JPH0759123B2 - Drive system for electric vehicle - Google Patents

Drive system for electric vehicle

Info

Publication number
JPH0759123B2
JPH0759123B2 JP62309632A JP30963287A JPH0759123B2 JP H0759123 B2 JPH0759123 B2 JP H0759123B2 JP 62309632 A JP62309632 A JP 62309632A JP 30963287 A JP30963287 A JP 30963287A JP H0759123 B2 JPH0759123 B2 JP H0759123B2
Authority
JP
Japan
Prior art keywords
drive system
field
electric vehicle
series
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62309632A
Other languages
Japanese (ja)
Other versions
JPH01152903A (en
Inventor
芳寿 石川
勇人 今井
郁夫 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62309632A priority Critical patent/JPH0759123B2/en
Priority to IN1003/CAL/88A priority patent/IN171082B/en
Publication of JPH01152903A publication Critical patent/JPH01152903A/en
Publication of JPH0759123B2 publication Critical patent/JPH0759123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気車両用駆動システムの改良に係り、特に脈
動電流で駆動される直流電動機を備えた電気車両用駆動
システムの改良に関するものである。
Description: TECHNICAL FIELD The present invention relates to an improvement in a drive system for an electric vehicle, and particularly to an improvement in a drive system for an electric vehicle including a DC motor driven by a pulsating current. .

〔従来の技術〕[Conventional technology]

一般に電気車両を駆動する原動機としては、直流の直巻
電動機が用いられ、そして直流電源の架線より給電され
ているのが普通である。しかし特殊な場合には車両上に
降圧用の変圧器及び整流器を搭載させておき、交流電源
の架線より給電させることが行なわれる。
In general, a DC series-wound electric motor is used as a prime mover for driving an electric vehicle, and is normally fed from an overhead wire of a DC power source. However, in a special case, a step-down transformer and a rectifier are mounted on the vehicle, and power is supplied from an overhead line of an AC power source.

第8図にはこの交流電源の架線より給電される車両駆動
システムが線図で示されている。図中1は車両を示し、
2は交流電源の架線、3はレールを示している。
FIG. 8 is a diagram showing a vehicle drive system which is supplied with power from the overhead line of the AC power supply. In the figure, 1 indicates a vehicle,
Reference numeral 2 denotes an AC power line, and 3 denotes a rail.

車両1上には、パンダグラフ4より給電された交流電圧
を降圧するための変圧器5、この変圧器出力の交流を直
流変換する整流装置6、この整流装置にて変換された直
流により駆動される直流電動機7が搭載されている。
On the vehicle 1, a transformer 5 for stepping down the AC voltage fed from the panda graph 4, a rectifying device 6 for converting the AC of the output of the transformer to DC, and a DC driven by the rectifying device are driven. A DC motor 7 is installed.

直流電動機7には車両駆動制御に最も適した直巻電動機
が用いられ、したがつてこの直流電動機7は、第9図に
示すように電機子7aに直列に結合された界磁巻線7fを有
し、また界磁巻線と並列に速度制御用、すなわち高速時
に弱め界磁とするための弱め界磁装置7cを有している。
尚弱め界磁装置は抵抗Rと誘導器Lとより形成されてい
ることが多い。
The DC motor 7 is a series-wound motor most suitable for vehicle drive control. Therefore, the DC motor 7 has a field winding 7f connected in series to the armature 7a as shown in FIG. It also has a field weakening device 7c in parallel with the field winding for speed control, that is, for weakening the field at high speeds.
The field weakening device is often formed by a resistor R and an inductor L.

またこのように交流電源の架線より交流を受け車上にて
直流に変換するものにおいては、単相交流の直流化であ
るので充分平滑化された直流を得ることは難しく、一般
には脈流状態の直流のまま直流電動機に供給されてい
る。したがつて出来るだけ界磁巻線7fに脈流分が流れな
いように、すなわち変圧器起電力の発生量が少なくなる
ように、界磁巻線7fと並列に抵抗器7rを結合(永久分路
装置7b)し、界磁電流を分流することが行なわれてい
る。
In addition, in the case of receiving AC from the overhead wire of the AC power supply and converting it into DC on the vehicle in this way, it is difficult to obtain a sufficiently smoothed DC because it is a DC conversion of single-phase AC. It is supplied to the DC motor as it is. Therefore, to prevent pulsating current from flowing in the field winding 7f as much as possible, that is, to reduce the amount of transformer electromotive force generated, combine the resistor 7r in parallel with the field winding 7f (permanent component). The field device 7b) is used to shunt the field current.

尚関連するものとして特開昭49−82915号公報があげら
れる。
As a related one, there is JP-A-49-82915.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

このように形成された車両用駆動装置にて車両を運転す
ると、たとえ脈動電源であつても、前述した永久分路装
置7bの働きにより変圧器起電力が減少することからある
程度は整流子部(電動機の)の火花の発生は解消され
る。しかしまだまだこの種脈流電源で駆動される直流電
動機においては理由は後述するが、変圧器起電力及び残
留リアクタンスの関係から、整流性能が低い嫌いがあつ
た。
When the vehicle is driven by the vehicle drive device formed in this way, even if it is a pulsating power source, the action of the permanent shunt device 7b reduces the transformer electromotive force, so to some extent the commutator part ( Electric motor) sparks are eliminated. However, in the direct-current motor driven by this kind of pulsating current power source, although the reason will be described later, there is a dislike for the low rectification performance due to the relationship between the transformer electromotive force and the residual reactance.

本発明はこれにかんがみなされたもので、その目的とす
るところは、たとえ交流電源から電力供給を受け、車上
にて交流−直流の変換が行なわれ、その直流電源が脈流
のものであつても整流性能の良好な直流電動機を有する
この種駆動システムを提供するにある。
The present invention has been conceived in view of this, and an object of the present invention is that even if power is supplied from an AC power source, AC-DC conversion is performed on the vehicle, and the DC power source is a pulsating current. Even so, it is an object of the present invention to provide a drive system of this kind having a DC motor having a good commutation performance.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明は、直巻界磁巻線と並列に、抵抗器と誘
導器とを直列結合した永久分路装置を設け、直流電動機
の全ての回転速度においてこの永久分路回路を介して界
磁電流を分流するようになしたものである。
That is, the present invention provides a permanent shunt device in which a resistor and an inductor are connected in series in parallel with a series winding field winding, and the permanent shunt circuit is connected via the permanent shunt circuit at all rotation speeds of the DC motor. The current is shunted.

〔作用〕[Action]

このような構成であると、整流性能に大きく影響する合
成火花電圧、すなわち直流電動機に設けられている補極
で補償しきれない残留リアクタンス電圧と、前述した変
圧器起電力とのベクトル和である合成火花電圧が小さく
なり、火花の発生が抑制され整流性能の向上をはかるこ
とができるのである。
With such a configuration, it is the vector sum of the combined spark voltage that greatly affects the rectification performance, that is, the residual reactance voltage that cannot be completely compensated by the compensating pole provided in the DC motor, and the above-mentioned transformer electromotive force. The synthetic spark voltage is reduced, the generation of sparks is suppressed, and the rectification performance can be improved.

〔実施例〕〔Example〕

以下図示した実施例に基づいて本発明を詳細に説明す
る。第1図には本発明の電気車両駆動システムを備えた
電気車両が線図で示され、また第2図にはその駆動源で
ある電動機の電気回路が示されている。尚前述した第8
図と同一の部品には同一符号を付したのでここではその
説明は省略する。
The present invention will be described in detail based on the illustrated embodiments. FIG. 1 is a diagram showing an electric vehicle equipped with the electric vehicle drive system of the present invention, and FIG. 2 shows an electric circuit of an electric motor which is a drive source thereof. In addition, the above-mentioned 8th
The same parts as those in the figure are designated by the same reference numerals, and the description thereof will be omitted here.

これらの図において従来と大きく異なる点は、永久分路
装置7b(第2図)を抵抗器7rと誘導器7lとの直列回路で
形成するようにした点である。すなわち界磁巻線7fに対
してこの界磁巻線と並列に、永久分路装置7bが設けられ
ているが、特にこの永久分路装置は抵抗器7rと誘導器7l
との直列回路により形成されているのである。
The major difference in these figures from the conventional one is that the permanent shunt device 7b (FIG. 2) is formed by a series circuit of a resistor 7r and an inductor 7l. That is, a permanent shunt device 7b is provided in parallel with the field winding 7f in parallel with the field winding. In particular, the permanent shunt device is a resistor 7r and an inductor 7l.
It is formed by a series circuit with.

このような構成であると、整流子部で火花を生ずる火花
電圧が小さくすることができ、無火花整流が可能となる
のである。
With such a configuration, the spark voltage that causes a spark at the commutator portion can be reduced, and spark-free rectification is possible.

以下この火花電圧が小さくなる理由についてのべる。理
解し易いようにまず従来の直流電動機の火花電圧につい
てのべ、次いで本願発明の直流電動機の火花電圧につい
てのべる。
The reason why the spark voltage becomes small will be described below. For ease of understanding, the spark voltage of the conventional DC motor will be described first, and then the spark voltage of the DC motor of the present invention will be described.

第3図は従来の直流電動機を脈流電源で運転した場合の
各部における電圧と電流関係のベクトル図である。尚こ
の場合勿論リアクタンス電圧は補極磁束により補償され
ているものとする。
FIG. 3 is a vector diagram showing the relationship between voltage and current in each part when a conventional DC motor is operated with a pulsating power supply. In this case, of course, it is assumed that the reactance voltage is compensated by the supplementary magnetic flux.

図中Iは電機子電流で、この電機子電流に対して、位相
が180度ずれてリアクタンス電圧Erがある。Eφは補極
補償電圧で、この補極補償電圧は電機子電流に対してβ
だけ遅れ位相となる。すなわち理論的にはこの位相の
ずれは生ぜずリアクタンス電圧はこの補極補償電圧によ
つて補償されるわけであるが、補極の磁気回路にはうず
電流が生じこの影響により補極補償電圧Eφは電機子電
流に対してβだけずれてしまうのである。勿論磁気回
路が極めて薄い鉄板の積層体であれば、このずれ、すな
わちβはかなり小さくなりリアクタンス電圧は補償さ
れることになるが、実用に際しては機械的強度の問題よ
り磁気回路となる継鉄は塊状のもの、すなわち鉄筒状を
なしたものであり必然的にうず電流は生ずる。これらの
ことよりリアクタンス電圧Erは、補極補償電圧Eφによ
つて完全には補償されず、図中ES(リアクタンス電圧Er
と補極補償電圧Eφのベクトル和)として示した残留リ
アクタンス電圧が残つてしまうのである。
In the figure, I is an armature current, and there is a reactance voltage Er with a phase shift of 180 degrees with respect to this armature current. Eφ is the compensating pole compensation voltage, and this compensating pole compensation voltage is β with respect to the armature current.
The phase is delayed by i . That is, theoretically, this phase shift does not occur and the reactance voltage is compensated by this compensating pole compensating voltage, but an eddy current occurs in the magnetic circuit of the compensating pole and due to this effect, the compensating pole compensating voltage Eφ is generated. Is deviated from the armature current by β i . Of course, if the magnetic circuit is a laminated body of an extremely thin iron plate, this deviation, that is, β i, will be considerably small and the reactance voltage will be compensated, but in practical use, the yoke which becomes a magnetic circuit due to the mechanical strength problem. Is a lump, that is, an iron cylinder, and an eddy current is inevitably generated. From these facts, the reactance voltage E r is not completely compensated by the compensating pole compensation voltage Eφ, and E S (reactance voltage E r in the figure
And the residual reactance voltage shown as the vector sum of the compensating pole compensation voltage Eφ) remains.

このように整流作用は残留リアクタンスによつて悪影響
をうけるが、さらに悪いことには電源電流が脈動直流、
すなわち交流電源の架線より電力が供給され、車両上に
て整流された直流電源においては直流とは云え脈流分が
残り、この脈流電流によつてももう一つの整流に悪影響
要因が生ずるのである。
In this way, the rectification effect is adversely affected by the residual reactance, but worse, the power supply current is pulsating direct current,
That is, power is supplied from the overhead power line of the AC power supply, and in the DC power supply rectified on the vehicle, a pulsating current remains even though it is a direct current, and this pulsating current also has an adverse effect on another rectification. is there.

すなわち主極の磁束が脈動することにより界磁巻線に変
圧器起電力(Et)が生じ、この変圧器起電力が整流悪化
の要因をなすのである。
That is, a pulsating magnetic flux of the main pole causes a transformer electromotive force (E t ) in the field winding, and this transformer electromotive force causes deterioration of rectification.

以下この変圧器起電力の関係について第4図に基づき説
明する。まず理解し易いように、界磁巻線に抵抗が並列
接続された抵抗分流の場合についてのべると、脈動電流
のほとんどは、界磁巻線7fのリアクタンスが分流抵抗に
対して充分大きいために、分流抵抗側に流れ、界磁巻線
を流れる電流、すなわち界磁電流Ifは電機子電流に対し
て遅れ電流(位相差θf1,約80度)となる。
The relationship of the transformer electromotive force will be described below with reference to FIG. First, for easy understanding, when referring to the case of resistance shunt in which a resistance is connected in parallel to the field winding, most of the pulsating current is because the reactance of the field winding 7f is sufficiently large with respect to the shunt resistance. The current flowing to the shunt resistance side and flowing through the field winding, that is, the field current If becomes a delay current (phase difference θ f1 , about 80 degrees) with respect to the armature current.

したがつて界磁々束φfrは、この界磁電流Ifより遅れ
(位相差βf,約70度)を生ずる。すなわち界磁極の磁気
回路には塊状の継鉄が存在しているために生ずる遅れで
ある。
Therefore, the field flux φ fr lags behind this field current I f (phase difference β f , about 70 degrees). That is, it is a delay caused by the presence of massive yokes in the magnetic circuit of the field pole.

これより変圧器起電力Et1は、界磁々束φfr1に対して90
度進むベクトルとなる。すなわち電機子電流Iに対して
は60度の遅れとなる。
From this, the transformer electromotive force E t1 is 90 % for the field flux φ fr1 .
It becomes a vector that advances. That is, there is a delay of 60 degrees with respect to the armature current I.

整流に悪影響を及ぼすのはこの変圧器起電力Etと前述し
た残留リアクタンス電流ESであるから、そのベクトル和
は第3図に示すように合成火花電圧ESP1はある程度大き
な値となり、この大きな値が脈動電流における直流電動
機運転に整流悪化をもたらすのである。
Since this transformer electromotive force E t and the above-mentioned residual reactance current E S have an adverse effect on rectification, the vector sum of the combined spark voltage E SP1 becomes a certain large value as shown in FIG. The value causes commutation deterioration in DC motor operation at pulsating current.

これに対し本発明のもの、すなわち界磁巻線7fに誘導分
流器7lと抵抗器7rを有するもの(第2図参照)において
は、脈動電流が界磁巻線7f側にも流れることから、第4
図に示すように界磁電流If2は電機子電流Iに対して小
さな遅れθf2となる。したがつて界磁々束φfr2はこの
界磁電流If2より遅れ(位相差β、約70度)たベクト
ルとなり、また変圧器起電力Et2は界磁々束より90度進
んでいるわけであるから界磁電流If1からIf2に移つた分
このEt2も移り図中ベクトルEt2となる。
On the other hand, in the case of the present invention, that is, in the field winding 7f having the induction shunt 7l and the resistor 7r (see FIG. 2), the pulsating current also flows to the field winding 7f side. Fourth
As shown in the figure, the field current I f2 has a small delay θ f2 with respect to the armature current I. Therefore, the field flux φ fr2 becomes a vector later than this field current I f2 (phase difference β f , about 70 degrees), and the transformer electromotive force E t2 leads the field flux 90 degrees. Therefore, as much as the field current I f1 is transferred to I f2 , this E t2 also moves and becomes the vector E t2 in the figure.

したがつて、前述同様整流に悪影響を及ぼす変圧起電力
Et2と残留リアクタンス電流ESとを合成すると、第3図
に示す合成火花電圧SP2となる。この合成火花電圧ESP2
は、前述した合成火花電圧ESP1に比し小さくなつている
ことがわかるであろう。
Therefore, similar to the above, the transformer electromotive force that adversely affects the rectification
When E t2 and the residual reactance current E S are combined, the combined spark voltage S P2 shown in FIG. 3 is obtained. This synthetic spark voltage ES P2
It can be seen that is smaller than the synthetic spark voltage E SP1 described above.

実用に際して、従来のものと本願発明のものとを、その
効果を確認する実験結果では、次のような良好な結果が
得られている。
In practical use, the following good results have been obtained from the experimental results for confirming the effects of the conventional one and the present invention.

すなわち供試電動機として出力が760KW,電圧が850
(V),電流が960(A)(96%F)のものが選ばれ、
従来の永久分路装置を有するもの、すなわち抵抗分流
(R=0.04554(Ω))のものでは、火花号数が5号で
あつたが、本発明のもの(L=3.75mH)であると、火花
号数は3号となり良好な結果が得られたものである。
That is, the test motor has an output of 760 KW and a voltage of 850.
(V), current of 960 (A) (96% F) is selected,
With the conventional permanent shunt device, that is, with the resistance shunt (R = 0.04554 (Ω)), the number of sparks was 5, but with the present invention (L = 3.75 mH), The number of sparks was 3, and good results were obtained.

尚以上の説明では永久分路装置を抵抗器と誘導器にて形
成するにあたり、一つの例をあげて説明してきたが、こ
の他にも種々考えられるであろう。
In the above description, one example is given for forming the permanent shunt device with the resistor and the inductor, but various other ideas may be considered.

第5図にはもう1つの例を上げた。この図の例は永久分
路装置7bを抵抗器7rと誘導器71との直列回路で形成する
ことは勿論、弱め界磁装置7cの抵抗をも利用しようとす
るもので、この場合にはさらに小型化可能であろう。
Figure 5 shows another example. In the example of this figure, the permanent shunt device 7b is formed of a series circuit of a resistor 7r and an inductor 71, and of course, the resistance of the field weakening device 7c is also used. It could be miniaturized.

また、第6図は誘導器71の値を調整可能にしたもので、
このように形成すると、電動機の組立誤差により界磁磁
束路に誤差が生じても調整が可能であり有効である。
Also, FIG. 6 shows the value of the inductor 71 that can be adjusted.
If formed in this way, adjustment is possible even if an error occurs in the field magnetic flux path due to an assembly error of the electric motor, which is effective.

尚以上説明してきた例は弱め界磁装置がある場合の例で
あるが、本発明は常に弱め界磁装置がある場合にのみ利
用できるものではなく、たとえば第7図に示すように弱
めに界磁装置が無いものであつても界磁巻線7fと並列
に、抵抗器7rと誘導器7lの直列回路を結合し、常に界磁
電流を分流するようにしても同様な効果が得られるであ
ろう。
Although the example described above is an example in the case where there is a field weakening device, the present invention is not always applicable only when there is a field weakening device. For example, as shown in FIG. Even if there is no magnetic device, the same effect can be obtained by connecting the series circuit of the resistor 7r and the inductor 7l in parallel with the field winding 7f and always shunting the field current. Ah

〔発明の効果〕〔The invention's effect〕

以上説明してきたように、本発明は直巻界磁巻線と並列
に、抵抗器と誘導器とを直列結合した永久分路装置を設
けるようになしたから、変圧器電圧が残留リアクタンス
電圧とベクトル的に逆向きとなり、したがつて脈流の直
流電源により駆動される電動機であつてもその合成火花
電圧は小さくなり、火花発生が少ないこの種駆動システ
ムを得ることができる。
As described above, according to the present invention, a permanent shunt device in which a resistor and an inductor are coupled in series is provided in parallel with the series winding, so that the transformer voltage becomes the residual reactance voltage. Even in the case of an electric motor driven by a DC power supply with a pulsating flow, the synthetic spark voltage becomes small, and the drive system of this kind with less spark generation can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の電気車両駆動システムを示す線図、第
2図はその駆動部である電動機の電気回路図、第3図及
び第4図は電動機の各部における電圧,電流,磁束の関
係を示すベクトル図、第5図から第7図は本発明の他の
実施例を示す電動機の電気回路図、第8図は従来の電気
車両駆動システムを示す線図、第9図はその電動機の電
気回路図である。 1……車両、2……架線、3……レール、4……パンダ
グラフ、5……変圧器、6……整流装置、7……直流電
動機、7a……電機子、7b……永久分路装置、7f……界磁
巻線、7r……抵抗器、7c……弱め界磁装置、7l……誘導
器。
FIG. 1 is a diagram showing an electric vehicle drive system of the present invention, FIG. 2 is an electric circuit diagram of an electric motor which is a drive unit thereof, and FIGS. 3 and 4 are relationships among voltages, currents, and magnetic fluxes in respective parts of the electric motor. FIG. 5 to FIG. 7 are electric circuit diagrams of an electric motor showing another embodiment of the present invention, FIG. 8 is a diagram showing a conventional electric vehicle drive system, and FIG. It is an electric circuit diagram. 1 ... Vehicle, 2 ... Overhead line, 3 ... Rail, 4 ... Pandagraph, 5 ... Transformer, 6 ... Rectifier, 7 ... DC motor, 7a ... Armature, 7b ... Permanent component Path device, 7f ... field winding, 7r ... resistor, 7c ... weakening field device, 7l ... inductor.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−177202(JP,A) 特開 昭61−185086(JP,A) 特開 昭58−130705(JP,A) 特公 昭63−32028(JP,B2) ─────────────────────────────────────────────────── ─── Continued Front Page (56) References JP-A-57-177202 (JP, A) JP-A-61-185086 (JP, A) JP-A-58-130705 (JP, A) JP-B-63- 32028 (JP, B2)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】交流電源の架線より給電される変圧器と、
該変圧器の交流出力を直流に変換する整流装置と、該整
流装置の直流出力により駆動される直流電動機とを備
え、 前記直流電動機が、直巻界磁巻線と、該直巻界磁巻線と
並列接続された永久分路装置とを有する電気車両用駆動
システムにおいて、 前記永久分路装置は、抵抗器と誘導器との直列結合回路
にて形成されていることを特徴とする電気車両用駆動シ
ステム。
1. A transformer fed from an overhead line of an AC power supply,
A rectifier that converts the AC output of the transformer into a DC, and a DC motor that is driven by the DC output of the rectifier, wherein the DC motor includes a series winding field winding and the series winding field winding. A drive system for an electric vehicle having a wire and a permanent shunt device connected in parallel, wherein the permanent shunt device is formed by a series coupling circuit of a resistor and an inductor. Drive system.
【請求項2】交流電源の架線より給電される変圧器と、
該変圧機の交流出力を直流に変換する整流装置と、該整
流装置の直流出力により駆動される直流電動機とを備
え、 前記直流電動機が、直巻界磁巻線と、該直巻界磁巻線と
並列接続された永久分路装置と、前記直巻界磁巻線に並
列に結合された弱め界磁装置とを有する電気車両用駆動
システムにおいて、 前記永久分路装置は、抵抗器と誘導器との直列結合回路
にて形成されていることを特徴とする電気車両用駆動シ
ステム。
2. A transformer fed from an overhead line of an AC power supply,
A rectifier for converting the AC output of the transformer into a DC and a DC motor driven by the DC output of the rectifier, wherein the DC motor is a series winding field winding and the series winding field winding. In a drive system for an electric vehicle having a permanent shunt device connected in parallel with a wire and a field weakening device coupled in parallel to the series field winding, the permanent shunt device is a resistor and an inductor. A drive system for an electric vehicle, characterized in that the drive system is formed by a series connection circuit with an electric device.
【請求項3】前記永久分路装置の誘導器は、前記弱め界
磁装置のインダクタンスの一部をも用いるようにしたこ
とを特徴とする特許請求の範囲第2項記載の電気車両用
駆動システム。
3. The electric vehicle drive system according to claim 2, wherein the inductor of the permanent shunt device also uses a part of the inductance of the field weakening device. .
【請求項4】前記永久分路装置の誘導器は、そのインダ
クタンス値が調整できるように形成されていることを特
徴とする特許請求の範囲第2項記載の電気車両用駆動シ
ステム。
4. The drive system for an electric vehicle according to claim 2, wherein the inductor of the permanent shunt device is formed so that its inductance value can be adjusted.
JP62309632A 1987-12-09 1987-12-09 Drive system for electric vehicle Expired - Lifetime JPH0759123B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62309632A JPH0759123B2 (en) 1987-12-09 1987-12-09 Drive system for electric vehicle
IN1003/CAL/88A IN171082B (en) 1987-12-09 1988-12-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62309632A JPH0759123B2 (en) 1987-12-09 1987-12-09 Drive system for electric vehicle

Publications (2)

Publication Number Publication Date
JPH01152903A JPH01152903A (en) 1989-06-15
JPH0759123B2 true JPH0759123B2 (en) 1995-06-21

Family

ID=17995371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62309632A Expired - Lifetime JPH0759123B2 (en) 1987-12-09 1987-12-09 Drive system for electric vehicle

Country Status (2)

Country Link
JP (1) JPH0759123B2 (en)
IN (1) IN171082B (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082093A (en) * 1983-10-11 1985-05-10 Fuji Electric Co Ltd Field control circuit of series motor

Also Published As

Publication number Publication date
JPH01152903A (en) 1989-06-15
IN171082B (en) 1992-07-18

Similar Documents

Publication Publication Date Title
JP3489106B2 (en) Brushless three-phase synchronous generator
EP0534153B1 (en) Charging generator for vehicle
JP2010022185A (en) Synchronous machine
US20040178774A1 (en) Variable reluctance generator
JPH0442759A (en) Ac generator for vehicle
JP3368604B2 (en) AC generator
JP3758059B2 (en) Synchronous motor drive control device
JP2017011993A (en) Charger
JPH0759123B2 (en) Drive system for electric vehicle
JP4534218B2 (en) Engine driven DC arc welding machine
JP2827488B2 (en) Charging device for electric vehicles
JPS60219946A (en) Self-excited generator
JPS5866566A (en) Motor for vehicle
JP3181871B2 (en) Separately driven inverter type spindle drive generator
JPS5915265B2 (en) dc machine
JPH0441750Y2 (en)
JP2817904B2 (en) DC machine rectifier
JPH0739334Y2 (en) AC output combined welding generator
JPH0724930Y2 (en) Brushless single phase alternator
JP2753721B2 (en) Brushless self-excited synchronous generator
JPH0218038B2 (en)
JPH0312451Y2 (en)
JPH0626063Y2 (en) Brushless 4-pole 3-phase generator
JPH062404Y2 (en) Electric vehicle running control device
JPS5915266B2 (en) DC device