JPH03105233A - Quantification of hardening degree for optical fiber cover material - Google Patents

Quantification of hardening degree for optical fiber cover material

Info

Publication number
JPH03105233A
JPH03105233A JP24441289A JP24441289A JPH03105233A JP H03105233 A JPH03105233 A JP H03105233A JP 24441289 A JP24441289 A JP 24441289A JP 24441289 A JP24441289 A JP 24441289A JP H03105233 A JPH03105233 A JP H03105233A
Authority
JP
Japan
Prior art keywords
degree
hardening
optical fiber
fiber
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24441289A
Other languages
Japanese (ja)
Other versions
JPH0758247B2 (en
Inventor
Takeshi Nonaka
毅 野中
Toshifumi Hosoya
俊史 細谷
Hiroo Matsuda
松田 裕男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP24441289A priority Critical patent/JPH0758247B2/en
Publication of JPH03105233A publication Critical patent/JPH03105233A/en
Publication of JPH0758247B2 publication Critical patent/JPH0758247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0278Thin specimens
    • G01N2203/028One dimensional, e.g. filaments, wires, ropes or cables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/386Glass

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To enable evaluation of hardening degree of layers of multi-layer cover fiber individually and with ease by measuring hardness of an optical fiber with the application of an indenter to a transverse surface thereof to determine a hardening degree of layers of multi-layer cover fiber. CONSTITUTION:An optical fiber 1 is cut at the right angle with respect to the center axis thereof and placed in a pipe made of vinyl chloride or the like to be fixed vertically. An indenter 6 with the tip thereof made of diamond is used and forced into layers of a cover layer in a sectional surface at a fixed load. The current forcing depth of the indenter 6 is measured to determine a hardness thereof. A degree of hardening thereof is based on a fiber with the same structure hardened sufficiently. The degree of hardening obtained by this definition is set 100% and individual degree of hardening is expressed by a relative value.

Description

【発明の詳細な説明】 イ,発明の目的 〔産業上の利用分野〕 本発明はガラスファイバに有機物被覆を施した光ファイ
バの被覆材の硬化度を定量化する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION A. Object of the Invention [Field of Industrial Application] The present invention relates to a method for quantifying the degree of hardening of a coating material of an optical fiber in which a glass fiber is coated with an organic substance.

〔従来の技術〕[Conventional technology]

通信用の光ファイバは、ガラス母材を紡糸した後に、高
分子物質が被覆されて機械的強度が付与される。第2図
は一般的な光伝送用ファイバの斜視図である。
Optical fibers for communications are spun from a glass base material and then coated with a polymeric substance to provide mechanical strength. FIG. 2 is a perspective view of a general optical transmission fiber.

シリカガラス、フッ化物ガラス等からなるガラスファイ
バl、その外側にソフト層2、その外側にはハごド層3
が被覆され、単心の光ファイバ4を構成する。
Glass fiber 1 made of silica glass, fluoride glass, etc., a soft layer 2 on the outside, and a hardware layer 3 on the outside
is coated to form a single optical fiber 4.

ここで、ソフト層2はガラスファイバlに対するクッシ
ョンの役目を果たすもので、柔軟性のある樹脂が用いら
れる。具体的には熱硬化シリコーン、紫外線(UV)硬
化シリコーン、UV硬化ウレタンアクリレート、UV硬
化エポキシアクリレート、UV硬化エステルアクリレー
トなどである。ハード層3はソフト層2の外側からガラ
スファイバ1を更に保護するもので、強靭な樹脂が用い
られる。具体的にはポリアミド、ポリエステル、ABS
樹脂、ポリアセタール樹脂などの押出樹脂や、各種のU
V硬化樹脂である。これに対して従来より、被覆材料が
ガラスファイバの伝送特性に大きな影響を与えることは
知られており、特に、被覆材料の残留加工歪である収縮
力あるいは膨張力がガラスファイバに働き、ガラスファ
イバにマイクロペンディングを生じさせたりして、伝送
特性劣化の原因になることが報告されている。
Here, the soft layer 2 serves as a cushion for the glass fiber 1, and is made of flexible resin. Specific examples include thermosetting silicone, ultraviolet (UV) curing silicone, UV curing urethane acrylate, UV curing epoxy acrylate, and UV curing ester acrylate. The hard layer 3 further protects the glass fiber 1 from the outside of the soft layer 2, and is made of tough resin. Specifically, polyamide, polyester, ABS
resin, extruded resin such as polyacetal resin, and various U
It is a V-curing resin. On the other hand, it has long been known that the coating material has a great effect on the transmission characteristics of glass fibers. In particular, the shrinkage force or expansion force, which is the residual processing strain of the coating material, acts on the glass fiber, causing the glass fiber to It has been reported that micro-pending may occur in the transmission, resulting in deterioration of transmission characteristics.

光ファイバに被覆された樹脂はヤング率、ゲル分率,測
定等の方法によりその硬化度を定量化し、伝送特性に及
ぼす影響を調査することにより伝送特性のすぐれた光フ
ァイバが生産されてきた。
Optical fibers with excellent transmission characteristics have been produced by quantifying the degree of hardening of the resin coated on optical fibers by measuring Young's modulus, gel fraction, etc., and investigating the effect on transmission characteristics.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら,近年長距離光通信への需要の高まりの中
では、伝送特性の向上に対する要求が更に高くなり、前
記手段では不十分となってきた。
However, as the demand for long-distance optical communications has increased in recent years, the demand for improved transmission characteristics has become even higher, and the above-mentioned means have become insufficient.

即ち、光ファイバに被覆された樹脂の硬化度を引張り試
験により弾性率で若しくはゲル分率で評価しようとする
場合、樹脂同士の密着性が強いため分離がむづかしく複
数の樹脂層を一緒に評価せざるを得なかった。
In other words, when trying to evaluate the degree of curing of a resin coated on an optical fiber using elastic modulus or gel fraction using a tensile test, it is difficult to separate multiple resin layers together due to the strong adhesion between the resins. I had to evaluate it.

又、各樹脂層を分離できたとしても、ソフト層について
は、機械物性の評価は非常に困難であった。又、ゲル分
率では微妙な硬化度の差は測定できないという問題もあ
った。
Furthermore, even if each resin layer could be separated, it was very difficult to evaluate the mechanical properties of the soft layer. There is also the problem that subtle differences in the degree of curing cannot be measured based on the gel fraction.

従って、多層被覆ファイバの各層の硬化度の評価は殆ん
ど不可能であった。
Therefore, it has been almost impossible to evaluate the degree of hardening of each layer of a multilayer coated fiber.

しかしながら多層被覆ファイバの各層の硬化度を評価す
ることは非常に重要である。被覆層の硬化度が光ファイ
バの伝送特性に及ぼす影響は各層によって大きく異なる
からである。
However, it is very important to evaluate the degree of hardening of each layer of a multilayer coated fiber. This is because the influence of the degree of hardening of the coating layer on the transmission characteristics of the optical fiber varies greatly depending on each layer.

例えば、通常光ファイバの保護層の役割を果たす最外層
の場合、硬化不十分で硬化度が低い場合、側圧の影響を
受けやすく伝送損失が高くなることがある。一方、緩衝
層の役割を果たす最内層の場合、その硬化不十分で硬化
度が低いと低温で伝送損失が悪化することがある。
For example, in the case of the outermost layer, which normally serves as a protective layer of an optical fiber, if the degree of curing is insufficient due to insufficient curing, it may be susceptible to lateral pressure and transmission loss may increase. On the other hand, in the case of the innermost layer that serves as a buffer layer, if the degree of curing is low due to insufficient curing, transmission loss may worsen at low temperatures.

本発明は多層被覆ファイバの各層の硬化度を個別に容易
に評価する方法を提供するものである。
The present invention provides a method for easily evaluating the degree of hardening of each layer of a multilayer coated fiber individually.

口,発明の構成 〔課題を解決するための手段〕 本発明はガラスファイバに有機物被覆を施した光ファイ
バ被覆材の硬化度定量化方法において、前記光ファイバ
端面の被覆部に圧子を加えて硬度を測定し、該硬度を予
め求めた前記被覆材の硬度と硬化度の関係より硬化度を
求めることを特徴とする光ファイバ被覆材の硬化度定量
化方法である。
SUMMARY OF THE INVENTION [Means for Solving the Problems] The present invention provides a method for quantifying the degree of hardening of an optical fiber coating material in which a glass fiber is coated with an organic substance. This is a method for quantifying the degree of hardening of an optical fiber coating material, characterized in that the hardness is determined from the relationship between the hardness of the coating material and the degree of hardening determined in advance.

第1図は本発明の一具体例であって、lは光ファイバ、
2は内層、3は外層、4はファイバ測定は以下に示すよ
うにして行なう。
FIG. 1 shows a specific example of the present invention, where l is an optical fiber,
2 is the inner layer, 3 is the outer layer, and 4 is the fiber.Measurements are performed as shown below.

■ 先端がダイヤモンドの圧子を用いて一定の荷重で切
断面の被覆層の各層に押し込む。
■ Using a diamond-tipped indenter, press into each layer of the coating layer on the cut surface with a constant force.

0 その時の圧子の押し込み深さを測定し、硬度を求め
る。
0 Measure the indentation depth of the indenter at that time and determine the hardness.

ここで、試験荷重をP (!i) .圧子押し込み深さ
をH(μrIL)とすると、硬度DHは次式で定義され
る。
Here, the test load is P (!i). If the indenter indentation depth is H (μrIL), the hardness DH is defined by the following formula.

D H = k P/H” ( 1/pry?)kは定
数で通常147とする。
D H = k P/H" (1/pry?) k is a constant and is usually set to 147.

硬化度は、同一構造のファイバで十分硬化したものを基
準とし、このときの硬化度を100%として相対値をも
って表わす。
The degree of hardening is expressed as a relative value based on a sufficiently hardened fiber of the same structure, with the degree of hardening at this time being 100%.

〔作 用〕[For production]

光ファイバの横断面に圧子を加えて硬度を測定し、この
測定値から硬化度を求める方法であるから、引張り試験
の場合のように長いサンプルは必要ではなく、比較的短
いサンプル(数cIR)でも評価することが可能である
。また、ゲル分率の測定のように抽出のために長時間を
要することもない。
Since this method measures the hardness by applying an indenter to the cross section of the optical fiber and calculates the degree of hardening from this measured value, it does not require a long sample as in the case of a tensile test, but rather a relatively short sample (several cIR). However, it is possible to evaluate. In addition, it does not require a long time for extraction unlike gel fraction measurement.

〔実施例1〕 シングルモード( SM)型プリフォームを線引し、線
径125μmのガラスファイバとした後、熱硬化シリコ
ーン樹脂を線速100、150および200WL/分で
塗布、硬化させて250μm径の光ファイバを作製した
[Example 1] A single mode (SM) type preform was drawn into a glass fiber with a wire diameter of 125 μm, and then a thermosetting silicone resin was applied and cured at a wire speed of 100, 150, and 200 WL/min to obtain a glass fiber with a diameter of 250 μm. An optical fiber was fabricated.

この光ファイバにナイロンl2を押出被覆し、500μ
扉径の光ファイバとした。
This optical fiber is coated with nylon l2 by extrusion and has a thickness of 500 μm.
An optical fiber with the diameter of the door was used.

シリコーン樹脂の硬度を測定したところ、それぞれ0.
16、015およびo.1oy/μRであった。線速1
00および150rn/分で線引されたものに比べ20
0m/分で線引したものが硬化不足であることが判った
。これは、線速100 m/分の硬化度100多に対し
、150yW/分は94%、200 m/分は63多で
あった。
When the hardness of the silicone resin was measured, each was found to be 0.
16, 015 and o. It was 1oy/μR. Linear speed 1
20 compared to those delineated at 00 and 150rn/min.
It was found that those drawn at 0 m/min were insufficiently cured. The degree of curing was 100 at a line speed of 100 m/min, 94% at 150 yW/min, and 63 at 200 m/min.

〔実施例2〕 SM型プリフォームを紡糸し、線径が125μ扉のガラ
スファイバとした後、ウレタンアクリレトからなるUV
硬化ソフト樹脂を線速100および300m/一で塗布
、硬化し、200μm径の光ファイバを得た。次にこの
光ファイバにウレタンアクリレートからなるUV硬化I
\−ド樹脂を同一線速で塗布、硬化し、250μm径の
光ファイIくを得た。ソフト樹脂の硬度を測定したとこ
ろ0,25、0. 10 ( yμd)であった。これ
は線速50V分(硬度0.3 0 yμm’)の硬化度
100%に対し、夫々83%、33多であり高速で線引
したもののソフト樹脂が硬化不足であることが判った。
[Example 2] After spinning the SM type preform into a glass fiber with a wire diameter of 125μ, UV fiber made of urethane acrylate was
A hardened soft resin was applied and cured at linear speeds of 100 and 300 m/1 to obtain an optical fiber with a diameter of 200 μm. Next, this optical fiber was coated with UV-curable I made of urethane acrylate.
The resin was coated and cured at the same linear speed to obtain an optical fiber with a diameter of 250 μm. When the hardness of the soft resin was measured, it was 0.25, 0. 10 (yμd). This was 83% and 33%, respectively, compared to 100% at a drawing speed of 50V (hardness 0.30 yμm'), indicating that the soft resin was insufficiently cured even though it was drawn at high speed.

又、これらのファイバのハード樹脂についても同様に硬
度を測定したところ、夫々3.2、3.1Cy/prr
?)であった。これは線速50〜分 (硬度3.5yμ
n?)の硬化度100多に対し、夫々91%、89予で
ありソフト樹脂と異なり線速による硬化度の差は小さい
ものであった。
Furthermore, when the hardness of the hard resin of these fibers was similarly measured, they were 3.2 and 3.1 Cy/prr, respectively.
? )Met. This is a linear speed of 50 minutes (hardness 3.5 yμ
n? ), the curing degree was 91% and 89%, respectively, and unlike soft resins, the difference in curing degree depending on the linear speed was small.

〔比較例1〕 実施例1のファイバについて、シリコーン樹脂のゲル分
率を溶剤としてメチル・エチルケトンを使用して測定し
た。その結果、線速100、150、2 0 0rIA
+で製作したそれぞれについて、94多、95多、93
%であり、硬化度の大差は見られなかった。
[Comparative Example 1] Regarding the fiber of Example 1, the gel fraction of the silicone resin was measured using methyl ethyl ketone as a solvent. As a result, linear velocity of 100, 150, 200rIA
For each made with +, 94, 95, 93
%, and no major difference in the degree of curing was observed.

〔比較例2〕 実施例2のファイバについて、ガラスファイバを引抜い
たソフト樹脂とハード樹脂の二層の平均ヤング率を測定
した。各サジプル数は10で,線速10 0 %z%お
よび300n/5+のものの平均値は23Kg/.jお
よび21 Ky/一で、実施例2のハード樹脂の硬度と
同様線速による差は小さいものであったが、各線速での
測定値の標準偏差は2.4K− および1.9Ky/f
f  と非常にバラツキの大きいものであった。
[Comparative Example 2] Regarding the fiber of Example 2, the average Young's modulus of the two layers of soft resin and hard resin from which the glass fiber was drawn was measured. The number of saji pulls for each is 10, and the average value for linear velocity 100%z% and 300n/5+ is 23Kg/. j and 21 Ky/f, and as with the hard resin of Example 2, the difference due to linear speed was small, but the standard deviation of the measured values at each linear speed was 2.4 K- and 1.9 Ky/f.
There was a very large variation in f.

ハ.発明の効果 以上説明したように本発明の硬化度定量化手法では光フ
ァイバの複数層の被覆の各層個別の硬化度(特にすぐ外
側のソフト樹脂の硬化度)を求めることが可能である。
C. Effects of the Invention As explained above, the hardening degree quantification method of the present invention makes it possible to determine the hardening degree of each layer of the multi-layer coating of an optical fiber (particularly the hardening degree of the soft resin just outside).

また、そのことによってすぐれた伝送特性を有する光フ
ァイバを提供することをも可能にするものである。
This also makes it possible to provide an optical fiber with excellent transmission characteristics.

また、測定の精度についても従来のヤン゛グ率ゲル分率
の手法に比べて微小な相違を測定できる。
Furthermore, in terms of measurement accuracy, it is possible to measure minute differences compared to conventional Young's modulus and gel fraction methods.

被覆材の硬化度定量化方法に適用される硬度測定を説明
する図、第2図は硬化度定量化される光ファイバの構造
を示す斜視図である。
FIG. 2 is a diagram illustrating hardness measurement applied to the method for quantifying the degree of hardness of a coating material, and is a perspective view showing the structure of an optical fiber whose degree of hardness is quantified.

1・・・・ガラスファイバ  2・・・・・・ノフト層
3・・・・・・ハード層     4・・・・・・光フ
ァイバ5・・・・・・パイプ      6・・・・・
・圧子
1... Glass fiber 2... Noft layer 3... Hard layer 4... Optical fiber 5... Pipe 6...
・Indenter

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】[Claims] ガラスファイバに有機物被覆を施した光ファイバ被覆材
の硬化度定量化方法において、前記光ファイバ端面の被
覆部に圧子を加えて硬度を測定し、該硬度を予め求めた
前記被覆材の硬度と硬化度の関係より硬化度を求めるこ
とを特徴とする光ファイバ被覆材の硬化度定量化方法。
In a method for quantifying the degree of hardening of an optical fiber coating material in which a glass fiber is coated with an organic substance, an indenter is applied to the coating portion of the end face of the optical fiber to measure the hardness, and the hardness and hardness of the coating material are determined in advance. A method for quantifying the degree of hardening of an optical fiber coating material, characterized by determining the degree of hardening from a relationship between degrees of hardness.
JP24441289A 1989-09-19 1989-09-19 Method for quantifying the degree of curing of optical fiber coating materials Expired - Fee Related JPH0758247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24441289A JPH0758247B2 (en) 1989-09-19 1989-09-19 Method for quantifying the degree of curing of optical fiber coating materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24441289A JPH0758247B2 (en) 1989-09-19 1989-09-19 Method for quantifying the degree of curing of optical fiber coating materials

Publications (2)

Publication Number Publication Date
JPH03105233A true JPH03105233A (en) 1991-05-02
JPH0758247B2 JPH0758247B2 (en) 1995-06-21

Family

ID=17118281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24441289A Expired - Fee Related JPH0758247B2 (en) 1989-09-19 1989-09-19 Method for quantifying the degree of curing of optical fiber coating materials

Country Status (1)

Country Link
JP (1) JPH0758247B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9244007B2 (en) 2011-06-24 2016-01-26 Nippon Sheet Glass Company, Limited Apparatus and method for measuring degree of cure of adhesive agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9244007B2 (en) 2011-06-24 2016-01-26 Nippon Sheet Glass Company, Limited Apparatus and method for measuring degree of cure of adhesive agent

Also Published As

Publication number Publication date
JPH0758247B2 (en) 1995-06-21

Similar Documents

Publication Publication Date Title
US4962992A (en) Optical transmission media and methods of making same
Pisanova et al. Three techniques of interfacial bond strength estimation from direct observation of crack initiation and propagation in polymer–fibre systems
DE3851915T2 (en) Fiber optic cables.
DE3850086T2 (en) Method for determining the adhesive strength of a coating on an optical fiber.
DE3479448T2 (en) OPTICAL WAVE GUIDE.
JPH01133011A (en) Optical fiber with synthetic resin coating and manufacture thereof
US20080131062A1 (en) Buffered optical fiber and manufacturing method thereof
Zhandarov et al. Investigation of load transfer between the fiber and the matrix in pull-out tests with fibers having different diameters
Dichtl et al. Colloidal probe study of short time local and long time reptational motion of semiflexible macromolecules in entangled networks
AT522927B1 (en) Method for detecting the maximum extension of cracks in an object
JPH03105233A (en) Quantification of hardening degree for optical fiber cover material
Rufai et al. Optimisation of optical fibre using micro-braiding for structural health monitoring
Slama et al. Study of the pull-out test of multifilament yarns embedded in cementitious matrix
JPWO2020054753A1 (en) Optical fiber core wire and optical fiber cable
US5644669A (en) Physical property evaluation method for optical fiber coating, and coated optical fiber
JP2725620B2 (en) Evaluation method of physical properties of optical fiber coating
JP2746431B2 (en) Method for measuring the degree of cure of UV-curable resin
JP2010128069A (en) Method of manufacturing coated optical fiber ribbon
JP2742450B2 (en) Method for measuring the degree of cure of UV-curable resin
KR910005554B1 (en) Plastic-coated optical transmission fiber and an estimating method thereof
JP3084702B2 (en) Glass fiber for optical transmission
JPH0549175B2 (en)
Boiko et al. Nanostructured high-strength high-modulus film polymer materials: statistical elastic and fracture mechanical properties
El Messiry et al. Influence of pre-tensioning high-performance yarns on the bending stiffness of textile composites
DE102009005162A1 (en) Optic fiber sensor has a recess at the fiber end, on the optical axis, for a micro ball coated with sensor dyestuff to be bonded in place by an adhesive

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees