JPS5915266B2 - DC device - Google Patents

DC device

Info

Publication number
JPS5915266B2
JPS5915266B2 JP6118077A JP6118077A JPS5915266B2 JP S5915266 B2 JPS5915266 B2 JP S5915266B2 JP 6118077 A JP6118077 A JP 6118077A JP 6118077 A JP6118077 A JP 6118077A JP S5915266 B2 JPS5915266 B2 JP S5915266B2
Authority
JP
Japan
Prior art keywords
current
winding
armature
magnetic flux
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6118077A
Other languages
Japanese (ja)
Other versions
JPS53147211A (en
Inventor
孝行 松井
和雄 田原
宏史 奥田
正二 茂木
郁夫 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6118077A priority Critical patent/JPS5915266B2/en
Publication of JPS53147211A publication Critical patent/JPS53147211A/en
Publication of JPS5915266B2 publication Critical patent/JPS5915266B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Dc Machiner (AREA)

Description

【発明の詳細な説明】 本発明は補極及び直巻々線を有する磁極を備えた直流機
に係り、特に脈流電源で運転するに好適な直流電動機に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a DC motor equipped with magnetic poles having commutating poles and series coils, and more particularly to a DC motor suitable for operation with a pulsating current power source.

第1図は従来の直流機の補極部の概略を示す。FIG. 1 schematically shows a commutating pole section of a conventional DC machine.

継鉄1に設けた主極鉄心2と直巻巻線6からなる主極に
対して、主極間の中性帯に補極鉄心3とその補極巻線5
とから成る補極を設ける。
A main pole consisting of a main pole iron core 2 and a series winding 6 provided on the yoke 1 is provided with a commutator core 3 and its commutator winding 5 in the neutral zone between the main poles.
A complementary pole consisting of is provided.

なお、4は電機子である。Note that 4 is an armature.

このような直流機を脈流電源で運転する場合の結線を第
2図に示す。
Figure 2 shows the wiring when operating such a DC machine with a pulsating current power source.

同図において、電源は交流電源7の電流を整流器8で整
流し、平滑リアクトル9で平滑することで直流に変換し
ている。
In the figure, the power source is converted into direct current by rectifying the current of an alternating current power source 7 with a rectifier 8 and smoothing it with a smoothing reactor 9.

この脈流電源は電機子4と補極巻線5と直巻巻線6とが
直列接続された端子に接続する。
This pulsating current power source is connected to a terminal in which an armature 4, a commutator winding 5, and a series winding 6 are connected in series.

才だ、直巻巻線6には主極磁束の脈動をおさえるための
分路抵抗器10を並列接続し、さらにリアクトル11と
接触器12と弱界磁用抵抗器13とからなる直列回路を
直巻巻線6に並列接続する。
A shunt resistor 10 is connected in parallel to the series winding 6 to suppress the pulsation of the main pole magnetic flux, and a series circuit consisting of a reactor 11, a contactor 12, and a weak field resistor 13 is connected in parallel. It is connected in parallel to the series winding 6.

ここで、接触器12等は弱界磁制御をする場合のために
設けるものである。
Here, the contactor 12 and the like are provided for weak field control.

さて、第2図に示す如く、直流機を脈流電源で運転する
において、電機子4と直列に接続された補極巻線5には
電機子電流によって整流磁束を発生するが、整流磁束は
電機子電流に対して時間的に遅れる。
Now, as shown in Fig. 2, when a DC machine is operated with a pulsating current power source, a rectified magnetic flux is generated in the commutator winding 5 connected in series with the armature 4 by the armature current, but the rectified magnetic flux is There is a time delay with respect to the armature current.

さらに、電機子電流の脈動率に対して整流磁束の脈動率
が減少する。
Furthermore, the pulsation rate of the rectified magnetic flux is reduced relative to the pulsation rate of the armature current.

この関係は第3図に例示するように、電機子電流■1
に対して整流磁束φ1が時間的に遅れかつ整流磁束φ1
の脈動率が小さくなるため、ブラシにより短絡される電
機子巻線に生じるリアクタンス電圧の大きさの変化を整
流磁束φ1で充分に補償できなくなり、ブラシを流れる
短絡電流が増加し、火花を生じて整流が悪化する。
This relationship is shown in Fig. 3 as an example of armature current ■1
The rectified magnetic flux φ1 is delayed in time and the rectified magnetic flux φ1
As the pulsation rate becomes smaller, the rectified magnetic flux φ1 cannot sufficiently compensate for the change in the reactance voltage that occurs in the armature winding short-circuited by the brush, and the short-circuit current flowing through the brush increases, causing sparks. Rectification worsens.

これを防止するために、従来は補極磁気回路を積層鉄板
で構成する方法または補極鉄心の側面に導電性の板を設
ける方法を採っている。
In order to prevent this, conventional methods have been adopted in which the commutating magnetic circuit is constructed of laminated iron plates or by providing conductive plates on the side surfaces of the commutating pole core.

前者は整流磁束の時間的な遅れと脈動率の大きさの減少
の原因になる塊状鉄心の渦電流を継鉄、補極鉄心を積層
鉄板で構成することで抑制し、整流磁束の脈動成分を通
し易くする方法である。
The former suppresses eddy currents in the block core, which cause a time delay in the rectified magnetic flux and a decrease in the pulsation rate, by constructing a yoke and a commutator core with laminated iron plates, thereby reducing the pulsating component of the rectified magnetic flux. This is a method to make it easier to pass.

この方法は有効であるが、継鉄の一部あるいは全てを積
層鉄板とするために、機械的強度が弱くなるし製作も難
しい欠点があった。
Although this method is effective, since part or all of the yoke is made of laminated iron plates, its mechanical strength is weak and it is difficult to manufacture.

後者の導電性板を設ける方法は、補極鉄心の継鉄側を通
る整流磁束の約半分が補極鉄心の側面から漏れるのを側
面に設ける板で抑制し、整流磁束の脈動成分が電機子と
の空隙を通るようにするものである。
The latter method of providing a conductive plate suppresses approximately half of the rectified magnetic flux passing through the yoke side of the commutator core from leaking from the side surface of the commutator core, and the pulsating component of the rectified magnetic flux is prevented from leaking from the side of the commutator core. It is designed to pass through the gap between the

この方法も有効であるが、導電性の板に流れる渦電流に
よって損失が生じ、補極巻線の温度が上昇するし、導電
性の板の取付けが難しい欠点があった。
Although this method is also effective, it has the drawbacks that the eddy current flowing through the conductive plate causes loss, increases the temperature of the commutator winding, and makes it difficult to attach the conductive plate.

本発明の目的は、製作々業容易にして、また特殊な装置
を用いることなく脈流率の高い脈流電源で運転するにお
いても良好な整流ができる直流機を提供するにある。
An object of the present invention is to provide a DC machine that is easy to manufacture and that can perform good rectification even when operated with a pulsating current power source with a high pulsating rate without using any special equipment.

本発明者の研究によれば、直流機を脈流電源で運転する
場合には補極による整流磁束の脈動成分が空隙側で不足
するために整流が悪化することが判った。
According to the research conducted by the present inventors, it has been found that when a DC machine is operated with a pulsating current power source, the pulsating component of the rectified magnetic flux due to the interpolation is insufficient on the air gap side, resulting in poor rectification.

そこで、本発明においては、整流磁束の脈動成分の不足
を解消する手段として、補極の空隙側に補極巻線とは別
個に補助巻線を設け、電機子電流に比べて時間的に進ん
だ脈流電流である直巻巻線の分路電流を補助巻線に流し
、整流磁束の脈動成分の時間的遅レヲ小さくし、さらに
脈動率を大きくするようにしたものである。
Therefore, in the present invention, as a means to eliminate the shortage of the pulsating component of the rectified magnetic flux, an auxiliary winding is provided separately from the commutating pole winding on the air gap side of the commutating pole, so that the auxiliary winding advances in time compared to the armature current. The shunt current of the series winding, which is a pulsating current, is passed through the auxiliary winding to reduce the time delay of the pulsating component of the rectified magnetic flux and further increase the pulsation rate.

以下、本発明の実施例を詳細に説明する。Examples of the present invention will be described in detail below.

第4図が第1図と異なる部分は、補極鉄心3には電機子
4の電機子巻線と直列に接続される補極巻線5に71D
えて、直巻巻線6と抵抗を介して並列接続される補助巻
線5aが電機子4との空隙側に設けられる点にある。
The difference between FIG. 4 and FIG. 1 is that the commutator core 3 has a 71D
Furthermore, the auxiliary winding 5a, which is connected in parallel with the series winding 6 via a resistor, is provided on the gap side between the armature 4 and the armature 4.

このように、補助巻線5aは補極鉄心3の空隙側に設け
られ、さっに抵抗を介して直巻巻線6と並列接続される
ことによって、補助巻線5aには電機子電流の一部が流
れ、このとき生じる補助巻線磁束が補極鉄心3の空隙側
を通り電機子4へ入射する。
In this way, the auxiliary winding 5a is provided on the air gap side of the commutator core 3, and is connected in parallel with the series winding 6 via the resistor, so that the auxiliary winding 5a receives a portion of the armature current. flows, and the auxiliary winding magnetic flux generated at this time passes through the gap side of the commutator core 3 and enters the armature 4.

その結果、ブラシにより短絡される電機子巻線は、補極
巻線50つくる整流磁束と補助巻線5aのつくる補助巻
線磁束とを合成した磁束によって整流補償されることに
なる。
As a result, the armature winding short-circuited by the brushes is rectified and compensated by the combined magnetic flux of the rectified magnetic flux created by the commutator winding 50 and the auxiliary winding magnetic flux created by the auxiliary winding 5a.

斯かる直流機を単相全波整流電源で運転する場合の結線
を第5図に示す。
Figure 5 shows the wiring when such a DC machine is operated with a single-phase full-wave rectified power supply.

なお、第2図と同じものあるいは同じ機能を有するもの
は同一符号で示す。
Components that are the same as those in FIG. 2 or have the same functions are indicated by the same reference numerals.

電機子4と補極巻線5と直巻巻線6とが直列接続された
端子には脈流電源が接続される。
A pulsating current power source is connected to a terminal where the armature 4, the commutator winding 5, and the series winding 6 are connected in series.

直巻巻線6には補助巻線5aと分路抵抗器10からなる
直列回路およびリアクトル11と接触器12と弱界磁用
抵抗器13とからなる直列回路がそれぞれ並列接続され
る。
A series circuit consisting of an auxiliary winding 5a and a shunt resistor 10, and a series circuit consisting of a reactor 11, a contactor 12, and a weak field resistor 13 are connected in parallel to the series winding 6, respectively.

上記結線において、弱界磁制御をしない場合、補助巻線
5aを流れる電流11 は、第6図にベクトル図を示す
ように直巻巻線電圧V8による直巻巻線6を流れる電流
1sK−比べて位相が進む。
In the above wiring connection, when weak field control is not performed, the current 11 flowing through the auxiliary winding 5a is in phase with respect to the current 1 sK- flowing through the series winding 6 due to the series winding voltage V8, as shown in the vector diagram in FIG. progresses.

これは、直流直巻電動機においては、直巻巻線に流れる
電流によって生ずる磁束が脈動すると、ブラシにより短
絡される電機子巻線には変圧器起電力が生じてブラシに
よる短絡電流が大きくなり、ブラシから火花を生じて整
流が悪化するのを防止するために、直巻巻線の電流の5
%〜10係位を分路するように分路抵抗器10の抵抗値
が設定されるので、直巻巻線6のリアクタンスと抵抗の
比が補助巻線5aと分路抵抗器10とからなる回路のり
アクタンスと抵抗との比に比べて大きいためである。
This is because in a DC series motor, when the magnetic flux generated by the current flowing through the series winding pulsates, a transformer electromotive force is generated in the armature winding short-circuited by the brush, and the short-circuit current due to the brush increases. 5 of the current in the series winding to prevent sparks from the brushes and worsening commutation.
Since the resistance value of the shunt resistor 10 is set so as to shunt a coefficient of % to 10, the ratio of the reactance to resistance of the series winding 6 is made up of the auxiliary winding 5a and the shunt resistor 10. This is because it is large compared to the ratio of circuit resistance to actance.

その結果、補助巻線5aに流れる電流の直流成分は電機
子電流の約5係〜10係になり、脈流成分は補助巻線5
aが補極の空隙側に設げられているためリアクタンスが
直巻巻線6に比べて充分小さいため、電機子電流の脈流
成分の大きさに近いものになる。
As a result, the DC component of the current flowing through the auxiliary winding 5a is approximately 5 to 10 times the armature current, and the pulsating current component is approximately 5 to 10 times the armature current.
Since a is provided on the gap side of the commutating pole, the reactance is sufficiently smaller than that of the series winding 6, so that the reactance is close to the magnitude of the pulsating component of the armature current.

さらに、第7図に示すように、補助巻線5aを流れる電
流の脈流成分11 は電機子電流の脈流成分iに比べ位
相が進む。
Furthermore, as shown in FIG. 7, the pulsating current component 11 of the current flowing through the auxiliary winding 5a is advanced in phase compared to the pulsating current component i of the armature current.

その結果、補極巻線5を流れる電機子電流によって生じ
る整流磁束と補助巻線5aの生じる磁束とを合成した整
流磁束は、電機子電流に対する遅れが小さく、かつ脈動
率が大きくなり、電機子電流の脈動により電機子巻線に
生じるリアクタンス電圧の変化を充分に整流補償できる
As a result, the rectified magnetic flux, which is a combination of the rectified magnetic flux generated by the armature current flowing through the commutator winding 5 and the magnetic flux generated by the auxiliary winding 5a, has a small delay with respect to the armature current and has a large pulsation rate. It is possible to sufficiently rectify and compensate for changes in reactance voltage that occur in the armature winding due to current pulsations.

次に、接触器12を閉じて弱界磁制御をする場合を説明
する。
Next, a case will be described in which the contactor 12 is closed to perform weak field control.

補助巻線5aを流れる電流11は、第7図に示すように
、直巻巻線6を流れる電流isおよびリアクトル11と
弱界磁用抵抗器13とからなる弱界磁回路の電流12に
比べて位相が進む。
The current 11 flowing through the auxiliary winding 5a is, as shown in FIG. The phase advances.

これは、補助巻線5aと分路抵抗器10とからなる回路
のりアクタンスと抵抗の比が、直巻巻線6のリアクタン
スと抵抗の比およびリアクトル11と弱界磁用抵抗器1
3とからなる回路のリアクタンスと抵抗の比とに比べて
小さいためである。
This means that the ratio of reactance to resistance of the circuit consisting of the auxiliary winding 5a and the shunt resistor 10 is the same as the ratio of reactance to resistance of the series winding 6 and the reactance of the reactor 11 and the weak field resistor 1.
This is because the ratio of reactance to resistance of the circuit consisting of 3 and 3 is small compared to the ratio of reactance and resistance.

ここで、リアクトル11は、交流電源Iの急激な変動あ
るいは負荷の急激な変動が生じた場合、電機子電流の急
激な増加による変化電流を直巻巻線6に流すことによっ
て電機子の逆起電力を増加させ、電機子電流の急激な増
加を抑制し、整流の悪化を防止することを目的として設
けられるものであり、リアクトル11は直巻巻線6のリ
アクタンスの大きさに近い値に設定されることが多い。
Here, when a sudden change in the AC power supply I or a sudden change in the load occurs, the reactor 11 causes a counter electromotive force of the armature by flowing a changing current due to a sudden increase in the armature current to the series winding 6. It is provided for the purpose of increasing power, suppressing a sudden increase in armature current, and preventing deterioration of rectification, and the reactor 11 is set to a value close to the reactance of the series winding 6. It is often done.

従って、分路電流の一部分を補助巻線5aK流すことに
よって、上記のように交流電源7の急激な変動などにお
いて電機子電流の変化に対する整流磁束の時間的な遅れ
を小さくでき、結果的に艮好な整流ができることになる
Therefore, by passing a portion of the shunt current through the auxiliary winding 5aK, it is possible to reduce the time delay of the rectified magnetic flux with respect to changes in the armature current in the case of sudden fluctuations in the AC power supply 7 as described above, and as a result, the time delay of the rectified magnetic flux can be reduced. This results in good rectification.

第1図に示すように、補助巻線5aの電流11が電機子
電流iの脈動成分に比べ位相が進んでいる。
As shown in FIG. 1, the phase of the current 11 in the auxiliary winding 5a is advanced compared to the pulsating component of the armature current i.

その結果、補極巻線5を流れる電機子電流によって生じ
る整流磁束と、補助巻線5aの生じる磁束を合成した整
流磁束は、電機子電流に対する遅れが小さく、かつ大き
さが大きくなり、電機子電流の脈動によるブラシによっ
て短絡される電機子巻線に生じるリアクタンス電圧の変
化を充分に整流補償できる。
As a result, the rectified magnetic flux, which is a combination of the rectified magnetic flux generated by the armature current flowing through the commutator winding 5 and the magnetic flux generated by the auxiliary winding 5a, has a small delay with respect to the armature current and has a large magnitude. It is possible to sufficiently rectify and compensate for changes in reactance voltage that occur in the armature winding short-circuited by brushes due to current pulsations.

このように、電機子電流め脈流変化に対して合成した整
流磁束の脈動変化の時間的な遅れと大きさを改善するこ
とができるので、脈流電源で運転する直流機の整流性能
を大幅に向上できる。
In this way, it is possible to improve the time delay and magnitude of the pulsating changes in the rectified magnetic flux synthesized with respect to changes in the armature current and pulsating current, thereby significantly improving the rectifying performance of DC machines operated with pulsating current power sources. can be improved.

これにより、脈流率の大きい電源での運転に何ら問題が
なくなり、平滑リアクトルを小さくできる新たな効果も
生じる。
As a result, there is no problem in operation with a power source having a large pulsating current rate, and a new effect is produced in that the smoothing reactor can be made smaller.

さらに、電源あるいは負荷急変時においても整流磁束の
追従性が良いので、過渡時の整流およびフラッシュオー
バ耐力も向上できる。
Furthermore, since the followability of the rectified magnetic flux is good even when the power supply or load suddenly changes, rectification during transient times and flashover resistance can also be improved.

以上詳細に説明したように、本発明による直流機は、特
殊な装置を用いず、またその製作々業容易にして、脈流
率の高い脈流電源で運転するにおいても良好な整流補償
ができる効果がある。
As explained in detail above, the DC machine according to the present invention does not require any special equipment, is easy to manufacture, and can provide good rectification compensation even when operated with a pulsating current power source with a high pulsating rate. effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の直流機の補極部を示す断面図、第2図は
従来の直流機を脈流運転する場合の一例を示す結線図、
第3図は従来の直流機における電機子電流と整流磁束を
示す波形図、第4図は本発明による直流機の補極部を示
す断面図、第5図は本発明の直流機を脈流運転する場合
を示す結線図、第6図は本発明の直流機における補助巻
線、直巻巻線の電流と電機子電流を説明するためのベク
トル図、第7図は本発明の直流機を弱界磁制御する場合
の補助巻線、直巻巻線の電流、弱界磁分路の電流および
電機子電流を説明するためのベクトル図である。 1・・・継鉄、2・・・主極鉄心、3・・・補極鉄心、
4・・・電機子、5・・・補極巻線、5a・・・補助巻
線、6・・・直巻巻線、1・・・交流電源、8・・・整
流器、9・・・平滑リアクトル、10・・・分路抵抗器
、11・・・リアクトル、12・・・接触器、13・・
・弱界磁用抵抗器。
Fig. 1 is a sectional view showing a commutating pole part of a conventional DC machine, Fig. 2 is a wiring diagram showing an example of a case where a conventional DC machine is operated with pulsating current,
Fig. 3 is a waveform diagram showing the armature current and rectified magnetic flux in a conventional DC machine, Fig. 4 is a sectional view showing the commutating pole part of the DC machine according to the present invention, and Fig. 5 is a waveform diagram showing the armature current and rectified magnetic flux in a conventional DC machine. A wiring diagram showing the case of operation, FIG. 6 is a vector diagram for explaining the auxiliary winding, series winding current, and armature current in the DC machine of the present invention, and FIG. 7 is a diagram showing the DC machine of the present invention. FIG. 6 is a vector diagram for explaining currents in an auxiliary winding, a series winding, a weak field shunt current, and an armature current when performing weak field control. 1...Yoke, 2...Main pole core, 3...Commuting pole core,
4... Armature, 5... Commutary winding, 5a... Auxiliary winding, 6... Series winding, 1... AC power supply, 8... Rectifier, 9... Smoothing reactor, 10... Shunt resistor, 11... Reactor, 12... Contactor, 13...
・Resistor for weak field.

Claims (1)

【特許請求の範囲】[Claims] 1 電機子と、補極と、直巻々線を有する磁極と、継鉄
とを備えた直流機において、前記補極の空隙側に補助巻
線を設け、この補助巻線を前記直巻磁極の巻線に抵抗を
介して並列接続したことを特徴とする直流機。
1. In a DC machine equipped with an armature, a commutating pole, a magnetic pole having a series winding coil, and a yoke, an auxiliary winding is provided on the air gap side of the commuting pole, and this auxiliary winding is connected to the series winding magnetic pole. A DC machine characterized by having the windings connected in parallel through a resistor.
JP6118077A 1977-05-27 1977-05-27 DC device Expired JPS5915266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6118077A JPS5915266B2 (en) 1977-05-27 1977-05-27 DC device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6118077A JPS5915266B2 (en) 1977-05-27 1977-05-27 DC device

Publications (2)

Publication Number Publication Date
JPS53147211A JPS53147211A (en) 1978-12-21
JPS5915266B2 true JPS5915266B2 (en) 1984-04-09

Family

ID=13163696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6118077A Expired JPS5915266B2 (en) 1977-05-27 1977-05-27 DC device

Country Status (1)

Country Link
JP (1) JPS5915266B2 (en)

Also Published As

Publication number Publication date
JPS53147211A (en) 1978-12-21

Similar Documents

Publication Publication Date Title
JP3489106B2 (en) Brushless three-phase synchronous generator
JPH11144983A (en) Choke coil and rectifying/smoothing circuit using the same
CA1124323A (en) Controllable electrical single-armature or rotary converter
Kaimoto et al. Performance improvement of current source inverter-fed induction motor drives
JPS5915266B2 (en) DC device
JPS5915265B2 (en) dc machine
US2274356A (en) Polarity control system
US2821673A (en) A. c. motor
US1953129A (en) Shunted interpole for railway motors
SU62075A1 (en) Electrical installation for generating electrical energy
JP2817904B2 (en) DC machine rectifier
SU641597A1 (en) Dc drive
Mandl Single-phase 50 c/s ac traction using a rectifier
Simon Rectified single-phase power for traction motors
SU98999A1 (en) Apparatus for improving commutation of AC collector machines
JPS6332028B2 (en)
US1301334A (en) Electricity transforming and converting apparatus.
SU1098083A1 (en) Commutator electric machine
SU58816A1 (en) Compensated single phase serial collector motor
GB517468A (en) Improvements in and relating to dynamo electric machines
SU113124A1 (en) Method of compensation of transformer emf in single phase commutator motors
US2653287A (en) Rectifier-powered vehicle
Simon Considerations in applying DC traction motors on rectified single-phase power
Seyfert et al. Synchronous mechanical rectifier-inverter—II
JPH01152903A (en) Electric vehicle drive system