JPH0760087A - Environmentally response drug sustained release control membrane - Google Patents

Environmentally response drug sustained release control membrane

Info

Publication number
JPH0760087A
JPH0760087A JP5232458A JP23245893A JPH0760087A JP H0760087 A JPH0760087 A JP H0760087A JP 5232458 A JP5232458 A JP 5232458A JP 23245893 A JP23245893 A JP 23245893A JP H0760087 A JPH0760087 A JP H0760087A
Authority
JP
Japan
Prior art keywords
membrane
drug
silk fibroin
sustained release
drug sustained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5232458A
Other languages
Japanese (ja)
Other versions
JP2526401B2 (en
Inventor
Norihiko Minoura
憲彦 箕浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5232458A priority Critical patent/JP2526401B2/en
Publication of JPH0760087A publication Critical patent/JPH0760087A/en
Application granted granted Critical
Publication of JP2526401B2 publication Critical patent/JP2526401B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain an environmentally response drug sustained release control membrane excellent in mechanical strength, showing high safety against a human body, having no problem even when scattered over a farm because of microbial biodegradability and gentle to a human being or the globe by using a water-insoluble silk fibroin membrane containing a crystalline substance. CONSTITUTION:An environmentally resposive drug sustained release control membrane is obtained by forming a membrane from an aq. soln. of silk fibroin to crystallize the same, make a crystals contained in the membrane and make the membrane water-insoluble. When the drug sustained release control membrane is formed by crystallizing a silk fibroin membrane, at the degree of crystallization thereof the membrane can contain 10-60wt.% of moisture. This environmentally responsive drug sustained control membrane becomes drug sustained release properties or drug hardly sustained release properties by changing the pH of the aq. soln. brought into contact with the silk fibroin membrane. This function is developed because silk fibroin has a polar group such as an amino group because of protein and the degree of dissociation of the polar group is changed by pH.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は絹フィブロインからなる
環境応答性薬物徐放制御膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an environmentally responsive drug sustained release control film comprising silk fibroin.

【0002】[0002]

【従来の技術】近年各種高分子膜が開発され、そのガス
透過膜、水蒸気透過性、溶質透過性を利用して各種分野
に応用されている。それらの高分子膜のうち、薬物透過
性を有するものは、医薬品や農薬、肥料などの徐放等に
応用されている。医薬品の投与や農薬、肥料の散布は副
作用の軽減や環境汚染の観点から必要最小限であること
が望ましい。従来一般に知られている薬物徐放膜は常に
一定速度で薬物を徐放させる特性をもつ膜であるが、薬
物が徐放されることが不必要になった場合にも放出を止
めることができないという問題がある。そこで薬物が必
要なときのみ薬物が徐放され、不必要になったとき薬物
放出が止まる仕組みをもつ膜、すなわち、環境変化(刺
激)に伴って薬物放出がON−OFF制御される膜の開
発が望まれている。
2. Description of the Related Art Recently, various polymer membranes have been developed and applied to various fields by utilizing their gas permeable membrane, water vapor permeability and solute permeability. Among these polymer membranes, those having drug permeability have been applied to the sustained release of pharmaceuticals, agricultural chemicals, fertilizers and the like. It is desirable that the administration of pharmaceuticals and the spraying of pesticides and fertilizers be the minimum necessary from the viewpoints of reducing side effects and environmental pollution. Conventionally known drug sustained-release membranes are membranes that have the property of always releasing the drug at a constant rate, but the release cannot be stopped even when the sustained-release of the drug becomes unnecessary. There is a problem. Therefore, the development of a membrane that has a mechanism to release the drug only when the drug is needed and to stop the drug release when it is no longer needed, that is, a film in which the drug release is controlled ON-OFF with environmental changes (stimulation). Is desired.

【0003】[0003]

【発明が解決しようとする課題】本発明は前記の如き問
題を含まない、新しい素材からなる環境応答性薬物徐放
制御膜を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an environment-responsive drug sustained release control film made of a new material, which does not have the above problems.

【0004】[0004]

【課題を解決するための手段】本発明者は、前記課題を
解決すべく鋭意研究を重ねた結果本発明を完成するに至
った。本発明によれば、絹フィブロイン膜からなり、該
膜は結晶質を含み、水不溶性であることを特徴とする環
境応答性薬物徐放制御膜が提供される。
The present inventor has completed the present invention as a result of intensive studies to solve the above-mentioned problems. According to the present invention, there is provided an environment-responsive drug sustained-release control film comprising a silk fibroin film, which contains a crystalline substance and is water-insoluble.

【0005】本発明の環境応答性薬物徐放制御膜は、絹
フィブロイン水溶液を製膜し、絹フィブロイン膜を得
る。この膜は非晶質で水溶性を示す。本発明では、この
膜を結晶化し、その膜中に結晶質を含有させ、水不溶性
のものとする。絹フィブロイン膜を結晶質化させるには
エタノールやメタノール等の絹フィブロインに対する貧
溶媒を用いて行うことができる。
The environmentally responsive drug sustained-release control film of the present invention is obtained by forming an aqueous silk fibroin solution to obtain a silk fibroin film. This film is amorphous and water-soluble. In the present invention, this film is crystallized, and a crystalline substance is contained in the film to make it water-insoluble. Crystallization of the silk fibroin film can be performed using a poor solvent for silk fibroin, such as ethanol or methanol.

【0006】原料として用いる絹フィブロインは、家蚕
あるいは野蚕由来のものでよい。また絹フィブロイン溶
液は、熟蚕体内の絹糸腺より取出した液状絹フィブロイ
ンを用いることができるし、生糸から再生した絹フィブ
ロインを溶液化したものでもよい。
The silk fibroin used as a raw material may be derived from domestic silkworms or wild silkworms. As the silk fibroin solution, liquid silk fibroin extracted from the silk gland in the silkworm silkworm body can be used, or a solution of silk fibroin regenerated from raw silk can be used.

【0007】絹フィブロイン膜の結晶化処理は、溶媒と
水からなる混合溶液中で、絹フィブロイン膜を浸漬処理
した後、乾燥することによって実施することができる。
この場合、混合溶液の組成、温度、処理時間を変えるこ
とによって、膜の薬物徐放制御性能を変えることができ
る。乾燥温度は5〜80℃である。本発明において、絹
フィブロイン膜を結晶化させて薬物徐放制御膜とする場
合、その結晶化度は少なくとも10%、好ましくは15
〜50%の範囲に規定するのがよい。
The crystallization treatment of the silk fibroin film can be carried out by immersing the silk fibroin film in a mixed solution of a solvent and water and then drying it.
In this case, the controlled drug sustained release performance of the membrane can be changed by changing the composition, temperature, and treatment time of the mixed solution. The drying temperature is 5 to 80 ° C. In the present invention, when the silk fibroin film is crystallized to form a controlled drug release film, its crystallinity is at least 10%, preferably 15%.
It is preferable to specify it in the range of 50%.

【0008】本発明における環境応答性薬物徐放制御膜
は、薬物透過機能が環境変化(刺激)に応じて変わる膜
を意味するものである。具体的には、絹フィブロイン膜
に接触した水溶液のpHが変わることによって薬物が徐
放されやすくなったり、あるいは徐放されにくくなった
りすることである。このような機能の発現には、絹フィ
ブロインがタンパク質であるためアミノ基、カルボキシ
ル基、イミダゾール基、水酸基、グアニジノ基などの極
性基をもっており、これらの極性基がpHによってそ
の解離度を変えること、及びこれらの極性基と薬物自
身がもつ極性基との間に相互作用を生じることに起因す
る。
The environment-responsive drug sustained-release control membrane of the present invention means a membrane whose drug permeation function changes in response to environmental changes (stimulation). Specifically, the pH of the aqueous solution in contact with the silk fibroin membrane is changed, whereby the drug is easily or slowly released. To express such a function, silk fibroin has a polar group such as amino group, carboxyl group, imidazole group, hydroxyl group, and guanidino group because silk fibroin is a protein, and these polar groups change the dissociation degree depending on pH, And the interaction between these polar groups and the polar groups of the drug itself.

【0009】薬物としては、抗悪性腫瘍剤、ビタミン
剤、消毒剤などの医薬品や、抗菌剤、殺虫剤などの農
薬、肥料、色素などが含まれる。
Examples of the drug include drugs such as antineoplastic agents, vitamins and disinfectants, pesticides such as antibacterial agents and insecticides, fertilizers and pigments.

【0010】膜の形状としては、平板状、カプセル状、
球状、円筒状などの種々の形状が含まれ、薬物を外界か
ら隔離する隔壁としての働きをもつ。
The shape of the film is flat, capsule-shaped,
It includes various shapes such as spherical shape and cylindrical shape, and has a function as a partition wall that isolates the drug from the outside world.

【0011】[0011]

【実施例】次に本発明を実施例によりさらに詳細に説明
する。
EXAMPLES Next, the present invention will be described in more detail by way of examples.

【0012】実施例1 絹フィブロインをCaCl2:C25OH:H2O=1:
2:8(モル比)の混合溶液中にて70℃で、2時間溶解
させた。溶解したフィブロイン水溶液を濾過したあと、
濾過液をセルロース半透膜によりイオン交換水に対して
3日間透析した。濃縮したフィブロイン溶液をポリスチ
レンのシャーレの上にキャストし、30℃で約48時間
乾燥させ製膜した。膜の厚みは約27μmであった。さ
らにこれらの作成した膜を75%メタノール水溶液中に
て15分間処理した。この膜の結晶化度はX線回析法に
よれば18%であった。
Example 1 Silk fibroin was mixed with CaCl 2 : C 2 H 5 OH: H 2 O = 1:
It was dissolved in a mixed solution of 2: 8 (molar ratio) at 70 ° C. for 2 hours. After filtering the dissolved aqueous fibroin solution,
The filtrate was dialyzed against ion-exchanged water through a cellulose semipermeable membrane for 3 days. The concentrated fibroin solution was cast on a polystyrene dish and dried at 30 ° C. for about 48 hours to form a film. The thickness of the film was about 27 μm. Further, these prepared membranes were treated in a 75% aqueous methanol solution for 15 minutes. The crystallinity of this film was 18% according to the X-ray diffraction method.

【0013】膜を各種pH値の水溶液中に3日間浸漬
し、真空乾燥器で76℃にて24時間乾燥させ、含水率
を測定した。その結果、含水率はpHによって異なり、
33.9%(pH3)、32.3%(pH5)、29.
9%(pH6)、32.6%(pH8)であった。
The membrane was immersed in an aqueous solution of various pH values for 3 days and dried in a vacuum dryer at 76 ° C. for 24 hours to measure the water content. As a result, the water content depends on the pH,
33.9% (pH 3), 32.3% (pH 5), 29.
It was 9% (pH 6) and 32.6% (pH 8).

【0014】薬物として、抗悪性腫瘍剤として使われて
いる5−フルオロウラシル(略称5FU)、ビタミンC
(略称Vc)、消毒剤や皮膚病用薬であるレゾルシン
(略称Res)、防腐剤であるフェノールスルホン酸ナ
トリウム(略称SPS)、消毒剤である塩化ベンジルト
リメチルアンモニウム(略称BTAC)を使用した。
5-Fluorouracil (abbreviation 5FU) and Vitamin C, which are used as drugs, as antineoplastic agents
(Abbreviated name Vc), resorcin (abbreviated name Res) which is a disinfectant or dermatological agent, sodium phenolsulfonate (abbreviated name SPS) which is a preservative, and benzyltrimethylammonium chloride (abbreviated name BTAC) which is a disinfectant were used.

【0015】膜透過測定装置として2室式セルを使い、
両セルの間に膜をはさみ、右側のセルに10-3mol/lの
濃度C0の薬物水溶液を入れ、左側のセルに純水を入れ
ておく。純水側の溶液を一時間毎に3.4ml抜き取り、
透過した薬物の濃度Cdを測定するため、紫外分光光度
計により吸光度を測定した。あらかじめ作成した吸光度
ABSと薬物濃度との換算曲線により薬物濃度を決定し
た。抜き取った水溶液と等量の純水を左側のセルに補給
した。測定は8時間行い、測定温度は25℃で、膜の有
効直径は30mmであった。種々のpHでの透過実験では
HClあるいはNaOHを用いて水溶液のpH値を調節
し、実験開始時、セル両側のpH濃度を同じにした。
A two-chamber cell is used as a membrane permeation measuring device,
A membrane is sandwiched between both cells, an aqueous solution of a drug having a concentration C 0 of 10 −3 mol / l is put in the right cell, and pure water is put in the left cell. Remove 3.4 ml of pure water solution every hour,
Absorbance was measured by an ultraviolet spectrophotometer in order to measure the concentration C d of the transmitted drug. The drug concentration was determined by a conversion curve of absorbance ABS and drug concentration prepared in advance. The same amount of pure water as the extracted aqueous solution was supplied to the left cell. The measurement was carried out for 8 hours, the measurement temperature was 25 ° C., and the effective diameter of the film was 30 mm. In the permeation experiments at various pHs, the pH value of the aqueous solution was adjusted using HCl or NaOH so that the pH concentrations on both sides of the cell were the same at the start of the experiment.

【0016】本膜の等電点は約pH=4.5であり、等
電点以下では膜は弱正荷電膜であり、等電点以上では膜
は弱負荷電膜である。各種の薬物の透過曲線を図1に示
す。いずれの薬物についても時間に対して直線的に濃度
が増加したが、それぞれの薬物の透過速度は異なってい
た。
The isoelectric point of this membrane is about pH = 4.5, below the isoelectric point the membrane is a weakly positively charged membrane, and above the isoelectric point the membrane is a weakly negatively charged membrane. Permeation curves of various drugs are shown in FIG. The concentration of each drug increased linearly with time, but the permeation rate of each drug was different.

【0017】薬物の透過しやすさを表す透過係数Pは次
式により計算した。 P=Vd(△Cd/△t)S(C0−Cd
The permeation coefficient P, which represents the ease of drug penetration, was calculated by the following equation. P = Vd (ΔC d / Δt) S (C 0 −C d ).

【0018】S:膜の面積、V:低濃度側の水の体積、
d:膜厚 △Cd/△t:低濃度側溶液の単位時間あたりの濃度変
化(図1の直線の傾き)
S: area of membrane, V: volume of water on low concentration side,
d: film thickness ΔC d / Δt: change in concentration of the low-concentration solution per unit time (gradient of straight line in FIG. 1)

【0019】各種pHのもとで測定した透過係数を図2
に示す。SPSでは水中でアニオンになるためpHの増
加とともに透過係数が著しく減少した。一方BTACで
は、水中でカチオンになるため、SPSの場合とは逆の
傾向が見られた。Resは実験したpHの範囲では中性
の分子なのでpHの変化にかかわらず透過係数がほぼ一
定であった。5FUは酸性と中性の場合透過係数がほぼ
同じであるが、約pH=7.0以上で減少した。pH7
以上での5FUの透過係数の著しい減少は、5FUが負
荷電基をもつ(pKa=8.0)ようになるためであ
る。Vcは酸性(pH<4.5)の時透過係数が比較的
大きいが、pH>4.5の時急激に下がった。Vcのp
aは4.25であり、Vcは負荷電基をもつようにな
るためである。
The permeation coefficient measured under various pH values is shown in FIG.
Shown in. In SPS, since it becomes an anion in water, the permeation coefficient remarkably decreased with the increase of pH. On the other hand, in BTAC, since it becomes a cation in water, the tendency opposite to that of SPS was observed. Since Res is a neutral molecule in the pH range tested, the permeation coefficient was almost constant regardless of changes in pH. The permeation coefficient of 5FU was almost the same in acidic and neutral, but it decreased at about pH = 7.0 or higher. pH 7
The significant decrease in the transmission coefficient of 5FU is due to the fact that 5FU has negatively charged groups (pK a = 8.0). Vc had a relatively large permeability coefficient when it was acidic (pH <4.5), but dropped sharply when pH> 4.5. P of Vc
This is because K a is 4.25 and Vc comes to have a negatively charged group.

【0020】以上述べたように、正荷電基をもつ薬物
は、酸性になる程、徐放されにくくなり、一方負荷電基
をもつ薬物はアルカリ性になる程、徐放されにくくな
り、正荷電基あるいは負荷電基をもつ各種薬物の膜徐放
速度を水溶液のpHを変えることにより変化させること
ができる。
As described above, a drug having a positively charged group is less likely to be gradually released as it becomes more acidic, whereas a drug having a negatively charged group is less likely to be slowly released as it becomes more alkaline. Alternatively, the membrane sustained release rate of various drugs having negatively charged groups can be changed by changing the pH of the aqueous solution.

【0021】実施例2 実施例1と同様の方法で絹フィブロイン膜を調製し、膜
透過測定装置の両セル間にその膜をはさみ、右側のセル
に10-3mol/lの濃度の薬物BTAC水溶液を入れ、左
側のセルに純水を入れておく。透過した薬物の濃度を測
定するため、実施例1の一時間毎に溶液を抜き取るかわ
りに、光ファイバーをもつ紫外分光光度計で左側のセル
の薬物濃度を直接時々刻々測定した。測定開始後、図3
に示すように、薬物濃度は増大した。15分後、左側の
セルに0.1Mの塩酸を0.4mlれてpH=3.9にす
ると薬物濃度の増大は止まった。30分後、0.1M水
酸化ナトリウムを左側セルに0.5ml入れてpH=7.
2にすると再び薬物濃度が増大し始めた。これを何度も
繰り返すことができた。つまり環境(pH)変化に応答
して薬物の徐放速度をON−OFF制御できた。
Example 2 A silk fibroin membrane was prepared in the same manner as in Example 1, the membrane was sandwiched between both cells of a membrane permeation measuring device, and the drug BTAC having a concentration of 10 −3 mol / l was placed in the cell on the right side. Pour the aqueous solution and pure water into the left cell. In order to measure the concentration of the drug penetrated, instead of withdrawing the solution every hour in Example 1, the concentration of the drug in the cell on the left side was directly measured with an ultraviolet spectrophotometer equipped with an optical fiber. Figure 3 after starting the measurement
As shown in, the drug concentration was increased. After 15 minutes, 0.4 ml of 0.1 M hydrochloric acid was added to the cell on the left side to adjust the pH to 3.9, and the increase in the drug concentration stopped. After 30 minutes, 0.5 ml of 0.1 M sodium hydroxide was added to the left cell, and pH = 7.
At 2, the drug concentration started to increase again. I was able to repeat this many times. That is, the sustained release rate of the drug could be controlled to be ON-OFF in response to the environment (pH) change.

【0022】実施例3 実施例2の薬物BTACの替わりにSPSを用い、実施
例2と同様に実験を行った。図4に示すようにpH=
3.7〜3.9では薬物が透過したが、pH=6.8〜
7.1では透過速度は低下した。また、実施例2とは逆
の右側セルpHを変化させて同様に実験を行うと、図5
に示すようにpH=3.5〜3.9では薬物が透過した
が、pH=8.4〜8.9では薬物の透過はほぼ止まっ
た。
Example 3 An experiment was conducted in the same manner as in Example 2 except that SPS was used instead of the drug BTAC of Example 2. As shown in FIG. 4, pH =
Although the drug penetrated in 3.7 to 3.9, pH = 6.8 to
At 7.1, the permeation rate decreased. Further, when the same experiment was performed by changing the right side cell pH opposite to that of Example 2, the
As shown in (4), the drug permeated at pH = 3.5 to 3.9, but the drug permeation almost stopped at pH = 8.4 to 8.9.

【0023】実施例4 実施例2の薬物BTACの替わりに5FUを用い、実施
例2と同様に実験を行うと、図6に示すようにpH=
6.9〜7.3では薬物が透過したが、pH=8.9〜
9.1では、薬物透過は止まった。
Example 4 When 5FU was used in place of the drug BTAC of Example 2 and the same experiment as in Example 2 was carried out, pH =
The drug penetrated at 6.9-7.3, but pH = 8.9-
At 9.1 drug penetration ceased.

【0024】実施例5 実施例1と同様に作成した絹フィブロイン膜(乾燥時の
膜厚0.028mm)10mgを1ml(100倍量)のカル
ミン酸溶液に浸し、80℃で30分間加熱した。食用色
素であるカルミン酸の溶液は貝殻虫の死骸1gを100
mlの水で30分間100℃にて色素抽出し、濾過して調
製したものであり、その溶液に酢酸1%を加えた。
Example 5 10 mg of silk fibroin membrane (film thickness 0.028 mm when dried) prepared in the same manner as in Example 1 was immersed in 1 ml (100 times amount) of carminic acid solution and heated at 80 ° C. for 30 minutes. The solution of carminic acid, which is an edible pigment, is 100g of 1g carcass dead.
It was prepared by extracting the dye with 100 ml of water for 30 minutes at 100 ° C. and filtering, and 1% of acetic acid was added to the solution.

【0025】以上の手順で処理した膜を取り出し、4種
類の緩衝液 pH3.7、5.8、7.4、8.8を用
いて溶出実験を行った。pH3.7は酢酸-水酸化ナト
リウム緩衝液、pH5.8とpH7.4はリン酸緩衝
液、pH8.8はピロリン酸緩衝液を用いた。カルミン
酸包含膜を緩衝液3ml(300倍量)にそれぞれ入れ、
スターラーで攪拌しながら酸性側で450nm、アルカリ
側で550nmにおけるカルミン酸の紫外吸収強度を時間
経過とともに測定した。充分時間が経過した後、膜に包
含したカルミン酸をすべて取り出して吸光度を測定し、
全溶出量を求めた。4種類の緩衝液中でのカルミン酸の
溶出実験を行った結果を図7に示す。溶出率は各染色膜
の全溶出量の紫外吸収強度を100%として表した。ア
ルカリ側では溶出が速く95%以上の溶出率でほぼ平衡
に達しているが、pHが低い程、溶出速度が抑制され
た。
The membrane treated by the above procedure was taken out and an elution experiment was carried out using four kinds of buffer solutions pH 3.7, 5.8, 7.4 and 8.8. An acetic acid-sodium hydroxide buffer solution was used for pH 3.7, a phosphate buffer solution was used for pH 5.8 and pH 7.4, and a pyrophosphate buffer solution was used for pH 8.8. Add each of the carminic acid-containing membranes to 3 ml of buffer (300 times volume),
While stirring with a stirrer, the ultraviolet absorption intensity of carminic acid at 450 nm on the acidic side and 550 nm on the alkaline side was measured over time. After a sufficient time has elapsed, take out all the carminic acid contained in the membrane and measure the absorbance,
The total elution amount was determined. FIG. 7 shows the results of the elution experiment of carminic acid in four kinds of buffer solutions. The elution rate was represented by setting the ultraviolet absorption intensity of the total elution amount of each dyed film to 100%. On the alkaline side, elution was fast and almost equilibrium was reached at an elution rate of 95% or more, but the elution rate was suppressed as the pH was lower.

【0026】これはカルミン酸がカルボキシル基を有す
ること、さらにこの絹フィブロイン膜は、等電点(pH
4.5)よりもアルカリ側ではpHが高いほど負電荷
を、それよりも酸性側ではpHが低いほど正電荷を帯び
ていることがこれらの挙動に大きく起因していると考え
られる。絹フィブロイン膜はpH環境応答性薬物徐放制
御膜として有望であることが明らかになった。
This is because carminic acid has a carboxyl group, and this silk fibroin film has an isoelectric point (pH
It is considered that these behaviors are largely attributed to the fact that the higher the pH is, the more negative charges the alkaline side than 4.5), and the lower the pH, the more positive charges the acidic side. It was revealed that the silk fibroin membrane is promising as a pH environment-responsive controlled release controlled drug membrane.

【0027】[0027]

【発明の効果】本発明の環境応答性薬物徐放制御膜は優
れた薬物徐放機能を発現するのみならず、機械的強度に
優れ、かつ人体に対して高い安全性を示すとともに、微
生物などにより生分解されるため農場に散布しても問題
ない、など人及び地球にもやさしい材料である。
The environmentally responsive drug sustained-release control film of the present invention not only exhibits an excellent drug sustained-release function, but also has excellent mechanical strength and high safety to the human body, as well as microorganisms and the like. Since it is biodegraded by, there is no problem even if it is sprayed on the farm.

【0028】本発明の環境応答性薬物徐放制御膜の具体
的活用例として、次のようなものが考えられる。下水道
の廃水のpHが中性では雑菌などが繁殖しやすいため消
毒剤が必要になるが、実施例1で述べたように、消毒剤
(例えばBTACのように水中でカチオンになる)が本
発明の絹フィブロイン膜から放出される。一方、廃水の
pHが酸性になれば雑菌は繁殖しなくなるため、消毒剤
の放出は不必要となるり、実施例2で述べたように消毒
剤の放出は止まる。
The following can be considered as specific examples of practical use of the environment-responsive drug sustained release control film of the present invention. When the pH of the wastewater of the sewerage is neutral, various bacteria and the like are easily propagated, so that a disinfectant is required. However, as described in Example 1, the disinfectant (for example, a cation in water like BTAC) is used in the present invention. Released from silk fibroin membrane. On the other hand, if the pH of the wastewater becomes acidic, the bacteria will not propagate, so the release of the disinfectant becomes unnecessary, and the release of the disinfectant stops as described in Example 2.

【0029】[0029]

【図面の簡単な説明】[Brief description of drawings]

【図1】透過した薬物の濃度と時間の関係[Fig. 1] Relationship between concentration of permeated drug and time

【図2】透過係数のpH依存性FIG. 2 pH dependence of permeation coefficient

【図3】左側セルの溶液のpH及び透過した薬物(BT
AC)の濃度と時間との関係
FIG. 3: pH of solution in left cell and permeated drug (BT
Relationship between AC) concentration and time

【図4】左側セルの溶液のpH及び透過した薬物(SP
S)の濃度と時間との関係
FIG. 4: pH of solution in left cell and permeated drug (SP
Relationship between S) concentration and time

【図5】右側セルの溶液のpH及び透過した薬物(SP
S)の濃度と時間との関係
FIG. 5: pH of solution in right cell and permeated drug (SP
Relationship between S) concentration and time

【図6】左側セルの溶液のpH及び透過した薬物(5F
U)の濃度と時間との関係
FIG. 6: pH of solution in left cell and permeated drug (5F
Relationship between U) concentration and time

【図7】各種緩衝液中でのカルミン酸の溶出率の経時変
FIG. 7: Time course of elution rate of carminic acid in various buffer solutions

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 絹フィブロイン膜からなり、該膜は結晶
質を含み、水不溶性であることを特徴とする環境応答性
薬物徐放制御膜。
1. An environmentally responsive drug sustained-release control film comprising a silk fibroin film, which contains a crystalline substance and is water-insoluble.
【請求項2】 該膜が10〜60重量%の水分を含む請
求項1の環境応答性薬物徐放制御膜。
2. The environment-responsive controlled-release drug release film according to claim 1, wherein the film contains 10 to 60% by weight of water.
JP5232458A 1993-08-25 1993-08-25 Method for producing environmentally responsive drug controlled release permeable membrane Expired - Lifetime JP2526401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5232458A JP2526401B2 (en) 1993-08-25 1993-08-25 Method for producing environmentally responsive drug controlled release permeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5232458A JP2526401B2 (en) 1993-08-25 1993-08-25 Method for producing environmentally responsive drug controlled release permeable membrane

Publications (2)

Publication Number Publication Date
JPH0760087A true JPH0760087A (en) 1995-03-07
JP2526401B2 JP2526401B2 (en) 1996-08-21

Family

ID=16939609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5232458A Expired - Lifetime JP2526401B2 (en) 1993-08-25 1993-08-25 Method for producing environmentally responsive drug controlled release permeable membrane

Country Status (1)

Country Link
JP (1) JP2526401B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1773240A4 (en) * 2004-06-11 2010-12-29 Trustees Of The Tufts College Silk-based drug delivery system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118544A (en) * 1987-11-02 1989-05-11 Agency Of Ind Science & Technol Porous product of silk fibroin
JPH01254621A (en) * 1988-04-01 1989-10-11 Terumo Corp Drug carrier, slowly releasing drug and preparation thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118544A (en) * 1987-11-02 1989-05-11 Agency Of Ind Science & Technol Porous product of silk fibroin
JPH01254621A (en) * 1988-04-01 1989-10-11 Terumo Corp Drug carrier, slowly releasing drug and preparation thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1773240A4 (en) * 2004-06-11 2010-12-29 Trustees Of The Tufts College Silk-based drug delivery system
US8178656B2 (en) 2004-06-11 2012-05-15 Trustees Of Tufts College Silk-based drug delivery system
US10548981B2 (en) 2004-06-11 2020-02-04 Eidgenossisches Technische Hochschule (The Swiss Federal Institute of Technology) Silk-based drug delivery system

Also Published As

Publication number Publication date
JP2526401B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
US5951506A (en) Wound covering material
DE915973C (en) Process for the production of hemostatically acting plugs and bandages
US4592864A (en) Aqueous atelocollagen solution and method of preparing same
US4416814A (en) Protein polymer hydrogels
Vasantha et al. Collagen ophthalmic inserts for pilocarpine drug delivery system
NO304402B1 (en) Method of preparing a gel
WO1988000928A1 (en) Calcium hypochlorite compositions
JPH01118544A (en) Porous product of silk fibroin
CN105963147A (en) Hand-washing-free lipidosome disinfecting gel and preparation method thereof
CN103638551B (en) Preparation method for chitosan 6-OH immobilized cyclodextrin included tea tree oil thermo-sensitive hydrogel
KR960700766A (en) Pharmaceutical composition consisting of sponge material in which ester derivative of hyaluronic acid is combined with other pharmaceutically effective substances
JPH0365187B2 (en)
AU2020235305A1 (en) Preparation method and use for artificial exocrine complex
JP2526401B2 (en) Method for producing environmentally responsive drug controlled release permeable membrane
JPH02109570A (en) Silkfibroin-containing molding
RU2404781C1 (en) Composition as antibacterial agent, method for production of material on its basis and macroporous antibacterial material based on this composition
EP1140333B1 (en) Microporous flat, capillary or tubular membrane and method of manufacturing the same
JP3174400B2 (en) Peritoneal washings
CN107854721B (en) Antibacterial hydrogel and preparation method thereof
JP2862275B2 (en) Method for producing non-woven reinforced hydrous alginate film for external preparation
RU2270209C1 (en) Method of manufacturing porous material from fibroin/chitosan mixture
JPH02233128A (en) Oxygen permeable membrane
CN110859990A (en) Chitosan quaternary ammonium salt antibacterial gel and preparation method thereof
RU2193403C1 (en) Ophthalmic drops for treating allergic conjunctivitis and keratoconjunctivitis
JPH03215417A (en) Long-acting article and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term