JPH0441750Y2 - - Google Patents
Info
- Publication number
- JPH0441750Y2 JPH0441750Y2 JP1987196395U JP19639587U JPH0441750Y2 JP H0441750 Y2 JPH0441750 Y2 JP H0441750Y2 JP 1987196395 U JP1987196395 U JP 1987196395U JP 19639587 U JP19639587 U JP 19639587U JP H0441750 Y2 JPH0441750 Y2 JP H0441750Y2
- Authority
- JP
- Japan
- Prior art keywords
- winding
- excitation
- welding
- generator
- engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Synchronous Machinery (AREA)
Description
【考案の詳細な説明】
本考案は、エンジン・ウエルダ、特にエンジン
によつて駆動される回転界磁型溶接用発電機と上
記エンジンによつて駆動される補助発電機とをそ
なえて、上記溶接用発電機の界磁を自励分と他励
分との合成された電流によつて励磁するようにし
たエンジン・ウエルダにおいて、上記溶接用発電
機の界磁を非凸極型に構成すると共に、上記界磁
に対して自励分を供給する励磁巻線の巻線位置を
選んで、溶接電流の増加に対応して生じる電機子
反作用を利用し、定格出力近傍における特性を向
上せしめるようにしたエンジン・ウエルダに関す
るものである。[Detailed Description of the Invention] The present invention comprises an engine welder, particularly a rotating field type welding generator driven by the engine, and an auxiliary generator driven by the engine. In an engine welder in which the field of the welding generator is excited by a combined current of self-excitation and external excitation, the field of the welding generator is configured to have a non-convex pole type, and , the winding position of the excitation winding that supplies self-excitation to the above-mentioned field is selected, and the armature reaction that occurs in response to the increase in welding current is utilized to improve the characteristics near the rated output. This is related to the engine welder.
エンジン・ウエルダを構成する溶接用発電機の
界磁に対する界磁電流の供給方式として、完全他
励方式やいわゆるCT補償方式などが知られてい
るが、他励電源を必要としたりあるいは電流変成
器を必要としたりしてコスト増やスペース増を招
く難点が存在する。 Completely separately excited methods and so-called CT compensation methods are known as methods for supplying field current to the field of the welding generator that constitutes the engine welder, but these methods require a separately excited power source or a current transformer. However, there are drawbacks to this method, such as the need for additional equipment, resulting in increased costs and increased space.
この改善策の1つとして、溶接用発電機の固定
子に溶接用の主発電巻線と共に、自励用の励磁巻
線を巻回して当該励磁巻線からの出力を界磁に自
励分として供給しかつエンジンに従来からもうけ
られている磁石発電機やオルタネータなどからの
出力を他励分として供給する方式が提案されてい
る。しかし、この方式の場合においても、主発電
巻線からの溶接電流が増大するにつれて、上記自
励分が減少する形となる。このために、定格出力
以前の段階において、溶接電流−出力電圧特性曲
線に巻き込みが生じて、溶接特性が劣化する傾向
をもつ。したがつて、上記CT補償方式の場合と
同様に溶接電流の増加につれて自励分を増加する
ような手段を加えることが必要となる。 One way to improve this is to wind an excitation winding for self-excitation along with the main power generation winding for welding around the stator of the welding generator, and use the output from the excitation winding to self-excite the field. A method has been proposed in which the output from a conventional magnet generator, alternator, etc. is supplied to the engine as a separate excitation component. However, even in this method, as the welding current from the main power generation winding increases, the self-excitation component decreases. For this reason, at a stage before the rated output, there is a tendency for the welding current-output voltage characteristic curve to become distorted and the welding characteristics to deteriorate. Therefore, it is necessary to add a means to increase the self-excitation as the welding current increases, as in the case of the CT compensation method described above.
上記自励分を増加させる方策の1つとして、溶
接用発電機が6相半波方式が用いられている場合
などで、6相半波の各相の電圧波形に対して電気
角90°遅れた位置に上記励磁巻線を巻回し、溶接
電流の増加につれて生じる電機子反作用を利用し
て、上記自励分を増加させることが考慮された。 One of the measures to increase the above self-excitation component is when the welding generator uses a 6-phase half-wave system, and the voltage waveform of each phase of the 6-phase half-wave is delayed by 90 degrees in electrical angle. It was considered to increase the self-excitation by winding the excitation winding in a position where the welding current is increased and utilizing the armature reaction that occurs as the welding current increases.
本考案は当該電機子反作用を効果的に利用する
よう上記励磁巻線の巻回位置を配慮して、定格出
力近傍において溶接特性を理想型に近づけるよう
にすることを目的としている。以下図面を参照し
つつ説明する。 The present invention aims to bring the welding characteristics close to the ideal type near the rated output by considering the winding position of the excitation winding so as to effectively utilize the armature reaction. This will be explained below with reference to the drawings.
第1図は本考案の一実施例構成であつて溶接用
発電機の主発電巻線と自励用の励磁巻線と界磁と
の関連を判り易くするよう図示したもの、第2図
は本考案のエンジン・ウエルダの特性を説明する
説明図を示す。 Figure 1 shows the configuration of an embodiment of the present invention, which is illustrated to make it easier to understand the relationship between the main power generation winding of a welding generator, the excitation winding for self-excitation, and the field. An explanatory diagram illustrating the characteristics of the engine welder of the present invention is shown.
第1図において、1はエンジン・2は磁石発電
機、3は溶接用発電機の回転界磁、4は界磁巻
線、5は溶接用発電機の固定子、6U1ないし6
U3および6V1ないし6V3は夫々主発電巻
線、7は自励用の励磁巻線、S1ないしS24は
固定子スロツト、8ないし13は夫々ダイオー
ド、14は溶接部、15,16は夫々整流装置、
17は可変抵抗、18は3相交流電源用出力端子
を表している。 In Figure 1, 1 is the engine, 2 is the magnet generator, 3 is the rotating field of the welding generator, 4 is the field winding, 5 is the stator of the welding generator, 6U1 to 6
U3 and 6V1 to 6V3 are main power generation windings, 7 is an excitation winding for self-excitation, S1 to S24 are stator slots, 8 to 13 are diodes, 14 are welded parts, 15 and 16 are rectifiers, respectively.
17 represents a variable resistor, and 18 represents an output terminal for a three-phase AC power supply.
溶接用発電機の固定子5には互いに電気角60°
ずつ移相された主発電巻線6U1ないし6U3お
よび6V1ないし6V3が図示の如く巻回されて
おり、各主発電巻線6における誘起電圧はダイオ
ード8ないし13によつて6相半波整流されて溶
接部14に直流電圧を印加する。また固定子5上
に自励用の励磁巻線7が巻回されている。図示に
おいて、回転界磁3の例えばN極は第1図図示の
スロツト番号24の位置からスロツト番号が減少
する方向、即ちスロツト番号23、スロツト番号
22、……スロツト番号1、スロツト番号24…
…の各位置に移動してゆくものとしている。また
例えば主発電巻線6U1についての磁気的中心が
スロツト番号7とスロツト番号8との境界位置に
あるとし、励磁巻線7aについての磁気的中心が
スロツト番号5とスロツト番号6との境界位置に
あるものとしている。この磁気的中心を用いる表
現を採用すると、該励磁巻線7は上記各主発電巻
線6U1ないし6U3および6V1ないし6V3
の夫々の磁気的中心に対して電気角で0°よりも大
きく30°以下の範囲に遅相された磁気的中心が得
られるように固定子スロツト位置に巻回されてい
る。即ち、例えば図示励磁巻線7aは主発電巻線
6U1の磁気的中心に対して電気角で30°遅れた
磁気的中心を有するスロツト位置に巻回されてい
る。そして、6相半波によつて主発電巻線6U1
が溶接電流を供給する際に、当該溶接電流による
電機子反作用によつて励磁巻線7aに誘起される
電圧を増大せしめるように働く。 The stator 5 of the welding generator has an electrical angle of 60° to each other.
Main power generation windings 6U1 to 6U3 and 6V1 to 6V3, which are phase-shifted, are wound as shown in the figure, and the induced voltage in each main power generation winding 6 is rectified by six-phase half-wave rectification by diodes 8 to 13. A DC voltage is applied to the welding part 14. Further, an excitation winding 7 for self-excitation is wound on the stator 5. In the illustration, for example, the N pole of the rotating field 3 is arranged in the direction in which the slot numbers decrease from the slot number 24 shown in FIG. 1, that is, slot number 23, slot number 22, .
It is assumed that the robot moves to each position of... For example, assume that the magnetic center of the main power generation winding 6U1 is located at the boundary between slot numbers 7 and 8, and that the magnetic center of the excitation winding 7a is located at the boundary between slot numbers 5 and 6. It is assumed that there is. If this expression using the magnetic center is adopted, the excitation winding 7 is the main power generation winding 6U1 to 6U3 and 6V1 to 6V3.
The windings are wound at the stator slot position so as to obtain a magnetic center delayed in electrical angle from more than 0° to 30° or less with respect to each magnetic center. That is, for example, the illustrated excitation winding 7a is wound at a slot position having a magnetic center delayed by 30 degrees in electrical angle with respect to the magnetic center of the main power generation winding 6U1. Then, the main power generation winding 6U1 is
When supplying the welding current, the welding current acts to increase the voltage induced in the excitation winding 7a due to the armature reaction caused by the welding current.
なお溶接電流が正弦波形であるものと仮定する
と、上記電機子反作用は、例えば励磁巻線7aが
主発電巻線6U1に誘起される電圧に対して90°
遅れた位置にある場合、即ち、励磁巻線の磁気的
中心と主発電巻線の磁気的中心とが合つている場
合に最も大きく働くものである。しかし、図示実
施例の場合の如く磁気的な中心から30°遅らせて
いる理由については後述する。 Assuming that the welding current has a sinusoidal waveform, the armature reaction described above is such that, for example, the excitation winding 7a is at 90° with respect to the voltage induced in the main power generation winding 6U1.
It works most strongly when it is in a delayed position, that is, when the magnetic center of the excitation winding and the magnetic center of the main power generation winding are aligned. However, the reason why it is delayed by 30 degrees from the magnetic center as in the case of the illustrated embodiment will be explained later.
励磁巻線7に誘起された電圧は、整流装置16
によつて整流されて、界磁巻線4に印加される。
これによつて界磁巻線4に対して自励分を供給す
る。一方、エンジン1が本来そなえている磁石発
電機2からの電圧が整流装置15によつて整流さ
れて界磁巻線4に印加される。これによつて界磁
巻線4に対して他励分を供給する。 The voltage induced in the excitation winding 7 is passed through the rectifier 16
The rectified signal is rectified by and applied to the field winding 4.
This supplies self-excitation to the field winding 4. On the other hand, the voltage from the magnet generator 2 originally provided in the engine 1 is rectified by the rectifier 15 and applied to the field winding 4 . This supplies the field winding 4 with an externally excited component.
回転界磁3は円筒形の非凸極型の構成をもつて
おり、図示N,Sで表す如き極性の磁束を発生す
る。 The rotating field 3 has a cylindrical non-convex pole configuration, and generates magnetic fluxes with polarities as indicated by N and S in the figure.
本願明細書冒頭に述べた如く、溶接用発電機の
界磁巻線4に対して、励磁巻線7からの自励分と
磁石発電機2からの他励分とを合成した界磁電流
を供給する方式が提案されている。しかし、この
方式の場合においても、溶接電流が増大するにつ
れて生じる非所望な現象即ち自励分を減少する傾
向を何らかの手段によつて排除することが必要と
なる。このため、本考案者らは溶接電流による電
機子反作用を利用して励磁巻線7に作用する起磁
力を増加させ、上記自励分の減少傾向を抑止する
ことを試みた。 As stated at the beginning of this specification, a field current that is a combination of the self-excitation from the excitation winding 7 and the other excitation from the magnet generator 2 is applied to the field winding 4 of the welding generator. A supply method has been proposed. However, even in this case, it is necessary to eliminate by some means an undesirable phenomenon that occurs as the welding current increases, that is, a tendency to reduce self-excitation. Therefore, the inventors of the present invention attempted to increase the magnetomotive force acting on the excitation winding 7 by utilizing the armature reaction caused by the welding current, thereby suppressing the above-mentioned decreasing tendency of self-excitation.
第2図図示1点鎖線Pは主発電巻線の磁気的中
心に対して電気角で0°の磁気的中心を有するスロ
ツト位置に励磁巻線7を配置した場合の特性を表
している。即ち例えば主発電巻線6U1の磁気的
中心に対して励磁巻線の磁気的中心が一致するよ
うに励磁巻線7aをスロツトS6とS9との間に
巻回した場合の特性を表している。以下、簡単の
ために、励磁巻線7aをスロツトS6とS9との
間に巻回した場合を中心位置巻回と呼び、当該中
心位置巻回よりも15°遅らせた(界磁3の極が時
間的に遅れて到達する)位置即ちスロツトS5と
S8との間に巻回した場合を15°シフト位置巻回
と呼び、上記中心位置巻回よりも30°遅らせた位
置即ちスロツトS4とS7との間に巻回した場合
を30°シフト位置巻回と呼びことにする。 The one-dot chain line P shown in FIG. 2 represents the characteristic when the excitation winding 7 is disposed at a slot position having a magnetic center at an electrical angle of 0° with respect to the magnetic center of the main power generation winding. That is, the characteristics are shown when, for example, the excitation winding 7a is wound between the slots S6 and S9 so that the magnetic center of the excitation winding coincides with the magnetic center of the main power generation winding 6U1. Hereinafter, for the sake of simplicity, the case where the excitation winding 7a is wound between slots S6 and S9 will be referred to as center position winding, and it will be delayed by 15 degrees from the center position winding (the pole of field 3 is 15° shift position winding refers to the case where the winding is performed between the positions (reaching with a time delay), that is, slots S5 and S8, and is called 15° shift position winding. The case where the winding is done between the positions is called 30° shift position winding.
第2図図示点線Qは上記15°シフト位置巻回の
場合の特性を示し、第2図図示実線Rは上記30°
シフト位置巻回の場合の特性を示している。 The dotted line Q shown in FIG. 2 shows the characteristics in the case of winding at the above 15° shift position, and the solid line R shown in FIG.
The characteristics in the case of shift position winding are shown.
主発電巻線6U1ないし6U3および6V1な
いし6V3に誘起される電圧が正しく正弦波形で
ある場合には、本来上記中心位置巻回の場合に上
述の電機子反作用が最も効果的に働いて自励分を
増大させる。しかし、第1図図示の如く非凸極型
の回転界磁3を用いた場合においても、溶接電流
が増大するとき上記正弦波形に歪が生じる形とな
つて、第2図図示鎖線Pの如く定格出力に達する
以前の附近において自励分が減少する傾向を生
じ、図示溶接特性Pに示す如く出力電圧が図示溶
接電圧(20+0.05I)ボルトと交差する近傍にお
いて、いわゆる巻き込みを生じる形となつて、非
所望な形でアークが消孤し易いものとなつてしま
う。 If the voltages induced in the main power generation windings 6U1 to 6U3 and 6V1 to 6V3 have a correct sinusoidal waveform, the above-mentioned armature reaction will work most effectively in the case of the above-mentioned center position winding, and self-excitation will occur. increase. However, even when a non-convex pole type rotating field 3 is used as shown in FIG. 1, when the welding current increases, the sine waveform is distorted, as shown by the chain line P in FIG. The self-excitation tends to decrease in the vicinity before reaching the rated output, and as shown in the illustrated welding characteristic P, so-called entrainment occurs in the vicinity where the output voltage intersects the indicated welding voltage (20 + 0.05 I) volts. As a result, the arc tends to be extinguished in an undesirable manner.
これに対して、15°シフト位置巻回の場合や30°
シフト位置巻回の場合、第2図図示溶接特性Qや
Rの如く、出力電圧が溶接電圧よりも低い値にな
つてはじめて上述の巻き込みを生じ、安定した溶
接を行うことが可能となる。これは、上記正弦波
形に歪が生じており、該歪による見掛け上の位相
のずれを、15°シフト位置巻回や30°シフト位置巻
回によつて予め補つているものと考えてよい。な
お主発電巻線6U1に電流が流れている間には他
の主発電巻線6V2,6U2,6V3,6U3,
6V1には電流は流れない(ダイオード8ないし
13の存在による)。このため、主発電巻線6U
1に電流が流れたことによつて生じる磁束に起因
する電機子反作用は、本来であれば、励磁巻線7
aが上記中心位置にあるときに最も大きく働く。
このため、上記主発電巻線6U1に流れる電流に
起因する電機子反作用を考慮するとき、上記中心
位置からのずれを考えればよい。第1図図示の場
合には励磁巻線7aが上記中心位置からみれば
30°遅れた位置にある。 On the other hand, in the case of 15° shift position winding and 30°
In the case of shift position winding, the above-mentioned winding occurs only when the output voltage becomes a value lower than the welding voltage, as shown in the welding characteristics Q and R shown in FIG. 2, and stable welding becomes possible. This can be considered to be because the sine waveform is distorted, and the apparent phase shift due to the distortion is compensated for in advance by winding at a 15° shift position or winding at a 30° shift position. Note that while current is flowing through the main power generation winding 6U1, other main power generation windings 6V2, 6U2, 6V3, 6U3,
No current flows through 6V1 (due to the presence of diodes 8 to 13). For this reason, the main power generation winding 6U
Originally, the armature reaction caused by the magnetic flux caused by the current flowing through the excitation winding 7
It works the most when a is at the center position.
Therefore, when considering the armature reaction caused by the current flowing through the main power generation winding 6U1, it is only necessary to consider the deviation from the center position. In the case shown in Fig. 1, the excitation winding 7a is viewed from the above center position.
It is located 30° behind.
また励磁巻線7aが中心位置にある場合には、
上述した如く、第2図図示の鎖線Pの特性とな
る。また励磁巻線7aが30°遅れ位置よりも遅れ
た位置にある場合には、直線(20+0.05I)との
交差点が第2図図示の実線Rよりも更に左に向か
うこととなり、運転時の溶接電流Iが実線Rの場
合よりもより小さくなる。 Moreover, when the excitation winding 7a is at the center position,
As described above, the characteristic is shown by the chain line P shown in FIG. In addition, if the excitation winding 7a is at a position later than the 30° delayed position, the intersection with the straight line (20 + 0.05I) will be further leftward than the solid line R shown in Figure 2, and when driving The welding current I is smaller than that of the solid line R.
以上説明した如く、本考案によれば、励磁巻線
からの出力による自励分とダイナモなどによる他
励分とを合成して界磁電流を供給する形のエンジ
ン・ウエルダにおいて、励磁巻線の巻回位置を選
んで定格出力近傍における自励分の減少を効率よ
く補うことが可能となり、安定した溶接を行うこ
とが可能となる。 As explained above, according to the present invention, in an engine welder that supplies a field current by combining the self-excitation from the output from the excitation winding and the external excitation from a dynamo, etc., the excitation winding By selecting the winding position, it becomes possible to efficiently compensate for the decrease in self-excitation near the rated output, making it possible to perform stable welding.
第1図は本考案の一実施例構成を示し、第2図
は本考案のエンジン・ウエルダの特性を説明する
説明図を示す。
図中、1はエンジン、2は磁石発電機、3は溶
接用発電機の回転界磁、4は界磁巻線、5は溶接
用発電機の固定子、6U1ないし6U3および6
V1ないし6V3は主発電巻線、7は励磁巻線、
S1ないしS24は固定子スロツト、8ないし1
3は夫々ダイオード、14は溶接部、15,16
は夫々整流装置、17は可変抵抗、18は3相交
流電源用出力端子を表している。
FIG. 1 shows the configuration of an embodiment of the present invention, and FIG. 2 shows an explanatory diagram illustrating the characteristics of the engine welder of the present invention. In the figure, 1 is the engine, 2 is the magnet generator, 3 is the rotating field of the welding generator, 4 is the field winding, 5 is the stator of the welding generator, 6U1 to 6U3 and 6
V1 to 6V3 are the main power generation windings, 7 is the excitation winding,
S1 to S24 are stator slots, 8 to 1
3 is a diode, 14 is a welding part, 15, 16
17 and 18 respectively represent a rectifier, a variable resistor, and an output terminal for a three-phase AC power supply.
Claims (1)
発電機と上記エンジンによつて駆動される補助発
電機とをそなえ、 上記溶接用発電機の主巻線配置が3相でかつそ
れを6相半波で整流した直流出力を溶接用電源と
して発生するよう結線されると共に、 上記溶接用発電機の界磁巻線に対して当該発電
機固定子上に巻回された自励用の励磁巻線からの
直流出力と上記補助発電機からの直流出力とを合
成して供給するよう 構成されたエンジン・ウエルダにおいて、 上記溶接用発電機の上記主巻線の磁気的中心に
対して上記励磁巻線の磁気的中心が回転子の回転
方向に1スロツトピツチないし2スロツトピツチ
遅れる方向にシフトせしめて上記励磁巻線を巻回
すると共に、 上記界磁巻線が巻回される界磁を非凸極型に構
成した ことを特徴とするエンジン・ウエルダ。[Claims for Utility Model Registration] A rotating field type welding generator driven by an engine and an auxiliary generator driven by the engine are provided, and the main winding arrangement of the welding generator is It is wired to generate a 3-phase, 6-phase, half-wave rectified DC output as a welding power source, and is wound on the generator stator with respect to the field winding of the welding generator. In the engine welder configured to combine and supply the DC output from the self-exciting excitation winding and the DC output from the auxiliary generator, the magnetism of the main winding of the welding generator is The excitation winding is wound so that the magnetic center of the excitation winding is shifted one or two slot pitches behind the rotational direction of the rotor with respect to the target center, and the field winding is also wound. An engine welder characterized by having a non-convex pole structure.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1987196395U JPH0441750Y2 (en) | 1987-12-24 | 1987-12-24 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1987196395U JPH0441750Y2 (en) | 1987-12-24 | 1987-12-24 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS63113465U JPS63113465U (en) | 1988-07-21 |
| JPH0441750Y2 true JPH0441750Y2 (en) | 1992-09-30 |
Family
ID=31155177
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1987196395U Expired JPH0441750Y2 (en) | 1987-12-24 | 1987-12-24 |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0441750Y2 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5991702B2 (en) * | 2015-02-13 | 2016-09-14 | 北越工業株式会社 | AC generator |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5582099U (en) * | 1978-11-30 | 1980-06-06 |
-
1987
- 1987-12-24 JP JP1987196395U patent/JPH0441750Y2/ja not_active Expired
Also Published As
| Publication number | Publication date |
|---|---|
| JPS63113465U (en) | 1988-07-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10090742B2 (en) | Rotating electric machine | |
| KR101087948B1 (en) | Generator operation method of variable reluctance device and variable reluctance device | |
| US5694027A (en) | Three-phase brushless self-excited synchronous generator with no rotor excitation windings | |
| US20060290316A1 (en) | Field-winding type of synchronous machine | |
| JP2010022185A (en) | Synchronous machine | |
| JP2016214035A (en) | Field winding type synchronous machine | |
| JP2010098908A (en) | Field winding synchronous machine | |
| JP3368604B2 (en) | AC generator | |
| WO2020179867A1 (en) | Motor system | |
| JPH0865976A (en) | Brushless self-excited three-phase synchronous generator | |
| JP2003199306A (en) | Dynamo-electric machine | |
| JPH0441750Y2 (en) | ||
| JP2887686B2 (en) | Brushless self-excited synchronous generator | |
| JPH0365114B2 (en) | ||
| JP6781343B2 (en) | Thyristor starter | |
| JP3181871B2 (en) | Separately driven inverter type spindle drive generator | |
| JPH0739334Y2 (en) | AC output combined welding generator | |
| JP2989135B2 (en) | Self-excited three-phase AC generator | |
| JPH0531379B2 (en) | ||
| US20030057782A1 (en) | AC generator-motor apparatus for vehicle | |
| JPH0312451Y2 (en) | ||
| JP2530297B2 (en) | AC generator | |
| JPH06253513A (en) | Synchronous motor | |
| JPH0331497Y2 (en) | ||
| JPS57134270A (en) | Engine welder |