JPH0758247B2 - Method for quantifying the degree of curing of optical fiber coating materials - Google Patents

Method for quantifying the degree of curing of optical fiber coating materials

Info

Publication number
JPH0758247B2
JPH0758247B2 JP24441289A JP24441289A JPH0758247B2 JP H0758247 B2 JPH0758247 B2 JP H0758247B2 JP 24441289 A JP24441289 A JP 24441289A JP 24441289 A JP24441289 A JP 24441289A JP H0758247 B2 JPH0758247 B2 JP H0758247B2
Authority
JP
Japan
Prior art keywords
degree
optical fiber
curing
cure
quantifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24441289A
Other languages
Japanese (ja)
Other versions
JPH03105233A (en
Inventor
毅 野中
俊史 細谷
裕男 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP24441289A priority Critical patent/JPH0758247B2/en
Publication of JPH03105233A publication Critical patent/JPH03105233A/en
Publication of JPH0758247B2 publication Critical patent/JPH0758247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0278Thin specimens
    • G01N2203/028One dimensional, e.g. filaments, wires, ropes or cables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/386Glass

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【発明の詳細な説明】 イ.発明の目的 〔産業上の利用分野〕 本発明はガラスファイバに有機物被覆を施した光ファイ
バの被覆材の硬化度(ケミカルな硬化反応の進行の程
度)を定量化する方法に関するものである。
Detailed Description of the Invention a. OBJECT OF THE INVENTION [Industrial field of use] The present invention relates to a method for quantifying the degree of cure (the degree of progress of a chemical curing reaction) of a coating material for an optical fiber obtained by coating a glass fiber with an organic substance.

〔従来の技術〕[Conventional technology]

通信用の光ファイバは、ガラス母材を紡糸した後に、高
分子物質が被覆されて機械的強度が付与される。第2図
は一般的な光伝送用ファイバの斜視図である。
An optical fiber for communication is provided with a mechanical strength by being coated with a polymer material after spinning a glass base material. FIG. 2 is a perspective view of a general optical transmission fiber.

シリカガラス、フッ化物ガラス等からなるガラスファイ
バ1、その外側にソフト層2、その外側にはハード層3
が被覆され、単心の光ファイバ4を構成する。
A glass fiber 1 made of silica glass, fluoride glass or the like, a soft layer 2 on the outside thereof, and a hard layer 3 on the outside thereof.
To form a single-core optical fiber 4.

ここで、ソフト層2はガラスファイバ1に対するクッシ
ョンの役目を果たすもので、柔軟性のある樹脂が用いら
れる。具体的には熱硬化シリコーン、紫外線(UV)硬化
シリコーン、UV硬化ウレタンアクリレート、UV硬化エポ
キシアクリレート、UV硬化エステルアクリレートなどで
ある。ハード層3はソフト層2の外側からガラスファイ
バ1を更に保護するもので、強靱な樹脂が用いられる。
具体的にはポリアミド、ポリエステル、ABS樹脂、ポリ
アセタール樹脂などの押出樹脂や、各種のUV硬化樹脂で
ある。これに対して従来より、被覆材料がガラスファイ
バの伝送特性に大きな影響を与えることは知られてお
り、特に、被覆材料の残留加工歪である収縮力あるいは
膨張力がガラスファイバに働き、ガラスファイバにマイ
クロベンディングを生じさせたりして、伝送特性劣化の
原因になることが報告されている。
Here, the soft layer 2 serves as a cushion for the glass fiber 1, and a flexible resin is used. Specific examples include heat-curable silicone, ultraviolet (UV) -curable silicone, UV-curable urethane acrylate, UV-curable epoxy acrylate, and UV-curable ester acrylate. The hard layer 3 further protects the glass fiber 1 from the outside of the soft layer 2, and a tough resin is used.
Specifically, they are extruded resins such as polyamide, polyester, ABS resin, polyacetal resin, and various UV curable resins. On the other hand, it has been conventionally known that the coating material has a great influence on the transmission characteristics of the glass fiber, and in particular, the contracting force or the expansion force which is the residual processing strain of the coating material acts on the glass fiber, It has been reported that this may cause microbending and cause deterioration of transmission characteristics.

光ファイバに被覆された樹脂はヤング率、ゲル分率、測
定等の方法によりその硬化度を定量化し、伝送特性に及
ぼす影響を調査することにより伝送特性のすぐれた光フ
ァイバが生産されてきた。
An optical fiber having excellent transmission characteristics has been produced by quantifying the degree of curing of the resin coated on the optical fiber by methods such as Young's modulus, gel fraction, and measurement, and investigating the influence on the transmission characteristics.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、近年長距離光通信への需要の高まりの中
では、伝送特性の向上に対する要求が更に高くなり、前
記手段では不十分となってきた。
However, in recent years, with the increasing demand for long-distance optical communication, the demand for improvement of transmission characteristics has further increased, and the above means has become insufficient.

即ち、光ファイバに被覆された樹脂の硬化度を引張り試
験により弾性率で若しくはゲル分率で評価しようとする
場合、樹脂同士の密着性が強いため分離がむづかしく複
数の樹脂層を一緒に評価せざるを得なかった。
That is, when trying to evaluate the degree of cure of the resin coated on the optical fiber by a tensile test in terms of elastic modulus or gel fraction, it is difficult to separate the resin layers due to the strong adhesion between the resins, and it is necessary to combine multiple resin layers together. I had to evaluate it.

又、各樹脂層を分離できたとしても、ソフト層について
は、機械物性の評価は非常に困難であった。又、ゲル分
率では微妙な硬化度の差は測定できないという問題もあ
った。
Even if each resin layer could be separated, it was very difficult to evaluate the mechanical properties of the soft layer. There is also a problem that a slight difference in the degree of curing cannot be measured by the gel fraction.

従って、多層被覆ファイバの各層の硬化度の評価は殆ん
ど不可能であった。
Therefore, it was almost impossible to evaluate the degree of cure of each layer of the multilayer coated fiber.

しかしながら多層被覆ファイバの各層の硬化度を評価す
ることは非常に重要である。被覆層の硬化度が光ファイ
バの伝送特性に及ぼす影響は各層によって大きく異なる
からである。
However, it is very important to evaluate the degree of cure of each layer of the multilayer coated fiber. This is because the effect of the degree of curing of the coating layer on the transmission characteristics of the optical fiber differs greatly depending on the layer.

例えば、通常光ファイバの保護層の役割を果たす最外層
の場合、硬化不十分で硬化度が低い場合、側圧の影響を
受けやすく伝送損失が高くなることがある。一方、緩衝
層の役割を果たす最内層の場合、その硬化不十分で硬化
度が低いと低温で伝送損失が悪化することがある。
For example, in the case of the outermost layer which usually plays the role of a protective layer of an optical fiber, when the curing is insufficient and the degree of curing is low, it is likely to be affected by lateral pressure and the transmission loss may increase. On the other hand, in the case of the innermost layer that plays the role of a buffer layer, if the curing degree is insufficient and the degree of curing is low, the transmission loss may worsen at low temperatures.

本発明は多層被覆ファイバの各層の硬化度を個別に容易
に評価する方法を提供するものである。
The present invention provides a method for easily and individually evaluating the degree of cure of each layer of a multilayer coated fiber.

ロ.発明の構成 〔課題を解決するための手段〕 本発明はガラスファイバに有機物被覆を施した光ファイ
バ被覆材の硬化度定量化方法において、前記光ファイバ
端面の被覆部に圧子を加えて硬度(物理的硬さ)を測定
し、予め求めておいた前記被覆材の硬度と硬化度(ケミ
カルな硬化反応の進行の程度)との関係を用いて、前記
測定値から被覆部の硬化度を求めることを特徴とする光
ファイバ被覆材の硬化度定量化方法である。
B. Configuration of the Invention [Means for Solving the Problems] The present invention is a method for quantifying the degree of cure of an optical fiber coating material in which an organic coating is applied to a glass fiber, and a hardness (physical The hardness of the coating is determined from the measured value by using the relationship between the hardness of the coating and the degree of curing (degree of progress of chemical curing reaction) that has been obtained in advance. Is a method for quantifying the degree of curing of an optical fiber coating material.

第1図は本発明の一具体例であって、1は光ファイバ、
2は内層、3は外層、4はファイバを固定するためのパ
イプ(材質としては金属や塩化ビニール等が用いられ
る。)5は三角錐圧子である。測定は以下に示すように
して行なう。
FIG. 1 is a specific example of the present invention, in which 1 is an optical fiber,
Reference numeral 2 is an inner layer, 3 is an outer layer, 4 is a pipe for fixing a fiber (a material such as metal or vinyl chloride is used) 5 is a triangular pyramid indenter. The measurement is performed as follows.

ファイバを中心軸に直角に切断する。 Cut the fiber at right angles to the central axis.

塩化ビニール等のパイプに入れて垂直に固定する。 Put it in a pipe such as vinyl chloride and fix it vertically.

先端がダイヤモンドの圧子を用いて一定の荷重で切
断面の被覆層の各層に押し込む。
The tip is pressed into each layer of the coating layer on the cut surface with a constant load using an indenter with a diamond.

その時の圧子の押し込み深さを測定し、硬度を求め
る。
The indentation depth of the indenter at that time is measured to determine the hardness.

ここで、試験荷重をP(g)、圧子押し込み深さをH
(μm)とすると、硬度DHは次式で定義される。
Here, the test load is P (g) and the indenter depth is H.
(Μm), the hardness DH is defined by the following equation.

DH=kP/H2(g/μm2) kは定数で通常147とする。DH = kP / H 2 (g / μm 2 ) k is a constant and is normally set to 147.

硬化度は、同一構造のファイバで十分硬化したものを基
準とし、このときの硬化度を100%として相対値をもっ
て表わす。
The degree of cure is expressed as a relative value, with the degree of cure being 100%, with reference to a sufficiently cured fiber having the same structure.

〔作用〕[Action]

光ファイバの横断面に圧子を加えて硬度を測定し、この
測定値から硬化度を求める方法であるから、引張り試験
の場合のように長いサンプルは必要ではなく、比較的短
いサンプル(数cm)でも評価することが可能である。ま
た、ゲル分率の測定のように抽出のために長時間を要す
ることもない。
The hardness is measured by applying an indenter to the cross section of the optical fiber, and the degree of cure is determined from this measured value, so a long sample is not required as in the case of a tensile test, and a relatively short sample (several cm) But it can be evaluated. Further, it does not require a long time for extraction as in the case of measuring the gel fraction.

〔実施例1〕 シングルモード(SM)型プリフォームを線引し、線径12
5μmのガラスファイバとした後、熱硬化シリコーン樹
脂を線速100、150および200m/分で塗布、硬化させて250
μm径の光ファイバを作製した。
[Example 1] A single mode (SM) type preform was drawn to obtain a wire diameter of 12
After making 5 μm glass fiber, apply thermosetting silicone resin at linear speeds of 100, 150 and 200 m / min and cure to 250
An optical fiber having a diameter of μm was manufactured.

この光ファイバにナイロン12を押出被覆し、500μm径
の光ファイバとした。
This optical fiber was extrusion-coated with nylon 12 to obtain an optical fiber having a diameter of 500 μm.

シリコーン樹脂の硬度を測定したところ、それぞれ0.1
6、0.15および0.10g/μm2であった。線速100および150m
/分で線引されたものに比べ200m/分で線引したものが硬
化不足であることが判った。これは、線速100m/分の硬
化度100%に対し、150m/分は94%、200m/分は63%であ
った。
When the hardness of the silicone resin was measured, it was 0.1
6, 0.15 and 0.10 g / μm 2 . Line speed 100 and 150m
It was found that the one drawn at 200 m / min was insufficiently cured compared to the one drawn at / min. This was 94% at 150 m / min and 63% at 200 m / min, while the curing rate was 100% at a linear velocity of 100 m / min.

〔実施例2〕 SM型プリフォームを紡糸し、線径が125μmのガラスフ
ァイバとした後、ウレタンアクリレートからなるUV硬化
ソフト樹脂を線速100および300m/minで塗布、硬化し、2
00μm径の光ファイバを得た。次にこの光ファイバにウ
レタンアクリレートからなるUV硬化ハード樹脂を同一線
速で塗布、硬化し、250μm径の光ファイバを得た。ソ
フト樹脂の硬度を測定したところ0.25、0.10(g/μm2
であった。これは線速50m/分(硬度0.30g/μm2)の硬化
度100%に対し、夫々83%、33%であり高速で線引した
もののソフト樹脂が硬化不足であることが判った。
Example 2 After spinning a SM type preform into a glass fiber having a wire diameter of 125 μm, a UV-curable soft resin made of urethane acrylate was applied and cured at a linear velocity of 100 and 300 m / min.
An optical fiber with a diameter of 00 μm was obtained. Next, a UV curable hard resin made of urethane acrylate was applied to this optical fiber at the same linear speed and cured to obtain an optical fiber having a diameter of 250 μm. The hardness of soft resin was measured to be 0.25, 0.10 (g / μm 2 )
Met. This was 83% and 33%, respectively, with respect to the degree of cure of 100% at a linear velocity of 50 m / min (hardness 0.30 g / μm 2 ), and it was found that the soft resin was insufficiently cured although high-speed drawing was performed.

又、これらのファイバのハード樹脂についても同様に硬
度を測定したところ、夫々3.2、3.1(g/μm2)であっ
た。これは線速50m/分(硬度3.5g/μm2)の硬化度100%
に対し、夫々91%、89%でありソフト樹脂と異なり線速
による硬化度の差は小さいものであった。
Further, when the hardness of the hard resin of these fibers was similarly measured, they were 3.2 and 3.1 (g / μm 2 ), respectively. This is a 100% cure rate at a linear velocity of 50 m / min (hardness 3.5 g / μm 2 ).
On the other hand, they were 91% and 89%, respectively, and unlike the soft resin, the difference in the curing degree depending on the linear velocity was small.

〔比較例1〕 実施例1のファイバについて、シリコーン樹脂のゲル分
率を溶剤としてメチル・エチルケトンを使用して測定し
た。その結果、線速100、150、200m/分で製作したそれ
ぞれについて、94%、95%、93%であり、硬化度の大差
は見られなかった。
Comparative Example 1 With respect to the fiber of Example 1, the gel fraction of the silicone resin was measured using methyl ethyl ketone as a solvent. As a result, it was 94%, 95%, and 93% for the linear speeds of 100, 150, and 200 m / min, respectively.

〔比較例2〕 実施例2のファイバについて、ガラスファイバを引抜い
たソフト樹脂とハード樹脂の二層の平均ヤング率を測定
した。各サンプル数は10で、線速100m/分および300m/分
のものの平均値は23Kg/mm2および21Kg/mm2で、実施例2
のハード樹脂の硬度と同様線速による差は小さいもので
あったが、各線速での測定値の標準偏差は2.4Kg/mm2
よび1.91Kg/mm2と非常にバラツキの大きいものであっ
た。
Comparative Example 2 With respect to the fiber of Example 2, the average Young's modulus of the two layers of the soft resin and the hard resin from which the glass fiber was drawn was measured. The number of samples was 10, and the average values of linear velocities of 100 m / min and 300 m / min were 23 Kg / mm 2 and 21 Kg / mm 2 , respectively.
Similar to the hardness of the hard resin, the difference due to the linear velocity was small, but the standard deviation of the measured values at each linear velocity was 2.4 Kg / mm 2 and 1.91 Kg / mm 2, which were very large variations. .

ハ.発明の効果 以上説明したように本発明の硬化度定量化手法では光フ
ァイバの複数層の被覆の各層個別の硬化度(特にすぐ外
側のソフト樹脂の硬化度)を求めることが可能である。
C. EFFECTS OF THE INVENTION As described above, with the curing degree quantification method of the present invention, it is possible to determine the curing degree of each layer of the coating of a plurality of layers of the optical fiber (particularly the curing degree of the soft resin immediately outside).

また、そのことによってすぐれた伝送特性を有する光フ
ァイバを提供することをも可能にするものである。
Further, it also makes it possible to provide an optical fiber having excellent transmission characteristics.

また、測定の精度についても従来のヤング率ゲル分率の
手法に比べて微小な相違を測定できる。
Also, regarding the measurement accuracy, a minute difference can be measured as compared with the conventional Young's modulus gel fraction method.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る光ファイバ被覆材の硬化度定量化
方法に適用される硬度測定を説明する図、第2図は硬化
度定量化される光ファイバの構造を示す斜視図である。 1……ガラスファイバ、2……ソフト層 3……ハード層、4……光ファイバ 5……パイプ、6……圧子
FIG. 1 is a diagram for explaining hardness measurement applied to a method for quantifying the degree of cure of an optical fiber coating material according to the present invention, and FIG. 2 is a perspective view showing the structure of an optical fiber whose degree of cure is quantified. 1 ... glass fiber, 2 ... soft layer 3 ... hard layer, 4 ... optical fiber 5 ... pipe, 6 ... indenter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ガラスファイバに有機物被覆を施した光フ
ァイバ被覆材の硬化度の定量化方法において、前記光フ
ァイバ端面の被覆部に圧子を加えて硬度を測定し、予め
求めておいた前記被覆材の硬度と硬化度との関係を用い
て、前記測定値から被覆部の硬化度を求めることを特徴
とする光ファイバ被覆材の硬化度定量化方法
1. A method of quantifying the degree of cure of an optical fiber coating material comprising a glass fiber coated with an organic substance, wherein an indenter is applied to the coating portion of the end face of the optical fiber to measure the hardness, and the coating obtained in advance. A method for quantifying the degree of cure of an optical fiber coating material, wherein the degree of cure of the coating is obtained from the measured value using the relationship between the hardness and the degree of cure of the material.
JP24441289A 1989-09-19 1989-09-19 Method for quantifying the degree of curing of optical fiber coating materials Expired - Fee Related JPH0758247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24441289A JPH0758247B2 (en) 1989-09-19 1989-09-19 Method for quantifying the degree of curing of optical fiber coating materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24441289A JPH0758247B2 (en) 1989-09-19 1989-09-19 Method for quantifying the degree of curing of optical fiber coating materials

Publications (2)

Publication Number Publication Date
JPH03105233A JPH03105233A (en) 1991-05-02
JPH0758247B2 true JPH0758247B2 (en) 1995-06-21

Family

ID=17118281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24441289A Expired - Fee Related JPH0758247B2 (en) 1989-09-19 1989-09-19 Method for quantifying the degree of curing of optical fiber coating materials

Country Status (1)

Country Link
JP (1) JPH0758247B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102841052A (en) 2011-06-24 2012-12-26 日本板硝子株式会社 Apparatus and method for measuring degree of cure of adhesive agent

Also Published As

Publication number Publication date
JPH03105233A (en) 1991-05-02

Similar Documents

Publication Publication Date Title
KR100321507B1 (en) Optical fiber element and method of making
JP2828733B2 (en) Optical transmission medium
EP0521710B1 (en) Optical fibres
AU616012B2 (en) Coated optical fibres
US5561730A (en) Cable containing fiber ribbons with optimized frictional properties
EP0690033B1 (en) Strippable tight buffered optical waveguide
JPH01133011A (en) Optical fiber with synthetic resin coating and manufacture thereof
CN1191319A (en) Split type ribbon optical fiber core cable
US20040062480A1 (en) Stable recoated fiber bragg grating
JPH0758247B2 (en) Method for quantifying the degree of curing of optical fiber coating materials
JPH0627887B2 (en) Fiber for optical transmission
JPH11194071A (en) Coated optical fiber and method of measuring its friction coefficient
JP2746431B2 (en) Method for measuring the degree of cure of UV-curable resin
JP2725620B2 (en) Evaluation method of physical properties of optical fiber coating
US5644669A (en) Physical property evaluation method for optical fiber coating, and coated optical fiber
KR910005554B1 (en) Plastic-coated optical transmission fiber and an estimating method thereof
EP0570917B1 (en) Light transmitting glass fiber
JPH04166808A (en) Thin type optical ribbon structure coated fiber
JPH0695170B2 (en) UV curable resin coated tape type optical fiber
JPH0794336B2 (en) UV curable resin coated optical fiber
JPH01178850A (en) Evaluating method of characteristics of plastic-coated fiber for light transmission
JP2819660B2 (en) Optical fiber
CA2107448A1 (en) Optical transmission media having enhanced strength retention capabilities
JP2000009948A (en) Optical fiber bundle and its production
JPS61249008A (en) Optical fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees