JPH0760660B2 - Electron beam equipment - Google Patents

Electron beam equipment

Info

Publication number
JPH0760660B2
JPH0760660B2 JP60280919A JP28091985A JPH0760660B2 JP H0760660 B2 JPH0760660 B2 JP H0760660B2 JP 60280919 A JP60280919 A JP 60280919A JP 28091985 A JP28091985 A JP 28091985A JP H0760660 B2 JPH0760660 B2 JP H0760660B2
Authority
JP
Japan
Prior art keywords
electron beam
electron
intensity distribution
deflection
electron source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60280919A
Other languages
Japanese (ja)
Other versions
JPS62140347A (en
Inventor
照雄 岩崎
徳郎 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60280919A priority Critical patent/JPH0760660B2/en
Publication of JPS62140347A publication Critical patent/JPS62140347A/en
Publication of JPH0760660B2 publication Critical patent/JPH0760660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電子線描画装置の如き電子線装置に係り、電子
ビーム発生用陰極の交換時や、装置のオーバーホール後
の立ち上げの際に必要となる電子銃の調整を能率良く、
簡便に行うことのできる電子線装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron beam apparatus such as an electron beam drawing apparatus, which is required when exchanging a cathode for generating an electron beam and when starting up the apparatus after overhaul. Efficiently adjust the electron gun
The present invention relates to an electron beam apparatus that can be easily performed.

〔発明の背景〕[Background of the Invention]

最近注目を集めている電子線描画装置の如き電子線装置
に於ては、装置のオーバーホールや電子銃陰極の交換と
いつた定期的な保守作業が不可欠となつている。これら
の保守作業に伴い、所定の電子ビーム強度を再現させる
には、電子ビーム通路の途中数個所に配設した蛍光板、
あるいは任意の試料面に照射された電子ビームによる反
射電子像の観察といつた煩雑な光軸調整操作が必要とな
る。とりわけ、面積ビームを用いる描画装置において
は、矩形断面(約100μm)を有する絞り全体を一様
にカバーし、かつ、最大電子ビーム強度が得られるよう
に電子銃部を調整する必要がある。従来、これらの操作
は熟練した技術者に限られており、また長い鏡筒を持つ
描画装置においては、特に、その経験と勘に頼るところ
が大であつた。従つて、電子銃調整を簡便化し、能率的
に行える調整方法が切望されていた。
In an electron beam apparatus such as an electron beam drawing apparatus, which has recently been attracting attention, it is indispensable to overhaul the apparatus, replace the electron gun cathode, and perform regular maintenance work. With these maintenance work, in order to reproduce a predetermined electron beam intensity, a fluorescent plate arranged at several places in the electron beam passage,
Alternatively, observation of a backscattered electron image by an electron beam irradiated on an arbitrary sample surface and complicated optical axis adjustment operation are required. Particularly, in a drawing apparatus using an area beam, it is necessary to uniformly cover the entire diaphragm having a rectangular cross section (about 100 μm ) and adjust the electron gun unit so that the maximum electron beam intensity can be obtained. Conventionally, these operations are limited to skilled engineers, and in the case of a drawing apparatus having a long lens barrel, the experience and intuition have been a major factor. Therefore, an adjustment method that simplifies the adjustment of the electron gun and can perform it efficiently has been desired.

他方、電子銃陰極の交換後などにおける調整方法として
特開昭56−6363号公報に開示の方法があるが、一般に広
い放射角分布の電子銃陰極を用いる面積ビーム型描画装
置では最大ビーム強度の得られる電子銃位置を広い二次
元の電子ビーム放射領域内から見い出さなければなら
ず、この点に関しての改善は不充分であつた。
On the other hand, there is a method disclosed in Japanese Patent Application Laid-Open No. 56-6363 as an adjusting method after replacement of the electron gun cathode, but generally, in the area beam type drawing apparatus using the electron gun cathode having a wide radiation angle distribution, the maximum beam intensity The position of the obtained electron gun has to be found within a wide two-dimensional electron beam emission region, and the improvement in this respect has been insufficient.

〔発明の目的〕[Object of the Invention]

本発明は上記した従来の欠点を補うことを目的とするも
のであり、より簡便な電子銃の調整が行える電子線装置
を提供することにある。
The present invention is intended to compensate for the above-mentioned conventional drawbacks, and an object of the present invention is to provide an electron beam apparatus capable of more easily adjusting an electron gun.

〔発明の概要〕[Outline of Invention]

本発明は、主として矩形断面を持つた面積ビーム型の電
子線描画装置への応用に係り、該矩形の根源となる矩形
状絞り全体を常に均一に照射し、かつ最大電子ビーム強
度を安定に維持することを可能ならしめるものである。
The present invention mainly relates to application to an area beam type electron beam drawing apparatus having a rectangular cross section, and always irradiates the entire rectangular diaphragm that is the root of the rectangle uniformly and maintains the maximum electron beam intensity stably. It is what makes it possible to do.

本発明の目的を達成するために、本発明では、電子銃部
と、そこから発生される電子ビームの通路上に設けた制
限絞りと、該制限絞り上で上記電子ビームを広範囲なX
−Y平面に偏向走査させるための偏向手段と、該絞りの
開口部を貫通した電子ビームの強度を計測するための検
出器、および該検出信号を計算機を通して上記偏向部へ
供給するための制御手段を備えており、上記電子ビーム
の一連の偏向走査から見い出された最大電子ビーム強度
に対応する偏向走査位置を検出信号に基づく制御手段に
より前記偏向手段へフイードバツクして、最大電子ビー
ム強度を安定に維持させるものである。
In order to achieve the object of the present invention, in the present invention, an electron gun section, a limiting diaphragm provided on a path of an electron beam generated from the electron gun section, and a wide range of X-rays of the electron beam on the limiting diaphragm.
-Deflection means for deflecting and scanning the Y plane, a detector for measuring the intensity of the electron beam penetrating the aperture of the diaphragm, and control means for supplying the detection signal to the deflection section through a computer. The deflection scanning position corresponding to the maximum electron beam intensity found from a series of deflection scanning of the electron beam is fed back to the deflection means by the control means based on the detection signal to stabilize the maximum electron beam intensity. It is something to maintain.

〔発明の実施例〕Example of Invention

以下に、本発明を実施例に基づいて詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples.

第1図において、1は電子銃陰極、2はウエーネルト電
極、3は陽極である。この陰極1は予め最適な温度に加
熱されており(LaB6陰極の場合、約1500℃),ウエーネ
ルト電極2との間に図示していないバイアス電源によつ
てバイアス電圧が印加される。一方、上記陰極1と陽極
3との間には数10kVの加速電圧が印加されることによ
り、該陰極1の表面から電子ビーム4が図の方向に放射
される。この電子ビーム4は陰極1の形状に特有な放射
角度(拡がり)2θを持つており、偏向器13により、絞
り5上の任意のX−Y平面領域を偏向走査できる。一般
に、矩形断面を有する面積ビームの描画装置では、図中
の矩形絞り14の穴全体を一様に照射するため、より大き
なθの陰極が望ましい。さて、つづいて偏向器13には、
計算機9→インターフエイス10→D/A変換器11→増幅器1
2を介して、電子ビーム4を広範囲なX,Y方向に偏向する
ための制御電流Ix,Iyがそれぞれ独立に供給される。さ
らに電子ビーム4は、その通路上に設けられた制限絞り
5の開口部分を通過した場合にだけ、検出器6に到達す
ることができる。該検出信号は、増幅器7→A/D変換器
8→インターフエイス10を経由して、計算機9のメモリ
に先の偏向量Ix,Iyと対応させながら記憶される。つい
でながら、該検出器6は必要に応じて図示の矢印方向
(x方向)に出し入れ動作が可能となつており、その直
下に配設された矩形状絞り14にもビーム照射ができるよ
うになつている。
In FIG. 1, 1 is an electron gun cathode, 2 is a Wehnelt electrode, and 3 is an anode. The cathode 1 is heated to an optimum temperature in advance (about 1500 ° C. in the case of LaB 6 cathode), and a bias voltage is applied between the cathode 1 and the Wehnelt electrode 2 by a bias power source (not shown). On the other hand, when an acceleration voltage of several tens of kV is applied between the cathode 1 and the anode 3, the electron beam 4 is emitted from the surface of the cathode 1 in the direction shown in the figure. The electron beam 4 has a radiation angle (divergence) 2θ peculiar to the shape of the cathode 1, and the deflector 13 can deflect and scan an arbitrary XY plane area on the diaphragm 5. Generally, in an area beam drawing apparatus having a rectangular cross section, a cathode with a larger θ is desirable because it uniformly illuminates the entire hole of the rectangular diaphragm 14 in the figure. Now then, in the deflector 13,
Computer 9 → Interface 10 → D / A converter 11 → Amplifier 1
Control currents I x and I y for deflecting the electron beam 4 in a wide range of X and Y directions are independently supplied via 2. Furthermore, the electron beam 4 can reach the detector 6 only when it passes through the opening of the limiting diaphragm 5 provided on its path. The detection signal is stored in the memory of the computer 9 via the amplifier 7 → A / D converter 8 → interface 10 in association with the deflection amounts I x and I y . Incidentally, the detector 6 can be moved in and out in the direction of the arrow (x direction) shown in the drawing as required, and the rectangular diaphragm 14 arranged directly below the detector 6 can also be irradiated with a beam. ing.

第2図には、前記偏向器13によるX,Y方向の各制御電流I
x,Iyに対して計測された電子ビーム強度(ビーム電流
IB)の二次元分布を模式図で表わした。即ち、Ix,Iy
偏向走査領域Aを任意の間隔で分割後、たとえばX側の
P0からPxへステツプ移動しながらIBを順次検出器6で計
測していく。次に、PxからY方向に1ステツプ移動後、
同様にしてPXからP0へもどる方向にIBを再び計測する。
この様なジグザグの偏向走査の繰り返しにより、任意領
域A内の第2図の分布を求める(実際には、Ix,Iyの二
次元平面で計測したIB値を記録すれば良い)。分布図中
に複数のピーク点(IB0′,IB1等)が存在する場合もあ
るが、その原因は主として陰極に対する加熱不足に起因
している。この場合には、加熱条件の追加により図中の
不要なピーク点IB1(<IB0′)を消滅させ、唯一のピー
ク点IB0(>IB0′:これは陰極の温度が若干上がるた
め、IBも増加することによる)だけが得られるように加
熱条件などを設定し直せばよい。
FIG. 2 shows each control current I in the X and Y directions by the deflector 13.
Measured electron beam intensity (beam current for x , I y
The two-dimensional distribution of the I B) expressed by the schematic diagram. That is, after the deflection scanning area A of I x and I y is divided at arbitrary intervals, for example, on the X side.
While moving from P 0 to P x , I B is sequentially measured by the detector 6. Next, after moving one step in the Y direction from P x ,
Similarly, I B is measured again in the direction of returning from P X to P 0 .
By repeating such zigzag deflection scanning, the distribution shown in FIG. 2 in the arbitrary region A is obtained (actually, the I B value measured on the two-dimensional plane of I x and I y may be recorded). There may be multiple peak points (I B0 ′, I B1, etc.) in the distribution map, but the cause is mainly due to insufficient heating of the cathode. In this case, the unnecessary peak point I B1 (<I B0 ′) in the figure disappears due to the addition of heating conditions, and the only peak point I B0 (> I B0 ′: This is because the cathode temperature rises slightly. , I B is also increased) so that the heating conditions and the like can be set again.

そこでオペレーターは第1図の計算機9に指令を与え、
最大点IB0に対応する制御電流Ix0,IY0を該計算機9のメ
モリから、第1図中のD/A変換器11等の経路を介して偏
向器13へ供給してやればよい。このIx0,IY0は、変更の
指示がない限り、必要な時間だけ安定に保持される。上
記一連の走査は、数分間で、すべて自動的にできる。
The operator then gives a command to the computer 9 in FIG.
The control currents I x0 and I Y0 corresponding to the maximum point I B0 may be supplied from the memory of the computer 9 to the deflector 13 via the path such as the D / A converter 11 in FIG. These I x0 and I Y0 are stably held for a necessary time unless there is a change instruction. The above series of scans can all be automatically performed within a few minutes.

この様な偏向器13の二次元偏向走査は、点状ビームの描
画装置に比べ、広い放射角分布の陰極を利用する面積ビ
ームの装置においては、最大電流密度の設定に大変有効
である。
Such two-dimensional deflection scanning of the deflector 13 is very effective in setting the maximum current density in an area beam device that uses a cathode having a wider emission angle distribution than in a dot beam writing device.

さらに、面積ビームを利用する描画装置では、所定の大
きさを持つた矩形絞り全体を均一な電流密度で照射すべ
き制約がある。それは第2図において、たとえば、最大
ピーク点IB0の95%に相当する電流密度を有する部分がI
x−Iy平面上に投影放射される領域Rを意味する。この
領域Rの大きさは、第1図の計算機9の近傍にグラフイ
ツク機能を持つ表示装置を接続すれば目視観察すること
も容易である。
Further, in the drawing apparatus using the area beam, there is a restriction that the entire rectangular diaphragm having a predetermined size should be irradiated with a uniform current density. That is, in FIG. 2, for example, a portion having a current density corresponding to 95% of the maximum peak point I B0 is I
means a region R which is projected radiation onto x -I y plane. The size of the region R can be easily visually observed by connecting a display device having a graphics function in the vicinity of the computer 9 shown in FIG.

〔発明の効果〕〔The invention's effect〕

以上説明した様に、本発明によれば、広い放射角分布の
中から最大ビーム強度の点を、従来の数時間に比べ、数
分間で見い出すことができる。従つて、電子銃の調整に
汎用性が増し、装置の稼動率向上に大きな貢献ができ
る。また、本発明の計測機能を、電子銃陰極の消耗に伴
う診断機能として用いれば、最大ビーム強度点の平面的
位置変動を監視することも可能である。
As described above, according to the present invention, it is possible to find the point of maximum beam intensity from a wide radiation angle distribution within a few minutes as compared with the conventional several hours. Therefore, the versatility of the adjustment of the electron gun is increased, which can greatly contribute to the improvement of the operation rate of the device. Further, if the measuring function of the present invention is used as a diagnostic function associated with exhaustion of the electron gun cathode, it is also possible to monitor the planar position variation of the maximum beam intensity point.

また、本発明では主として面積ビーム型の描画装置を例
にとつて説明したが、点状ビームの描画装置や、その他
の類似した電子線装置にも適用ができる。
Further, in the present invention, the area beam type writing apparatus has been mainly described as an example, but the present invention can be applied to a point beam writing apparatus and other similar electron beam apparatuses.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の動作原理を説明する図、第2図は電子
銃陰極の放射角分布に基づいて検出されたビーム電流の
二次元分布の一例を示す図である。 1……電子銃陰極、2……ウエーネルト電極、3……陽
極、4……電子ビーム、5……制限絞り、6……検出
器、7,12……増幅器、8……A/D変換器、9……計算
機、10……インターフエイス、11……D/A変換器、13…
…偏向器、14……矩形状絞り。
FIG. 1 is a diagram for explaining the operation principle of the present invention, and FIG. 2 is a diagram showing an example of a two-dimensional distribution of beam current detected based on the radiation angle distribution of the electron gun cathode. 1 ... Electron gun cathode, 2 ... Wehnelt electrode, 3 ... Anode, 4 ... Electron beam, 5 ... Limiting aperture, 6 ... Detector, 7,12 ... Amplifier, 8 ... A / D conversion Instrument, 9 ... Calculator, 10 ... Interface, 11 ... D / A converter, 13 ...
… Deflector, 14 …… Rectangular diaphragm.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電子ビームを放射する電子源と、該電子源
から放射される電子ビームの放射方向を二次元的に偏向
せしめる偏向手段と、上記電子源から放射される電子ビ
ームのその放射角内における二次元強度分布を計測する
強度分布計測手段と、該強度分布計測手段によって計測
された上記電子ビームの二次元強度分布に応じて上記偏
向手段による上記電子ビームの偏向量を制御する偏向量
制御手段とを具備してなることを特徴とする電子線装
置。
1. An electron source for emitting an electron beam, a deflection means for two-dimensionally deflecting the emission direction of the electron beam emitted from the electron source, and an emission angle of the electron beam emitted from the electron source. Intensity distribution measuring means for measuring a two-dimensional intensity distribution in the inside, and a deflection amount for controlling the deflection amount of the electron beam by the deflecting means according to the two-dimensional intensity distribution of the electron beam measured by the intensity distribution measuring means. An electron beam apparatus comprising: a control unit.
【請求項2】電子ビームを放射する電子源と、該電子源
からの電子ビームの放射方向前方に配置され所定の電子
ビーム通過開口を有する絞り板と、上記電子源と絞り板
との間に配置され上記電子源から放射される電子ビーム
の放射方向を二次元的に偏向せしめる偏向手段と、上記
電子源から放射される電子ビームのその放射角内におけ
る二次元強度分布を計測する強度分布計測手段と、該強
度分布計測手段によって計測された上記電子ビームの二
次元強度分布に応じて上記偏向手段による上記電子ビー
ムの偏向量を制御する偏向量制御手段とを具備してなる
ことを特徴とする電子線装置。
2. An electron source for emitting an electron beam, a diaphragm plate arranged in front of the electron beam from the electron source in a radiation direction and having a predetermined electron beam passage opening, and between the electron source and the diaphragm plate. Deflection means arranged to deflect the emission direction of the electron beam emitted from the electron source two-dimensionally, and intensity distribution measurement for measuring the two-dimensional intensity distribution of the electron beam emitted from the electron source within its emission angle. Means and deflection amount control means for controlling the deflection amount of the electron beam by the deflection means according to the two-dimensional intensity distribution of the electron beam measured by the intensity distribution measuring means. Electron beam device.
【請求項3】上記の偏向量制御手段は、上記電子ビーム
の放射角内における最大のビーム強度を有するビーム部
分が上記絞り板に設けられた電子ビーム通過開口を通過
するように、上記偏向手段による上記電子ビームの偏向
量を制御するものであることを特徴とする特許請求の範
囲第2項に記載の電子線装置。
3. The deflection amount control means is arranged so that the beam portion having the maximum beam intensity within the emission angle of the electron beam passes through an electron beam passage opening provided in the diaphragm plate. The electron beam apparatus according to claim 2, characterized in that the deflection amount of the electron beam according to (3) is controlled.
【請求項4】電子源から放射される電子ビームのその全
放射角内における二次元強度分布を計測する段階と、こ
の二次元強度分布の計測結果に基づいて上記電子ビーム
のうち最大のビーム強度を有するビーム部分が所定位置
に設けられた絞り開口を通過するように上記電子源から
の電子ビームの放射方向を偏向制御する段階とを含んで
なることを特徴とする電子線装置におけるビーム軸調整
方法。
4. A step of measuring a two-dimensional intensity distribution of an electron beam emitted from an electron source within its entire emission angle, and a maximum beam intensity of the electron beam based on the measurement result of the two-dimensional intensity distribution. Adjusting the beam axis of the electron beam from the electron source so that the beam portion having the beam passes through a diaphragm aperture provided at a predetermined position. Method.
JP60280919A 1985-12-16 1985-12-16 Electron beam equipment Expired - Lifetime JPH0760660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60280919A JPH0760660B2 (en) 1985-12-16 1985-12-16 Electron beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60280919A JPH0760660B2 (en) 1985-12-16 1985-12-16 Electron beam equipment

Publications (2)

Publication Number Publication Date
JPS62140347A JPS62140347A (en) 1987-06-23
JPH0760660B2 true JPH0760660B2 (en) 1995-06-28

Family

ID=17631759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60280919A Expired - Lifetime JPH0760660B2 (en) 1985-12-16 1985-12-16 Electron beam equipment

Country Status (1)

Country Link
JP (1) JPH0760660B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6184793B2 (en) * 2013-07-31 2017-08-23 株式会社日立ハイテクノロジーズ Charged particle beam equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136141A (en) * 1983-12-23 1985-07-19 Hitachi Ltd Charged particle radiation device

Also Published As

Publication number Publication date
JPS62140347A (en) 1987-06-23

Similar Documents

Publication Publication Date Title
JP5053514B2 (en) Electron beam exposure system
JP3542140B2 (en) Projection type ion beam processing equipment
GB2208432A (en) Charged particle beam analyser
US9287083B2 (en) Charged particle beam device
US20090190719A1 (en) X-ray source apparatus, computer tomography apparatus, and method of operating an x-ray source apparatus
US4990778A (en) Scanning electron microscope
US4084095A (en) Electron beam column generator for the fabrication of semiconductor devices
US5933217A (en) Electron-beam projection-microlithography apparatus and methods
TW201447955A (en) Cathode operating temperature adjusting method, and writing apparatus
EP2096662B1 (en) Electron beam device
JPS5878354A (en) Electron beam generator
JPH0760660B2 (en) Electron beam equipment
JPS6359223B2 (en)
US6727658B2 (en) Electron beam generating apparatus and electron beam exposure apparatus
JPS6014462B2 (en) electron beam device
JPH01295419A (en) Method and apparatus for electron beam lithography
US20230317406A1 (en) Charged Particle Beam System
JP2834466B2 (en) Ion beam device and control method thereof
JP2636381B2 (en) Electron beam equipment
JPS5834897B2 (en) scanning electron microscope
JPS633258B2 (en)
JPWO2004061892A1 (en) Sample observation apparatus and sample observation method
JPH01186743A (en) Electric field emission type scanning electron microscope
JPH02132745A (en) Charged corpuscular beam device
JPH05343021A (en) Scanning electron microscope

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term