JPH0758279B2 - Humidity sensor - Google Patents

Humidity sensor

Info

Publication number
JPH0758279B2
JPH0758279B2 JP62272721A JP27272187A JPH0758279B2 JP H0758279 B2 JPH0758279 B2 JP H0758279B2 JP 62272721 A JP62272721 A JP 62272721A JP 27272187 A JP27272187 A JP 27272187A JP H0758279 B2 JPH0758279 B2 JP H0758279B2
Authority
JP
Japan
Prior art keywords
humidity sensor
oxygen
current
amount
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62272721A
Other languages
Japanese (ja)
Other versions
JPH01114745A (en
Inventor
昌彦 増田
禎造 高浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62272721A priority Critical patent/JPH0758279B2/en
Publication of JPH01114745A publication Critical patent/JPH01114745A/en
Publication of JPH0758279B2 publication Critical patent/JPH0758279B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、大気中または測定ガス中の水蒸気濃度を測定
する限界電流方式による湿度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a limiting current type humidity sensor for measuring the concentration of water vapor in the atmosphere or a measurement gas.

(従来の技術) 第4図は従来の湿度センサの概略構成図を示す。図にお
いて湿度センサ100は、正電極1,負電極2の間にイオン
電流が流れるジルコニア等の酸素イオン導電体からなる
固体電解質部(検出部)10と、ヒータ5が埋め込まれた
他の固体電解質部(ヒータ部)11と、測定ガスの拡散制
限用小孔4と、この小孔4に連結された空間部3と、電
極1,2と端子9A,9Dとの間をそれぞれ接続するリード部6,
7と、スルーホール8B,8C,8Dおよびヒール用端子9B,9Cと
から構成される。
(Prior Art) FIG. 4 is a schematic configuration diagram of a conventional humidity sensor. In the figure, a humidity sensor 100 includes a solid electrolyte portion (detection portion) 10 made of an oxygen ion conductor such as zirconia in which an ionic current flows between a positive electrode 1 and a negative electrode 2, and another solid electrolyte in which a heater 5 is embedded. Section (heater section) 11, small hole 4 for limiting diffusion of measurement gas, space section 3 connected to this small hole 4, and lead section for connecting between electrodes 1 and 2 and terminals 9A and 9D, respectively. 6,
7 and through holes 8B, 8C, 8D and heel terminals 9B, 9C.

検出部10の負電極2は、空間部3の壁面に設けられ、空
間部に存在する測定ガス中の酸素ガスを酸素イオンと
し、さらに水蒸気を電気分解して酸素イオンとし、検出
部10の固体電解質内に送り込む機能を有する。また、正
電極1は、負電極2でイオン化され、検出部10の固体電
解質内を運ばれてきた酸素イオンを酸素分子にして、外
部に放散させる機能を有する。このために、検出部10の
外面に設けられている。
The negative electrode 2 of the detection unit 10 is provided on the wall surface of the space 3, and oxygen gas in the measurement gas existing in the space is converted into oxygen ions, and water vapor is electrolyzed into oxygen ions. It has the function of feeding into the electrolyte. Further, the positive electrode 1 has a function of converting oxygen ions, which are ionized by the negative electrode 2 and carried in the solid electrolyte of the detection unit 10, into oxygen molecules and diffused to the outside. For this reason, it is provided on the outer surface of the detection unit 10.

(考案が解決しょうとする問題点) ところが、このように構成された湿度センサ100は、測
定すべきガス中の水蒸気濃度から推定される酸素イオン
電流の大きさよりも、遥かに大きい電流値が観測される
という問題があった。この電流値は第2図における点線
bにて示され、測定ガスに直接接触している正電極1の
表面で、何らかの電気化学的な反応が発生し、これが前
記堆積電流以上の電流を生じる要因となっていると堆積
される。このために、正確な水蒸気量が測定できないこ
とは、解決すべき重要な課題であった。
(Problems to be solved by the invention) However, in the humidity sensor 100 configured as described above, a current value much larger than the magnitude of the oxygen ion current estimated from the water vapor concentration in the gas to be measured is observed. There was a problem of being done. This current value is shown by the dotted line b in FIG. 2, and some electrochemical reaction occurs on the surface of the positive electrode 1 which is in direct contact with the measurement gas, which is a factor that causes a current higher than the deposition current. It will be deposited. For this reason, the inability to accurately measure the amount of water vapor has been an important issue to be solved.

本発明は、上述の点に鑑み、従来技術の問題点を有効に
解決し、測定誤差の要因が除去され、その測定精度が大
幅に向上する湿度センサを提供することを目的とする。
The present invention has been made in view of the above points, and it is an object of the present invention to effectively solve the problems of the prior art, to eliminate the cause of measurement error, and to provide a humidity sensor in which the measurement accuracy is significantly improved.

(問題点を解決するための手段) このような目的を達成するために、本発明は、検出部の
多孔質に形成された正電極を、直接大気または測定ガス
に触れることなく固体電解質部内に埋込む埋込み形に構
成することを特徴とする。
(Means for Solving the Problems) In order to achieve such an object, the present invention provides a positive electrode formed in a porous part of a detection part in a solid electrolyte part without directly contacting the atmosphere or a measurement gas. It is characterized in that it is configured to be embedded.

(作用) 発明者等の長年の研究と実験の繰返しの結果、元来、正
電極は多孔質に形成されているために、埋込み形に構成
するとも、発生した酸素ガスを十分に放散できることが
確認され、これにより測定誤差の要因が低減し、測定精
度の大幅な向上が達成される。
(Function) As a result of repeated years of research and experiment by the inventors, since the positive electrode is originally formed in a porous state, it is possible to sufficiently dissipate the generated oxygen gas even if the positive electrode is formed in the embedded type. As a result, the factor of measurement error is reduced, and the measurement accuracy is significantly improved.

(実施例) 次に、本発明の実施例を図面に基づき、詳細に説明す
る。
(Example) Next, the Example of this invention is described in detail based on drawing.

第1図は本発明の一実施例の概略構成図を示し、(A)
はその正面図、(B)は(A)のA−A断面図である。
図において第4図と同一の機能を有する部分には、同一
の符号が付されている。湿度センサ200は、酵素イオン
導電体、例えばジルコニア等の固体電解質からなるグリ
ーンシートに必要な両電極1,2、ヒータ5およびリード
部6,7等がスクリーン印刷法により印刷された後、これ
らのグリーンシートを積層し、ホットプレスで加圧・接
合して一体化し焼成してなる。検出部10は、空間部3の
一壁面側に形成されている。すなわち、負電極2は空間
部3の一壁面に接して設けられ、正電極1は負電極2に
対向して、適当な厚さ、例えば約100μm程度のジルコ
ニア層10Aを介して設けられている。また、空間部3
は、酸素拡散量を制限する小孔4を介して、外気に連結
している。なお、ヒータ部11はこの検出部10に密接して
形成され、最も外側に白金ロジウムの厚膜抵抗からなる
ヒータ5と、その内側に適当な厚さ、例えば約100μm
程度のジルコニア層11Aからなる。さらに、両電極1,2
は、それぞれリード部6,7およびスルーホール8A,8Dによ
り、端子9A,9Dに接続されている。
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, (A)
Is a front view thereof, and (B) is a sectional view taken along line AA of (A).
In the figure, parts having the same functions as those in FIG. 4 are designated by the same reference numerals. The humidity sensor 200 includes an enzyme ion conductor, for example, a green sheet made of a solid electrolyte such as zirconia. It is made by stacking green sheets, pressing and joining them with a hot press to integrate them, and then firing. The detection unit 10 is formed on one wall surface side of the space 3. That is, the negative electrode 2 is provided in contact with one wall surface of the space 3, and the positive electrode 1 is provided so as to face the negative electrode 2 with the zirconia layer 10A having an appropriate thickness, for example, about 100 μm interposed therebetween. . In addition, space 3
Are connected to the outside air through the small holes 4 that limit the oxygen diffusion amount. The heater portion 11 is formed in close contact with the detection portion 10, and has a heater 5 composed of a platinum rhodium thick film resistor on the outermost side and an appropriate thickness on the inner side thereof, for example, about 100 μm.
It consists of a zirconia layer 11A to a degree. Furthermore, both electrodes 1, 2
Are connected to terminals 9A and 9D by lead portions 6 and 7 and through holes 8A and 8D, respectively.

このようにして、正電極1は、ジルコニア層10A,11A間
に埋め込まれ、直接に空気または測定ガスに触れなくと
も、元来、多孔質に形成されているために、ここで発生
する酸素ガスが十分に放散されて、従来技術における正
電極1が直接に測定ガスに触れるための測定誤差要因が
低減される。
In this way, the positive electrode 1 is embedded between the zirconia layers 10A and 11A, and is naturally porous even if it is not directly contacted with air or the measurement gas. Is sufficiently dissipated, and the measurement error factor due to the positive electrode 1 in the prior art directly contacting the measurement gas is reduced.

次に、第2図は湿度センサの電極間電流と電極間電圧と
の特性線図を示す。図において実線aは本発明による湿
度センサ200の電流・電圧特性線図、点線bは従来技術
による湿度センサ100の電流・電圧特性線図である。拡
散制限用小孔4により、拡散によって供給される酸素量
または水蒸気量は、湿度センサ200が置かれた雰囲気中
の酸素分圧または水蒸気分圧で決定する一定値以外には
増加できない。従って、A部およびB部に電流値が一定
なプラトー領域が発生し、この電流値により測定ガス中
の酸素量および水蒸気量を測定できる。すなわち、A部
は測定ガス中の酸素のイオン電流によるプラトー領域
で、ILはそのときの電流値、B部はA部に水蒸気の電気
分解により発生したイオン電流が加算されたプラトー領
域であり、IHはその電流値である。
Next, FIG. 2 shows a characteristic diagram of inter-electrode current and inter-electrode voltage of the humidity sensor. In the figure, a solid line a is a current / voltage characteristic diagram of the humidity sensor 200 according to the present invention, and a dotted line b is a current / voltage characteristic diagram of the conventional humidity sensor 100. Due to the diffusion limiting small holes 4, the amount of oxygen or the amount of water vapor supplied by diffusion cannot increase beyond a certain value determined by the partial pressure of oxygen or water vapor in the atmosphere in which the humidity sensor 200 is placed. Therefore, a plateau region having a constant current value is generated in the parts A and B, and the amount of oxygen and the amount of water vapor in the measurement gas can be measured by this current value. That is, part A is a plateau region due to the ion current of oxygen in the measurement gas, IL is the current value at that time, part B is the plateau region where the ion current generated by electrolysis of water vapor is added to part A, IH is the current value.

次に、大気中の湿度測定を例にとり、本発明の湿度セン
サ200を、従来技術および理論計算値と比較して説明す
る。
Next, the humidity sensor 200 of the present invention will be described in comparison with the prior art and theoretical calculation values, taking the humidity measurement in the atmosphere as an example.

a) 実測値について、 実測値は、電流値IL,IHから大気中の水蒸気による電流
値増加分C%を、次式(1)で定義する。
a) Measured value As for the measured value, the current value increase C% due to the water vapor in the atmosphere from the current values IL and IH is defined by the following equation (1).

電流値IH,ILは湿度センサの出力電流として測定できる
から、C%は実測値として求められる。
Since the current values IH and IL can be measured as the output current of the humidity sensor, C% can be obtained as a measured value.

b) 理論計算値について、 理論計算値は、その前提として大気圧を1気圧で一定と
する。
b) Regarding theoretical calculated values As a premise of theoretical calculated values, the atmospheric pressure is constant at 1 atm.

第3図は本発明の湿度センサにおける乾燥空気測定時と
大気測定時との電流・電圧特性線図を示す。図において
第2図と同一の機能を有する部分には、同一の符号が付
されている。実線a1は乾燥空気測定時の電流・電圧特性
で、点線b1は大気測定時の電流・電圧特性である。乾燥
空気中の酸素量を20.6%とし、一方大気中の水蒸気量を
α%とすると、電流値ILは酸素量に比例し、電流値IHは
酸素量と水蒸気から発生する酸素(イオン)量とを加え
たものに比例する。従って、乾燥空気と大気とでの測定
で、電流値IL,IHは、それぞれ第1表のとおりとなる。
FIG. 3 shows a current / voltage characteristic diagram of the humidity sensor of the present invention during dry air measurement and during atmospheric measurement. In the figure, parts having the same functions as those in FIG. 2 are designated by the same reference numerals. The solid line a1 shows the current-voltage characteristics when measuring dry air, and the dotted line b1 shows the current-voltage characteristics when measuring atmospheric air. Assuming that the amount of oxygen in dry air is 20.6% and the amount of water vapor in the atmosphere is α%, the current value IL is proportional to the oxygen amount, and the current value IH is the oxygen amount and the oxygen (ion) amount generated from the water vapor. Proportional to the sum of. Therefore, the current values IL and IH are as shown in Table 1 when measured with dry air and air.

ここに、α%は測定時の飽和水蒸気量と相対湿度とから
計算される値である。
Here, α% is a value calculated from the saturated water vapor amount and relative humidity at the time of measurement.

大気の測定において、酸素量は、乾燥空気に比べて水蒸
気量分だけ減少しているから、電流値ILは20.6(100−
α)/100%に比例する。
In the measurement of the atmosphere, the amount of oxygen is reduced by the amount of water vapor compared to dry air, so the current value IL is 20.6 (100-
It is proportional to α) / 100%.

また、大気の測定において、電流値IHが酸素量+水蒸気
量/2に比例する理由を、下記に説明する。
The reason why the current value IH is proportional to the amount of oxygen + the amount of water vapor / 2 in the measurement of the atmosphere will be described below.

負電極2側はB部の電圧領域で次式(2),(3)で示
す電気化学的反応が発生し、酸素イオンが発生してい
る。
On the negative electrode 2 side, an electrochemical reaction represented by the following equations (2) and (3) occurs in the voltage region of the portion B, and oxygen ions are generated.

O2+4e-→202- ……(2) H2O+2e-→H2+O2- ……(3) すなわち、大気中の酸素からは酸素イオン2個ができる
のに対して、水蒸気の電気分解からは、酸素イオンが1
個しかできない。大気圧は一定であるから、乾燥空気に
比例して大気では酸素量が水蒸気量分だけ減少する。水
蒸気に関与する酸素イオンは、その分減少した酸素ガス
からできる酸素イオンの半分しかできないから、第1表
に示すようになる。
O 2+ 4e - → 20 2- ...... (2) H 2 O + 2e - → H 2 + O 2- ...... (3) that is, with respect to the oxygen in the atmosphere can two oxygen ions , From the electrolysis of water vapor, one oxygen ion
I can only do it. Since the atmospheric pressure is constant, the amount of oxygen in the atmosphere decreases in proportion to the amount of water vapor in proportion to dry air. As shown in Table 1, the oxygen ions involved in the water vapor are only half of the oxygen ions produced from the oxygen gas reduced by that amount.

以上の結果に基づき、第(2)式と同様な大気中の水蒸
気による電流値増加分D%を理論計算式で求めると、次
式(4)になる。
Based on the above results, when the current value increase D% due to the water vapor in the atmosphere similar to the equation (2) is obtained by the theoretical calculation equation, the following equation (4) is obtained.

この第(4)式を整理して、 c) 実測値と理論計算値との比較について、 従来タイプと本発明タイプとの湿度センサ100,200にお
ける電流値IH,ILを測定し電流増加分C%を求め、一方
測定時の大気中の水蒸気量α%から電流増加分D%を計
算し、比較した実施例を第2表に示す。
By rearranging this equation (4), c) Regarding the comparison between the actually measured value and the theoretically calculated value, the current values IH and IL of the humidity sensors 100 and 200 of the conventional type and the present invention type are measured to obtain the current increase C%, while the amount of water vapor in the atmosphere at the time of measurement Table 2 shows an example in which the current increase D% was calculated from α% and compared.

第2表にて示すように本発明タイプ(湿度センサ200)
は、実測値と理論値との比を従来タイプ(湿度センサ10
0)と比較して、大幅に1に近づけることができた。す
なわち、湿度センサ200は、動作状態で、正電極2側が
負電極1側から運ばれてきた酸素によって、100%に近
い酸素雰囲気になったために、外気の影響を受けにくい
と考えられる。
Inventive type (humidity sensor 200) as shown in Table 2
Is the conventional type (the humidity sensor 10
Compared to 0), it was able to be much closer to 1. That is, it is considered that the humidity sensor 200 is hardly affected by the outside air in the operating state because the oxygen carried from the positive electrode 2 side to the negative electrode 1 side creates an oxygen atmosphere close to 100%.

(発明の効果) このような目的を達成するために、本発明は、元来、検
出部の多孔質に形成された正電極を固体電解質層内に埋
込む埋込み形に構成したことにより、従来技術の問題点
が有効に解決され、測定誤差の要因が除去され、測定精
度が飛躍的に向上されるという効果を奏する。
(Effects of the Invention) In order to achieve such an object, the present invention originally has a structure in which the positive electrode formed in the porous detection section is embedded in the solid electrolyte layer, and thus the conventional method is adopted. The technical problems are effectively solved, the factor of measurement error is removed, and the measurement accuracy is dramatically improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の概略構成図を示し、同図
(A)はその正面図、同図(B)は同図(A)のA−A
断面図、第2図は湿度センサの電極間電流と電極間電圧
との特性線図、第3図は本発明の湿度センサにおける乾
燥空気測定時と大気測定時との電流電圧特性図、第4図
は従来の湿度センサの概略構成図を示し、同図(A)は
その正面図、同図(B)は同図(A)のB−B断面図で
ある。 1:正電極、2:負電極、3:空間部、5:ヒータ、10:検出
部、11:ヒータ部、200:湿度センサ。
FIG. 1 shows a schematic configuration diagram of an embodiment of the present invention. FIG. 1 (A) is a front view thereof, and FIG. 1 (B) is AA of FIG.
Sectional view, FIG. 2 is a characteristic diagram of inter-electrode current and inter-electrode voltage of the humidity sensor, FIG. 3 is current-voltage characteristic diagram of the humidity sensor of the present invention during dry air measurement and atmospheric measurement, and FIG. The figure shows a schematic configuration diagram of a conventional humidity sensor, in which (A) is a front view thereof and (B) is a cross-sectional view taken along line BB of (A). 1: Positive electrode, 2: Negative electrode, 3: Space part, 5: Heater, 10: Detection part, 11: Heater part, 200: Humidity sensor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸素イオン導電体からなり検出部とヒータ
部とを有する固体電解質部に発生する大気中または測定
ガス中の水分の電気分解による酸素イオン量を電流値と
して検出する限界電流方式による湿度センサにおいて、
前記検出部の多孔質に形成された正電極を直接前記大気
または測定ガスに触れることなく前記固体電解質部内に
埋込む埋込み形に構成したことを特徴とする湿度セン
サ。
1. A limiting current method for detecting, as a current value, the amount of oxygen ions resulting from the electrolysis of water in the atmosphere or in a measurement gas generated in a solid electrolyte portion made of an oxygen ion conductor and having a detection portion and a heater portion. In the humidity sensor,
A humidity sensor, characterized in that the porous positive electrode of the detection part is embedded in the solid electrolyte part without directly contacting the atmosphere or the measurement gas.
JP62272721A 1987-10-28 1987-10-28 Humidity sensor Expired - Lifetime JPH0758279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62272721A JPH0758279B2 (en) 1987-10-28 1987-10-28 Humidity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62272721A JPH0758279B2 (en) 1987-10-28 1987-10-28 Humidity sensor

Publications (2)

Publication Number Publication Date
JPH01114745A JPH01114745A (en) 1989-05-08
JPH0758279B2 true JPH0758279B2 (en) 1995-06-21

Family

ID=17517858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62272721A Expired - Lifetime JPH0758279B2 (en) 1987-10-28 1987-10-28 Humidity sensor

Country Status (1)

Country Link
JP (1) JPH0758279B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69319476T2 (en) * 1992-03-12 1999-01-28 Mitsubishi Denki K.K., Tokio/Tokyo Device for regulating the oxygen concentration or the humidity
JP7407008B2 (en) * 2020-02-10 2023-12-28 ローム株式会社 Gas concentration measurement system and gas concentration measurement method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128153A (en) * 1984-11-27 1986-06-16 Toyota Central Res & Dev Lab Inc Sensor for detecting plural gases and its preparation and gas component concentration detection apparatus using said sensor and separating plural gases to detect the same

Also Published As

Publication number Publication date
JPH01114745A (en) 1989-05-08

Similar Documents

Publication Publication Date Title
JP3090479B2 (en) Gas sensor
US4626338A (en) Equipment for detecting oxygen concentration
US5413683A (en) Oxygen sensing apparatus and method using electrochemical oxygen pumping action to provide reference gas
JPS634660B2 (en)
JPH09257746A (en) Method for cleaning limit current type gas sensor and gas concentration detector utilizing the same
JPH09318594A (en) Gas sensor and method for measuring quantity of specific component in gas to be measured
JPH0513262B2 (en)
JP2003083936A (en) Gas sensor element
US6346178B1 (en) Simplified wide range air fuel ratio sensor
JPH0758279B2 (en) Humidity sensor
US6156176A (en) Air fuel ratio sensor with oxygen pump cell
EP0462819B1 (en) A method of measuring humidity by using an electrochemical cell
US20020108870A1 (en) Nitrogen oxide sensor and method for detecting nitrogen oxides
JPH079081Y2 (en) Limiting current type oxygen sensor
JPS60243558A (en) Analyzing device of oxygen gas concentration
JPH0664005B2 (en) Compound gas sensor
JP3421192B2 (en) Method for measuring water vapor concentration by limiting current type gas sensor and apparatus for measuring water vapor concentration using the method
JPH04102461U (en) gas concentration sensor
JPH06265516A (en) Oxygen/humidity sensor
JP3712541B2 (en) Air-fuel ratio sensor control apparatus and air-fuel ratio measurement method
JPH02147853A (en) Sensor for detecting concentration of gas
JPS6326568A (en) Gas concentration sensor
JP3010752B2 (en) Limit current type oxygen sensor
JPH0234605Y2 (en)
JP3152792B2 (en) Oxygen analyzer and oxygen analysis method using the same