JPH11194071A - Coated optical fiber and method of measuring its friction coefficient - Google Patents

Coated optical fiber and method of measuring its friction coefficient

Info

Publication number
JPH11194071A
JPH11194071A JP10001255A JP125598A JPH11194071A JP H11194071 A JPH11194071 A JP H11194071A JP 10001255 A JP10001255 A JP 10001255A JP 125598 A JP125598 A JP 125598A JP H11194071 A JPH11194071 A JP H11194071A
Authority
JP
Japan
Prior art keywords
optical fiber
friction
coefficient
measuring
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10001255A
Other languages
Japanese (ja)
Inventor
Hitoyasu Hongo
仁康 本郷
Daisuke Saito
大輔 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10001255A priority Critical patent/JPH11194071A/en
Publication of JPH11194071A publication Critical patent/JPH11194071A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for easily and precisely measuring the friction coefficient of coated optical fibers. SOLUTION: The face of a moving substrate 20b where the coated optical fibers, 10b are adhered and fixed is made to face the face of a fixed substrate 20a where the coated optical fiber 10a is adhered and fixed and the coated optical fiber 10a and 10b are arranged perpendicularly to each other. In the method of measuring the friction coefficient of a coated optical fiber, an adjusting weight 30 is placed on the moving substrate 20b, the moving substrate 20b is pulled in a direction shown by A at constant speed by a load cell and modulus, namely, friction force required for it is measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバ心線の摩擦
係数を容易かつ精度良く測定する測定方法及びボビンへ
の巻取り特性に優れた光ファイバ心線に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring method for easily and accurately measuring a coefficient of friction of an optical fiber core, and an optical fiber core having excellent winding characteristics on a bobbin.

【0002】[0002]

【従来の技術】光ファイバ心線の樹脂被覆層の摩擦係数
は、光ケーブルの生産性や品質に影響を及ぼす重要な因
子である。即ち光ファイバ心線の樹脂被覆層の摩擦係数
が高いと、例えば光ファイバ心線間、光ファイバ心線と
ボビンとの間、光ファイバ心線とケーブル構成材料など
との間に生ずる摩擦力により、例えば側圧の発生による
光損失の増加や、ボビンへの巻取り及び繰出し性が悪く
なり、極端な場合には光ファイバ心線の樹脂被覆に損傷
を生ずるなど、生産性の低下や不良品の発生原因とな
る。
2. Description of the Related Art The coefficient of friction of a resin coating layer of an optical fiber cable is an important factor affecting the productivity and quality of an optical cable. That is, if the coefficient of friction of the resin coating layer of the optical fiber core is high, for example, the frictional force generated between the optical fiber core, between the optical fiber core and the bobbin, between the optical fiber core and the cable constituent material, etc. For example, increase in light loss due to generation of lateral pressure, poor winding and unwinding of the bobbin, and in extreme cases, damage to the resin coating of the optical fiber core leads to reduced productivity and defective products. It causes the occurrence.

【0003】しかし、光ファイバ心線の摩擦係数は表面
の凹凸、表面の硬度、粘着性など多くの因子により影響
する複雑な現象でありその正確な把握が容易でないため
に、摩擦力を下げる個々の技術は数多く提案されている
(特開平5−203847号公報、特開平1−1775
06号公報、特開平8−179172号公報、特開昭6
1−252513号公報)ものの、光ファイバ樹脂被覆
の損傷、光ファイバ心線の集合状態でのマイクロベンデ
イングによる光損失の増加、ボビンへの巻取り、繰り出
し時のトラブルなど多くの問題が未解決の状態にある。
However, the coefficient of friction of an optical fiber core wire is a complicated phenomenon that is affected by many factors such as surface irregularities, surface hardness, and adhesiveness, and it is not easy to accurately grasp the friction coefficient. Many techniques have been proposed (JP-A-5-203847, JP-A-1-17775).
No. 06, JP-A-8-179172, JP-A-6-179172
However, many problems such as damage to the resin coating of the optical fiber, increase in optical loss due to micro-bending in a state where the optical fiber cores are gathered, winding on a bobbin, trouble in feeding out, etc. are still unsolved. It is in the state of.

【0004】特に光ファイバ着色心線の場合は、被覆樹
脂の粘着性に加えて着色剤粒子の大きさが1μm程度も
あることから摩擦係数が一般に大きくなり、その影響が
大きい。
[0004] In particular, in the case of an optical fiber colored core, the friction coefficient generally becomes large because the size of the colorant particles is about 1 μm in addition to the adhesiveness of the coating resin, and the influence thereof is large.

【0005】ところで、摩擦係数とは、摩擦面の接線方
向に生ずる抵抗力である摩擦力を、摩擦面を圧縮する方
向に作用している力である接触力で除した値をいい、次
式であらわされる。 摩擦係数=摩擦力/接触力 この摩擦係数には、対向する摩擦面が静止している状態
の摩擦力を対象とする静摩擦係数と、動いている状態の
摩擦力を対象とする動摩擦係数があり、得られる摩擦係
数の値は大きく異なる。
[0005] The friction coefficient is a value obtained by dividing a friction force, which is a resistance force generated in a tangential direction of a friction surface, by a contact force, which is a force acting in a direction to compress the friction surface. It is represented by Coefficient of friction = frictional force / contact force The frictional coefficient includes a static frictional coefficient for a frictional force when the opposing frictional surface is stationary and a dynamic frictional coefficient for a frictional force when the opposing friction surface is moving. The values of the obtained friction coefficients differ greatly.

【0006】一般的な摩擦係数の測定法に関しては、J
IS規格 K7125による、測定しようとする材料と
同じ材質で形成したシートを用いて測定する方法があ
る。
For a general method of measuring the coefficient of friction, see J.
There is a method of measuring using a sheet formed of the same material as the material to be measured according to IS standard K7125.

【0007】[0007]

【発明が解決しようとする課題】しかし、光ファイバ心
線の被覆層の樹脂材料について前記JIS規格の方法で
測定する場合は、測定結果のばらつきが極めて大きく、
特に光ファイバ着色心線の場合は試験片のシートの粘着
力により信頼できる摩擦係数を得ることが困難である。
However, when the resin material of the coating layer of the optical fiber core is measured by the method of the above-mentioned JIS standard, the result of the measurement is extremely large.
In particular, in the case of a colored optical fiber, it is difficult to obtain a reliable coefficient of friction due to the adhesive force of the test piece sheet.

【0008】本発明は光ファイバ心線の摩擦係数を容易
に精度良く測定できる測定方法を提案することを主な目
的とする。
It is a main object of the present invention to propose a measuring method capable of easily and accurately measuring the coefficient of friction of an optical fiber core.

【0009】[0009]

【課題を解決するための手段】上記課題を克服するため
に本発明は、固定基板と可動基板の平面に光ファイバ心
線を接着、固定し、前記固定基板の上に前記可動基板を
載置して、前記光ファイバ心線を相互に接触させ、前記
可動基板を移動させたときに生ずる摩擦力を測定するこ
とを特徴とする光ファイバ心線の摩擦係数の測定方法で
ある。
SUMMARY OF THE INVENTION In order to overcome the above-mentioned problems, the present invention provides an optical fiber core bonded and fixed to a plane of a fixed substrate and a movable substrate, and placing the movable substrate on the fixed substrate. A method for measuring a friction coefficient of an optical fiber core, wherein the optical fiber cores are brought into contact with each other and a frictional force generated when the movable substrate is moved is measured.

【0010】具体的には、例えば、前記固定基板と可動
基板の平面に固定した光ファイバ心線の数がそれぞれ2
本でかつ平行であり、前記光ファイバ心線同士の接触が
相互に直交する方向であって、かつ前記摩擦力を前記光
ファイバ心線に負荷された荷重で除した値を摩擦係数と
することを特徴とする光ファイバ心線の摩擦係数の測定
方法である。
Specifically, for example, the number of optical fiber cores fixed on the planes of the fixed substrate and the movable substrate is 2 respectively.
Book and parallel, the contact between the optical fibers is in a direction orthogonal to each other, and a value obtained by dividing the frictional force by the load applied to the optical fibers is defined as a friction coefficient. This is a method for measuring the coefficient of friction of an optical fiber core.

【0011】また本発明は、本発明の摩擦係数の測定方
法により測定した摩擦係数が0.10乃至0.15であ
って、ボビンに巻いた状態でマイクロベンデイングによ
る光損失の増加を生ずることがなく、かつ巻崩れをも生
じないことを特徴とする光ファイバ心線である。
The present invention also relates to a method of measuring a coefficient of friction according to the present invention, wherein the coefficient of friction is 0.10 to 0.15, and an increase in light loss due to micro bending when wound on a bobbin occurs. An optical fiber core wire characterized in that there is no winding and no collapse occurs.

【0012】[0012]

【発明の実施の形態】本発明の光ファイバ心線の摩擦係
数の測定方法を図1に例示する。図1(A)は平面図で
あり、図1(B)は側面図である。また、光ファイバ心
線の横断面図を図2に示す。以下、図1、図2に基づい
て本発明の実施の形態を説明する。なお、同じ部位には
同じ番号を付して重複する説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 illustrates a method for measuring the friction coefficient of an optical fiber according to the present invention. FIG. 1A is a plan view, and FIG. 1B is a side view. FIG. 2 is a cross-sectional view of the optical fiber. Hereinafter, an embodiment of the present invention will be described with reference to FIGS. Note that the same parts are assigned the same numbers, and duplicate descriptions are omitted.

【0013】まず、測定しようとする光ファイバ心線に
ついて同一の試験片を4本用意する。固定基板20aの
平面にその2本の光ファイバ心線10aを直線状に引き
伸ばした状態で平行に、接着、固定する。また移動基板
20bの平面にも残りの2本の光ファイバ心線10bを
直線状の状態で平行に接着、固定する。光ファイバ心線
10a、10bは単数、複数を問わない。
First, four identical test pieces are prepared for an optical fiber core to be measured. The two optical fiber cores 10a are adhered and fixed in parallel with the two optical fiber cores 10a stretched linearly on the plane of the fixed substrate 20a. Also, the remaining two optical fiber cores 10b are bonded and fixed in parallel to the plane of the moving substrate 20b in a straight line. The optical fibers 10a and 10b may be singular or plural.

【0014】光ファイバ心線10aを接着、固定した側
の固定基板20aの平面に、同じく光ファイバ心線10
bを接着、固定した側の移動基板20bの平面を対向さ
せて、光ファイバ心線10a、10b同士が直交する方
向に載置する。更に移動基板20bの上に調整荷重30
を載値して全体の荷重が所定の値となるように調整した
後、移動基板20bをロードセルにより、図1のAに示
す方向、即ち光ファイバ心線10aの方向、換言すれば
光ファイバ心線10bに直交する方向に一定速度で引張
り、これに要する引張応力、即ち摩擦力を測定する。
The optical fiber core 10a is also attached to the plane of the fixed substrate 20a on which the optical fiber core 10a is bonded and fixed.
The optical fibers 10a and 10b are placed in a direction orthogonal to each other with the planes of the movable substrate 20b on the side where b is bonded and fixed facing each other. Further, the adjustment load 30 is placed on the moving substrate 20b.
And the load is adjusted so that the entire load becomes a predetermined value. Then, the moving substrate 20b is moved by the load cell in the direction shown in FIG. 1A, that is, the direction of the optical fiber core 10a, in other words, the optical fiber core. It is pulled at a constant speed in a direction perpendicular to the line 10b, and the tensile stress required for this, that is, the frictional force is measured.

【0015】調整荷重30の重量は、調整荷重30と移
動台20bの総重量を、接着、固定した光ファイバ心線
10a、10bの総本数で除した値が1g/本乃至50
g/本の範囲、特に4g/本乃至15g/本の範囲が好適
であるので、移動台20bの重さを考慮して、この範囲
になるように選択する。ロードセルの引張り速度は、1
0mm/秒以上になると得られる摩擦係数の値ばらつく
ので、これ以下の範囲が好ましい。
The weight of the adjustment load 30 is a value obtained by dividing the total weight of the adjustment load 30 and the movable base 20b by the total number of the bonded and fixed optical fiber cores 10a and 10b.
Since the range of g / piece, particularly the range of 4 g / piece to 15 g / piece, is suitable, the range is selected in consideration of the weight of the movable base 20b. The pulling speed of the load cell is 1
Since the value of the obtained friction coefficient varies at 0 mm / sec or more, a range below this value is preferable.

【0016】得られた摩擦力を、調整荷重30と移動基
板20bの総重量、即ち接触力で除した値を摩擦係数と
する。本測定法によれば、測定対象である光ファイバ心
線10a、10bが円柱状の形状を有するので、点に近
い状態で相互に接触することになり、光ファイバ心線の
樹脂被覆層の粘着力に起因する測定の困難さを排除で
き、極めて摩擦係数のばらつきが小さく、かつ同条件下
で再現性の高い結果が得られる。従って、本発明の摩擦
係数の測定法は、前記光ファイバ心線の摩擦係数に起因
する諸問題の解明のための有力な手段となりうる。
A value obtained by dividing the obtained frictional force by the adjustment load 30 and the total weight of the movable substrate 20b, that is, the contact force is defined as a friction coefficient. According to this measurement method, since the optical fiber cores 10a and 10b to be measured have a columnar shape, they come into contact with each other in a state close to a point, and the adhesion of the resin coating layer of the optical fiber core is performed. The difficulty of measurement due to the force can be eliminated, the variation in the coefficient of friction is extremely small, and a highly reproducible result can be obtained under the same conditions. Therefore, the method for measuring a friction coefficient according to the present invention can be a powerful means for clarifying various problems caused by the friction coefficient of the optical fiber core.

【0017】尚本発明の摩擦係数の測定法は、動的摩擦
係数及び静的摩擦係数のいづれの測定も可能である。静
的摩擦係数を測定する場合は、移動基台20bを移動開
始する際に得られる最大摩擦力を静摩擦力として採用
し、動摩擦係数を測定する場合は移動開始後に最大摩擦
力を過ぎて最小の摩擦力が得られた後の摩擦力を、動摩
擦力として採用し、それぞれ全荷重である接着力を除し
て得られる。本願では特に言及しない限り、摩擦係数と
いうときは動摩擦係数をあらわす。
The method of measuring a friction coefficient according to the present invention can measure both a dynamic friction coefficient and a static friction coefficient. When measuring the static friction coefficient, the maximum friction force obtained when the moving base 20b starts moving is adopted as the static friction force. When measuring the dynamic friction coefficient, the maximum friction force is exceeded after the movement starts and the minimum friction force is obtained. The frictional force after the frictional force is obtained is adopted as the dynamic frictional force, and is obtained by dividing the adhesive force, which is the total load, respectively. In the present application, unless otherwise specified, the coefficient of friction indicates a dynamic friction coefficient.

【0018】尚、固定基板20aと移動基板20bにそ
れぞれ接着、固定する光ファイバ心線が1本のときは、
光ファイバ心線同士でのみ接触し、固定基板20aと移
動基板20bの各平面の部分が接触しないようにしなけ
ればならないので、移動基板20bを適当に支持する機
構が必要である。
When one optical fiber is bonded and fixed to the fixed substrate 20a and the movable substrate 20b, respectively,
It is necessary to prevent the optical fibers from coming into contact only with each other and to prevent the fixed substrate 20a and the movable substrate 20b from coming into contact with each other on the planes. Therefore, a mechanism for appropriately supporting the movable substrate 20b is required.

【0019】固定基板20aと移動基板20bに接着、
固定する光ファイバ心線の数がそれぞれ2本以上のとき
は、これら複数の光ファイバ心線の平均的な摩擦係数が
得られる。従ってこの場合の光ファイバ心線の数は、得
られる摩擦係数の使用目的に応じて適当に選ぶ必要があ
る。なお、本実施の形態では、固定基板20aと移動基
板20bに接着、固定する光ファイバ心線はそれぞれ同
じ試験片を用いたがこれに限定するものでなく、得られ
る摩擦係数の用途に応じて、固定基板20aと移動基板
20bに異なる試験片を接着、固定して摩擦係数を測定
することもできる。
Adhering to fixed substrate 20a and moving substrate 20b,
When the number of optical fiber cores to be fixed is two or more, an average friction coefficient of the plurality of optical fiber cores is obtained. Therefore, the number of optical fiber cores in this case must be appropriately selected according to the purpose of using the obtained friction coefficient. In this embodiment, the same test piece is used for each of the optical fibers to be bonded and fixed to the fixed substrate 20a and the moving substrate 20b. However, the present invention is not limited to this. Alternatively, different test pieces can be bonded and fixed to the fixed substrate 20a and the movable substrate 20b to measure the friction coefficient.

【0020】[0020]

【実施例】本実施例の光ファイバ心線の摩擦係数の測定
方法を図1に示す。また、測定の対象は、摩擦係数が一
般に大きい光ファイバ着色心線とし、この断面構造を図
2に示す。摩擦係数の異なる各種の光ファイバ着色心線
を得る為に、その最外層である着色層4の表面状態を種
々異なるものとする目的で採用した、着色層4の被覆樹
脂の組成、及びその紫外線硬化時の酸素濃度を表1に示
す。これら各種光ファイバ着色心線の摩擦係数の測定値
と測定精度、同じ材質のシート状の試験片についてJI
S規格による測定法で測定した場合の測定精度及びこれ
ら光ファイバ着色心線をボビンに巻いた状態でのマイク
ロベンデイングの発生頻度、巻き崩れの有無の試験結果
を表2に示す。
FIG. 1 shows a method for measuring the coefficient of friction of an optical fiber according to the present embodiment. The measurement target is an optical fiber colored cord having a generally large friction coefficient, and the cross-sectional structure is shown in FIG. In order to obtain various colored optical fibers having different friction coefficients, the composition of the coating resin of the colored layer 4 and the ultraviolet rays thereof were employed for the purpose of making the surface state of the colored layer 4 which is the outermost layer thereof variously different. Table 1 shows the oxygen concentration during curing. Measurement values and measurement accuracy of friction coefficient of these various colored optical fibers, sheet-like test pieces of the same material, JI
Table 2 shows the measurement accuracy when measured by the measuring method according to the S standard, the frequency of occurrence of micro-bending when these colored optical fibers are wound around a bobbin, and the results of tests for the presence or absence of winding collapse.

【0021】(目的)以下、図1、図2、表1、表2に
基づき、本発明の光ファイバ心線の摩擦係数の測定方法
を説明する。また本発明の摩擦係数の測定方法を前記ボ
ビンに巻いた光ファイバ心線に生ずる問題に適用して、
その有効性を明らかにする。またこの問題に関し適した
光ファイバ心線の摩擦係数の範囲を明らかにする。
(Purpose) Hereinafter, a method for measuring the coefficient of friction of the optical fiber according to the present invention will be described with reference to FIGS. 1 and 2 and Tables 1 and 2. Applying the method for measuring the coefficient of friction of the present invention to a problem occurring in the optical fiber core wound on the bobbin,
Clarify its effectiveness. In addition, the range of the coefficient of friction of the optical fiber cable suitable for this problem is clarified.

【0022】(光ファイバ着色心線の樹脂被覆層の構
造)測定対象とする光ファイバ着色心線10a、10b
は、シングルモード光ファイバであって、図2に示すよ
うな断面構造を有する。まず外径125μmの光ファイ
バ裸線1上に、ヤング率1MPaの紫外線硬化型ウレタ
ンアクリレート樹脂を被覆して外径約195μmの一次
被覆層2を形成する。更にその上に、ヤング率0.8G
Paの紫外線硬化型ウレタンアクリレート樹脂を被覆し
て外径約240μmの二次被覆層3を形成し、光ファイ
バ素線を得る。これらの各被覆層の厚さ、硬さは、光フ
ァイバ心線相互間の接触時の接触面積に影響することに
より摩擦係数の値に変化を与えると考えられる。
(Structure of the resin coating layer of the colored optical fiber) The colored optical fibers 10a and 10b to be measured
Is a single-mode optical fiber having a cross-sectional structure as shown in FIG. First, an ultraviolet curable urethane acrylate resin having a Young's modulus of 1 MPa is coated on the bare optical fiber 1 having an outer diameter of 125 μm to form a primary coating layer 2 having an outer diameter of about 195 μm. Furthermore, the Young's modulus is 0.8G
An ultraviolet curable urethane acrylate resin of Pa is coated to form a secondary coating layer 3 having an outer diameter of about 240 μm, thereby obtaining an optical fiber. It is considered that the thickness and hardness of each of these coating layers change the value of the friction coefficient by affecting the contact area at the time of contact between the optical fibers.

【0023】この光ファイバ素線上に、一定量の1μm
の粒径の着色剤を含む紫外線硬化型インクを被覆し着色
層4を形成して、光ファイバ着色心線を製造する。
On this optical fiber, a fixed amount of 1 μm
An ultraviolet curable ink containing a colorant having a particle size of 3 is coated to form a colored layer 4 to produce a colored optical fiber.

【0024】この着色層4の樹脂組成としては、表1に
示すように、10重量%の1μmの粒径の着色剤を含む
ウレタンアクリレート系の紫外線硬化樹脂インクに対
し、比較的分子量が高く表面張力が高いシリコン樹脂か
らなる平滑剤、インクのベース樹脂とは相溶性の小さい
シリコン樹脂からなる減摩材、潤滑性を付与するための
約1μmの粒径のテフロン微粉末の各添加量を調整する
ことにより、また紫外線硬化時の酸素濃度を調整するこ
とにより着色層4の硬化度を調整して、各種摩擦係数の
異なる7種類の光ファイバ着色心線を製造した。
As shown in Table 1, the resin composition of the coloring layer 4 has a relatively high molecular weight compared to a urethane acrylate ultraviolet curable resin ink containing 10% by weight of a coloring agent having a particle diameter of 1 μm. Adjusting each amount of smoothing agent made of silicone resin with high tension, lubricating material made of silicone resin with small compatibility with ink base resin, and Teflon fine powder of about 1μm particle size to give lubricity Then, the degree of curing of the colored layer 4 was adjusted by adjusting the oxygen concentration at the time of ultraviolet curing, thereby producing seven types of colored optical fibers having different friction coefficients.

【0025】この場合、平滑剤は、シリコン樹脂からな
る表面張力が低いシリコンオイルが最外層4の表面の凹
部に染み出して液面を形成することにより、表面を平滑
にして摩擦係数を低下させる機能を有する。減摩剤は、
シリコン樹脂からなる潤滑性に優れかつ表面張力が比較
的小さいシリコンオイルが、最外層4の表面に染み出し
て膜面を形成することにより、摩擦係数を低下させる機
能を有する。また、テフロン微粒子は、テフロン自体の
摩擦係数が低いので、その一部が最外層4の表面から突
出して表面の一部を構成することによって、摩擦係数を
低下させる機能を有する。
In this case, as the smoothing agent, silicon oil having a low surface tension, made of silicone resin, oozes out into recesses on the surface of the outermost layer 4 to form a liquid surface, thereby smoothing the surface and lowering the friction coefficient. Has functions. The lubricant is
Silicon oil having excellent lubricity and relatively low surface tension made of silicone resin oozes out on the surface of the outermost layer 4 to form a film surface, thereby having a function of reducing the friction coefficient. Further, since the Teflon particles have a low coefficient of friction of Teflon itself, a part thereof protrudes from the surface of the outermost layer 4 to constitute a part of the surface, thereby having a function of reducing the coefficient of friction.

【0026】[0026]

【表1】 [Table 1]

【0027】表1に示す摩擦係数の調整条件で着色層4
を形成した7種類の光ファイバ着色心線を、それぞれ1
00km乃至300km製造し、ボビン1個当たり25
kmの長さ分を巻取り可能な、胴径28cmの複数のボ
ビンに、設定張力80gfで巻き取った。
The colored layer 4 was adjusted under the conditions for adjusting the coefficient of friction shown in Table 1.
The seven types of optical fiber colored cores formed with
Manufactured from 00km to 300km, 25 per bobbin
It was wound with a set tension of 80 gf on a plurality of bobbins having a body diameter of 28 cm, which could be wound for a length of km.

【0028】(測定方法)まず、測定対象とする前記7
種類の各光ファイバ着色心線について同じ測定を10回
繰り返すこととし1回の測定当たり同一の4本の試験片
を使用する。測定は、まず1回の測定について、同一の
光ファイバ着色心線からなる4本の試験片のうち固定基
板20aの平面に2本を平行に接着、固定する。また移
動基板20bの平面にも残りの試験片2本を平行に接
着、固定する。
(Measurement method) First, the 7
The same measurement is repeated 10 times for each type of colored optical fiber, and the same four test pieces are used for each measurement. First, for one measurement, two of the four test pieces made of the same optical fiber colored core are bonded and fixed in parallel to the plane of the fixed substrate 20a. The remaining two test pieces are also adhered and fixed in parallel on the plane of the moving substrate 20b.

【0029】光ファイバ着色心線10aを接着、固定し
た側の固定基板20aの表面に、同じく光ファイバ着色
心線10bを接着、固定した側の移動基板20bの表面
を対向させて、光ファイバ着色心線10a、10b同士
が直交する方向に載置する。更に移動基板20bの上に
調整荷重30を載値して全体の総重量を4gfとし、移
動基板20bを図1のAに示す方向にロードセルにより
5mm/秒の速度で引張り、その応力が、静摩擦力に対
応する最初の最大となる位置を過ぎ、最低を示した位置
から摩擦距離70mm間の平均の引張応力、即ち摩擦力
を測定する。
The surface of the movable substrate 20b on the side where the optical fiber colored core 10b is bonded and fixed similarly faces the surface of the fixed substrate 20a on the side where the optical fiber colored core 10a is bonded and fixed. The core wires 10a and 10b are placed in a direction orthogonal to each other. Further, the adjustment load 30 is placed on the moving substrate 20b to make the total weight 4 gf, and the moving substrate 20b is pulled by the load cell at a speed of 5 mm / sec in the direction shown in FIG. The average tensile stress, i.e., the frictional force, is measured over a distance of 70 mm from the position of the minimum after passing the first maximum position corresponding to the force.

【0030】得られた摩擦力を、調整荷重30と移動基
板20bの総重量、即ち接触力4gfで除した値を摩擦
係数とする。
A value obtained by dividing the obtained frictional force by the adjustment load 30 and the total weight of the movable substrate 20b, that is, the contact force 4 gf is defined as a friction coefficient.

【0031】これら各光ファイバ着色心線について摩擦
係数の測定結果は、表2に示すように0.05から0.
22の範囲にあった。また、測定の信頼性を表わすばら
つきを明らかにするために、10回の同じ試験を繰り返
して得た10個の測定値について、平均値に対する標準
偏差の比率を求めた。また比較のため、前記光ファイバ
着色心線のケースについて、着色層4と同じ樹脂被覆材
料からなるシート状の試験片を作成して、前記JIS規
格による摩擦係数の測定をも行い、各10個の測定値に
ついて同様に平均値に対する標準偏差の比率を求めた。
As shown in Table 2, the measurement results of the coefficient of friction of each of the colored optical fibers were 0.05 to 0.5.
22. In addition, in order to clarify the variation indicating the reliability of the measurement, the ratio of the standard deviation to the average was determined for ten measurement values obtained by repeating the same test ten times. For comparison, a sheet-like test piece made of the same resin coating material as the colored layer 4 was prepared for the case of the colored optical fiber core, and the friction coefficient was measured according to the JIS standard. Similarly, the ratio of the standard deviation to the average value was determined for the measured values.

【0032】表2から分かるように、本実施例による平
均値に対する標準偏差の百分率の値は1桁以下であり、
JIS規格による測定により得た値と比較して、本発
明の測定方法は光ファイバの摩擦係数の測定に極めて適
しているといえる。尚、以上の結果は移動基板20bと
調整荷重30の全荷重、即ち接触力が4gfの場合につ
いての結果であるが、15gfについても同様な結果が
得られた。
As can be seen from Table 2, the percentage value of the standard deviation with respect to the average value according to the present embodiment is less than one digit,
Compared with the value obtained by the measurement according to the JIS standard, it can be said that the measurement method of the present invention is extremely suitable for measuring the friction coefficient of an optical fiber. The above results are for the case where the total load of the movable substrate 20b and the adjustment load 30, that is, the contact force is 4 gf. Similar results were obtained for 15 gf.

【0033】[0033]

【表2】 [Table 2]

【0034】(ボビンに巻いた光ファイバ着色心線に生
ずる問題への適用) (適用対象)光ケーブルの製造工程中において製造又は
加工した光ファイバの光学特性は、光ファイバの取扱い
の便宜上ボビンに巻いた状態で測定される。したがっ
て、ボビンに巻いた状態で測定した光ファイバの光学特
性と光ケーブルを布設した状態の光ファイバの光学特性
とは一致しなければならない。もし一致しなければ光フ
ァイバの光学特性を測定する都度ボビンから光ファイバ
を巻き解き、極端な場合には布設した状態と同じく何十
キロメートルも直線状に伸ばした状態叉はそれに近い状
態で測定しなければならなくなり、光学特性の測定が極
めて煩雑かつ非効率な作業となるからである。
(Application to Problems Produced by Colored Optical Fiber Wound on Bobbin) (Applicable object) The optical characteristics of the optical fiber manufactured or processed during the manufacturing process of the optical cable are wound around the bobbin for convenience of handling the optical fiber. It is measured in the state where it was. Therefore, the optical characteristics of the optical fiber measured while being wound on the bobbin and the optical characteristics of the optical fiber with the optical cable laid must be identical. If they do not match, unwind the optical fiber from the bobbin each time the optical characteristics of the optical fiber are measured, and in extreme cases, measure the optical fiber in a state where it is stretched linearly for tens of kilometers as in the installed state, or close to it This is because the measurement of optical characteristics becomes extremely complicated and inefficient.

【0035】しかし、光ファイバ着色心線に関しては、
被覆層の粘着力に加えて、最外層を構成する着色層中に
粒径が1μm程度の着色剤を含むので一般に摩擦係数が
大きくなる。この摩擦係数が大きな光ファイバ着色心線
は、ボビンに巻きとる際ガイドローラの振動などで生ず
る微少な張力変動による伸縮が生ずるが、摩擦係数が大
きいと光ファイバ着色心線間に滑りが生じないのでこの
伸縮に起因する張力変動が解消されず、保存された状態
でボビンに積層される。
However, regarding the optical fiber colored core,
In addition to the adhesive strength of the coating layer, the coloring layer constituting the outermost layer contains a coloring agent having a particle size of about 1 μm, so that the friction coefficient generally increases. The optical fiber colored core having a large coefficient of friction causes expansion and contraction due to slight tension fluctuation caused by vibration of a guide roller when wound on a bobbin, but if the coefficient of friction is large, no slip occurs between the optical fiber colored cores. Therefore, the tension fluctuation caused by the expansion and contraction is not eliminated, and the bobbin is stacked in a stored state.

【0036】このため弱い張力で巻き取られた部分の上
に強い張力で巻き取られた部分が重なる部分が生ずる。
このような光ファイバ着色心線同士が交差する位置では
弱い張力で巻き取られた光ファイバ着色心線の方が心線
径程度の小さい曲がり、いわゆるマイクロベンデイング
が生じ、光損失の増加の原因となる。この場合ボビンに
巻いた状態に固有の光損失の増加が生じ、布設状態で測
定した光損失と一致しなくなる。従って、ボビンに巻い
た状態でのマイクロベンデイングの発生は排除しなけれ
ばならない。
For this reason, there is a portion where the portion wound with high tension overlaps the portion wound with low tension.
At the position where such colored optical fibers intersect, the colored optical fiber wound with a weak tension bends smaller than the diameter of the optical fiber, causing so-called micro-bending, which causes an increase in light loss. Becomes In this case, the light loss inherent in the state of being wound on the bobbin occurs and does not match the light loss measured in the laid state. Therefore, the occurrence of micro-bending in the state of being wound on the bobbin must be eliminated.

【0037】(光ファイバ着色心線の摩擦係数と巻取り
により生ずるマイクロベンデイングとの関係)前記7種
類の摩擦係数の異なる各光ファイバ着色心線について、
ボビンに巻き取った状態で、摩擦によるマイクロベンデ
イングに起因する光損失の増加個所の、100km当た
りの発生頻度を測定した。この結果を表2のマイクロベ
ンデイングによる光損失の増加の発生頻度の欄に示す。
(Relationship between Coefficient of Friction of Colored Optical Fiber and Microbending Caused by Winding) For each of the seven types of colored optical fibers having different friction coefficients,
In the state of being wound up on the bobbin, the frequency of occurrence of light loss due to micro-bending caused by friction per 100 km was measured. The results are shown in Table 2 in the column of occurrence frequency of increase in optical loss due to microbending.

【0038】表2より、本発明の測定法により得た摩擦
係数の値とマイクロベンデイングに起因する光損失の増
加の発生頻度とは極めて良く対応しており、本発明の測
定法により得た摩擦係数が、0.15以下の場合は光損
失の増加個所の発生頻度が1個所/100km以下であ
り、摩擦係数がこれを超えると発生頻度の増加個所の数
が急に増加することが分かる。
From Table 2, it can be seen that the value of the coefficient of friction obtained by the measuring method of the present invention and the frequency of occurrence of an increase in light loss caused by microbending correspond very well, and that the value obtained by the measuring method of the present invention was obtained. When the friction coefficient is 0.15 or less, the frequency of occurrence of light loss increases is 1/100 km or less, and when the friction coefficient exceeds this, the number of occurrences of frequency increases rapidly. .

【0039】(ボビンに巻いた光ファイバ心線の巻き崩
れ)一方、摩擦係数が小さ過ぎると、ボビンに巻いた状
態でマイクロベンデイングは生じなくなるが、光ファイ
バ着色心線同士が滑りやすくなり、輸送中のハンドリン
グ等で、ボビンに巻き取った光ファイバ心線に横方向の
振動が加わると巻き崩れが生ずる。
On the other hand, if the coefficient of friction is too small, microbending does not occur in the state of being wound on the bobbin, but the colored optical fibers become slippery. When lateral vibration is applied to the optical fiber core wound around the bobbin during handling during transportation or the like, winding collapse occurs.

【0040】前記7種類の各光ファイバ着色心線につい
て、輸送工程で加えられる振動をシミュレートして、前
記ボビンに巻いた状態で横方向に振動を加える振動試験
を行なった。結果は、表2の、巻き崩れの有無の欄に例
示すように光ファイバ着色心線の摩擦係数が0.05以
下で巻き崩れが顕著になることが判明した。
With respect to each of the above seven types of colored optical fibers, a vibration test was conducted in which the vibration applied in the transportation step was simulated, and vibration was applied in the lateral direction while being wound on the bobbin. As a result, as shown in Table 2 in the column of presence / absence of collapse, it was found that the collapse was significant when the friction coefficient of the colored optical fiber was 0.05 or less.

【0041】以上の事実は、本発明の摩擦係数の測定法
により得られた摩擦係数が、ボビンの状態で測定した光
ファイバ心線の光学特性の測定値の信頼性や、光ファイ
バ心線の巻取り及び繰り出し特性を判断する有力な手段
となることを示す。
The above facts indicate that the coefficient of friction obtained by the method of measuring a coefficient of friction of the present invention is not limited to the reliability of the measured values of the optical characteristics of the optical fiber core measured in the state of the bobbin and the reliability of the optical fiber core. This shows that this is an effective means for judging the winding and feeding characteristics.

【0042】なお、光ファイバ着色心線をボビンに巻い
た状態で生ずるマイクロベンデイングによる光損失の増
加個所の発生頻度の測定は、いわゆるOTDR法(後方
散乱損失測定法)によった。即ち、ボビンに巻いた状態
の光ファイバの端末から光パルスを入射し、光ファイバ
の長手方向の各点より反射される後方散乱光を図3に示
すように時間軸上で観測し、その減衰曲線よりマイクロ
ベンデイングが生じている個所を検出する方法である。
The measurement of the frequency of occurrence of an increase in light loss due to microbending that occurs when the colored optical fiber is wound around a bobbin is based on the so-called OTDR method (backscattering loss measuring method). That is, a light pulse is incident from the end of the optical fiber wound on the bobbin, and the backscattered light reflected from each point in the longitudinal direction of the optical fiber is observed on the time axis as shown in FIG. This is a method for detecting a place where micro-bending occurs from a curve.

【0043】即ち、光ファイバの長手方向に光学的な異
常個所が存在するときは、光ファイバ中のこれらの場所
に、レイリー散乱に加えてこれら異常に基づく種々の原
因による光損失の増加が生ずることから、図3の減衰曲
線において位置Aのような損失が階段状に大きくなる個
所、いわゆるOTDR段差を生ずる。本実施例ではこれ
ら各種原因によるOTDR段差のうち前後100mの区
間の損失平均値の差が0.02dB以上となるものをマ
イクロベンデイングに起因するものと判断した。
That is, when there are optical abnormalities in the longitudinal direction of the optical fiber, an increase in light loss due to various causes based on these abnormalities occurs in these places in the optical fiber in addition to Rayleigh scattering. Therefore, a place where the loss such as the position A increases stepwise in the attenuation curve of FIG. 3, that is, a so-called OTDR step occurs. In the present embodiment, among the OTDR steps due to these various causes, those having a difference of 0.02 dB or more in the loss average value between the front and rear 100 m sections were determined to be caused by micro-bending.

【0044】[0044]

【発明の効果】本発明の光ファイバ心線の摩擦係数の測
定法を利用することにより、光ファイバ心線の摩擦係数
を精度良く、容易に測定することが可能となる。
By using the method for measuring the coefficient of friction of an optical fiber core according to the present invention, the coefficient of friction of an optical fiber core can be accurately and easily measured.

【0045】本発明の光ファイバ心線の摩擦係数の測定
法により得られる摩擦係数は、ボビンの状態で測定した
光ファイバ心線の光学特性の測定値の信頼性や、光ファ
イバ心線のボビンへの巻取り及び繰り出し特性を判断す
る有力な手段となる。また本発明の摩擦係数の測定法を
利用することで、光ファイバ心線の摩擦係数に起因する
生産工程上の諸問題の解決が容易となる。
The coefficient of friction obtained by the method for measuring the coefficient of friction of an optical fiber core according to the present invention can be used to determine the reliability of the measured values of the optical characteristics of the optical fiber core measured in the state of the bobbin and the bobbin of the optical fiber core. It is an effective means for judging the winding and unwinding characteristics. In addition, by using the friction coefficient measuring method of the present invention, it is easy to solve various problems in the production process caused by the friction coefficient of the optical fiber.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(A)は本発明の光ファイバ着色心線の摩
擦係数の測定方法を示す平面図であり、図1(B)は側
面図である。
FIG. 1A is a plan view showing a method for measuring the friction coefficient of a colored optical fiber core according to the present invention, and FIG. 1B is a side view.

【図2】光ファイバ着色心線の構造を示す横断面図であ
る。
FIG. 2 is a cross-sectional view showing a structure of a colored optical fiber.

【図3】OTDR法による減衰曲線上のOTDR段差を
示す図である。
FIG. 3 is a diagram showing an OTDR step on an attenuation curve by the OTDR method.

【符号の説明】[Explanation of symbols]

10a、10b:光ファイバ心線 20a:移動基板 20b:固定基板 30:調整荷重 10a, 10b: Optical fiber core wire 20a: Moving board 20b: Fixed board 30: Adjusting load

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 固定基板と可動基板の各平面上に直線状
に光ファイバ心線を固定し、前記固定基板の上に前記可
動基板を載置して、前記光ファイバ心線を相互に接触さ
せた状態で、前記可動基板を移動させたときに生ずる摩
擦力を測定することを特徴とする光ファイバ心線の摩擦
係数の測定方法。
1. An optical fiber core wire is fixed linearly on each plane of a fixed substrate and a movable substrate, the movable substrate is placed on the fixed substrate, and the optical fiber core wires are brought into contact with each other. And measuring a frictional force generated when the movable substrate is moved in a state where the movable substrate is moved.
【請求項2】 前記固定基板と可動基板の平面に固定し
た光ファイバ心線の数がそれぞれ2本でかつ平行であっ
て、前記光ファイバ心線同士の接触が相互に直交する方
向であり、かつ前記摩擦力を前記光ファイバ心線に負荷
した荷重で除した値を摩擦係数とすることを特徴とする
請求項1に記載の光ファイバ心線の摩擦係数の測定方
法。
2. The number of optical fiber cores fixed to the plane of the fixed substrate and the movable substrate is two and parallel, respectively, and the contact between the optical fiber cores is a direction orthogonal to each other; The method for measuring a friction coefficient of an optical fiber core according to claim 1, wherein a value obtained by dividing the frictional force by a load applied to the optical fiber core is used as a friction coefficient.
【請求項3】 請求項2に記載の摩擦係数の測定方法に
より測定した摩擦係数が0.10乃至0.15であるこ
とを特徴とする光ファイバ心線。
3. An optical fiber core having a coefficient of friction of 0.10 to 0.15 measured by the method of measuring a coefficient of friction according to claim 2.
JP10001255A 1998-01-07 1998-01-07 Coated optical fiber and method of measuring its friction coefficient Pending JPH11194071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10001255A JPH11194071A (en) 1998-01-07 1998-01-07 Coated optical fiber and method of measuring its friction coefficient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10001255A JPH11194071A (en) 1998-01-07 1998-01-07 Coated optical fiber and method of measuring its friction coefficient

Publications (1)

Publication Number Publication Date
JPH11194071A true JPH11194071A (en) 1999-07-21

Family

ID=11496360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10001255A Pending JPH11194071A (en) 1998-01-07 1998-01-07 Coated optical fiber and method of measuring its friction coefficient

Country Status (1)

Country Link
JP (1) JPH11194071A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2839159A1 (en) * 2002-04-30 2003-10-31 Furukawa Electric Co Ltd Low discontinuity fibre optic cable having several covering layer fibre optic with external layer Young's modulus between 400/1000 and friction coefficient above 0.15.
JP2007256978A (en) * 2007-06-04 2007-10-04 Furukawa Electric Co Ltd:The Method of manufacturing optical fiber
JP2010133715A (en) * 2008-12-02 2010-06-17 Nippon Telegr & Teleph Corp <Ntt> Instrument and method for measuring coefficient of dynamic friction
JP2010204077A (en) * 2009-02-03 2010-09-16 Nippon Telegr & Teleph Corp <Ntt> Dynamic friction coefficient measuring instrument and method
JP2010243471A (en) * 2009-02-03 2010-10-28 Nippon Telegr & Teleph Corp <Ntt> Device and method for measuring coefficient of dynamic friction
JP2010249660A (en) * 2009-04-15 2010-11-04 Nippon Telegr & Teleph Corp <Ntt> Device and method of measuring dynamic friction coefficient
JP2010249707A (en) * 2009-04-16 2010-11-04 Nippon Telegr & Teleph Corp <Ntt> Device and method of measuring dynamic friction coefficient
JP2010261759A (en) * 2009-04-30 2010-11-18 Nippon Telegr & Teleph Corp <Ntt> Dynamic friction coefficient measuring device and method
JP2010261758A (en) * 2009-04-30 2010-11-18 Nippon Telegr & Teleph Corp <Ntt> Dynamic friction coefficient measuring device and method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2839159A1 (en) * 2002-04-30 2003-10-31 Furukawa Electric Co Ltd Low discontinuity fibre optic cable having several covering layer fibre optic with external layer Young's modulus between 400/1000 and friction coefficient above 0.15.
US7085465B2 (en) 2002-04-30 2006-08-01 The Furukawa Electric Co., Ltd. Optical fiber and method of measuring coefficient of kinetic friction of optical fiber
CN100378448C (en) * 2002-04-30 2008-04-02 古河电气工业株式会社 Optical fiber and method for measuring optic fiber dynamic friction coefficiency
JP2007256978A (en) * 2007-06-04 2007-10-04 Furukawa Electric Co Ltd:The Method of manufacturing optical fiber
JP2010133715A (en) * 2008-12-02 2010-06-17 Nippon Telegr & Teleph Corp <Ntt> Instrument and method for measuring coefficient of dynamic friction
JP4653835B2 (en) * 2008-12-02 2011-03-16 日本電信電話株式会社 Dynamic friction coefficient measuring apparatus and method
JP2010204077A (en) * 2009-02-03 2010-09-16 Nippon Telegr & Teleph Corp <Ntt> Dynamic friction coefficient measuring instrument and method
JP2010243471A (en) * 2009-02-03 2010-10-28 Nippon Telegr & Teleph Corp <Ntt> Device and method for measuring coefficient of dynamic friction
JP2010249660A (en) * 2009-04-15 2010-11-04 Nippon Telegr & Teleph Corp <Ntt> Device and method of measuring dynamic friction coefficient
JP2010249707A (en) * 2009-04-16 2010-11-04 Nippon Telegr & Teleph Corp <Ntt> Device and method of measuring dynamic friction coefficient
JP2010261759A (en) * 2009-04-30 2010-11-18 Nippon Telegr & Teleph Corp <Ntt> Dynamic friction coefficient measuring device and method
JP2010261758A (en) * 2009-04-30 2010-11-18 Nippon Telegr & Teleph Corp <Ntt> Dynamic friction coefficient measuring device and method

Similar Documents

Publication Publication Date Title
US11513284B2 (en) Reduced diameter optical fiber and manufacturing method
US5104433A (en) Method of making optical fiber
JP4049154B2 (en) Optical fiber ribbon
US9285536B2 (en) Optical fiber and optical fiber cable
US11256051B2 (en) Flexible optical-fiber ribbon
US9025924B2 (en) Optical fiber
JP4865891B1 (en) Optical fiber, optical fiber ribbon and optical fiber cable
TW201704789A (en) Optical fiber and optical fiber ribbon
JPH11194071A (en) Coated optical fiber and method of measuring its friction coefficient
US20240134140A1 (en) Intermittently connected optical fiber ribbon
EP0856759B1 (en) Method of making optical fiber ribbon
CN112654908B (en) Optical fiber core wire and optical fiber cable
KR20010101009A (en) Optical fiber
US5644669A (en) Physical property evaluation method for optical fiber coating, and coated optical fiber
JP2725620B2 (en) Evaluation method of physical properties of optical fiber coating
JP2001083381A (en) Coated optical fiber
US20230393350A1 (en) Optical fiber ribbon and method for manufacturing optical fiber ribbon
WO2021187514A1 (en) Optical fiber core, optical fiber cable, and optical fiber tape core
JP2746431B2 (en) Method for measuring the degree of cure of UV-curable resin
EP4390477A1 (en) Optical fiber
EP4141500A2 (en) Optical fiber
JP4082189B2 (en) Optical fiber
JP2017219683A (en) Plastic optical fiber ribbon
CN118159887A (en) Optical fiber
JP2001174680A (en) Tape-shaped coated optical fiber and manufacturing method therefor