JPH0758261B2 - Method for measuring impurity concentration in silicon - Google Patents

Method for measuring impurity concentration in silicon

Info

Publication number
JPH0758261B2
JPH0758261B2 JP20652487A JP20652487A JPH0758261B2 JP H0758261 B2 JPH0758261 B2 JP H0758261B2 JP 20652487 A JP20652487 A JP 20652487A JP 20652487 A JP20652487 A JP 20652487A JP H0758261 B2 JPH0758261 B2 JP H0758261B2
Authority
JP
Japan
Prior art keywords
silicon
impurity concentration
depth direction
incident angle
concentration distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20652487A
Other languages
Japanese (ja)
Other versions
JPS6450936A (en
Inventor
光 小林
Original Assignee
松下電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電子工業株式会社 filed Critical 松下電子工業株式会社
Priority to JP20652487A priority Critical patent/JPH0758261B2/en
Publication of JPS6450936A publication Critical patent/JPS6450936A/en
Publication of JPH0758261B2 publication Critical patent/JPH0758261B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体装置の製造に用いられるシリコン中の
深さ方向の不純物濃度分布を非破壊的に測定する方法に
関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for nondestructively measuring an impurity concentration distribution in a depth direction in silicon used for manufacturing a semiconductor device.

(従来の技術) 従来、シリコン中の深さ方向の不純物濃度分布の測定に
は、二次イオン質量分析(SIMS),オージェ電子分光分
析(AES)などが用いられている。
(Prior Art) Conventionally, secondary ion mass spectrometry (SIMS), Auger electron spectroscopy (AES), etc. have been used to measure the impurity concentration distribution in the depth direction in silicon.

(発明が解決しようとする問題点) これら従来技術による測定は、イオンや電子をプローブ
として用いるために真空中で行う必要があり、従って、
イオンポンプやターボモレキュラーポンプが設置された
真空チェンバーを必要とした。また、不活性ガスを用い
て試料を削る必要があり、破壊的測定方法であった。
(Problems to be Solved by the Invention) These conventional measurement methods need to be performed in a vacuum in order to use ions or electrons as a probe.
It required a vacuum chamber with an ion pump and a turbo molecular pump. Further, it was a destructive measurement method because it was necessary to scrape the sample using an inert gas.

本発明は、シリコン中の深さ方向の不純物濃度分布を非
真空中で、かつ非破壊的に測定する方法を提供するもの
である。
The present invention provides a method for non-destructively measuring the impurity concentration distribution in the depth direction in silicon in a non-vacuum.

(問題点を解決するための手段) 上記問題点を解決するために、シリコンの表面から赤外
線を入射させ、その赤外反射吸収特性におけるプラズマ
振動数の入射角依存性を測定することにより、不純物濃
度の深さ方向分布を非破壊的に測定するものである。
(Means for Solving the Problems) In order to solve the above problems, an infrared ray is made incident from the surface of silicon, and the incident angle dependence of the plasma frequency in the infrared reflection and absorption characteristics thereof is measured. It is a non-destructive measurement of the concentration distribution in the depth direction.

(作用) 赤外光をプローブとして用いるいために、その測定には
真空チェンバーを必要とせず、大気中や窒素雰囲気中で
行うことができる。しかもその測定には、試料を削る必
要がないため非破壊的であり、測定後再びその試料を使
用することが可能である。
(Operation) Since infrared light is used as a probe, a vacuum chamber is not required for the measurement, and the measurement can be performed in the air or a nitrogen atmosphere. Moreover, the measurement is nondestructive because it is not necessary to scrape the sample, and the sample can be used again after the measurement.

(実施例) 以下、本発明の一実施例を図面を参照しながら説明す
る。第1図は、リンをイオン注入したSi(100)単結晶
について、プラズマ振動数の入射角依存性を求めたもの
である。即ち、Si(100)単結晶を洗浄後、8×1015/c
m2のリンイオンを30KeVで注入し、その後、N2ガス中100
0℃でアニールしたものを試料とし、FT−IRを用いて赤
外反射吸収特性からプラズマ振動数の入射角依存性を測
定した。小さな入射角では光の浸透深さが大きいので、
深い位置の不純物濃度に関する情報を得、90°に近い入
射角では表面近傍の情報を得ることができる。第1図よ
り、プラズマ振動数が入射角の増加とともに増加してい
ることがわかる。これは、試料の表面近傍のリン濃度が
大きく、深くなるにつれて減少することを示している。
(Example) Hereinafter, one example of the present invention will be described with reference to the drawings. FIG. 1 shows the dependence of the plasma frequency on the incident angle for a Si (100) single crystal in which phosphorus is ion-implanted. That is, after washing the Si (100) single crystal, 8 × 10 15 / c
Implant phosphorous ions of m 2 at 30 KeV and then 100 N 2 gas.
The sample annealed at 0 ℃ was used to measure the incident angle dependence of the plasma frequency from the infrared reflection and absorption characteristics using FT-IR. Since the penetration depth of light is large at small incident angles,
Information about the impurity concentration at a deep position can be obtained, and information near the surface can be obtained at an incident angle close to 90 °. From FIG. 1, it can be seen that the plasma frequency increases as the incident angle increases. This indicates that the phosphorus concentration in the vicinity of the surface of the sample is large and decreases with increasing depth.

プラズマ振動数とリン濃度とは一定の関数関係にあり、
従って、第1図を解析することにより、入射角に対応す
る試料の深さ方向におけるリン濃度分布を、第2図に示
したように求めることができる。
Plasma frequency and phosphorus concentration have a constant functional relationship,
Therefore, by analyzing FIG. 1, the phosphorus concentration distribution in the depth direction of the sample corresponding to the incident angle can be obtained as shown in FIG.

以上、本発明の一実施例を説明したが、不純物はリンに
限る必要はなく、ホウ素やヒ素であってもよい。また、
不純物をドープする試料はSi(100)単結晶に限る必要
はなく、他の方位の単結晶,ポリシリコン,アモルファ
スシリコン等であってもよい。
Although one embodiment of the present invention has been described above, the impurity need not be limited to phosphorus and may be boron or arsenic. Also,
The sample doped with impurities is not limited to the Si (100) single crystal, and may be a single crystal having another orientation, polysilicon, amorphous silicon, or the like.

(発明の効果) 以上説明したように、本発明によれば、シリコン中の深
さ方向の不純物濃度分布を、真空チェンバーを用いるこ
となく大気中や窒素雰囲気中で、かつ非破壊的に測定す
ることができる。
(Effects of the Invention) As described above, according to the present invention, the impurity concentration distribution in the depth direction in silicon is measured in the atmosphere or nitrogen atmosphere without using a vacuum chamber and nondestructively. be able to.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例の赤外反射吸収特性におけ
るプラズマ振動数の入射角依存性を示す図、第2図は、
第1図の解析結果としての深さ方向のリン濃度分布を示
す図である。
FIG. 1 is a diagram showing the incident angle dependence of plasma frequency in infrared reflection absorption characteristics of one embodiment of the present invention, and FIG.
It is a figure which shows the phosphorus concentration distribution of the depth direction as an analysis result of FIG.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】不純物をドープしたシリコンの表面から赤
外線を入射させ、その赤外反射吸収特性におけるプラズ
マ振動数の赤外線入射角依存性からシリコン中の深さ方
向の不純物濃度分布を求めることを特徴とするシリコン
中の不純物濃度の測定方法。
1. An infrared ray is incident from the surface of silicon doped with impurities, and the impurity concentration distribution in the depth direction in silicon is determined from the infrared ray incident angle dependence of the plasma frequency in the infrared reflection absorption characteristics. Measuring method of impurity concentration in silicon.
JP20652487A 1987-08-21 1987-08-21 Method for measuring impurity concentration in silicon Expired - Lifetime JPH0758261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20652487A JPH0758261B2 (en) 1987-08-21 1987-08-21 Method for measuring impurity concentration in silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20652487A JPH0758261B2 (en) 1987-08-21 1987-08-21 Method for measuring impurity concentration in silicon

Publications (2)

Publication Number Publication Date
JPS6450936A JPS6450936A (en) 1989-02-27
JPH0758261B2 true JPH0758261B2 (en) 1995-06-21

Family

ID=16524793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20652487A Expired - Lifetime JPH0758261B2 (en) 1987-08-21 1987-08-21 Method for measuring impurity concentration in silicon

Country Status (1)

Country Link
JP (1) JPH0758261B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012200994A1 (en) * 2012-01-24 2013-07-25 Wacker Chemie Ag Method for determining surface contamination of polycrystalline silicon

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.Phys,Chem,Solids,1974,Vol.35,No.12,p1593−1594

Also Published As

Publication number Publication date
JPS6450936A (en) 1989-02-27

Similar Documents

Publication Publication Date Title
US6759255B2 (en) Method and system for detecting metal contamination on a semiconductor wafer
Bhattacharya et al. Specific site location of S and Si in ion‐implanted GaAs
JPH0758261B2 (en) Method for measuring impurity concentration in silicon
Diebold et al. Evaluation of surface analysis methods for characterization of trace metal surface contaminants found in silicon integrated circuit manufacturing
JP3460434B2 (en) Method and apparatus for evaluating oxygen concentration in semiconductor silicon crystal
JP3439584B2 (en) Method for measuring concentration distribution of element in solid and sample for measurement
JP3439332B2 (en) How to measure crystal defects
Schwarz et al. Concentration profiles of implanted boron ions in silicon from measurements with the ion microprobe
JP3198713B2 (en) Atmospheric boron content measurement method
JP2682483B2 (en) Secondary ion mass spectrometry
Yamaji et al. Diffusion of ion‐implanted phosphorus within thermally grown SiO2 in O2 ambient
JP3374497B2 (en) Concentration distribution measurement method
JP2000206063A (en) Method for analyzing impurity concentration of interface
JP2002181746A (en) Quantitative analysis method and auxiliary sample and standard sample thereof
Bhattacharya et al. Application of RBS and PIXE in specific site determination of S and SI in ion implanted GaAs
JPS6371636A (en) Method for measuring impurity concentration in silicon
JP2917937B2 (en) Method for analyzing impurity concentration distribution of semiconductor device
JPH0989820A (en) Method for analyzing impurity profile
JPS62113052A (en) Element analysis
JPH06138061A (en) Method for measuring concentration distribution of trace element
JPS61181949A (en) Analysis for impurities position depth direction
US8492177B2 (en) Methods for quantitative measurement of a plasma immersion process
Sher et al. Determination of oxygen in germanium below 20 parts per billion by measurements of lithium mobility and precipitation
JP2556996B2 (en) Sample preparation method for damage evaluation during semiconductor manufacturing process and its evaluation method
JP2001021460A (en) Preparation of standard sample for determination for secondary ion mass spectrometry