JPH05235456A - Laser apparatus - Google Patents

Laser apparatus

Info

Publication number
JPH05235456A
JPH05235456A JP4036133A JP3613392A JPH05235456A JP H05235456 A JPH05235456 A JP H05235456A JP 4036133 A JP4036133 A JP 4036133A JP 3613392 A JP3613392 A JP 3613392A JP H05235456 A JPH05235456 A JP H05235456A
Authority
JP
Japan
Prior art keywords
harmonic
optical crystal
nonlinear optical
temperature
fundamental wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4036133A
Other languages
Japanese (ja)
Inventor
Kazuo Maeda
一夫 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP4036133A priority Critical patent/JPH05235456A/en
Publication of JPH05235456A publication Critical patent/JPH05235456A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To provide a laser apparatus capable of highly effectually generating a second harmonic wave with reduced variations without increasing the number of optical elements in an optical resonator. CONSTITUTION:A title laser apparatus is constructed with a thermistor 5, a Peltier element 6, and a second harmonic generation(SHG) unit which serve together to control the temperature of a nonlinear optical crystal 4 such that the phase shift of a fundamental wave when it passes through the nonlinear optical crystal 4 is an integral multiple of 2pi in order to generate a type 2 second harmonic wave.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザー装置の第2高
調波発生に関する。
FIELD OF THE INVENTION This invention relates to second harmonic generation of laser devices.

【0002】[0002]

【従来の技術】従来、半導体レーザー励起固体レーザー
は励起の際の発熱が小さいので、ビーム品質が良く、非
線形光学結晶を光共振器内に挿入することにより、容易
に第2高調波を得ることができる。この方法で得られれ
た第2高調波は複数の縦モード間のカップリングによる
和周波発生などの影響によって、出力変動が大きく、そ
のままでは高密度光メモリーや光磁気デイ スクの光源に
は用いることができなかった。
2. Description of the Related Art Conventionally, a semiconductor laser pumped solid-state laser generates a small amount of heat during pumping, so that the beam quality is good, and a second harmonic can be easily obtained by inserting a nonlinear optical crystal into an optical resonator. You can The second harmonic obtained by this method has large output fluctuation due to the influence of sum frequency generation due to coupling between multiple longitudinal modes, and it can be used as it is for the light source of high-density optical memory or magneto-optical disk. I couldn't.

【0003】この現象はグリーンプロブレムと呼ばれ、
研究が続けられてきた。出力変動を抑える1つの手段と
して、光共振器内に 1/4波長板を挿入することにより基
本波を互いに直交する偏光で発振させる方法が提案され
ている。( 参考文献:T.Bear,J.Opt.Soc.Am,B 3-1175(19
86) 及び M.Oka and S.Kubota, Opt.Lett. 13-805(198
8)
This phenomenon is called a green problem,
Research has continued. As one means for suppressing the output fluctuation, a method has been proposed in which a 1/4 wavelength plate is inserted in the optical resonator to oscillate the fundamental waves with polarizations orthogonal to each other. (Reference: T.Bear, J.Opt.Soc.Am, B 3-1175 (19
86) and M. Oka and S. Kubota, Opt. Lett. 13-805 (198
8)

【0004】この方法では、高価な 1/4波長板を、回転
機能を備えたホルダーに装着して、光共振器内に挿入す
る必要があり、共振器が長くなると云う欠点があった。
また1/4波長板には基本波と第2高調波に対するAR(非
反射)コーテイ ングが施してあるが、残留反射率分だけ
光共振器の損失が増加し、高能率の第2高調波発生が得
られなかった。
In this method, it is necessary to mount an expensive quarter-wave plate on a holder having a rotating function and insert it into the optical resonator, which has a drawback that the resonator becomes long.
In addition, the 1/4 wave plate is AR (non-reflective) coated with respect to the fundamental wave and the second harmonic, but the loss of the optical resonator increases by the amount of the residual reflectance, and the high efficiency second harmonic is generated. No outbreak was obtained.

【0005】[0005]

【発明が解決しようとする課題】本発明は、光共振器内
の光学素子の数を増加させることなく,出力変動が少な
くて、高効率な第2高調波を発生させるレーザー装置を
提供することを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention provides a laser device for generating a highly efficient second harmonic with a small output fluctuation without increasing the number of optical elements in an optical resonator. The purpose is.

【0006】[0006]

【課題を解決するための手段】本発明のレーザー装置
は、半導体レーザーと、集光レンズ、固体レーザー材
料、非線形光学結晶の温度を検知するサーミスタを備え
た温度制御素子(ペルチエ素子)、第2高調波発生用の
光共振器であるSHG ユニット等から構成されており、タ
イプ2の第2高調波発生のために、光共振器内に挿入さ
れた非線形光学結晶の温度制御を行い、基本波が非線形
光学結晶を透過する際に生じる位相差が 2πの整数倍に
なるように、非線形光学結晶の温度を制御する機能を持
たせることを特徴とするものである。
A laser device according to the present invention comprises a semiconductor laser, a condenser lens, a solid-state laser material, a temperature control element (Peltier element) having a thermistor for detecting the temperature of a nonlinear optical crystal, and a second device. It is composed of an SHG unit, which is an optical resonator for harmonic generation, and controls the temperature of the nonlinear optical crystal inserted in the optical resonator to generate the type 2 second harmonic, Is characterized by having a function of controlling the temperature of the nonlinear optical crystal so that the phase difference generated when the light passes through the nonlinear optical crystal becomes an integral multiple of 2π.

【0007】[0007]

【作用】本発明は、上記の如く構成されているので、基
本波が非線形光学結晶を透過する際に、非線形光学結晶
の複屈折性のため生じる位相差が 2πの整数倍になるよ
うに非線形光学結晶の温度が制御されるので、位相整合
条件が満たされ反射ロスの少ない高能率の第2高調波を
発生させるとができる。
Since the present invention is configured as described above, when the fundamental wave is transmitted through the nonlinear optical crystal, the nonlinear optical crystal has a phase difference caused by the birefringence of the nonlinear optical crystal that is an integral multiple of 2π. Since the temperature of the optical crystal is controlled, it is possible to generate a high-efficiency second harmonic that satisfies the phase matching condition and has a small reflection loss.

【0008】[0008]

【実施例】先ず図1に基づいて実施例を説明する。半導
体レーザー1から出射された励起光はセルフォックスレ
ンズ2により集光されて、固体レーザー材料3(例えば
Nd:YVO4 結晶) に入射し吸収される。固体レーザー材料
3の半導体レーザ1側の端面には、励起光に対しては高
透過であり、光共振器と第2高調波に対しては高反射と
なるコーテイ ング3aが施されている。また、固体レーザ
ー材料3の非線形光学結晶4側の端面には基本波と第2
高調波に対して高透過となるコーテイ ング3bが施されて
いる。前記非線形光学結晶4には、例えば KTP(KTiOP
O4) などの単結晶のものが用いられる。この非線形光学
結晶4の温度は、サーミスタ5で常時検知され、ペルチ
ェ素子6を備えた第2高調波発生用の光共振器である S
HGユニット7に指令されて、非線形光学結晶4が常時、
所定の温度に保持されるように構成されている。また、
非線形光学結晶4の両端面には基本波と第2高調波に対
して高透過となるコーテイ ング4aが施されている。
First, an embodiment will be described with reference to FIG. Excitation light emitted from the semiconductor laser 1 is condensed by the SELFOX lens 2, and the solid laser material 3 (for example,
Nd: YVO 4 crystal) and is absorbed. The end face of the solid-state laser material 3 on the semiconductor laser 1 side is provided with a coating 3a that is highly transmissive to the excitation light and highly reflective to the optical resonator and the second harmonic. The fundamental wave and the second wave are formed on the end face of the solid-state laser material 3 on the side of the nonlinear optical crystal 4.
It has a coating 3b that is highly transparent to harmonics. The nonlinear optical crystal 4 includes, for example, KTP (KTiOP
A single crystal such as O 4 ) is used. The temperature of the non-linear optical crystal 4 is always detected by the thermistor 5 and is an optical resonator for generating a second harmonic wave having a Peltier element 6 S
The non-linear optical crystal 4 is constantly instructed by the HG unit 7,
It is configured to be maintained at a predetermined temperature. Also,
Both ends of the nonlinear optical crystal 4 are coated with a coating 4a that is highly transparent to the fundamental wave and the second harmonic.

【0009】出射ミラー8には基本波に対しては高反
射,第2高調波に対しては高透過となる特殊コーテイ ン
グ8aが施されている。固体レーザー材料3の半導体レー
ザー1側の端面のコーテイ ング3a面と、出射ミラー8の
コーテイ ング8a面との間で光共振器が構成され、基本波
のレーザー発振が得られ、基本波は光共振器内におかれ
た非線形光学結晶4の光学軸に対して直線偏光した基本
波は45°の角度で入射するが、2 つの光学軸 O,E 方向
に分解され、それぞれの位相速度で進み、E 方向に直線
偏光した第2高調波を発生する。
The exit mirror 8 is provided with a special coating 8a which is highly reflective for the fundamental wave and highly transmissive for the second harmonic wave. An optical resonator is formed between the coating 3a surface of the end surface of the solid-state laser material 3 on the semiconductor laser 1 side and the coating 8a surface of the emission mirror 8, and laser oscillation of the fundamental wave is obtained. The fundamental wave linearly polarized with respect to the optical axis of the nonlinear optical crystal 4 placed in the resonator is incident at an angle of 45 °, but is decomposed in the two optical axes O and E directions and advances at each phase velocity. , The second harmonic linearly polarized in the E direction is generated.

【0010】基本波は非線形光学結晶4を透過すること
により位相差が生じ、一般には楕円偏光となる。この基
本波は、前記射出ミラー8のコーテイ ング8aで高反射す
るので、光共振器内に閉じ込められる構造となっている
ので、非線形光学結晶4を何回も透過し、光共振器内に
は、異なった楕円偏光のモード基本波が存在するように
なり、出力が不安定になる。そこで、非線形光学結晶4
の温度をペルチエ素子により制御して、透過後の位相差
が 2πの整数倍になるようにすれば、基本波の偏光方向
は変化せずに、ノイズの少ない第2高調波を得られる。
The fundamental wave causes a phase difference by passing through the nonlinear optical crystal 4, and is generally elliptically polarized light. Since this fundamental wave is highly reflected by the coating 8a of the emission mirror 8, it is structured so as to be confined in the optical resonator, so that it is transmitted through the nonlinear optical crystal 4 many times and inside the optical resonator. , Different elliptically polarized mode fundamental waves exist, and the output becomes unstable. Therefore, the nonlinear optical crystal 4
If the Peltier element is used to control the temperature of so that the phase difference after transmission becomes an integral multiple of 2π, the second harmonic wave with less noise can be obtained without changing the polarization direction of the fundamental wave.

【0011】図2は非線形光学結晶 KTPの温度と位相差
の関係のグラフである。ここでは、長さ5mmの KTPを用
いた。横軸に KTPの温度、縦軸に KTPを透過した基本波
に生じる位相差をラヂアル単位でとり、セナルモンの複
屈折法により位相差を測定した。測定した温度範囲にお
いては、 KTPの温度と位相差の関係は直線となった。こ
れは KTPの屈折率の温度係数と線膨張率が、この温度範
囲では定数とみなせるためである。
FIG. 2 is a graph showing the relationship between the temperature and the phase difference of the nonlinear optical crystal KTP. Here, KTP with a length of 5 mm was used. The horizontal axis shows the temperature of KTP, and the vertical axis shows the phase difference generated in the fundamental wave transmitted through KTP in radial units. The phase difference was measured by the Senarmont birefringence method. In the measured temperature range, the relationship between the temperature of KTP and the phase difference was linear. This is because the temperature coefficient of linear refractive index and the coefficient of linear expansion of KTP can be regarded as constant in this temperature range.

【0012】尚、KTP の温度制御をしていない時の第2
高調波の出力を、オシロスコープによりpin フォトダイ
オードで検出、測定したが、周期が1マイクロ秒以下で
の変動を観察した。
The second condition when the temperature of KTP is not controlled
Harmonic output was detected and measured with an oscilloscope using a pin photodiode, and fluctuations were observed when the cycle was 1 microsecond or less.

【0013】また、位相差が 2πの整数倍になるように
KTPの温度制御を行った時の第2高調波の出力をオシロ
スコープで測定したが、KTP の温度制御をしていない時
に比べ出力変動が大幅に減少し、高周波ノイズも大幅に
減少したことを確認できた。
Also, the phase difference should be an integral multiple of 2π.
The output of the second harmonic when the temperature of KTP was controlled was measured with an oscilloscope. It was confirmed that the output fluctuation was significantly reduced and the high frequency noise was also significantly reduced compared to when the temperature of KTP was not controlled. did it.

【0014】[0014]

【発明の効果】光共振器内で発生した基本波が、温度調
整された非線形光学結晶を透過した際に、偏光方向に変
化はないので、互いに垂直な偏光面を持つ基本波の組み
合わせ整合(所謂タイプ2)の位相整合条件からのずれ
も無く、効率良く第2高調波を発生させることができ
る。更に、光共振器内に時間変化する楕円偏光成分が存
在しないので、基本波の出力変動が小さくなり、雑音の
少ない第2高調波を得ることができる。
As the fundamental wave generated in the optical resonator does not change its polarization direction when passing through the temperature-controlled nonlinear optical crystal, the combination matching of fundamental waves having mutually perpendicular polarization planes ( It is possible to efficiently generate the second harmonic without any deviation from the so-called type 2) phase matching condition. Furthermore, since there is no elliptically polarized light component that changes with time in the optical resonator, the output fluctuation of the fundamental wave becomes small, and the second harmonic wave with less noise can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のレーザー装置の構造の1実施例を示す
縦断面図である。
FIG. 1 is a vertical cross-sectional view showing one embodiment of the structure of a laser device of the present invention.

【図2】KTP温度と基本波に生ずる位相差との関係を示
すグラフである。
FIG. 2 is a graph showing the relationship between the KTP temperature and the phase difference generated in the fundamental wave.

【符号の説明】[Explanation of symbols]

1 半導体レーザー 2 セルフォックレンズ 3 固体レーザー材料 3a,3b,4a,8a コーテイ ング 4 非線形光学結晶 5 サーミスタ酸 6 ペルチエ 素子 7 SHG 第2高調波発生ユニット 8 出射ミラー 1 semiconductor laser 2 SELFOC lens 3 solid-state laser material 3a, 3b, 4a, 8a coating 4 nonlinear optical crystal 5 thermistor acid 6 Peltier element 7 SHG second harmonic generation unit 8 exit mirror

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体レーザー励起固体レーザー装置に
おいて、タイプ2の第2高調波発生のために光共振器内
に挿入される非線形光学結晶の温度制御を行い、基本波
が非線形光学結晶を透過する際に生じる位相差が 2πの
整数倍になるような温度に非線形光学結晶を保持する機
能を持つことを特徴とするレーザー装置。
1. In a semiconductor laser pumped solid-state laser device, the temperature of a nonlinear optical crystal inserted into an optical resonator for generating a type 2 second harmonic is controlled, and a fundamental wave is transmitted through the nonlinear optical crystal. A laser device having a function of holding a nonlinear optical crystal at a temperature at which a phase difference generated at that time becomes an integral multiple of 2π.
JP4036133A 1992-02-24 1992-02-24 Laser apparatus Pending JPH05235456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4036133A JPH05235456A (en) 1992-02-24 1992-02-24 Laser apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4036133A JPH05235456A (en) 1992-02-24 1992-02-24 Laser apparatus

Publications (1)

Publication Number Publication Date
JPH05235456A true JPH05235456A (en) 1993-09-10

Family

ID=12461292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4036133A Pending JPH05235456A (en) 1992-02-24 1992-02-24 Laser apparatus

Country Status (1)

Country Link
JP (1) JPH05235456A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100307619B1 (en) * 1994-05-07 2001-12-01 윤종용 The second harmonic generator
KR100327469B1 (en) * 1994-05-07 2002-07-31 삼성전자 주식회사 Second harmonic generator
WO2022057241A1 (en) * 2020-09-15 2022-03-24 中国科学技术大学 Electro-optical modulation apparatus and laser resonant cavity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100307619B1 (en) * 1994-05-07 2001-12-01 윤종용 The second harmonic generator
KR100327469B1 (en) * 1994-05-07 2002-07-31 삼성전자 주식회사 Second harmonic generator
WO2022057241A1 (en) * 2020-09-15 2022-03-24 中国科学技术大学 Electro-optical modulation apparatus and laser resonant cavity

Similar Documents

Publication Publication Date Title
US5377212A (en) Solid-state laser device including uniaxial laser crystal emitting linearly polarized fundamental wave and nonlinear optical crystal emitting linearly polarized harmonic wave
US5809048A (en) Wavelength stabilized light source
JP3178729B2 (en) Ring laser
US5651023A (en) Monolithic laser
US5227911A (en) Monolithic total internal reflection optical resonator
US5502738A (en) Polarization control element and solid-state laser system
JP3683360B2 (en) Polarization control element and solid-state laser
JPH05235456A (en) Laser apparatus
JP2671335B2 (en) Laser light source
JPH04137775A (en) Semiconductor laser excitation solid state laser
JPH06164045A (en) Laser apparatus and second-harmonic generation method
JP2754991B2 (en) Wavelength converter
JP2000114633A (en) Wavelength conversion solid laser device
KR100366699B1 (en) Apparatus for generating second harmonic having internal resonance type
JPH07202309A (en) Short wavelength laser light source
JPH06265955A (en) Wavelength converting element
JP3398980B2 (en) Laser light generator
JP3322724B2 (en) Optical parametric oscillator
JP3151081B2 (en) Semiconductor laser pumped solid-state laser device
JPH0595144A (en) Semiconductor laser-excited solid state laser
JP2663197B2 (en) Laser diode pumped solid state laser
JPH1098222A (en) Wavelength converting solid-state laser
KR100284759B1 (en) Second harmonic generator
JP3282221B2 (en) Laser light generator
JPH07106682A (en) Short wavelength light source