JPH0761160A - Thermal punchable film and perforated stencil making method - Google Patents

Thermal punchable film and perforated stencil making method

Info

Publication number
JPH0761160A
JPH0761160A JP21134093A JP21134093A JPH0761160A JP H0761160 A JPH0761160 A JP H0761160A JP 21134093 A JP21134093 A JP 21134093A JP 21134093 A JP21134093 A JP 21134093A JP H0761160 A JPH0761160 A JP H0761160A
Authority
JP
Japan
Prior art keywords
film
heat
thickness
sensitive
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21134093A
Other languages
Japanese (ja)
Inventor
Toshiaki Ono
俊明 大野
Yoshimasa Kuriyama
芳真 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP21134093A priority Critical patent/JPH0761160A/en
Publication of JPH0761160A publication Critical patent/JPH0761160A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Printing Plates And Materials Therefor (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)

Abstract

PURPOSE:To simplify and reduce a cost of a stencil by forming a thermal punchable film of a biaxially oriented film made of thermoplastic resin and having a specific thickness and setting a maximum value of heating shrinkage stress, heating shrinkage factor, an elongation load and a centerline mean roughness. CONSTITUTION:A thermal punchable film is formed of a biaxially oriented film formed of thermoplastic resin and having a thickness of 4-12mum. A maximum value of a heating shrinkage stress at 45-150 deg.C is set to 300-1500g/mm<2>, a heating shrinkage factor at 150 deg.C is set at least to 30%, a 2% elongation load is set at least to 100g/cm width, and a centerline mean roughness (Ra) is set to 0.02-0.40mum. On the other hand, the film is held between a line type thermal head for generating heat to 200-500 deg.C and a platen roll for 0.01-0.5msec, and independent pores are continuously formed. In this case, a platen roll having recesses and protrusions arranged regularly is used or an endless belt having recesses and protrusions arranged regularly is held at the roll side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、印刷のランニングコス
トを低減させるのに有効な感熱穿孔性フィルムおよび前
記フィルムの穿孔製版方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-sensitive perforating film which is effective in reducing the running cost of printing, and a perforating plate-making method for the film.

【0002】[0002]

【従来の技術】従来の印刷用原紙は、厚みが2μm程度
のポリエステルフィルムやポリプロピレン系フィルム、
塩化ビニル系フィルム、塩化ビニル−塩化ビニリデン系
フィルム等の熱可塑性樹脂フィルム(以下、感熱性フィ
ルムという)と、和紙、紗等の多孔質支持体(以下、支
持体という)とをラミネートしたものが用いられてい
た。
2. Description of the Related Art A conventional base paper for printing is a polyester film or polypropylene film having a thickness of about 2 μm.
A laminate of a thermoplastic resin film such as vinyl chloride film or vinyl chloride-vinylidene chloride film (hereinafter referred to as heat sensitive film) and a porous support such as Japanese paper or gauze (hereinafter referred to as support) Was used.

【0003】感熱性フィルムの熱応答性を向上させる為
に、共重合体からなる低結晶性の樹脂を用い、薄い膜厚
のものを用いる方向にある。そのため、フィルムは腰が
無く、その対策として支持体とラミネートすることによ
って印刷機中での搬送性、印刷時の耐刷性等を持たせて
いた。
In order to improve the thermal response of the heat-sensitive film, a low crystalline resin made of a copolymer is used, and a thin film is used. Therefore, the film is not stiff, and as a countermeasure against this, the film is laminated with a support so as to have transportability in a printing machine and printing durability during printing.

【0004】[0004]

【発明が解決しようとする課題】本発明は、全自動型の
製版・印刷機にフィルムを支持体を用いずに単独でかけ
ても製版が可能で、かつ搬送系、特に着版・排版での問
題を解決した感熱穿孔フィルムを提供すること、及びフ
ィルムの製版、特に写真原稿の場合でもフィルムの縮み
が無く、良好に製版出来る穿孔製版方法を提供すること
を目的とする。
DISCLOSURE OF THE INVENTION The present invention is capable of plate-making independently by applying a film to a fully automatic plate-making / printing machine without using a support, and in a transport system, particularly in plate-receiving / plate-discharging. An object of the present invention is to provide a heat-sensitive perforated film that solves the problem, and to provide a perforated plate-making method capable of excellent plate making without film shrinkage even in the case of film making, especially in the case of photographic originals.

【0005】[0005]

【課題を解決するための手段】本発明は、熱可塑性樹脂
よりなる厚みが4〜12μmの二軸延伸フィルムであっ
て、45〜150℃における加熱収縮応力の最大値が3
00〜1500g/mm2 、150℃における加熱収縮
率が少なくとも30%、2%伸び荷重が少なくとも10
0g/cm幅、中心線平均粗さ(Ra)が0.02〜
0.40μmである感熱穿孔性フィルムである。
The present invention is a biaxially stretched film made of a thermoplastic resin and having a thickness of 4 to 12 μm, and the maximum value of the heat shrinkage stress at 45 to 150 ° C. is 3.
0 to 1500 g / mm 2 , heat shrinkage at 150 ° C. of at least 30%, 2% elongation load of at least 10
0 g / cm width, center line average roughness (Ra) is 0.02
It is a heat-sensitive perforable film having a thickness of 0.40 μm.

【0006】また、もうひとつの発明は、感熱穿孔性フ
ィルムを0.01〜0.5msecの間に200〜50
0℃に発熱するライン型サーマルヘッドとプラテンロー
ルの間に挟んで連続的に独立した穿孔を形成する穿孔製
版方法であって、規則的に配列した凹凸を有するプラテ
ンロールを用いるか、感熱穿孔性フィルムのプラテンロ
ール側に規則的凹凸を有する無端ベルトを挟むことを特
徴とする第1項記載のフィルムの穿孔製版方法である。
Another aspect of the present invention is to use a heat-sensitive perforating film in an amount of 200 to 50 for 0.01 to 0.5 msec.
A punching method for forming continuous independent holes by sandwiching between a line type thermal head that generates heat at 0 ° C and a platen roll, using a platen roll having regularly arranged irregularities, or a heat-sensitive punching property. 2. The method for perforating a film according to claim 1, wherein an endless belt having regular irregularities is sandwiched on the platen roll side of the film.

【0007】本発明のフィルムは、支持体を用いずに穿
孔製版を行う為に、フィルム厚みは従来の感熱穿孔性フ
ィルムに比べて厚い。一方、フィルムを厚くしたことで
従来では考えられなかったフィルム特性が穿孔特性上、
重要となった。本発明のフィルムの厚みは4〜12μ
m、好ましくは5〜10μmである。4μmより薄いと
製版・印刷機中での破れ、ロールへの巻付き等のトラブ
ルが発生し易い。フィルム厚みがこれより厚くなると、
穿孔時に溶融した樹脂が孔の周辺に固まり盛り上がる
が、これがインキ溜まりとなって印刷の枚数によらず濃
度が均一になる傾向がある。また印刷用紙とフィルムの
間でインキが毛細管現象によって広がり印刷物が滲むと
いう現象をも防ぐ傾向が見られた。12μmより厚い場
合には後述する加熱収縮特性を有するフィルムであって
もサーマルヘッド(以下、THという)での穿孔はかな
り困難である。例えばポリエステルフィルムを製版機に
掛けて、THを0.3msecの間に300℃まで発熱
(この条件は、市販の製版機の通常製版条件と推定され
る条件である。)させてフィルムのTHに接していない
面の温度(裏面温度と呼ぶ)を測定してみると、フィル
ム厚みが2μmで約295℃、5μmで約240℃、1
2μmでは約160℃まで低下する。この条件で穿孔製
版する為には、12μmのフィルムでは少なくとも融点
またはそれに類する温度(穿孔温度)が160℃以下で
なければならない(実用レベルにする為には更に融点を
下げなければならない)。但し、カーボン、金属粉等で
熱伝導性を向上すれば裏面温度が向上するするが、実用
レベルの添加量では50℃程度上げるのは相当困難であ
る。また、TH表面温度を上げれば裏面温度は上昇する
が、THの寿命を考えると300℃プラス100℃が限
度である(ここで、TH表面温度を100℃上げても、
フィルム裏面温度は約50℃程度しか上がらない)。上
記の様な低い温度で穿孔させる為には、低温での熱応答
性が必要となり寸法安定性の問題から好ましくない。
Since the film of the present invention is perforated plate-making without using a support, the film thickness is thicker than the conventional heat-sensitive perforating film. On the other hand, by making the film thicker, the film characteristics that could not be considered in the past are perforation characteristics,
Became important. The thickness of the film of the present invention is 4 to 12 μm.
m, preferably 5 to 10 μm. If the thickness is less than 4 μm, problems such as tearing in a plate making / printing machine and winding on a roll are likely to occur. When the film thickness becomes thicker than this,
The resin melted at the time of perforation solidifies and bulges around the holes, but this tends to become an ink reservoir and the density tends to be uniform regardless of the number of printed sheets. In addition, there was a tendency to prevent the phenomenon that the ink spreads between the printing paper and the film due to the capillary phenomenon and the printed matter bleeds. When it is thicker than 12 μm, it is quite difficult to perforate with a thermal head (hereinafter referred to as TH) even with a film having a heat shrinkage property described later. For example, a polyester film is placed on a plate making machine, and TH is exothermicly heated to 300 ° C. in 0.3 msec (this condition is assumed to be a normal plate making condition of a commercially available plate making machine) to make the film TH. When the temperature of the surface not in contact (called the back surface temperature) is measured, it is about 295 ° C. when the film thickness is 2 μm and about 240 ° C. when the film thickness is 5 μm.
At 2 μm, it drops to about 160 ° C. In order to perforate plate making under these conditions, at least a melting point or a similar temperature (perforating temperature) of a film having a thickness of 12 μm must be 160 ° C. or lower (the melting point must be further lowered to obtain a practical level). However, if the thermal conductivity is improved with carbon, metal powder or the like, the back surface temperature is improved, but it is considerably difficult to raise the temperature by about 50 ° C. at a practical level. Also, if the TH surface temperature is raised, the back surface temperature rises, but considering the life of TH, the limit is 300 ° C plus 100 ° C (here, even if the TH surface temperature is raised by 100 ° C,
The film backside temperature rises only about 50 ° C). In order to perforate at a low temperature as described above, thermal responsiveness at a low temperature is required, which is not preferable because of the problem of dimensional stability.

【0008】本発明のフィルムは二軸延伸されており、
45〜150℃における加熱収縮応力の最大値が300
〜1500g/mm2 であり、かつ150℃における加
熱収縮率が少なくとも30%である。フィルム厚みが従
来のフィルムより厚い為、更に良い熱応答性が要求され
る。熱応答性の目安として、加熱収縮応力の最大値の発
現温度が挙げらる。発現温度は低い程熱応答性が良い。
実用的には上記温度が45℃より低い場合には寸法安定
性、製版時の縮み等が発生する。また、150℃より高
い場合には熱応答性が低く、厚みが4μm以上のフィル
ムでは穿孔感度が著しく低くなる。好ましくは、50〜
130℃、より好ましくは60〜120℃である。
The film of the present invention is biaxially stretched,
The maximum value of heat shrinkage stress at 45 to 150 ° C is 300.
˜1500 g / mm 2 and a heat shrinkage at 150 ° C. of at least 30%. Since the film thickness is thicker than the conventional film, a better thermal response is required. The temperature at which the maximum value of heat shrinkage stress appears is given as a measure of thermal response. The lower the expression temperature, the better the thermal response.
Practically, when the temperature is lower than 45 ° C., dimensional stability and shrinkage during plate making occur. When it is higher than 150 ° C., the thermal response is low, and the perforation sensitivity is remarkably low in a film having a thickness of 4 μm or more. Preferably 50-
The temperature is 130 ° C, more preferably 60 to 120 ° C.

【0009】本発明にフィルムにおいて、45〜150
℃における加熱収縮応力の最大値が300〜1500g
/mm2 であることが必要であり、好ましくは350〜
1200g/mm2 、より好ましくは400〜1000
g/mm2 である。更に好ましくは、加熱収縮応力の温
度依存において、2山以上の極大値を持つものである。
但しこの場合でも、最大値は60〜120℃の温度範囲
にあるものである。加熱収縮応力の最大値が300g/
mm2 未満では熱に応答しても4〜12μmと厚いフィ
ルムでは孔を広げようとする力が小さい為に孔が有効に
広がらない。一方、1500g/mm2 を越えるとフィ
ルムの機械的強度が低下する。
In the film of the present invention, 45 to 150
Maximum value of heat shrinkage stress at 300 ℃ is 1500-1500g
/ Mm 2 is necessary, and preferably 350 to
1200 g / mm 2 , more preferably 400-1000
It is g / mm 2 . More preferably, it has a maximum value of two or more peaks in the temperature dependence of the heat shrinkage stress.
However, even in this case, the maximum value is in the temperature range of 60 to 120 ° C. Maximum heat shrinkage stress is 300g /
If the thickness is less than mm 2 , even if the film responds to heat, a thick film having a thickness of 4 to 12 μm does not effectively expand the holes because the force for expanding the holes is small. On the other hand, if it exceeds 1500 g / mm 2 , the mechanical strength of the film decreases.

【0010】更に150℃における加熱収縮率は少なく
とも30%、好ましくは35〜90%、より好ましくは
40〜80%である。30%未満では加熱収縮応力が大
きくても孔は有効に広がらない。支持体を用いずに感熱
穿孔性フィルムを製版する際に、画像の歪みや搬送系で
のトラブルを低減する為にフィルムの2%伸び荷重が重
要である。本発明のフィルムはその値が少なくとも10
0g/cm幅、好ましくは200g/cm幅以上、より
好ましくは300g/cm幅以上である。
Further, the heat shrinkage percentage at 150 ° C. is at least 30%, preferably 35 to 90%, more preferably 40 to 80%. If it is less than 30%, the pores cannot be effectively expanded even if the heat shrinkage stress is large. When plate-making a heat-sensitive perforated film without using a support, a 2% elongation load of the film is important in order to reduce image distortion and troubles in the transport system. The film of the present invention has a value of at least 10
The width is 0 g / cm width, preferably 200 g / cm width or more, and more preferably 300 g / cm width or more.

【0011】本発明のフィルムの中心線平均粗さ(R
a)は0.02〜0.40μm、好ましくは0.02〜
0.20μmである。Raが0.02より小さいと搬送
系で詰まりやロールへの巻付き等のトラブルが発生した
り、製版時THに密着する等のトラブルを発生する。R
aが増加するにつれTHとフィルムとの間に空気層が厚
くなりTHの熱が有効にフィルムに伝わる難くなる。特
に4μm以上のフィルムでは穿孔エネルギーを少しでも
有効に使用しなくてはならない。本発明者らの研究結果
では、空気層が1μmでTH表面の温度とフィルム表面
の温度には約10℃の差が生じる。ライン型のTHの場
合、各発熱対間の表面温度ばらつきは略5℃以下である
から、これを考慮するとRaは0.40以下であること
が必要である。
The center line average roughness (R
a) is 0.02-0.40 μm, preferably 0.02-
It is 0.20 μm. If Ra is less than 0.02, troubles such as clogging in the conveying system and winding around a roll may occur, and problems such as close contact with TH during plate making may occur. R
As a increases, an air layer becomes thicker between TH and the film, and it becomes difficult for the heat of TH to be effectively transferred to the film. In particular, for a film having a thickness of 4 μm or more, the perforation energy must be used effectively as much as possible. According to the results of research conducted by the present inventors, when the air layer is 1 μm, a difference of about 10 ° C. occurs between the temperature of the TH surface and the temperature of the film surface. In the case of the line type TH, the surface temperature variation between each heat generation pair is approximately 5 ° C. or less, and therefore, Ra needs to be 0.40 or less in consideration of this.

【0012】Raが上記範囲にあっても粗大突起が存在
し、最大粗さ(Rmax)が大きい場合には、その周辺
に未穿孔部分が発生し易いのでRmaxは小さい方が好
ましい。好ましくはRmaxは3μm以下、更に好まし
くは2μm以下である。上記の粗さを得る為には、無機
粒子、有機粒子等を樹脂の重合時に添加したり、フィル
ムの製造工程中で添加しても良いが、好ましくは後者で
ある。また、粘度の異なる非相溶系の樹脂をブレンドす
る方法も挙げられる。
Even when Ra is in the above range, if the large protrusions are present and the maximum roughness (Rmax) is large, unperforated portions are likely to occur around the large protrusions, so Rmax is preferably small. Rmax is preferably 3 μm or less, more preferably 2 μm or less. In order to obtain the above-mentioned roughness, inorganic particles, organic particles and the like may be added during the polymerization of the resin or during the film production process, but the latter is preferable. Also, a method of blending incompatible resins having different viscosities can be mentioned.

【0013】本発明の感熱穿孔性フィルムを構成する熱
可塑性樹脂としては、ポリエステル系樹脂、ポリアミド
系樹脂、塩化ビニル系樹脂、ポリカーボネート系樹脂、
ポリオレフィン系樹脂、塩化ビニル系樹脂等が挙げられ
る。好ましくはポリエステル系樹脂である。ポリエステ
ル系樹脂の酸成分として、例えばテレフタル酸及びその
異性体(イソフタル酸、フタル酸)、それ等の誘導体、
ナフタレンジカルボ酸又はその誘導体、アジピン酸、コ
ハク酸等の脂肪族ジカルボン酸類、それ等の誘導体より
選ばれる1種又は2種以上、アルコール成分として、例
えばエチレングリコール、その誘導体(ジエチレングリ
コール、トリエチレングリコール、ポリエチレングリコ
ール等)、アルキレングリコール類(トリメチレングリ
コール、テトラメチレングリコール、ヘキサメチレング
リコール、ネオペンチルグリコール、等)、脂肪族飽和
環状グリコール類(シクロヘキサンジオール、シクロヘ
キサンジメタノール、シクロヘキサンアルキルジオール
類等)、芳香環、例えばビスフェノール核を有するジオ
ール等を1種又は2種以上を用いて共重合したポリエス
テルである。好ましい組み合わせは、酸成分としてテレ
フタル酸(40モル%以下のイソフタル酸、フタル酸、
アジピン酸等を共重合しても良い。)。またアルコール
成分としては、エチレングリコール、ジエチレングリコ
ール、ブタンジオール、、シクロヘキサンジメタノー
ル、ネオペンチルグリコール、ビスフェノールA等を主
体とした自由な組み合わせの成分及び割合で混合した成
分を重合したものである。
As the thermoplastic resin constituting the heat-sensitive perforable film of the present invention, polyester resin, polyamide resin, vinyl chloride resin, polycarbonate resin,
Examples include polyolefin resins and vinyl chloride resins. Polyester resin is preferable. As the acid component of the polyester resin, for example, terephthalic acid and its isomers (isophthalic acid, phthalic acid), their derivatives,
One or more selected from aliphatic dicarboxylic acids such as naphthalenedicarboic acid or a derivative thereof, adipic acid and succinic acid, and a derivative thereof; as an alcohol component, for example, ethylene glycol, a derivative thereof (diethylene glycol, triethylene glycol) , Polyethylene glycol, etc.), alkylene glycols (trimethylene glycol, tetramethylene glycol, hexamethylene glycol, neopentyl glycol, etc.), saturated aliphatic cyclic glycols (cyclohexanediol, cyclohexanedimethanol, cyclohexanealkyldiols, etc.), It is a polyester obtained by copolymerizing one or more diols having an aromatic ring such as a bisphenol nucleus. A preferred combination is terephthalic acid (40 mol% or less of isophthalic acid, phthalic acid,
Adipic acid or the like may be copolymerized. ). Further, as the alcohol component, ethylene glycol, diethylene glycol, butanediol, cyclohexanedimethanol, neopentyl glycol, bisphenol A, etc. are freely polymerized, and a mixture of components is prepared by polymerization.

【0014】特に、共重合した、実質的に非晶質の樹脂
を用いた方が穿孔感度が高く好ましい。例えばポリエチ
レンテレフタレート(PET)のテレフタレート成分を
イソフタレート(IPA成分)で置換する場合には、I
PA成分は20〜80モル%程度が好ましい。また、ポ
リブチレンテレフタレート(PBT)のテレフタレート
成分をイソフタレート(IPA成分)で置換する場合に
も、IPA成分は20〜80モル%程度が好ましい。穿
孔感度の点ではイソフタレートで変性したPBTの方が
イソフタレートで変性したPETよりも高く好ましい。
In particular, it is preferable to use a copolymerized and substantially amorphous resin because the perforation sensitivity is high. For example, when the terephthalate component of polyethylene terephthalate (PET) is replaced with isophthalate (IPA component), I
The PA component is preferably about 20 to 80 mol%. Further, when the terephthalate component of polybutylene terephthalate (PBT) is replaced with isophthalate (IPA component), the IPA component is preferably about 20 to 80 mol%. In terms of perforation sensitivity, PBT modified with isophthalate is preferable because it is higher than PET modified with isophthalate.

【0015】更には、共重合する場合に融点を下げるよ
りも結晶化速度を下げて実質的に非晶質化する方が好ま
しい。後述する様に融点を下げるとガラス転移点(T
g)も下がるので寸法安定性に問題が生じる。例えば、
1、4−シクロヘキサンジメタノールでPETを変性し
ていくとガラス転移点は殆ど変化しないのに、結晶化速
度が遅くなり実質的に非晶質となる。
Further, in the case of copolymerization, it is preferable to lower the crystallization rate to substantially amorphize rather than lower the melting point. As described later, when the melting point is lowered, the glass transition point (T
Since g) also decreases, there is a problem in dimensional stability. For example,
When PET is modified with 1,4-cyclohexanedimethanol, the glass transition point hardly changes, but the crystallization rate slows down to become substantially amorphous.

【0016】また、上記樹脂に、その他のポリエステル
樹脂(例えば、上記の如く融点を下げた共重合ポリエス
テル樹脂)、ポリオレフィン(エチレン系重合体、エチ
レン−ビニルアルコール共重合体、プロピレン系重合体
等)、ポリアミド、セルロース系樹脂等の熱可塑性樹脂
を40重量%以下でブレンドしても良い。この場合、D
SC法(昇温速度10℃/分)で測定した融解ピークが
2個以上見られるものが、寸法安定性、及び孔の無秩序
拡大防止の上で好ましい。
In addition to the above resins, other polyester resins (for example, copolymerized polyester resins having a lowered melting point as described above), polyolefins (ethylene polymers, ethylene-vinyl alcohol copolymers, propylene polymers, etc.) A thermoplastic resin such as a polyamide or a cellulosic resin may be blended at 40% by weight or less. In this case, D
What has two or more melting peaks measured by the SC method (heating rate 10 ° C./min) is preferable from the viewpoint of dimensional stability and prevention of disordered expansion of pores.

【0017】樹脂にシリカ、カーボン、炭酸カルシウ
ム、マイカ、タルク等の無機粒子、スチレン系やアクリ
ル系の架橋樹脂粒子、シリコーン樹脂粒子等の樹脂粒
子、中空粒子、銅、亜鉛、チタン等の金属粉、及び顔
料、染料、帯電防止剤、界面活性剤等を溶剤攻撃の軽
減、滑り性付与、穿孔感度向上、帯電防止等の目的で添
加しても良い。
Inorganic particles such as silica, carbon, calcium carbonate, mica, talc, etc., resin, such as styrene-based or acrylic cross-linked resin particles, resin particles such as silicone resin particles, hollow particles, metal powders such as copper, zinc and titanium , And pigments, dyes, antistatic agents, surfactants and the like may be added for the purpose of reducing solvent attack, imparting slipperiness, improving perforation sensitivity, and preventing static electricity.

【0018】本発明のフィルムを得る方法としては、チ
ューブラー法、テンター法(同時二軸延伸、逐次二軸延
伸等)等が挙げられる。好ましくはフィルムを構成する
樹脂の(Tg)〜(Tg+45℃)、より好ましくは
(Tg+15℃)〜(Tg+30℃)の温度範囲、好ま
しくは4〜50倍、より好ましくは9〜35倍の面積倍
率で同時に2軸方向に延伸する方法である。また、低温
での収縮成分を有効に付与する為に、延伸をサポートす
る層(以下、補強層という)を設けて多層状で延伸する
ことが好ましい。その際の層構成は、感熱穿孔性フィル
ム層をM、補強層(多層でもよい)をBで示すと、M/
B、M/B/M、B/M/B、M/B/M/B/M・・
・・で示すことができる。Bに選択的に架橋処理を施す
と延伸のラチチュードが広がり好ましい。上記方法で延
伸したフィルムは必要により熱処理を行う。
Examples of the method for obtaining the film of the present invention include a tubular method and a tenter method (simultaneous biaxial stretching, sequential biaxial stretching, etc.). An area magnification of (Tg) to (Tg + 45 ° C.) of the resin constituting the film, more preferably (Tg + 15 ° C.) to (Tg + 30 ° C.), preferably 4 to 50 times, more preferably 9 to 35 times. It is a method of simultaneously stretching in the biaxial direction. Further, in order to effectively impart a shrinkage component at a low temperature, it is preferable to provide a layer that supports stretching (hereinafter referred to as a reinforcing layer) and perform stretching in a multi-layer form. The layer constitution at that time is M / when the heat-sensitive perforation film layer is M and the reinforcing layer (may be a multilayer) is B.
B, M / B / M, B / M / B, M / B / M / B / M ...
・ ・ Can be indicated by. When B is selectively subjected to a crosslinking treatment, the latitude of stretching is widened, which is preferable. The film stretched by the above method is heat-treated if necessary.

【0019】感熱フィルムは1層でも良いし、2層、3
層以上の多層状でも良い。その場合、少なくとも1方の
表層が本発明に記載のフィルムであることが必要であ
る。一方の層には無機系又は有機系の粒子を添加し、も
う一方の層は添加しないか、添加量を減らした層にする
とによって穿孔性能が向上する場合がある。上記フィル
ム面にTHとのスティックを防止する為に、例えば脂肪
酸アミド、界面活性剤(脂肪酸とのモノ・グリセリン・
エステル、同ジ・グリセリン・モノ・エステル、ポリオ
キシエチレンアルキルエーテル、アルキル・アルキロー
ル・アミン、等)、フッ素樹脂、シリコーンオイル(好
ましくはアルキル変性、アミノ変性、メルカプト変性、
エポキシ変性、アルコール変性等の変性シリコーンオイ
ル)等を塗布したり、前述のフィルムの製造法におい
て、別の補強層に上記物質を練り込んでおき、転写させ
る等の方法等でフィルム表面に該層を形成させても良
い。この層は、より好ましくはアミノ変性シリコーンオ
イルを構成成分とし、更に帯電防止剤や滑剤等を含む層
である。この層の量は好ましくは0.001〜0.1g
/m2 であり、この量より少ないとスティックが発生
し、多いと穿孔を阻害する。また、フィルム表面とTH
表面との間に液体が存在するとフィルム面にTHが密着
しやすく穿孔感度が上がる。
The heat-sensitive film may have one layer, two layers, or three layers.
It may have a multi-layered structure of more than one layer. In that case, it is necessary that at least one surface layer is the film described in the present invention. Perforation performance may be improved by adding inorganic or organic particles to one layer and not adding the other layer, or by reducing the addition amount. In order to prevent the film surface from sticking with TH, for example, a fatty acid amide, a surfactant (monoglycerin
Ester, di-glycerin mono-ester, polyoxyethylene alkyl ether, alkyl alkylol amine, etc.), fluororesin, silicone oil (preferably alkyl-modified, amino-modified, mercapto-modified,
Modified silicone oil such as epoxy-modified or alcohol-modified) or the like, or in the above-mentioned method for producing a film, kneading the above substance into another reinforcing layer and transferring it to the surface of the film. May be formed. This layer is more preferably a layer containing amino-modified silicone oil as a constituent component and further containing an antistatic agent, a lubricant and the like. The amount of this layer is preferably 0.001-0.1 g
/ M 2 , and if it is less than this amount, sticking occurs, and if it is more than this, perforation is hindered. Also, the film surface and TH
If a liquid is present between the surface and the surface, TH easily adheres to the film surface and the perforation sensitivity increases.

【0020】上記感熱性フィルムを穿孔製版するために
は、フィルムを0.01〜0.5mescの間に200
〜500℃に発熱するライン型サーマルヘッドとプラテ
ンロールの間に挟んで連続的に穿孔製版する。0.01
msec未満、又は500℃を越える温度で製版使用す
る場合、TH、特に発熱体と電極間に流れる電流値が高
過ぎる為にTHの寿命が短くなる。更に、感熱性フィル
ムとTHとでスティック現象が著しくなる。しかし、上
記の条件で穿孔製版しても以下の問題点がある。
In order to perforate the above-mentioned heat-sensitive film, the film is subjected to 200 to 0.01-0.5 mesc.
The plate is continuously punched by being sandwiched between a line type thermal head that generates heat at ˜500 ° C. and a platen roll. 0.01
When the plate-making is used at a temperature of less than msec or more than 500 ° C., TH, particularly the current value flowing between the heating element and the electrode is too high, and the life of TH is shortened. Further, the stick phenomenon becomes remarkable between the heat-sensitive film and TH. However, there are the following problems even when the perforation plate making is performed under the above conditions.

【0021】先ず、プラテンロールの押し圧を高くして
行くと、フィルムとTHとの間の空気層が薄くなりフィ
ルムの穿孔開始エネルギーは下がるが、孔が小さくなっ
たり、未穿孔になったりする。これは、プラテンロール
が表面が平滑なゴムロールであり、感熱性フィルムと密
着して、穿孔を妨害する為である。従って、プラテンロ
ールと感熱性フィルムは密着しない方が良い。
First, when the pressing pressure of the platen roll is increased, the air layer between the film and TH is thinned and the perforation start energy of the film is lowered, but the pores become small or become unperforated. . This is because the platen roll is a rubber roll having a smooth surface and is in close contact with the heat-sensitive film to prevent perforation. Therefore, it is preferable that the platen roll and the heat-sensitive film do not adhere to each other.

【0022】他方、写真原稿の様に穿孔部分が多いと製
版時の熱エネルギーがTHの発熱体の周辺部に蓄積され
てエネルギーを印加しなくても50〜100℃程度まで
THの周辺部の温度が上昇する。従ってTHに接触した
感熱性フィルムは収縮するので、収縮防止の為にプラテ
ンロール上で収縮を防止するか、他に収縮防止手段を設
ける必要がある。
On the other hand, if there are many perforated portions as in a photo original, the thermal energy during plate making is accumulated in the peripheral portion of the TH heating element, and even if no energy is applied, the thermal energy of the peripheral portion of the TH can be raised to about 50 to 100 ° C. The temperature rises. Therefore, since the heat-sensitive film in contact with TH shrinks, it is necessary to prevent shrinkage on the platen roll or to provide other shrinkage prevention means in order to prevent shrinkage.

【0023】これらの問題を解決するためには、規則的
凹凸を有するプラテンロールを使用するか規則的凹凸を
有する無端ベルトを挟んで穿孔製版する必要がある。凹
凸が規則的でないと画像が歪む。また、凹凸の配列が規
則的であると、フィルムの穿孔が該凸部に妨害されても
印刷物には影響が少ない。プラテンロールに規則的凹凸
を設ける場合、凸部の面積比が1〜40%であることが
好ましい。1%より小さいと、フィルムを保持する能力
が不足し、フィルムの変形、破れ、フィルムの移動によ
る穿孔不良(感度低下)等が発したり、また、孔が拡大
して隣りの孔とつながり独立孔を形成し難い傾向にあ
る。凸部の面積比が40%より大きいと、フィルムの穿
孔を阻害する傾向が大きくなり、印刷物の画像性が低下
する傾向にある。面積比はより好ましくは1〜35%、
更に好ましくは1〜30%である。
In order to solve these problems, it is necessary to use a platen roll having regular unevenness or to punch and plate an endless belt having regular unevenness. If the irregularities are not regular, the image will be distorted. Further, if the arrangement of the irregularities is regular, even if the perforations of the film are obstructed by the convex portions, the printed matter is less affected. When the platen roll is provided with regular irregularities, the area ratio of the convex portions is preferably 1 to 40%. If it is less than 1%, the ability to hold the film is insufficient, deformation and tear of the film, defective perforation (decreased sensitivity) due to the movement of the film, etc. may occur, or the holes may expand to connect with the adjacent holes and become independent holes. Tend to be difficult to form. When the area ratio of the convex portions is larger than 40%, the tendency of hindering the perforation of the film increases, and the image quality of the printed matter tends to deteriorate. The area ratio is more preferably 1 to 35%,
More preferably, it is 1 to 30%.

【0024】凸部と凹部の高低差は少なくとも15μm
であることが好ましい。15μm未満では押圧による変
形でフィルムに密着して穿孔を阻害し易くなる傾向があ
る。高低差はより好ましくは15〜500μm、更に好
ましくは25〜400μmである。凸部の上端部の形状
は特に限定しないが、独立した凸部の場合、丸形、楕円
型、瓢箪型、三角形、四角形(正方形、菱形、長方形、
等)、多角形(六角形等)等が挙げられ、又連続した凸
部の場合、、メッシュ状(直角に交差する場合、斜めに
交差する場合、何方でも良い)、波状、簾状、等が挙げ
られる。
The height difference between the convex portion and the concave portion is at least 15 μm
Is preferred. If it is less than 15 μm, it tends to adhere to the film due to deformation due to pressing and hinder perforation easily. The height difference is more preferably 15 to 500 μm, further preferably 25 to 400 μm. The shape of the upper end of the convex portion is not particularly limited, but in the case of an independent convex portion, a round shape, an elliptical shape, a gourd shape, a triangle, a quadrangle (square, rhombus, rectangle,
Etc.), polygons (hexagons, etc.), etc. In addition, in the case of continuous convex parts, mesh shape (when intersecting at a right angle, when intersecting at an angle, any one may be used), wavy shape, blind shape, etc. Is mentioned.

【0025】独立する凸部の場合には、1ケ当たりの凸
部の上端部のサイズは好ましくは1×10-4〜6.4×
10-3mm2 である。1×10-4mm2 より小さいと、
フィルムを保持する能力が不足し易い傾向にあり、6.
4×10-3mm2 より大きいとフィルムの穿孔性を阻害
する傾向にある。連続した凸部の場合には、その幅は5
〜100μmが好ましく、より好ましくは10〜80μ
mである。幅が5μmより狭いとフィルムを保持する能
力が不足する傾向にあり、100μmより広いとフィル
ムの穿孔性を阻害する傾向にある。
In the case of independent convex portions, the size of the upper end of each convex portion is preferably 1 × 10 −4 to 6.4 ×.
It is 10 -3 mm 2 . If it is smaller than 1 × 10 −4 mm 2 ,
5. The ability to hold the film tends to be insufficient, and
If it is larger than 4 × 10 −3 mm 2, the perforability of the film tends to be impaired. In case of continuous convex part, its width is 5
To 100 μm is preferable, and more preferably 10 to 80 μm.
m. If the width is narrower than 5 μm, the ability to hold the film tends to be insufficient, and if it is wider than 100 μm, the perforability of the film tends to be impaired.

【0026】プラテンロール表面に凹凸を設け無くて
も、プラテンロール側から規則的な凹凸を有する無端ベ
ルトを感熱穿孔性フィルムに重ね合わせて搬送しながら
穿孔製版する方法も有効である。無端ベルトの場合の規
則的な凹凸は、上記プラテンロールの如き凹凸を形成す
る場合と多孔質体を用いる場合がある。
Even if the platen roll surface is not provided with irregularities, it is also effective to carry out perforation plate making while conveying an endless belt having regular irregularities from the platen roll side while superposing it on the heat-sensitive perforable film and carrying it. The regular unevenness in the case of the endless belt may be formed by forming unevenness such as the platen roll or using a porous body.

【0027】多孔質体の場合、感熱穿孔性フィルムの製
版部に接する部分においてその面積に対する開孔部の面
積の割合が60〜99%、かつ開孔面積が100〜20
00μm2 /個であることがフィルムの穿孔性及び歪み
防止の上で好ましい。上記無端ベルトは強度の面から厚
みは好ましくは5μm以上、更に好ましくは10μm以
上である。
In the case of the porous body, the ratio of the area of the opening portion to the area of the heat-sensitive perforating film in contact with the plate making portion is 60 to 99%, and the opening area is 100 to 20.
The thickness of 00 μm 2 / piece is preferable from the viewpoint of the perforability of the film and prevention of distortion. From the viewpoint of strength, the endless belt preferably has a thickness of 5 μm or more, more preferably 10 μm or more.

【0028】上記プラテンロール及び無端ベルトの材質
は熱伝導率の低い材料(0.5W/m・K以下)のもの
が好ましい。ロール及び無端ベルトの製法としては、エ
ンボス法、光レジスト(ポジ、ネガ)法、エッチング
法、彫刻、等が挙げられる。画像の縮み、歪みを防止す
る為には、穿孔時にフィルムを少なくとも2方向、好ま
しくは4方向から保持することが好ましい。
The platen roll and the endless belt are preferably made of a material having a low thermal conductivity (0.5 W / m · K or less). Examples of the manufacturing method of the roll and the endless belt include an embossing method, a photoresist (positive and negative) method, an etching method, engraving, and the like. In order to prevent image shrinkage and distortion, it is preferable to hold the film in at least two directions, preferably four directions, during perforation.

【0029】保持の方法としては、感熱穿孔フィルムの
流れ方向の両端をベルトで挟持して搬送しながら穿孔製
版する方法や、感熱穿孔フィルムの流れ方向の両端に搬
送用の穴を規則的にあけ、穴に差し込むことの出来る突
起を有するベルト又はロールで搬送しながら穿孔製版す
る方法、プラテンロールの前後にニップロールを設け
て、感熱穿孔フィルムの張力を掛けながら穿孔製版する
方法等がある。
As a holding method, both ends of the heat-sensitive perforated film in the flow direction are sandwiched between belts to carry out perforation plate making, or holes for transfer are regularly formed at both ends in the flow direction of the heat-sensitive perforated film. There are a method of carrying out perforation plate making while conveying with a belt or a roll having a projection capable of being inserted into a hole, a method of providing nip rolls before and after a platen roll and carrying out perforation plate making while applying tension to the heat-sensitive perforated film.

【0030】[0030]

【実施例】本発明に用いられる測定法を以下に示す。 (1)加熱収縮応力(g/mm2 ) 縦方向、横方向に10mm幅のフィルムサンプルを切り
出し、ストレンゲージに接続されたチャックにセット
(チャック間距離:50mm)し、それを各温度に加熱
したシリコーンオイルに浸せきして、発生する応力を検
出した。この場合、測定値は浸せき後10秒以内での最
大値(極大値)をとる。10秒後でも極大を示さない場
合は10秒後の値をとる。温度が高くなると極大ピーク
が短時間で発生するので、ストレージ式のオシログラフ
又はストレージ式の記録計(例えば、日置電機製メモリ
ーハイコーダー8815)を使用し、極短時間の応力値
を正確に記録するものとする。
EXAMPLES The measuring methods used in the present invention are shown below. (1) Heat shrinkage stress (g / mm 2 ) A film sample with a width of 10 mm was cut out in the longitudinal and transverse directions, set on a chuck connected to a strain gauge (distance between chucks: 50 mm), and heated to each temperature. The resulting stress was detected by immersing it in the above silicone oil. In this case, the measured value takes the maximum value (maximum value) within 10 seconds after immersion. When the maximum is not shown even after 10 seconds, the value after 10 seconds is taken. Since the maximum peak occurs in a short time when the temperature becomes high, a storage type oscillograph or a storage type recorder (for example, Hioki Denki Memory HiCorder 8815) is used to accurately record the stress value for an extremely short period of time. It shall be.

【0031】(2)加熱収縮率(%) フィルムサンプルを50mm×50mmにカットし、1
50℃にセットした熱風循環恒温槽中に自由に収縮出来
る状態で放置し、5分後に取り出して寸法変化率を測定
する。 (3)2%伸び荷重(g/cm幅) 縦方向、横方向に10mm幅のフィルムサンプルを切り
出し、引張測定装置(チャック間:100mm)にセッ
トした。引張速度5mm/分の速度で伸長し、2%伸び
時の荷重を読んだ。
(2) Heat Shrinkage (%) A film sample was cut into 50 mm × 50 mm, and 1
It is left in a hot air circulating constant temperature bath set at 50 ° C. in a state where it can freely shrink, and after 5 minutes, it is taken out and the dimensional change rate is measured. (3) 2% elongation load (g / cm width) A film sample having a width of 10 mm was cut out in the lengthwise direction and the widthwise direction and set in a tension measuring device (between chucks: 100 mm). It was stretched at a pulling rate of 5 mm / min and the load at 2% elongation was read.

【0032】(4)中心線平均粗さ(Ra)及び最大粗
さ(Rmax) 東京精密社製サーフコム550Aを用いて測定した。測
定条件はCUTOFF=0.25mm、TRAVERS
ING LENGTH=2.5mm、速度=0.03m
m/秒、倍率=5万倍、触針先端=5μmR(ダイアモ
ンド製)で行った。測定は5回行い、最大値、最小値を
除いて3点の平均値をとった。
(4) Center Line Average Roughness (Ra) and Maximum Roughness (Rmax) It was measured using Surfcom 550A manufactured by Tokyo Seimitsu Co., Ltd. The measurement condition is CUTOFF = 0.25mm, TRAVERS
ING LENGTH = 2.5 mm, speed = 0.03 m
m / sec, magnification = 50,000 times, stylus tip = 5 μmR (made by Diamond). The measurement was performed 5 times, and the average value of 3 points was taken excluding the maximum value and the minimum value.

【0033】(5)穿孔感度(μJ/dot) アミノ変性シリコーンオイル(信越化学社製KF39
3)を50mg/m2 塗布した感熱性フィルムに150
メッシュの紗を重ね合わせて、大倉電機社製印字装置T
H−PDM(サーマルヘッドは東芝社製TPH256R
使用)で、製版エネルギー(サーマルヘッド表面温度を
パラメーターとして)を変化させながら、全ドット印字
(黒ベタ)、一点おき印字(1/2パターン)のパター
ンを製版した。製版した感熱性フィルムを理想科学社製
リソグラフRC335の印刷ドラムに単独で巻き付けて
印刷を行い、印刷物(黒ベタ部)の印刷濃度(OD)を
大日本スクリーン製造社製ハンディタイプ反射濃度計D
M−800で測定して、OD=1.0になる製版エネル
ギーを穿孔感度とし、評価は該エネルギーが80μJ/
dot未満のものを「◎」、80μJ/dot以上、9
5μJ/dot未満を「○」、95μJ/dot以上、
115μJ/dot未満「△」、115μJ/dot以
上を「×」とした。
(5) Perforation sensitivity (μJ / dot) Amino-modified silicone oil (KF39 manufactured by Shin-Etsu Chemical Co., Ltd.)
3) is applied to a heat-sensitive film coated with 50 mg / m 2 of 150
Overlapping mesh gauze, Okura Denki Co., Ltd. printing device T
H-PDM (Thermal head is TPH256R manufactured by Toshiba Corp.)
In (use), while changing the plate making energy (using the thermal head surface temperature as a parameter), a pattern of all dot printing (black solid) and every other dot printing (1/2 pattern) was made. The plate-made heat-sensitive film is independently wound around a printing drum of Risograph RC335 manufactured by Ideal Science Co., Ltd. to perform printing, and the print density (OD) of the printed matter (black solid portion) is determined by a hand-held reflection densitometer D manufactured by Dainippon Screen Mfg. Co., Ltd.
The perforation sensitivity was defined as the plate making energy at which OD = 1.0 as measured by M-800, and the evaluation was that the energy was 80 μJ /
Less than dot is "◎", 80μJ / dot or more, 9
Less than 5 μJ / dot is “○”, 95 μJ / dot or more,
Less than 115 μJ / dot was “Δ”, and 115 μJ / dot or more was “X”.

【0034】(6)搬送性 上記シリコーンオイルを50mg/m2 塗布した感熱性
フィルムを所定の紙管に巻き、リソグラフRC335に
掛けて製版・印刷を行い、搬送性を評価した。特に着版
の可否、、フィルム切れの発生、着版時の皺の発生等を
観察し、全く問題の無いものを「◎」、着版時に若干皺
が入るが問題が無いと思われるものを「○」、着版は可
能であるが、皺が入り印刷物に影響を与えそうなものを
「△」、着版も出来ないものを「×」とした。
(6) Transportability The transportability was evaluated by winding the heat-sensitive film coated with 50 mg / m 2 of the above silicone oil on a predetermined paper tube and hanging it on a lithograph RC335 for plate making and printing. In particular, by observing whether or not the printing plate can be formed, the occurrence of film breakage, the occurrence of wrinkles during printing, etc., there are no problems at all, ⊚, and those that are slightly wrinkled but do not seem to have problems. “O”, the plate can be printed, but wrinkles are likely to affect the printed matter, and “Δ” indicates that the plate cannot be printed.

【0035】(7)画像の歪み(%) 画像電子学会ファクシミリテストチャートNo.1WP
を原稿として、製版印刷を行い、印刷物と原稿のサイズ
を測定して画像の縮み率又は伸び率(%)を求めた。値
が2%未満を「◎」、2%以上5%未満を「○」、5%
以上10%未満を「△」、10%を超えるものを「×」
とした。
(7) Image distortion (%) Fax test chart No. 1 of the Institute of Image Electronics Engineers of Japan. 1 WP
The original was used as the original to perform plate-making printing, and the sizes of the printed matter and the original were measured to determine the shrinkage rate or elongation rate (%) of the image. A value of less than 2% is "◎", 2% or more and less than 5% is "○", 5%
More than 10% less than "△", more than 10% "x"
And

【0036】本実施例に用いた熱可塑性樹脂組成物を以
下に示す。 組成物1:酸成分がテレフタル酸、アルコール成分がエ
チレングリコール70モル%,1,4−シクロヘキサン
ジメタノール30モル%からなる、〔η〕=0.80、
Tg=79℃の実質的に非晶質の熱可塑性ポリエステル
樹脂。
The thermoplastic resin composition used in this example is shown below. Composition 1: Acid component is terephthalic acid, alcohol component is 70 mol% ethylene glycol, 30 mol% 1,4-cyclohexanedimethanol, [η] = 0.80,
A substantially amorphous thermoplastic polyester resin having a Tg of 79 ° C.

【0037】組成物2:イソフタレートが20モル%の
割合で共重合されたポリエチレンテレフタレート・イソ
フタレート共重合体(〔η〕=0.70、融点=215
℃、Tg=65℃) 組成物3:〔η〕=0.8、融点=255℃、Tg=7
5℃のポリエチレンテレフタレート 組成物4:イソフタレートが20モル%の割合で共重合
されたポリブチレンテレフタレート・イソフタレート共
重合体(〔η〕=1.00、融点=180℃、Tg=3
0℃) 組成物5:エチレン含量2.7重量%、MI=5.5、
融点=139℃のエチレン−プロピレン共重合体 組成物6:エチレン含量44モル%、MI=3、融点=
165℃のエチレン−ビニルアルコール共重合体
Composition 2: Polyethylene terephthalate / isophthalate copolymer ([η] = 0.70, melting point = 215) copolymerized with isophthalate in a proportion of 20 mol%.
C, Tg = 65 ° C.) Composition 3: [η] = 0.8, melting point = 255 ° C., Tg = 7
Polyethylene terephthalate at 5 ° C. Composition 4: Polybutylene terephthalate / isophthalate copolymer ([η] = 1.00, melting point = 180 ° C., Tg = 3) copolymerized with isophthalate in a proportion of 20 mol%.
0 ° C) Composition 5: Ethylene content 2.7% by weight, MI = 5.5
Ethylene-propylene copolymer having a melting point of 139 ° C. Composition 6: Ethylene content 44 mol%, MI = 3, melting point =
165 ° C ethylene-vinyl alcohol copolymer

【0038】[0038]

【実施例1及び比較例1、2】組成物1に平均径が3.
5μmのシリカを0.2%添加した樹脂組成物(A)と
補強層(B)としてエチレン−酢酸ビニル共重合体(エ
チレン含量:14重量%、MI=3.5)70重量%、
エチレン−プロピレン共重合体15重量%、エチレン−
α・オレフィン共重合エラストマー15重量%の混合組
成物にグリセリン脂肪酸エステル系の界面活性剤を2重
量%添加したものを用いて、A/B/Aの3層状態にサ
ーキュラーダイより共押出し、多段状に設けたフード内
で延伸開始温度が105℃、延伸終了温度が95℃の条
件で、縦4.5倍、横5.5倍にチューブラー同時二軸
延伸後、20℃の冷風で冷却し、折り畳み、熱処理して
引き取った。フィルムの厚みは、2μm(比較例1)、
8μm(実施例1)、15μm(比較例2)の3種類を
作製した。尚、2μmのフィルムは再度熱処理を行なっ
た。各フィルムの評価結果を表1に示した。
Example 1 and Comparative Examples 1 and 2 Composition 1 had an average diameter of 3.
Resin composition (A) containing 0.2% of 5 μm silica and 70% by weight of ethylene-vinyl acetate copolymer (ethylene content: 14% by weight, MI = 3.5) as a reinforcing layer (B),
15% by weight of ethylene-propylene copolymer, ethylene-
Using a mixed composition of 15% by weight of α / olefin copolymerized elastomer and 2% by weight of a glycerin fatty acid ester-based surfactant, coextrusion from a circular die into a three-layer state of A / B / A, and multi-stage In the hood provided in the shape of a tube, at the stretching start temperature of 105 ° C and the stretching end temperature of 95 ° C, the tube is simultaneously biaxially stretched to 4.5 times the length and 5.5 times the width, and then cooled with 20 ° C cold air. Then, it was folded, heat-treated and collected. The thickness of the film is 2 μm (Comparative Example 1),
Three types of 8 μm (Example 1) and 15 μm (Comparative Example 2) were prepared. The 2 μm film was heat-treated again. The evaluation results of each film are shown in Table 1.

【0039】比較例1の場合、フィルム厚みが2μmと
薄いので加熱収縮応力の最大値(ORS)が小さくても
穿孔感度は高いが、搬送性に問題がある。比較例2は、
15μmと厚く、穿孔感度が劣り、115mJ/dot
のエネルギーでも殆ど穿孔していなかった。
In Comparative Example 1, since the film thickness is as thin as 2 μm, the perforation sensitivity is high even if the maximum value of the heat shrinkage stress (ORS) is small, but there is a problem in transportability. Comparative Example 2
15μm thick, poor perforation sensitivity, 115mJ / dot
Almost no energy was pierced.

【0040】[0040]

【実施例2及び比較例3、4】実施例1において、樹脂
組成物(A)の代わりに組成物1を95重量%と組成物
6を5重量%ブレンドした樹脂組成物を用いたもの(実
施例2)、組成物1に平均径8μmのシリカを2%添加
したもの(比較例3)、組成物1をそのまま用いたもの
(比較例4)を実施例1と同様に製膜した(厚みは8μ
m)。
Example 2 and Comparative Examples 3 and 4 In Example 1, a resin composition obtained by blending 95% by weight of Composition 1 and 5% by weight of Composition 6 was used in place of the resin composition (A) ( Example 2), a composition 1 containing 2% of silica having an average diameter of 8 μm (Comparative Example 3) and a composition 1 using as it is (Comparative Example 4) were formed into films in the same manner as in Example 1 ( Thickness is 8μ
m).

【0041】各フィルムの評価を表1に示す。比較例3
はRaが大きい為に、THとフィルムとの間の空気層が
厚くなり穿孔感度が劣り、比較例4はRaが小さく印刷
機中での滑りが悪く、着版出来なかった。
The evaluation of each film is shown in Table 1. Comparative Example 3
In Comparative Example 4, since the Ra was large, the air layer between the TH and the film was thick and the perforation sensitivity was poor, and in Comparative Example 4, Ra was small and slippage in the printing machine was poor, and the plate could not be deposited.

【0042】[0042]

【実施例3〜5及び比較例5〜7】実施例1において、
延伸温度を120℃にした場合(比較例5)、樹脂組成
物(A)の代わりに組成物2に真球状シリカ(球径1μ
m、単分散)を0.3%添加したものを用いた場合(実
施例3)、組成物3を95重量%と組成物6を5重量%
ブレンドしたものを用いた場合(実施例4)、組成物1
を50重量%と組成物4を50重量%をブレンドし更に
真球状シリコーン樹脂(球径1μm、単分散)を0.3
%添加したものを用いた場合(実施例5)、組成物3に
真球状シリカ(球径3μm、単分散)を0.3%添加し
たものを用いた場合(比較例6)について、製膜し評価
を行った。評価結果は表1に示した。
[Examples 3 to 5 and Comparative Examples 5 to 7] In Example 1,
When the stretching temperature was 120 ° C. (Comparative Example 5), spherical spherical silica (spherical diameter 1 μm) was added to the composition 2 instead of the resin composition (A).
m, monodisperse) of 0.3% was used (Example 3), 95% by weight of composition 3 and 5% by weight of composition 6 were used.
Composition 1 when blended (Example 4)
50% by weight of the composition 4 and 50% by weight of the composition 4 and 0.3% of a spherical silicone resin (spherical diameter 1 μm, monodisperse).
% Was used (Example 5), and 0.3% of spherical silica (sphere diameter 3 μm, monodisperse) was added to the composition 3 (Comparative Example 6). And evaluated. The evaluation results are shown in Table 1.

【0043】実施例のものは全て穿孔感度、搬送性に優
れており、中でも実施例4に示したフィルムが優れてい
た。比較例5は、加熱収縮応力が小さい為に穿孔感度が
劣る。又、比較例6は、加熱収縮率が小さく、加熱収縮
応力が大きくとも穿孔感度が劣る。次に、組成物7に平
均径3.5μmのシリカを0.2%添加した樹脂組成物
を延伸温度60℃で縦3倍、横3倍にチューブラー延伸
して厚みが15μmのフィルムを得た(比較例7)。該
フィルムを評価したところ、2%の伸び荷重が70g/
cm幅と小さく、15μmと厚みが厚いにも係わらず搬
送性が劣った。
All of the examples were excellent in perforation sensitivity and transportability, and among them, the film shown in Example 4 was excellent. In Comparative Example 5, since the heat shrinkage stress is small, the perforation sensitivity is poor. Further, in Comparative Example 6, the heat shrinkage rate is small, and even if the heat shrinkage stress is large, the perforation sensitivity is poor. Next, a resin composition obtained by adding 0.2% of silica having an average diameter of 3.5 μm to the composition 7 was stretched at a stretching temperature of 60 ° C. by tubular stretching 3 times in length and 3 times in width to obtain a film having a thickness of 15 μm. (Comparative example 7). When the film was evaluated, an elongation load of 2% was 70 g /
Although the width was as small as cm, and the thickness was as thick as 15 μm, the transportability was poor.

【0044】[0044]

【実施例6】THへの印加電圧及び印加時間(パルス
幅)を自由に変更出来る製版・印刷機を作製した(TH
は東芝社製TPH256Rを使用)。プラテンロール
は、ロールの表面に150メッシュ、線幅30μm、高
さ50μmの凸部を形成させたゴムロールを用いた。
[Embodiment 6] A plate making / printing machine in which the applied voltage and the applied time (pulse width) to TH can be freely changed was manufactured (TH
Is TPH256R manufactured by Toshiba Corp.). As the platen roll, a rubber roll having 150 mesh, a line width of 30 μm and a height of 50 μm formed on the surface of the roll was used.

【0045】実施例1のフィルムを本試作機に掛けて、
印加電圧18V、パルス時間0.45msec、発熱温
度380℃で製版を行った。 画像電子学会ファクシミ
リテストチャートNo.1WPを原稿として、写真モー
ドで画像処理を行った。印刷ドラムへの巻き付ける際
に、若干皺が入ったが印刷物は鮮明であった。ここで、
印刷ドラムに巻き付ける際にテンションを若干上げると
皺は入り難い傾向にあった。又、画像の歪みは「○」で
あった。
By mounting the film of Example 1 on this prototype,
Plate making was performed at an applied voltage of 18 V, a pulse time of 0.45 msec, and a heat generation temperature of 380 ° C. Facsimile test chart No. Image processing was performed in the photo mode using 1WP as a document. When it was wound around the printing drum, it had some wrinkles, but the printed matter was clear. here,
Wrinkles tended to be difficult to enter when the tension was increased a little when wound around the printing drum. Moreover, the distortion of the image was “◯”.

【0046】又、表面に凸部を設けていない従来のプラ
テンロールを用いて上記テストを行うとフィルムの穿孔
が阻害され、画像は不鮮明であった。更に、製版時の熱
による収縮を抑える機構として、製版・印刷機の製版機
中でのフィルム搬送手段をフィルムの両端をベルトで挟
んで搬送する手段にしたところ、印刷画像の歪みは殆ど
なく「◎」であった。
Further, when the above test was carried out using a conventional platen roll having no convex portion on the surface, perforation of the film was obstructed and the image was unclear. Further, as a mechanism for suppressing shrinkage due to heat during plate making, when the film carrying means in the plate making machine of the plate making / printing machine is a means for carrying by sandwiching the both ends of the film with belts, there is almost no distortion of the printed image. ◎ ”.

【0047】[0047]

【実施例7〜9及び比較例8】プラテンロールの表面に
メッシュの格子点に表2に示す凸部を形成したものを用
いて、同様に製版・印刷を行った。実施例のものは全
て、印刷物は鮮明であり、画像の歪みも「○」であっ
た。比較例8凸部高さが小さい為に、穿孔を阻害し画像
が劣った印刷物しか得られなかった。
Examples 7 to 9 and Comparative Example 8 Platemaking and printing were carried out in the same manner by using platen rolls having mesh surface convex portions shown in Table 2 formed on the surface thereof. In all of the examples, the printed matter was clear, and the image distortion was also “◯”. Comparative Example 8 Due to the small height of the convex portion, only printed matter having an inferior image was obtained by inhibiting perforation.

【0048】[0048]

【実施例10】製版手段中に、無端ベルト状にした15
0メッシュのポリエステル製紗を、感熱性フィルムの繰
り出し工程でフィルムと重ね合わせてTHと従来のプラ
テンロールとの間を通り、その後再びフィルムの繰り出
し工程に戻る装置を設けた。無端ベルトの走行速度は感
熱性フィルムの繰り出し速度と同調させた。
[Embodiment 10] An endless belt was formed in the plate making means.
A device was provided in which a 0-mesh polyester mesh was superposed on the film in the feeding process of the heat-sensitive film, passed between the TH and the conventional platen roll, and then returned to the feeding process of the film again. The running speed of the endless belt was synchronized with the feeding speed of the heat-sensitive film.

【0049】上記の装置に実施例1のフィルムを掛けて
製版・印刷を行ったところ、鮮明な印刷部が得られ、又
画像の歪みも「◎」であった。
When the film of Example 1 was applied to the above apparatus and plate making / printing was carried out, a clear printed portion was obtained and the distortion of the image was also “⊚”.

【0050】[0050]

【実施例11〜13及び比較例9】表3に示す凸部を形
成したポリウレタン製の無端ベルトを実施例10の無端
ベルトに代えて、製版・印刷を行った。実施例のものは
すべて、印刷物は鮮明であり、画像の歪みも「◎」であ
った。比較例9は凸部高さが小さい為に、穿孔を阻害し
画像が劣った印刷物しか得られなかった。
[Examples 11 to 13 and Comparative Example 9] Plate-making / printing was carried out by replacing the polyurethane endless belt having convex portions shown in Table 3 with the endless belt of Example 10. In all of the examples, the printed matter was clear and the image distortion was also "A". Since the height of the convex portion was small in Comparative Example 9, only printed matter having an image inferior was obtained by inhibiting perforation.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【表3】 [Table 3]

【0054】[0054]

【発明の効果】本発明のフィルムは和紙等の多孔質支持
体を用いなくても製版機に掛けられるので、マスターコ
ストを大幅に削減でき、かつ和紙の繊維目による白抜け
が発生しないので鮮明な印刷物が得られる。また、本発
明のフィルムと本発明の穿孔製版方法を組み合わせる
と、写真原稿の様な穿孔部分が多い画像でも印刷画像が
縮む事がなく、又孔同士が繋がらないので解像度が高
く、鮮明ない印刷物が得られる。
Since the film of the present invention can be applied to a plate making machine without using a porous support such as Japanese paper, the master cost can be significantly reduced, and white spots due to the fiber grain of Japanese paper do not occur. A printed matter can be obtained. Further, when the film of the present invention and the perforation plate making method of the present invention are combined, the printed image does not shrink even in an image with many perforated portions such as a photographic original, and since the holes are not connected to each other, the resolution is high and the printed matter is not clear. Is obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂よりなる厚みが4〜12μ
mの二軸延伸フィルムであって、45〜150℃におけ
る加熱収縮応力の最大値が300〜1500g/m
2 、150℃における加熱収縮率が少なくとも30
%、2%伸び荷重が少なくとも100g/cm幅、中心
線平均粗さ(Ra)が0.02〜0.40μmである感
熱穿孔性フィルム。
1. The thickness of the thermoplastic resin is 4 to 12 μm.
m biaxially stretched film having a maximum value of heat shrinkage stress at 45 to 150 ° C. of 300 to 1500 g / m.
m 2 , heat shrinkage at 150 ° C. of at least 30
%, 2% elongation load is at least 100 g / cm width, and center line average roughness (Ra) is 0.02 to 0.40 μm.
【請求項2】 感熱穿孔性フィルムを0.01〜0.5
msecの間に200〜500℃に発熱するライン型サ
ーマルヘッドとプラテンロールの間に挟んで連続的に独
立した穿孔を形成する穿孔製版方法であって、規則的に
配列した凹凸を有するプラテンロールを用いるか、感熱
穿孔性フィルムのプラテンロール側に規則的凹凸を有す
る無端ベルトを挟む事を特徴とする第1項記載のフィル
ムの穿孔製版方法。
2. A heat-sensitive pierceable film having a thickness of 0.01 to 0.5.
A perforation plate making method for forming continuous independent perforations by sandwiching between a line type thermal head and a platen roll which generate heat at 200 to 500 ° C. for msec. The method of perforating a film according to claim 1, wherein the endless belt having regular unevenness is sandwiched between the platen roll side of the heat-sensitive perforating film.
JP21134093A 1993-08-26 1993-08-26 Thermal punchable film and perforated stencil making method Withdrawn JPH0761160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21134093A JPH0761160A (en) 1993-08-26 1993-08-26 Thermal punchable film and perforated stencil making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21134093A JPH0761160A (en) 1993-08-26 1993-08-26 Thermal punchable film and perforated stencil making method

Publications (1)

Publication Number Publication Date
JPH0761160A true JPH0761160A (en) 1995-03-07

Family

ID=16604347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21134093A Withdrawn JPH0761160A (en) 1993-08-26 1993-08-26 Thermal punchable film and perforated stencil making method

Country Status (1)

Country Link
JP (1) JPH0761160A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207442A (en) * 2007-02-26 2008-09-11 Mitsubishi Plastics Ind Ltd Polyester film for paperless thermosensitive stencil printing base paper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207442A (en) * 2007-02-26 2008-09-11 Mitsubishi Plastics Ind Ltd Polyester film for paperless thermosensitive stencil printing base paper

Similar Documents

Publication Publication Date Title
US5085933A (en) Film for use as thermosensitive stencil printing cardboard sheet
JPH0761160A (en) Thermal punchable film and perforated stencil making method
KR20010032154A (en) Biaxially oriented polyester film for use as stencil paper for thermal stencil printing
JPH0768964A (en) Thermal perforative film and base paper for thermal stencil printing used therewith
JPH0780364B2 (en) Heat-sensitive stencil plate
KR100579878B1 (en) The thermal plate printing paper and its manufacturing method
JP3581617B2 (en) Film for heat sensitive stencil printing base paper
JPH08309954A (en) Thermal stencil engraving method
JP3830791B2 (en) Polyester film for heat sensitive stencil printing paper
JP3830792B2 (en) Polyester film for heat sensitive stencil printing paper
JPH0645270B2 (en) Heat-sensitive perforated stencil printing base paper
JP3499950B2 (en) Film for paperless thermosensitive stencil printing base paper
KR101095516B1 (en) Highly resolvable thermal original sheet for stencil printing
JP2000071638A (en) Thermosensitive stencil base sheet
JPH11348449A (en) Polyester film for thermosensitive stencil printing base sheet
JPH08332786A (en) Thermal stencil printing base sheet
JPH05270162A (en) Thermal film and stencil paper using same
JP3952595B2 (en) High sensitivity heat sensitive stencil film
JP3409088B2 (en) Heat-sensitive stencil making method
JPH0645272B2 (en) High-sensitivity heat-sensitive platemaking paper and method for producing
JPH08207463A (en) Heat-sensitive screen process master
JP4045518B2 (en) Film for heat-sensitive stencil printing base paper and base paper using the same
JPH05147368A (en) Film for thermal stencil printing sheet
JPH05185763A (en) Film for thermal stencil printing base paper
JPH0872430A (en) Thermal perforable sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031