FIG. 7 is a completed view of tilt adjustment in a curve section of the track in FIG.

【図8】図6中の左右対称式車輪駆動制動装置の拡大
図、
FIG. 8 is an enlarged view of the left-right symmetrical wheel drive braking device in FIG.

【図9】バーベル式空気バネ緩衝装置の斜視図、FIG. 9 is a perspective view of a barbell type air spring cushioning device,

【図10】図9の装置の分解図、10 is an exploded view of the device of FIG. 9,

【図11】バーベル式空気バネ緩衝装置の作用の説明
図、
FIG. 11 is an explanatory view of the action of the barbell type air spring shock absorber,

【図12】案内輪の強制弾力接触式の直線区間の状態の
説明図、
FIG. 12 is an explanatory view of a state of a forced elastic contact type straight section of the guide wheel,

【図13】図12中の案内輪のカーブ区間での状態図、13 is a state diagram of the guide wheel in a curve section in FIG. 12,

【図14】実施例3のツバ歯車駆動装置による模型の飛
行式の軌道車の近景側面図、
FIG. 14 is a close-up side view of a model flight-type rail car driven by the flange gear driving device according to the third embodiment;

【図15】図14中の一点鎖線c−・−c′の位置での
車両と軌道の断面図、
FIG. 15 is a cross-sectional view of the vehicle and the track at the position of alternate long and short dash line c -.- c 'in FIG. 14;

【図16】図14の車輌の前後方向の中心線での拡大縦
断面図、
16 is an enlarged vertical cross-sectional view of the vehicle of FIG. 14 taken along the center line in the front-rear direction,

【図17】本発明による集電靴の取り付け状態の斜視
図、
FIG. 17 is a perspective view of an attached state of the current collecting shoe according to the present invention;

【図18】図17での集電靴を取り除いた状態図、FIG. 18 is a state diagram in which the current collecting shoes in FIG. 17 are removed,

【図19】図17の集電靴の縮小正面図、FIG. 19 is a reduced front view of the current collecting shoe of FIG.

【図20】図19の集電靴の平面図、20 is a plan view of the current collecting shoe of FIG.

【図21】図19の集電靴の側面図、21 is a side view of the current collecting shoe of FIG.

【図22】実施例4の飛行式の軌道車の側面図、FIG. 22 is a side view of the flight-type track car of Example 4;

【図23】図22の車両の底面図、23 is a bottom view of the vehicle of FIG. 22,

【図24】回転式の台車のカーブ区間での状態の説明
図、
FIG. 24 is an explanatory view of a state of a rotary trolley in a curved section,

【図25】実施例4の中ツバ車輪とU型レールの垂直断
面、
FIG. 25 is a vertical cross section of a middle brim wheel and a U-shaped rail according to the fourth embodiment,

【図26】実施例5の飛行式の軌道車による狙撃ゲーム
の説明図、
FIG. 26 is an explanatory diagram of a sniper game using a flight-type track car of Example 5;

【図27】実施例6の飛行式の軌道車とその軌道の概略
正面図、
FIG. 27 is a schematic front view of a flight-type track car of Example 6 and its track;

【図28】本発明に用いるプロペラのI実施例で、縮小
側面図、
FIG. 28 is a reduced side view of an I embodiment of the propeller used in the present invention;

【図29】図28のプロペラの正面図、29 is a front view of the propeller of FIG. 28,

【図30】図28のプロペラの背面図、FIG. 30 is a rear view of the propeller of FIG. 28,

【図31】図28のプロペラの背面斜視図で羽根の翼弦
幅最大部分の直視図、
FIG. 31 is a rear perspective view of the propeller of FIG. 28, which is a direct view of the maximum chord width portion of the blade;

【図32】図28のプロペラの立面図、32 is an elevation view of the propeller of FIG. 28,

【図33】図28のプロペラの断面a−・−a′であ
る。
FIG. 33 is a cross-section a --- a 'of the propeller of FIG.

【符号の説明】 1 飛行式の軌道車、2 車体、 3 台車、
4 駆動輪、5 大歯車、 6 小歯車、
7 駆動軸、 8 駆動モータ 9 たわみ軸継手、 10 ギアーケース、11 案内
輪、12 推進モータ、 13 モータパイロン、1
4 プロペラ、 15 穴付支持函、16 カバー支持
函、 17 連結棒、 18 空気バネ、19
パイロン台、 20 台車支持枠、 21 碍子、
22 支持アーク、23 レール、 24
案内体、 25 アーク固定体、26 固定具、2
7 ベルト、 28 底蓋、 29 トロリ
ー線、30 バーベル式空気バネ緩衝装置、 31
レール支持体、32 小歯車カバー、 33 サイド
カバー 34 軸受、 35 ブレーキ、36 ナ
ット、 37 緩衝ボルト、38 小歯車軸、3
9 クッション、40 狙撃台、 41 案内
軸、 42 絶縁体、 43 検知装置、44 レー
ル接続具、 45 パイロン歯車、 46
モータ回動軸 47 回動歯車、 48 レール台、 49 横
梁、 50 支柱、51 固定肢、 52 天
板、 53 床、 54 梁、55 ツバ歯
車、 56 コイルバネ、57 中板、 58
固着具、59 モータ支持体、 60 集電靴、、 6
1 すり板、 62 バネ板、63 丁番、
64 支え板、 65 鋲、 66 押さえ板、
67 押さえ孔、 68 ストッパー、69 風
孔、 70 標的、71 回転台、 72 回
転スタンド、 73軌道装置、74 案内
体固定具、 75 留具、 76 踏面、 77
ツバ、78 ネジ、 79 モータ軸、 8
0 固定片、 81 案内モータ、82 レール押さ
え、 83 緩衝軸受 84 ボルト孔、85 ピロ
ーブロック、86 環状固定具、 87 回転支持ケ
ース、 88 サーボモータ、89 軸受ケース、
90 案内体支持具 91 スライド溝、 92 規制
溝、93 規制突起、 94 ストッパー、 95
標識、 96 センサー、97 台車軸、
98 スライドケース、 99 くぼみ、100
枕梁枠、 101 軸孔。
[Explanation of code] 1 flight type rail car, 2 vehicle bodies, 3 bogies,
4 drive wheels, 5 large gears, 6 small gears,
7 Drive Shaft, 8 Drive Motor 9 Flexible Shaft Coupling, 10 Gear Case, 11 Guide Wheel, 12 Propulsion Motor, 13 Motor Pylon, 1
4 propellers, 15 support box with holes, 16 cover support box, 17 connecting rods, 18 air springs, 19
Pylon stand, 20 bogie support frame, 21 insulator,
22 support arcs, 23 rails, 24
Guide, 25 arc fixture, 26 fixture, 2
7 belt, 28 bottom lid, 29 trolley wire, 30 barbell type air spring shock absorber, 31
Rail support, 32 small gear cover, 33 side cover 34 bearing, 35 brake, 36 nut, 37 buffer bolt, 38 small gear shaft, 3
9 cushion, 40 sniper table, 41 guide shaft, 42 insulator, 43 detection device, 44 rail connecting tool, 45 pylon gear, 46
Motor rotation shaft 47 Rotation gear, 48 Rail base, 49 Horizontal beam, 50 Strut, 51 Fixed limb, 52 Top plate, 53 Floor, 54 Beam, 55 Hex gear, 56 Coil spring, 57 Middle plate, 58
Fasteners, 59 motor support, 60 current collecting shoes, 6
1 sliding plate, 62 spring plate, 63 hinge,
64 support plate, 65 tack, 66 press plate,
67 Pressing Holes, 68 Stoppers, 69 Air Vents, 70 Targets, 71 Rotating Stands, 72 Rotating Stands, 73 Track Devices, 74 Guide Fixtures, 75 Fasteners, 76 Treads, 77
Head, 78 screw, 79 motor shaft, 8
0 fixing piece, 81 guide motor, 82 rail retainer, 83 buffer bearing 84 bolt hole, 85 pillow block, 86 annular fixing tool, 87 rotation support case, 88 servo motor, 89 bearing case,
90 guide body support tool 91 slide groove, 92 restriction groove, 93 restriction protrusion, 94 stopper, 95
Signs, 96 sensors, 97 bogie axles,
98 slide case, 99 hollow, 100
Pillow beam frame, 101 shaft hole.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図9】 [Figure 9]

【図11】 FIG. 11

【図19】 FIG. 19

【図25】 FIG. 25

【図33】 FIG. 33

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

【図10】 [Figure 10]

【図12】 [Fig. 12]

【図20】 FIG. 20

【図32】 FIG. 32

【図6】 [Figure 6]

【図7】 [Figure 7]

【図8】 [Figure 8]

【図13】 [Fig. 13]

【図17】 FIG. 17

【図14】 FIG. 14

【図15】 FIG. 15

【図18】 FIG. 18

【図21】 FIG. 21

【図26】 FIG. 26

【図28】 FIG. 28

【図29】 FIG. 29

【図30】 FIG. 30

【図16】 FIG. 16

【図22】 FIG. 22

【図23】 FIG. 23

【図24】 FIG. 24

【図31】 FIG. 31

【図27】 FIG. 27

Claims (1)

【特許請求の範囲】 【請求項1】 断面が溝型の構築体の底部中央に一条の
レールを設けるとともに該構築体の左右の立上がり壁に
案内体を設けて成る軌道装置。 【請求項2】 断面が溝型の構築体の底部中央に一条の
レールを設けるとともに、該構築体の左右の立上がり壁
に案内体を設けて成る軌道装置と、該レールに転がる1
乃至複数の支持輪を、車両の前後方向の中央線の下方
に、設けてあり、該支持輪の1乃至全個を、車両に搭載
した原動機に連結して、駆動輪となし、該車両に設けた
左右の案内輪を該案内体で案内されて走行する軌道車。 【請求項3】 断面が溝型の構築体の底部中央に一条の
レールを設けるとともに、該構築体の左右の立上がり壁
に案内体を設けレール及び左右の案内体との間に車輛下
部のプロペラ推進装置の通過空間を構成して成る軌道装
置と、該レールに転がる1乃至複数の支持輪を、車両の
前後方向の中央線の下方に、設けてあり、該支持輪のI
乃至全個を、車両に搭載した原動機に連結して、駆動輪
となし、該車両に設けた左右の案内輪を該案内体で案内
されて走行する軌道車にプロペラ推進装置を設けて成る
飛行式の軌道車。 【請求項4】 断面が溝型の構築体が、所定間隔で配し
た多数の支柱又は基礎に固定した固定アークと、該固定
アーク上に所定範囲内の角度で一体に固定可能な、底面
がアーク状の支持アークを所要の角度で一体に固定して
あり、かつ該支持アークは上面中央に於いてはレール底
面を載置して固定可能でかつ左右上端部に於いては案内
体を取り付け可能に構成してあり、一体に固定した該支
持アーク及び固定アークでなる支持装置間には一条のレ
ール台を固定してあり、該レール台と隣合う支持装置間
と案内体とが囲む面に壁体を取り付けて構成したもので
ある請求項1乃至3の何れかに記載の軌道装置。 【請求項5】 案内体に碍子を介してトロリー線を設け
てある請求項1乃至4の何れかに記載の軌道装置。 【請求項6】 壁体が孔板又は網を主体で構成してある
請求項4記載の軌道装置。 【請求項7】 レールの両側の適宜に離れた位置にヒー
ターを取付けて成る請求項1乃至4記載の軌道装置。 【請求項8】 1乃至複数の支持輪を、車両の前後方向
の中央線の下方に、設けてあり、該支持輪の1乃至全個
を、車両に搭載した原動機に連結して、駆動輪となし、
該車輪に左右の案内輪を設けてなる軌道車にプロペラ推
進装置を設けて成る飛行式の軌道車に於いて、駆動輪の
すべりを検知してプロペラ推進力の大きさを調節する機
構を設けた加速飛行式の軌道車。 【請求項8】 左右の案内輪の軸にかかる負荷を検知し
て左右のプロペラの推力を増減する機構を設けて成る請
求項2乃至5の何れかに記載の軌道車。 【請求項9】 プロペラの推進角度を調節可能に構成し
て成る請求項3又は5記載の飛行式の軌道車。 【請求鋼10】 縦軸で設けた左右の案内輪を等速逆回
転構造となし、何れか一方の案内輪の外周を案内体に接
触せしめて走行する請求項3乃至5の何れかに記載の軌
道車。 【請求項11】 狭くなるとも所定幅は保持せしめた縦
軸の左右一対の自在回転の案内輪の左右の外側間に、弾
力装置により所定の外幅以上に弾力的に広げしめる、圧
力を加える構成にしてなる請求項2乃至5の何れかに記
載の軌道車。 【請求項12】 車両が台車と車体とから成る請求項2
乃至5の何れかに記載の軌道車。 【請求項13】 連結棒の両端部に少なくとも端部の周
辺部が球状の膨大部を具えて成るバーベル形状の連結棒
と、該膨大部を収容し、かつ所定角度内で回動自在に支
持するとともに、該連結棒を回動自在かつ滑動自在に支
持する軸受を取付けた離脱制止縁を開口部に設けた回動
支持室を有する上下の回動支持函を各1個と、該回動支
持函の双方又は一方の回動支持室の奥を適宜に深く広く
構成するとともに、前記連結棒を貫通せしめる中央孔を
有するドーナツ状の空気バネを主として構成してある車
体と台車のバーベル式空気バネ緩衝装置。 【請求項14】 台車と車体とに取り付けるバーベル式
緩衝装置を、該装置の支持棒の間隔が上方に於いて狭
く、下方に於いて広く設定して成る請求項10乃至11
記載のバーベル式空気バネ緩衝装置の傾斜設定方式。 【請求項15】 扉が、縦方向に一定の径のカーブであ
り、前後にスライダーを設けるとともに、該スライダー
の支持縁を車体の出入口用の開口部及び車体の上部に連
続して設け、かつ扉の上端に設けた案内体で一段内面の
扉収納部に格納自在に構成して成る上下段違いスライド
式アーチ扉である請求項1乃至4記載の軌道車。 【請求項16】 駆動装置が左右対称であり、駆動輪の
両側にブレーキを設けるとともに該ブレーキの外側に左
右の支持体を設け、該左右の支持体に支持される駆動軸
に軸受けを介して取り付けてあるギアボックスは支持体
に固定してあり、該ギアボックス内で囲われる駆動歯車
装置の大歯車は前記駆動軸と歯車継手で連結してあり上
方で小歯車と咬み合わされ、該小歯車はたわみ板継手を
介して原動機に連結して成る左右対称式車輪駆動制動装
置。 【請求項17】 左右対称式車輪駆動制動装置を設けて
成る請求項2乃至5記載の軌道車。 【請求項18】 両ツバ支持輪のツバに歯車を形成し、
該ツバ歯車に咬み合う小歯車を原動機で回転駆動せしめ
る両ツバ歯車車輪駆動方式。 【請求項19】 両ツバ歯車車輪駆動装置を設けて成る
請求項2乃至5記載の軌道車。 【請求項20】 小歯車をプラスチックス素材で形成し
て成る請求項18又は19記載の両ツバ歯車車輪駆動装
置。 【請求項21】 プラスチックスがナイロン系の樹脂で
ある請求項20記載の両ツバ歯車車輪駆動装置。 【請求項22】 集電子を取付けた集電用バネ板の両端
部は、アールをもたせて、約45度にまげてあり、取り
付け用の支え具を取り付けた支えバネ板は該集電バネ板
と同一形状に形成し、一対の回動自在の丁番の如き回動
具の取り付け片の各々に前記2種のバネ板の端部を固着
せしめるとともに、前記支え具を押さえ装置に着脱自在
に構成して成る耐風圧式パンタグラフ。 【請求項23】 耐風圧式パンタグラフを取り付けた請
求項2乃至5記載の軌道車。 【請求項24】 耐風圧式パンタグラフを下向きに取り
付けて成る集電靴を設けて成る軌道車。 【請求項25】 車両に標的を設けるとともに、その周
回軌道を設定し、該周回軌道より適宜の距離に設定し
た、回転台に一個乃至複数の射撃装置を設けて成る狙撃
システム。 【請求項26】 軌道と案内体と案内支持骨材及び支持
部材を組み立て及び解体自在に構成して成る単列車輪駆
動軌道車の模型セット。 【請求項27】 リモートコントロール装置を組み込ん
で成る請求項2乃至5の何れかに記載の軌道車及びその
軌道システム。
Claim: What is claimed is: 1. A track device comprising a rail having a single line at the center of the bottom of a building having a groove-shaped cross section and guides provided on the left and right rising walls of the building. 2. A track device comprising a rail having a single rail at the center of the bottom of a grooved section, and guides provided on the left and right rising walls of the structure, and a rolling device for rolling on the rail.
To a plurality of support wheels are provided below the center line in the front-rear direction of the vehicle, and one or all of the support wheels are connected to a prime mover mounted on the vehicle to form a drive wheel. A rail car that travels with the left and right guide wheels being guided by the guide bodies. 3. A propeller at the lower part of the vehicle is provided between the rail and the left and right guides by providing a single rail at the center of the bottom of the construct having a groove-shaped cross section and providing guides on the left and right rising walls of the construct. A track device forming a passage space of the propulsion device and one or a plurality of support wheels rolling on the rails are provided below the center line in the front-rear direction of the vehicle.
Or a flight in which all of them are connected to a prime mover mounted on a vehicle to form driving wheels, and a propeller propulsion device is provided on a rail car that is guided by the left and right guide wheels provided on the vehicle Type rail car. 4. A construction having a groove-shaped cross section, a fixed arc fixed to a large number of columns or foundations arranged at a predetermined interval, and a bottom surface capable of being fixed integrally on the fixed arc at an angle within a predetermined range. An arc-shaped supporting arc is integrally fixed at a required angle, and the supporting arc can be fixed by mounting the rail bottom surface at the center of the upper surface and mounting guides at the left and right upper ends. A single rail stand is fixed between the supporting arc and the supporting device that are integrally fixed and are fixed to each other. The track device according to any one of claims 1 to 3, which is configured by attaching a wall body to the. 5. The track device according to claim 1, wherein the guide body is provided with a trolley wire via an insulator. 6. The track device according to claim 4, wherein the wall body mainly comprises a perforated plate or a net. 7. The track device according to claim 1, wherein a heater is attached to both sides of the rail at appropriate positions. 8. One or a plurality of support wheels are provided below a center line in the front-rear direction of the vehicle, and one or all of the support wheels are connected to a prime mover mounted on the vehicle to provide drive wheels. And nothing,
In a flight-type railcar comprising a railcar having left and right guide wheels provided with a propeller propulsion device, a mechanism for detecting a slip of a drive wheel and adjusting a magnitude of a propeller propulsion force is provided. Accelerated flight type rail car. 8. The rail car according to claim 2, further comprising a mechanism for detecting a load applied to the shafts of the left and right guide wheels to increase or decrease the thrust of the left and right propellers. 9. The flight-type rail car according to claim 3, wherein the propeller propelling angle is adjustable. 10. The steel according to claim 3, wherein the left and right guide wheels provided on the vertical axis have a constant-velocity reverse rotation structure, and the outer periphery of one of the guide wheels is brought into contact with the guide body to travel. Rail car. 11. A pressure is applied between the left and right outer sides of a pair of left and right freely rotating guide wheels on the vertical axis that are kept to have a predetermined width even if the width becomes narrower so as to elastically expand to a predetermined outer width or more by an elastic device. The rail car according to any one of claims 2 to 5, which is configured. 12. The vehicle comprises a bogie and a vehicle body.
The rail car according to any one of 1 to 5. 13. A barbell-shaped connecting rod, which is formed at both ends of the connecting rod with an enlarged portion at least the peripheral portion of which is spherical, and which accommodates the enlarged portion and is rotatably supported within a predetermined angle. In addition, each of the upper and lower rotation support boxes has a rotation support chamber having a release stop edge provided with a bearing for rotatably and slidably supporting the connecting rod in the opening, and the rotation support box. A barbell type air for a vehicle body and a bogie, in which both or one of the supporting boxes is appropriately deeply and widely formed deep inside and a donut-shaped air spring mainly having a central hole for penetrating the connecting rod is formed. Spring shock absorber. 14. A barbell type shock absorber mounted on a carriage and a vehicle body, wherein the distance between the support rods of the device is set to be narrow at the upper side and wide at the lower side.
Inclination setting method of the barbell type air spring shock absorber described. 15. The door is a curve having a constant diameter in the vertical direction, sliders are provided in the front and rear, and support edges of the sliders are continuously provided at an opening for entrance of a vehicle body and an upper portion of the vehicle body, and The rail car according to any one of claims 1 to 4, which is a slide arch door with a different vertical step, which is configured so that it can be stored in a door storage portion having a one-step inner surface by a guide body provided at an upper end of the door. 16. The drive device is bilaterally symmetric, brakes are provided on both sides of the drive wheel, left and right support bodies are provided outside the brakes, and a drive shaft supported by the left and right support bodies is provided with bearings therebetween. The attached gearbox is fixed to a support, and the large gear of the drive gear device enclosed in the gearbox is connected to the drive shaft by a gear joint and meshes with a small gear at the upper side. A left-right symmetrical wheel drive braking device connected to a prime mover via a flexible plate joint. 17. The rail car according to claim 2, further comprising a symmetrical wheel drive braking device. 18. A gear is formed on the brim of both brim support wheels,
A double bevel gear wheel drive system in which a small gear that meshes with the flange gear is rotationally driven by a prime mover. 19. A rail car according to claim 2, further comprising a double-helix wheel drive device. 20. The double bevel gear wheel drive device according to claim 18, wherein the small gear is made of a plastic material. 21. The double bevel gear wheel drive device according to claim 20, wherein the plastic is a nylon resin. 22. Both ends of a current collecting spring plate having a current collector attached thereto are rounded and bent at about 45 degrees, and the supporting spring plate having a support member for attachment is the current collecting spring plate. With the same shape as the above, the end portions of the two types of spring plates are fixed to each of the mounting pieces of the rotating tool such as a pair of rotatable hinges, and the supporting tool is detachably attached to the holding device. Wind pressure resistant pantograph composed. 23. The rail car according to claim 2, further comprising a wind pressure resistant pantograph. 24. A rail car provided with current collecting shoes comprising a wind pressure resistant pantograph mounted downward. 25. A sniper system in which a target is provided on a vehicle, a circular orbit of the vehicle is set, and one or a plurality of shooting devices are provided on a turntable set at an appropriate distance from the circular orbit. 26. A model set of a single-row wheel-driven rail car comprising a track, a guide body, a guide support aggregate, and a support member that can be assembled and disassembled. 27. The rail car and the rail system thereof according to claim 2, which incorporates a remote control device.
JP24842593A 1993-08-30 1993-08-30 Flying type rail-car and rail device thereof Pending JPH0761346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24842593A JPH0761346A (en) 1993-08-30 1993-08-30 Flying type rail-car and rail device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24842593A JPH0761346A (en) 1993-08-30 1993-08-30 Flying type rail-car and rail device thereof

Publications (1)

Publication Number Publication Date
JPH0761346A true JPH0761346A (en) 1995-03-07

Family

ID=17177937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24842593A Pending JPH0761346A (en) 1993-08-30 1993-08-30 Flying type rail-car and rail device thereof

Country Status (1)

Country Link
JP (1) JPH0761346A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100856257B1 (en) * 2001-12-26 2008-09-03 주식회사 포스코 An apparatus for preventing the power error and communication error of moving car in curved rail
CN106994978A (en) * 2017-04-28 2017-08-01 北京机电工程研究所 A kind of ultrahigh speed pipeline train shape of low aerodynamic drag
CN107515126A (en) * 2017-09-23 2017-12-26 吉林大学 Bogie of single-rail train six degree of freedom simulation loading testing stand

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100856257B1 (en) * 2001-12-26 2008-09-03 주식회사 포스코 An apparatus for preventing the power error and communication error of moving car in curved rail
CN106994978A (en) * 2017-04-28 2017-08-01 北京机电工程研究所 A kind of ultrahigh speed pipeline train shape of low aerodynamic drag
CN106994978B (en) * 2017-04-28 2023-09-15 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) Ultra-high speed pipeline train appearance structure of low aerodynamic resistance
CN107515126A (en) * 2017-09-23 2017-12-26 吉林大学 Bogie of single-rail train six degree of freedom simulation loading testing stand
CN107515126B (en) * 2017-09-23 2024-01-16 吉林大学 Six-degree-of-freedom simulation loading test bed for bogie of monorail train

Similar Documents

Publication Publication Date Title
CN202098418U (en) Tour motor-trolley
US8371226B2 (en) Air cushion or wheeled overhead guideway system
US9120516B2 (en) Circumferential movement device
EP1363802B1 (en) Monorail system
US8015925B2 (en) Air bus transportation system
CN105035098A (en) Monorail train and monorail traffic system controllable in adhesive force
ES2623360T3 (en) Car drive vehicle
US10322729B2 (en) Terreplane transportation system
JP2004535321A5 (en)
KR102049541B1 (en) Track vehicle system with three-way rails
WO2013033974A1 (en) Suspension transport system
JP2002529301A (en) Monorail system
AU2015374229B2 (en) Terreplane transportation system
CN1876459A (en) Air cushion train
JPH0761346A (en) Flying type rail-car and rail device thereof
CN201573646U (en) Overhead soft track traffic system
JPH08282482A (en) Overhead running trolley and track device
CN201148211Y (en) Helicopter main shaft oscillation transmission mechanism
Angelo et al. A new concept of superelevation in magnetic levitation-prodynamic
CN110509946A (en) Using the suspension type monorail vehicle single-axle bogie of hub reduction gear
US6523480B1 (en) Drive system for transport system of the dual-mode type
WO2017145189A1 (en) System train air
CN1394777A (en) Gas suspension vehicle for track transportation and space launching and its special-purpose equipment
CN108297885B (en) Suspension and power structure for air-iron operation
CN218785906U (en) Self-rotating rotor flying off-road vehicle