JPH0758820B2 - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH0758820B2
JPH0758820B2 JP10613386A JP10613386A JPH0758820B2 JP H0758820 B2 JPH0758820 B2 JP H0758820B2 JP 10613386 A JP10613386 A JP 10613386A JP 10613386 A JP10613386 A JP 10613386A JP H0758820 B2 JPH0758820 B2 JP H0758820B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser device
wave plate
substrate
quarter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10613386A
Other languages
Japanese (ja)
Other versions
JPS62262482A (en
Inventor
伸一 若菜
泰男 古川
正孝 白崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10613386A priority Critical patent/JPH0758820B2/en
Publication of JPS62262482A publication Critical patent/JPS62262482A/en
Publication of JPH0758820B2 publication Critical patent/JPH0758820B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔概要〕 本発明は外部共振器内の一方に1/4波長板を他方に複屈
折物質を挿入配置して,周波数の異なる2つの直交偏光
を得た外部共振器型半導体レーザ装置に特徴がある。
DETAILED DESCRIPTION OF THE INVENTION [Outline] The present invention is an external resonator in which a quarter-wave plate is inserted in one of the external resonators and a birefringent material is inserted in the other to obtain two orthogonal polarizations with different frequencies. Type semiconductor laser device is characterized.

〔産業上の利用分野〕[Industrial application field]

本発明は2周波光源として用いられる半導体レーザ装置
に係わり,特に構成部品点数を削減できかつ2周波光の
間の周波数差が可変である外部共振器型半導体レーザ装
置に関する。
The present invention relates to a semiconductor laser device used as a two-frequency light source, and more particularly to an external resonator type semiconductor laser device capable of reducing the number of constituent parts and having a variable frequency difference between the two-frequency light.

光応用技術の発展に伴って新しい機能を持つデバイスが
急速度で開発されている。光計測分野においてもレーザ
光を用いて種々の物理量を計測する方法が求められてい
る。その内の1つである光ヘテロダイン法を用いて高精
度な測定を行うためには,周波数の近接した2つのレー
ザ光を安定に得ることが必要である。また,計測器の小
型化という要請から従来より用いられてきた気体レーザ
に代わって半導体レーザの利用が必要となっている。
With the development of optical application technology, devices with new functions are being rapidly developed. Also in the field of optical measurement, there is a demand for a method of measuring various physical quantities using laser light. In order to perform highly accurate measurement using one of them, the optical heterodyne method, it is necessary to stably obtain two laser beams having frequencies close to each other. Also, due to the demand for miniaturization of measuring instruments, it is necessary to use a semiconductor laser in place of the gas laser that has been used conventionally.

〔従来の技術〕[Conventional technology]

最近距離計測,速度計測等の計測分野においてレーザ光
を応用した光計測装置が増加しているが光ヘテロダイン
法を用いてかかる計測を効率良く行うには,安定した周
波数差を持つ二つのレーザ光が必要とされ,2周波光源と
してZeeman効果を用いたHe−Neレーザが多く用いられ
る。また,その他の光源として気体レーザの共振器内に
複屈折性の物質を挿入することで2周波光を得た例があ
る(Walter M.doyle他APPLIED PHYSICS LETTERS Vol.5,
Number 10 1964)。その他に,レーザ光を2分割し音響
光学素子を用いて片方の周波数をわずかに変移させて2
周波光を得る方法もある。また半導体レーザを用いた2
周波レーザ光源としては,本出願人が先に出願した外部
共振器構造のもの(特願昭58−177233)等があるが,実
用化されているものはいまだない。
Recently, the number of optical measurement devices that use laser light is increasing in the field of measurement such as distance measurement and velocity measurement. To perform such measurement efficiently by using the optical heterodyne method, two laser light with stable frequency difference are used. He-Ne lasers using the Zeeman effect are often used as dual-frequency light sources. In addition, as another light source, there is an example in which a birefringent material is obtained by inserting a birefringent substance into the cavity of a gas laser (Walter M. doyle et al. APPLIED PHYSICS LETTERS Vol.5,
Number 10 1964). In addition, the laser light is divided into two and one frequency is slightly changed by using an acousto-optic device.
There is also a method of obtaining frequency light. 2 using a semiconductor laser
As a frequency laser light source, there is an external resonator structure (Japanese Patent Application No. 58-177233) filed previously by the applicant of the present application, but none has been put into practical use.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

半導体レーザを用いて偏光面の異なる2周波光を得よう
とする場合,半導体レーザ内部の導波路構造に起因する
伝播常数の異方性のために偏光モード間に大きな位相の
差が発生する。そのため偏光モード間で実効的な共振器
長が大きく異なり,周波数を極めて近接しかつ偏光モー
ドの異なる2つの光を同時に発振させることは非常に難
しいという問題があった。また外部共振器構造の半導体
レーザ装置においても同じ問題は未解決のまま残ってい
る。
When a semiconductor laser is used to obtain dual-frequency light having different polarization planes, a large phase difference occurs between polarization modes due to the anisotropy of the propagation constant due to the waveguide structure inside the semiconductor laser. Therefore, there is a problem that the effective cavity lengths are greatly different between the polarization modes, and it is very difficult to simultaneously oscillate two lights having extremely close frequencies and different polarization modes. The same problem also remains unsolved in a semiconductor laser device having an external cavity structure.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは,上記の半導体レーザ内部の構造に起因す
る問題点が半導体レーザ端面での反射によるレーザ発振
を無くし,外部共振器構成において反射鏡からの帰還光
の偏光面を90度回転させることで解決可能であることに
気付き,この結果上記問題点を解決するため,少なくと
も半導体レーザ(1)を中心としてその両側に反射鏡
(3)が配置されている外部共振器型半導体レーザ装置
であって,片側光路(21)中に1/4波長板(4)をその
軸方位が中心に置かれた半導体レーザのTE偏光面(11)
に対して45度となるように配設し,且つ他方側光路(2
2)中には複屈折物質(5)を挿入し,周波数の異なる
2つの直交偏光を得ることを特徴とする半導体レーザ装
置を提供したものである。
The present inventors have found that the problems caused by the internal structure of the semiconductor laser described above eliminate laser oscillation due to reflection at the end face of the semiconductor laser, and rotate the polarization plane of the return light from the reflecting mirror by 90 degrees in the external resonator configuration. Therefore, in order to solve the above-mentioned problems, an external resonator type semiconductor laser device in which at least the semiconductor laser (1) is located at the center and the reflecting mirrors (3) are arranged on both sides thereof is realized. There is a TE polarization plane (11) of the semiconductor laser in which the axis direction is centered on the 1/4 wavelength plate (4) in the optical path (21) on one side.
And the optical path on the other side (2
2) A semiconductor laser device characterized in that a birefringent substance (5) is inserted therein to obtain two orthogonally polarized lights having different frequencies.

〔作用〕[Action]

本発明においては,半導体レーザと1/4波長板の組み合
わせにより半導体レーザの異方性を打ち消すことがで
き,各種の偏向成分に対して等方的な半導体レーザ媒質
が実現できる。そして,共振器内に複屈折物質を入れる
ことで2つの偏光に対して実効的な共振器長が変わり2
周波光源が実現できる。
In the present invention, the anisotropy of the semiconductor laser can be canceled by the combination of the semiconductor laser and the quarter-wave plate, and an isotropic semiconductor laser medium for various deflection components can be realized. Then, by inserting a birefringent substance into the resonator, the effective resonator length for two polarized lights changes.
A frequency light source can be realized.

〔実施例〕〔Example〕

第1図は本発明に係る半導体レーザ装置の全体的構成を
示す実施例図,第2図は第1図の一部を取り出した本発
明に係る半導体レーザ装置の斜視図,第3図は第1図装
置における偏光面の回転状態を示す図,第4図は第1装
置における発振周波数の可変度を示す図,第5図(a)
(b)は本発明の変形例として共振器を集積化した場合
の半導体レーザ装置の実施例図である。
FIG. 1 is an embodiment diagram showing the overall structure of a semiconductor laser device according to the present invention, FIG. 2 is a perspective view of the semiconductor laser device according to the present invention in which a part of FIG. 1 is taken out, and FIG. FIG. 1 is a diagram showing the rotation state of the polarization plane in the device, FIG. 4 is a diagram showing the variability of the oscillation frequency in the first device, FIG. 5 (a)
(B) is an embodiment of a semiconductor laser device in which a resonator is integrated as a modification of the present invention.

第1図および第2図において,1は活性媒質として用いる
ために両端面に無反射膜を形成した半導体レーザ,2は半
導体レーザからの出射光を平行にするためのコリメート
用のマイクロレンズ,3は光をレーザに戻すための反射
鏡,4は半導体レーザ1のTE偏光面11に対して複屈折軸方
位を45度〔図では矢印41によって該軸方位が図示されて
おり,該軸方位はTE偏光面11の対応仮想線より回転角θ
1が45度になっている〕傾けて配設した水晶等よりなる
1/4波長板,5は半導体レーザ1のTE偏光面11に対して複
屈折軸方位を(45+α)度〔図では矢印51によって該軸
方位が図示されており,該軸方位はTE偏光面11の対応仮
想線より回転角θ2が45度+α度になっている〕傾けて
配設した水晶等の複屈折物質からなる1/4波長板,21と22
は共振器内の光路を示しいてる。
In FIGS. 1 and 2, 1 is a semiconductor laser having antireflection films formed on both end surfaces for use as an active medium, 2 is a microlens for collimation for collimating emitted light from the semiconductor laser, 3 Is a reflecting mirror for returning light to the laser, and 4 is a birefringence axis azimuth of 45 degrees with respect to the TE polarization plane 11 of the semiconductor laser 1 [in the figure, the axis azimuth is shown by an arrow 41, and the axis azimuth is Rotation angle θ from the virtual line corresponding to TE polarization plane 11
1 is 45 degrees] made of crystal etc. arranged at an angle
The 1/4 wave plate, 5 has a birefringence axis azimuth of (45 + α) degrees with respect to the TE polarization plane 11 of the semiconductor laser 1 [in the figure, the axis azimuth is shown by an arrow 51, and the axis azimuth is the TE polarization plane]. The rotation angle θ2 is 45 degrees + α degrees from the corresponding phantom line of 11] 1/4 wavelength plate made of birefringent material such as quartz crystal, 21 and 22 arranged at an angle
Shows the optical path in the resonator.

尚,α度としては0゜<α<45゜の範囲であり,5゜〜10
゜が適当である。
The α degree is in the range of 0 ° <α <45 °, 5 ° to 10 °
Is suitable.

このように構成された半導体レーザ装置において,レー
ザ1から(A)側に出射した光路21内の光はレンズ2に
よってコリメートされ1/4波長板4を通過したのち,鏡
3によって反射され再び該1/4波長板4を通過しレンズ
2により集光されてレーザ1内部に入射する。
In the semiconductor laser device configured as described above, the light in the optical path 21 emitted from the laser 1 to the (A) side is collimated by the lens 2, passes through the 1/4 wavelength plate 4, and is reflected by the mirror 3 again. The light passes through the quarter-wave plate 4, is condensed by the lens 2, and enters the inside of the laser 1.

また同様にレーザ1から(B)側に出射した光路22内の
光はレンズ2によってコリメートされ1/4波長板5を通
過したのち,鏡3によって反射され再び該1/4波長板5
を通過しレンズ2により集光されてレーザ1内部に入射
する。
Similarly, the light in the optical path 22 emitted from the laser 1 to the (B) side is collimated by the lens 2 and passes through the 1/4 wavelength plate 5, and then is reflected by the mirror 3 and is again reflected by the 1/4 wavelength plate 5.
Through the lens 2 and is condensed by the lens 2 to enter the inside of the laser 1.

従って,初めレーザ1から左側にTE偏光で出射した光は
1/4波長板4を往復(2回)通過することでTE偏光に直
交するTM偏光に返還される。逆にTM偏光はTE偏光に変換
される。
Therefore, the light emitted from the laser 1 with TE polarization on the left side is initially
By passing back and forth (twice) through the quarter-wave plate 4, it is returned to TM polarized light that is orthogonal to TE polarized light. On the contrary, TM polarized light is converted into TE polarized light.

この際共振器内部においてレーザ1を含めた点線a……
a′より左側の(A)部分では,1/4波長板4により偏光
面に関する異方性は往復することですべて打ち消される
ことになる。
At this time, the dotted line a including the laser 1 inside the resonator ...
In the part (A) on the left side of a ', the anisotropy of the plane of polarization is canceled by the 1/4 wavelength plate 4 by reciprocating.

ところが,共振器の右側の(B)部分では光路22内に,
軸方位がわずかに45度からずれた複屈折物質である1/4
波長板5が挿入されているため,2つの直交偏光に対する
実効共振器長をわずかに異ならせることが出来る。
However, in the (B) part on the right side of the resonator, in the optical path 22,
1/4, which is a birefringent substance whose axis direction is slightly deviated from 45 degrees
Since the wave plate 5 is inserted, the effective resonator lengths for two orthogonal polarizations can be slightly different.

その結果,周波数のわずかに異なる2つの直交偏光TE,T
Mが発振することになる。
As a result, two orthogonal polarizations TE, T with slightly different frequencies
M will oscillate.

このとき,光路22内に置いた1/4波長板5の軸方位が(4
5+α)度であるとすると,発振する2つの直線偏光TE,
TMの方向は第3図に示すようにTE,TM軸から角度αだけ
回転し,共振器長を20cmとしたときには2偏光間の発振
周波数差は第4図に示すように回転角αに従って直線的
に変化する。
At this time, the axis direction of the 1/4 wavelength plate 5 placed in the optical path 22 is (4
5 + α) degrees, two oscillating linearly polarized light TE,
The direction of TM is rotated by an angle α from the TE and TM axes as shown in Fig. 3, and when the resonator length is 20 cm, the oscillation frequency difference between the two polarizations is linear according to the rotation angle α as shown in Fig. 4. Change.

なお,本実施例においては光路21内に1/4波長板4を挿
入した場合について説明を行ったが同様の偏光面変換効
果を持つ,例えば,電気光学効果素子の適用をなんら妨
げるものではない。
In this embodiment, the case where the quarter-wave plate 4 is inserted in the optical path 21 has been described, but it has the same polarization plane conversion effect, for example, it does not hinder the application of the electro-optical effect element. .

また1/4波長板5として上記実施例では軸方位がわずか
に45度からずれた1/4波長板を使用したが,これは軸方
位を1/4波長板4と同じ45度とし,その厚みを異ならし
て例えば1/8波長板にしても同等の機能が発揮される。
Further, as the quarter-wave plate 5, a quarter-wave plate whose axis azimuth is slightly deviated from 45 degrees was used as the quarter-wave plate 5, but this has the same axis azimuth as the quarter-wave plate 4 of 45 degrees. Even if the thicknesses are different and the 1/8 wavelength plate is used, the same function is exhibited.

第5図(a)(b)は光学素子を集積化した場合の本発
明に係る半導体レーザ装置の側面図と断面図である。
FIGS. 5 (a) and 5 (b) are a side view and a sectional view of a semiconductor laser device according to the present invention in which optical elements are integrated.

これは,レーザ1を搭載する基板7が水晶等の複屈折物
質で形成されており,該基板7の表面にはレーザ1を埋
設する凹部71が,その両側端面には反射鏡74および75が
設けられ,また該基板7をヒートシンク用基板8に実装
して外部共振器型半導体レーザ装置を構成したものであ
る。
This is because the substrate 7 on which the laser 1 is mounted is formed of a birefringent material such as quartz, a recess 71 for embedding the laser 1 in the surface of the substrate 7, and reflecting mirrors 74 and 75 on both end faces thereof. The external resonator type semiconductor laser device is provided by mounting the substrate 7 on the heat sink substrate 8.

この際凹部71は基板7におけるレーザ1と反射鏡74間の
領域72と,レーザ1と反射鏡75間の領域73とが互いに異
なった厚み寸法(レーザ1と反射鏡74或いは75間の長さ
に対応)になるように基板7の表面に形成されており,
該領域72と73の断面における光学軸は矢印76で示すよう
にレーザ1のTE偏光面に対し45度となっている。
At this time, in the recess 71, the region 72 between the laser 1 and the reflecting mirror 74 and the region 73 between the laser 1 and the reflecting mirror 75 on the substrate 7 have different thicknesses (length between the laser 1 and the reflecting mirror 74 or 75). Is formed on the surface of the substrate 7 so that
The optical axis in the cross section of the regions 72 and 73 is 45 degrees with respect to the TE polarization plane of the laser 1 as shown by an arrow 76.

このような厚み寸法の相違により,領域72は1/4波長板
4と同等の機能を果たし,領域73は軸の傾いた1/4波長
板5と同様の機能を果たす。
Due to such a difference in the thickness dimension, the region 72 has the same function as that of the quarter-wave plate 4, and the region 73 has the same function as that of the quarter-wave plate 5 with an inclined axis.

このとき領域72の長さIは次式で決まる。At this time, the length I of the area 72 is determined by the following equation.

noは基板7の常光線に対する屈折率,neは基板7の異常
光線に対する屈折率である。
No is the refractive index of the substrate 7 for ordinary rays, and ne is the refractive index of the substrate 7 for extraordinary rays.

また,領域73の長さは上記のI式を満たさない範囲で必
要な周波数差に応じて変えることができる。
Further, the length of the region 73 can be changed according to the required frequency difference within a range that does not satisfy the above formula (I).

〔発明の効果〕〔The invention's effect〕

以上説明した如く本発明によれば,半導体レーザを用い
て簡便に2周波光源が実現できるばかりでなく,その2
周波間の周波数差が可変となり,光を用いるヘテロダイ
ン計測の適用範囲拡大に寄与した効果が顕著である。
As described above, according to the present invention, not only a dual-frequency light source can be easily realized by using a semiconductor laser, but also
The frequency difference between frequencies becomes variable, and the effect that contributed to expanding the applicable range of heterodyne measurement using light is remarkable.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の1実施例による半導体レーザ装置の全
体構成を示す図, 第2図は第1図の一部を取り出して示した本発明に係る
斜視図, 第3図は1/4波長板5の設定角αに対する偏光面の回転
を示す図, 第4図は共振器長20cmの場合に1/4波長板5の設定角α
に対する2周波光の間の周波数差の変化を示す図, 第5図(a)(b)は本発明の他の実施例による光学素
子を集積化した場合の半導体レーザ装置を示す側面図と
断面図である。 〔符号の説明〕 これら図において,1は無反射膜付半導体レーザ,3,74,75
は反射鏡,4は左側1/4波長板,5は右側1/4波長板,7は基
板,72と73は異なった偏光面変換効果を持った基板7の
偏光伝播領域である。
FIG. 1 is a diagram showing an overall configuration of a semiconductor laser device according to an embodiment of the present invention, FIG. 2 is a perspective view according to the present invention in which a part of FIG. 1 is taken out, and FIG. Fig. 4 shows the rotation of the polarization plane with respect to the set angle α of the wave plate 5, and Fig. 4 shows the set angle α of the 1/4 wave plate 5 when the cavity length is 20 cm.
And FIG. 5 (a) and FIG. 5 (b) are side views and cross sections showing a semiconductor laser device in which optical elements according to another embodiment of the present invention are integrated. It is a figure. [Explanation of reference numerals] In these figures, 1 is a semiconductor laser with an antireflection film, 3, 74, 75
Is a reflecting mirror, 4 is a left quarter wave plate, 5 is a right quarter wave plate, 7 is a substrate, and 72 and 73 are polarization propagation regions of the substrate 7 having different polarization plane conversion effects.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】少なくとも半導体レーザ(1)を中心とし
てその両側に反射鏡(3)が配置されている外部共振器
型半導体レーザ装置であって,片側光路(21)中に1/4
波長板(4)をその軸方位が中心に置かれた半導体レー
ザのTE偏光面(11)に対して45度となるように配設し,
且つ他方側光路(22)中には複屈折物質(5)を挿入
し,周波数の異なる2つの直交偏光を得ることを特徴と
する半導体レーザ装置。
1. An external resonator type semiconductor laser device in which at least a semiconductor laser (1) is provided as a center and reflecting mirrors (3) are arranged on both sides thereof, and a 1/4 optical path is provided in a one-side optical path (21).
The wave plate (4) is arranged so that its axial direction is 45 degrees with respect to the TE polarization plane (11) of the semiconductor laser centered on it.
A semiconductor laser device characterized in that a birefringent substance (5) is inserted into the optical path (22) on the other side to obtain two orthogonal polarizations having different frequencies.
【請求項2】上記特許請求の範囲第1項において,前記
複屈折物質(5)が1/4波長板であり,かつその軸方位
が半導体レーザのTE偏光面にたいして45度からわずかに
ずれていることを特徴とする半導体レーザ装置。
2. The birefringent material (5) according to claim 1, wherein the birefringent substance (5) is a quarter-wave plate, and its axis direction is slightly deviated from 45 degrees with respect to the TE polarization plane of the semiconductor laser. A semiconductor laser device characterized in that
【請求項3】上記特許請求の範囲第1項において,前記
複屈折物質(5)が前記1/4波長板(4)とは厚さの異
なる波長板からなることを特徴とする半導体レーザ装
置。
3. A semiconductor laser device according to claim 1, wherein the birefringent material (5) is a wave plate having a thickness different from that of the quarter wave plate (4). .
【請求項4】上記特許請求の範囲第3項において,前記
複屈折物質(5)が1/8波長板からなることを特徴とす
る半導体レーザ装置。
4. A semiconductor laser device according to claim 3, wherein the birefringent substance (5) is a 1/8 wavelength plate.
【請求項5】上記特許請求の範囲第1項において,前記
複屈折物質(5)が前記半導体レーザ(1)を搭載する
基板(7)として設けられ,該基板(7)にはその表面
に形成された凹部(71)に該半導体レーザ(1)が埋設
され且つその両側端面に反射鏡(74)および(75)が設
けられて外部共振器型半導体レーザ装置が構成されてお
り,しかも前記凹部(71)は前記基板(7)における前
記半導体レーザ(1)と前記反射鏡(74)間の領域(7
2)と,前記半導体レーザ(1)と前記反射鏡(75)間
の領域(73)とが互いに異なった厚み寸法になるように
前記基板(7)に形成されていることを特徴とする半導
体レーザ装置。
5. The birefringent material (5) according to claim 1 is provided as a substrate (7) on which the semiconductor laser (1) is mounted, and the substrate (7) is provided on the surface thereof. The semiconductor laser (1) is embedded in the formed recess (71), and reflecting mirrors (74) and (75) are provided on both side end surfaces of the semiconductor laser (1) to form an external resonator type semiconductor laser device. The concave portion (71) is a region (7) between the semiconductor laser (1) and the reflecting mirror (74) on the substrate (7).
2) and the region (73) between the semiconductor laser (1) and the reflecting mirror (75) are formed on the substrate (7) so as to have different thickness dimensions. Laser device.
JP10613386A 1986-05-09 1986-05-09 Semiconductor laser device Expired - Lifetime JPH0758820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10613386A JPH0758820B2 (en) 1986-05-09 1986-05-09 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10613386A JPH0758820B2 (en) 1986-05-09 1986-05-09 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS62262482A JPS62262482A (en) 1987-11-14
JPH0758820B2 true JPH0758820B2 (en) 1995-06-21

Family

ID=14425896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10613386A Expired - Lifetime JPH0758820B2 (en) 1986-05-09 1986-05-09 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH0758820B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546388B2 (en) * 1989-08-31 1996-10-23 日本電気株式会社 Oscillation frequency stabilizing device for semiconductor laser device

Also Published As

Publication number Publication date
JPS62262482A (en) 1987-11-14

Similar Documents

Publication Publication Date Title
US4578793A (en) Solid-state non-planar internally reflecting ring laser
US4688940A (en) Heterodyne interferometer system
US6452682B2 (en) Apparatus to transform two nonparallel propagating optical beam components into two orthogonally polarized beam
US5862164A (en) Apparatus to transform with high efficiency a single frequency, linearly polarized laser beam into beams with two orthogonally polarized frequency components orthogonally polarized
US4521110A (en) Dual cavity laser gyro
JP2007012981A (en) Laser with high reflective coating on interior total reflection surface of optical element
US3382758A (en) Ring laser having frequency offsetting means inside optical path
US3649931A (en) Compensated frequency biasing system for ring laser
US5590148A (en) Birefringent beamsplitter for high power lasers and laser applications
JPH0758820B2 (en) Semiconductor laser device
US5091913A (en) Quartz crystal tuning he-ne double frequency laser
JPS6016115B2 (en) Birefringent coupled laser
JPS58160848A (en) Photointerferometer
US3382759A (en) Ring laser biased by zeeman frequency offset effect for sensing slow rotations
Zhang et al. Birefringence cavity dual-frequency lasers and relative mode splitting
JP3472471B2 (en) Polarization-maintaining self-compensating reflector, laser resonator and laser amplifier
US5270793A (en) Symmetrical carrier frequency interferometer
JPH07162065A (en) Laser equipment
JP2823870B2 (en) Apparatus for narrowing spectral line width of semiconductor laser
JP3353837B2 (en) Optical component manufacturing method and wafer
JPS62228185A (en) Measuring device
JPH0680862B2 (en) Semiconductor laser device
JPH05235456A (en) Laser apparatus
SU1083836A1 (en) Anisotropic optical resonator
JPS61171183A (en) Semiconductor laser device