JPH0758049A - Method of introduction of hydrogen atom into silicon substrate - Google Patents

Method of introduction of hydrogen atom into silicon substrate

Info

Publication number
JPH0758049A
JPH0758049A JP19983593A JP19983593A JPH0758049A JP H0758049 A JPH0758049 A JP H0758049A JP 19983593 A JP19983593 A JP 19983593A JP 19983593 A JP19983593 A JP 19983593A JP H0758049 A JPH0758049 A JP H0758049A
Authority
JP
Japan
Prior art keywords
atoms
wafer
introduction
silicon substrate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19983593A
Other languages
Japanese (ja)
Other versions
JP3407345B2 (en
Inventor
Chihoko Kaneda
千穂子 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19983593A priority Critical patent/JP3407345B2/en
Publication of JPH0758049A publication Critical patent/JPH0758049A/en
Application granted granted Critical
Publication of JP3407345B2 publication Critical patent/JP3407345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To obtain maximum concentration of H gas in a short time by introducing H atoms without causing any damage on the surface of an Si wafer by introducing the H gas into the Si wafer by joining an Si layer containing H atoms to the Si wafer and heating the same. CONSTITUTION:H2 is employed as a carrier and monosilane is employed as reaction gas, and a hydrogenated amorphous Si layer 8 is grown by about 5mum on the surface and the back surface of the Si wafer using a plasma CVD process. Then, the sample is annealed in the Ar atmosphere to diffuse H atoms over the entire region, and thereafter it is gradually cooled to about 100 deg.C to inactivate an acceptor and then the sample is quickly cooled to room temperature for keeping the state. Hereby, H atoms are introduced without damaging in the Si wafer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシリコン基板(以下Siウ
エハ)の表面にダメージを与えることなく水素原子を導
入する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for introducing hydrogen atoms without damaging the surface of a silicon substrate (hereinafter referred to as Si wafer).

【0002】シリコン(以下Si) は代表的な単体半導体
であって、これを用いてIC,LSIなどの集積回路が
作られている。すなわち、引上げ法(チョクラルスキー
法)によりSi単結晶よりなるインゴットを作り、これを
500 μm 前後の厚さにスライスした後、研磨してウエハ
を作り、このウエハに薄膜形成技術,写真蝕刻技術(フ
ォトリソグラフィ),不純物元素注入技術などを使用し
て各種のデバイスが形成されている。こゝで、引上げ法
により作られるSi単結晶は極めて純度が高く、高純度な
Siウエハに選択的に不純物元素の導入を行なってn型あ
るいはp型の半導体領域を作り、この半導体領域を利用
してデバイス形成が行なわれているが、Si中に導入され
ている不純物元素としては活性なものと不活性なものと
がある。
Silicon (hereinafter referred to as Si) is a typical single semiconductor, and an integrated circuit such as an IC or an LSI is made by using this. That is, an ingot made of Si single crystal is made by the pulling method (Czochralski method) and
After slicing to a thickness of around 500 μm, polishing and making a wafer, various devices are formed on this wafer by using thin film forming technology, photolithography technology (photolithography), impurity element implantation technology, etc. . Here, the Si single crystal produced by the pulling method is extremely high in purity.
An impurity element is selectively introduced into a Si wafer to form an n-type or p-type semiconductor region, and device formation is performed using this semiconductor region. There are active and inactive.

【0003】こゝで、活性な元素はSi結晶中に存在して
ドナー準位あるいはアクセプター準位を形成する元素で
あり、また、不活性な元素は酸素(O)や窒素(N)の
ようにイオン化しにくい元素である。なお、O元素はSi
単結晶の引上げに使用される坩堝に石英(SiO2)製が使
用され、また、大気中にあるO2 ガスの分圧が高いこと
から、結晶中に1018原子/cm3 程度は含まれており、こ
の含有量が多い場合はウエハを加熱処理する場合に析出
物が生じ、更にその周りに二次的に積層欠陥や転移など
が生じて品質が低下するため、デバイス形成に先立って
ウエハ中に含まれるO量の測定が行なわれている。
Here, the active element is an element which exists in the Si crystal and forms a donor level or an acceptor level, and the inactive element is oxygen (O) or nitrogen (N). It is an element that is difficult to ionize. The O element is Si
Since the crucible used for pulling the single crystal is made of quartz (SiO 2 ) and the partial pressure of O 2 gas in the atmosphere is high, about 10 18 atoms / cm 3 is contained in the crystal. When this content is high, precipitates are generated when the wafer is heat-treated, and secondary defects such as stacking faults and transitions occur around it, degrading the quality. The amount of O contained therein is measured.

【0004】次に、水素(H)原子はSi単結晶中を拡散
し易く、また、単結晶中に含まれる不純物原子と相互作
用をして複合体を形成したり、結晶欠陥と反応し易いと
云う特徴をもっている。すなわち、不純物元素は半導体
領域を形成するために意図的に高純度のSi結晶中に導入
されている場合が多いが、H原子はこれらの不純物原子
と複合体を形成して電気的性質を変化させると云う性質
があり、また、H原子を導入するとSi結晶中に存在する
O原子の拡散を速めたり、Si単結晶の機械的性質を低下
させる性質があることが知られている。そこで、Si単結
晶中にH原子を制御性よく導入することができれば、電
気的性質を初めとする色々な性質の制御が可能となる。
Next, hydrogen (H) atoms easily diffuse in the Si single crystal, interact with impurity atoms contained in the single crystal to form a complex, and easily react with crystal defects. It has a feature called. That is, although an impurity element is often intentionally introduced into a high-purity Si crystal to form a semiconductor region, an H atom forms a complex with these impurity atoms to change electrical properties. It is known that there is a property of causing it, and that the introduction of H atom has a property of accelerating the diffusion of O atom existing in the Si crystal and deteriorating the mechanical property of the Si single crystal. Therefore, if H atoms can be introduced into the Si single crystal with good controllability, various properties including electrical properties can be controlled.

【0005】[0005]

【従来の技術】先に記したように半導体デバイスの形成
に当たってはSiウエハの中に意図的に不純物原子の導入
を行なって半導体領域を形成しており、また、H原子は
含有不純物原子と複合体を形成するのを利用して電気的
特性の調節が行なわれている。
2. Description of the Related Art As described above, in forming a semiconductor device, an impurity atom is intentionally introduced into a Si wafer to form a semiconductor region, and the H atom is combined with the contained impurity atom. Body formation is used to control electrical properties.

【0006】こゝで、今まで、SiウエハへのH原子の導
入は主としてプラズマ発生装置かイオン注入装置を用い
て行なってきた。図4はプラズマによるH原子の導入法
を示す構成図であって、Siウエハ1をグラファイト製の
サセプタ2の上に載置して第2の誘導コイル3を備えた
石英管4の中に置き、プラズマ発生装置の排気系を動作
させて石英管4の中を高真空排気する。次に、図示を省
略したニードルバルブより水素ガス(H2)を103cm/min
程度の流速で供給しながら真空排気し、石英管4の中の
真空度を0.1 〜0.3 torrに保ちながら、第1の誘導コイ
ル5に周波数が13.65 MHzの高周波電力を加えることに
よりH2 ガスをプラズマ化させる。
Heretofore, the introduction of H atoms into a Si wafer has mainly been performed by using a plasma generator or an ion implanter. FIG. 4 is a configuration diagram showing a method of introducing H atoms by plasma. A Si wafer 1 is placed on a graphite susceptor 2 and placed in a quartz tube 4 equipped with a second induction coil 3. Then, the exhaust system of the plasma generator is operated to evacuate the inside of the quartz tube 4 to a high vacuum. Next, hydrogen gas (H 2 ) is supplied at 10 3 cm / min through a needle valve (not shown).
The gas is evacuated while being supplied at a flow rate of about 3 to maintain the degree of vacuum in the quartz tube 4 at 0.1 to 0.3 torr, and by applying high frequency power of 13.65 MHz to the first induction coil 5, H 2 gas is supplied. Turn into plasma.

【0007】一方、第2の誘導コイル3には例えば440
KHzの電力を加えてサセプタ2を通じてSiウエハ1を10
0 〜400 ℃に加熱しておくと、プラズマ化により生じた
Hイオンが付着することによってH原子の導入が行なわ
れている。また、イオン注入法は目的とする元素( この
場合はH2 )を真空中でイオン化した後、50〜500 KeV
のエネルギを与えて基板(Siウエハ) に衝突させること
により導入するものである。
On the other hand, the second induction coil 3 has, for example, 440
Applying KHz power to the Si wafer 1 through the susceptor 2
When heated to 0 to 400 ° C., H ions are introduced by attaching H ions generated by plasmaization. In addition, the ion implantation method is performed after ionizing the target element (H 2 in this case) in a vacuum, and then 50 to 500 KeV
It is introduced by giving the energy of the and making it collide with the substrate (Si wafer).

【0008】然し、これらの方法による場合はSi結晶の
表面に積層欠陥や転位などのダメージを生じ易い。ま
た、H原子を導入する深さが1〜2μm と浅い場合、或
いはH濃度が低い場合は問題はないが、H原子を導入す
る領域の深さが数百μm に及ぶ場合や高濃度に導入する
場合は導入に長時間を要し、また結晶表面のダメージも
増すと云う問題があった。
However, according to these methods, damage such as stacking faults and dislocations is likely to occur on the surface of the Si crystal. There is no problem if the depth of introducing H atoms is as shallow as 1 to 2 μm, or if the H concentration is low, but if the depth of the region where H atoms are introduced reaches several hundreds of μm or high concentration is introduced. In that case, there is a problem that it takes a long time to introduce and the damage on the crystal surface increases.

【0009】[0009]

【発明が解決しようとする課題】Siウエハ中に含まれる
不純物原子の電気的挙動を調節するためにH原子を導入
することは、プラズマ発生装置やイオン注入装置を用い
て一般的に行なわれている方法である。然し、これらの
方法はSi結晶にダメージを生じ易く、また、導入する深
さが大である場合は長時間の処理を必要とし、また、高
濃度に導入する必要がある場合はプラズマ発生装置では
2 の分圧を高くすることが難しいために、H原子の最
大濃度を上げることが難しい。そこで、これらの問題を
解決することが課題である。
The introduction of H atoms in order to adjust the electrical behavior of impurity atoms contained in a Si wafer is generally carried out by using a plasma generator or an ion implanter. It is a method. However, these methods tend to cause damage to the Si crystal, and require long-time treatment when the introduction depth is large, and a plasma generator when high-concentration introduction is required. Since it is difficult to increase the partial pressure of H 2 , it is difficult to increase the maximum concentration of H atoms. Therefore, the problem is to solve these problems.

【0010】[0010]

【課題を解決するための手段】上記の課題はSi基板に対
して行なうH原子の導入が、Si基板にHを含むSi層例え
ば水素化アモルファスシリコン,水素化ポリシリコンま
たはH2 雰囲気中で成長させたSiを接合させ、加熱して
行なうことを特徴としてSiウエハへH原子を導入するこ
とにより解決することができる。
The above problem is that the introduction of H atoms into a Si substrate is performed by growing a Si layer containing H, for example, hydrogenated amorphous silicon, hydrogenated polysilicon or H 2 atmosphere in the Si substrate. This can be solved by introducing H atoms into the Si wafer, which is characterized in that the formed Si is bonded and heated.

【0011】[0011]

【作用】本発明はH原子を1013/cm3 以上含む固体をSi
ウエハに接合してH原子の拡散源とするもので、適当な
温度で必要な時間だけアニール(焼鈍)することにより
H原子をSiウエハ中に拡散させるものであり、1013個/
cm3以上と限る理由は、通常デバイス特性に影響する不
純物の濃度はこれ以上であるので、H原子濃度もこれ以
上にする必要があるためである。
In the present invention, a solid containing H atoms of 10 13 / cm 3 or more is used as Si.
Bonded to a wafer in which a diffusion source of H atoms, is intended to diffuse the H atoms in the Si wafer by only annealing (annealing) time required at a suitable temperature, 10 13 /
The reason why it is limited to 3 cm 3 or more is that the concentration of impurities that normally affect the device characteristics is higher than this, and therefore the H atom concentration must also be higher than this.

【0012】こゝで、SiウエハへのH原子の導入深さと
濃度はアニール温度,H原子を含む固体の厚さ、その固
体中のH原子濃度などにより調節することができる。そ
して必要により最後に拡散源として用いた固体をエッチ
ングなどの手段により取り去るものである。
Here, the introduction depth and concentration of H atoms into the Si wafer can be adjusted by the annealing temperature, the thickness of the solid containing H atoms, the H atom concentration in the solid, and the like. Then, if necessary, the solid finally used as the diffusion source is removed by means such as etching.

【0013】[0013]

【実施例】Siウエハ中に含まれるO原子は格子間原子の
形で存在しているが、このO原子の存在は酸素析出物や
二次的な積層欠陥、転位形成の原因となることから、O
濃度の測定は結晶評価の重要項目の一つである。
[Examples] O atoms contained in a Si wafer exist in the form of interstitial atoms, and the presence of these O atoms causes oxygen precipitates, secondary stacking faults, and dislocation formation. , O
The measurement of concentration is one of the important items in the evaluation of crystals.

【0014】こゝで、ドナー準位やアクセプター準位を
形成する活性な不純物原子の含有量が少ない場合は問題
はないが、活性な不純物原子を1017個/cm3 以上含んだ
低抵抗のSiウエハについて、O原子濃度の測定を赤外分
光光度計を用いて行なう場合には活性な不純物原子によ
ってフリーキャリアが多数発生しており、これによる強
い赤外吸収がO原子の赤外吸収のピーク(1136cm-1) に
重なるために正確な測定ができず、特に活性不純物の濃
度が高い場合は不純物原子による赤外吸収が格子間O原
子の振動による吸収ピークを完全に隠すために測定がで
きない。
There is no problem if the content of the active impurity atoms forming the donor level and the acceptor level is small, but a low resistance containing active impurity atoms of 10 17 atoms / cm 3 or more is obtained. When measuring the O atom concentration of a Si wafer using an infrared spectrophotometer, a large number of free carriers are generated by active impurity atoms. Accurate measurement is not possible because it overlaps with the peak (1136 cm -1 ), and especially when the concentration of active impurities is high, the infrared absorption due to impurity atoms completely obscures the absorption peak due to vibration of interstitial O atoms Can not.

【0015】そこで、H原子をSiウエハ中に導入して活
性な不純物原子を不活性にしてしまえばO原子の赤外吸
収のピーク強度の測定が可能となる。以下、この不活性
化に本発明のH原子導入法を適用した例について説明す
る。 実施例1:(水素化アモルファスSiを使用,図1参照) 測定に使用したSiウエハ7は厚さが500 μm であり、硼
素(B)原子を1019個/cm3 の濃度で含有している。
(以上同図A) このSiウエハ7に含まれる格子間Oの濃度を測定する方
法として、H2 をキャリアとし反応ガスとしてモノシラ
ン(SiH4)を用い、0.1 〜1 torr の真空度で400 ℃以下
のプラズマCVD法により表裏面に水素化アモルファス
Si層8を5μmの厚さに成長させた。このようにして生
じた水素化アモルファスSi層8の中にはH原子が全原子
数の10%程度含まれており、これはB原子を不活性化す
るには充分な量である。次に、この試料をAr雰囲気中で
400 ℃で40時間アニーリングしてH原子をSiウエハの全
域にまで拡散させた後、100 ℃まで徐冷してアクセプタ
ーの不活性化を行い、次に、この状態を保持するため室
温まで1〜2分で急冷した。(以上同図B) 次に、弗酸(HF) と硝酸(HNO3)の混液に浸漬してアモル
ファスSi層8を溶解除去した。(以上同図C) このようにして処理したSiウエハ7について赤外分光光
度計を使用し赤外吸収を調べた結果、不純物原子の影響
がなくO原子の赤外吸収の強度を正確に測定することが
できた。 実施例2:(ポリSiを使用,図2参照) 測定に使用したSiウエハ7は厚さが500 μm である。
(以上同図A) このSiウエハ7に含まれる格子間Oの濃度を測定する方
法として、H2 をキャリアとし反応ガスとしてモノシラ
ン(SiH4)を用い、0.1 〜数torrの真空度でSiウエハ7を
550 〜650 ℃に加熱する低圧CVD法により表面にポリ
Si9を0.5μmの厚さに成長させた。このようにして生
じたポリSi9の中にはH原子が全原子数の数%含まれて
いる。次に、この試料をAr雰囲気中で900 ℃で90分間ア
ニーニングしてH原子をSiウエハの全域にまで拡散させ
た後に450 ℃まで徐冷し、その後室温にまで冷却した。
その結果、半導体製造プロセス中に汚染としてSiウエハ
中に侵入した遷移金属不純物に起因する深い不純物準位
の不活性化が行なわれた。( 以上同図B) 次に、HFと HNO3 の混液に浸漬してアモルファスSi層8
を溶解除去した。(以上同図C) その結果、結晶の電気的特性への遷移金属不純物に起因
する悪影響を除去することができた。 実施例3:(H2 雰囲気中で成長させたSi使用,図3参
照) 測定に使用したSiウエハ10は厚さが300 μm である。
(以上同図A) このSiウエハ10にH2 雰囲気中で成長させた別のSiウエ
ハ11を貼り合わせた。こゝで、Siウエハ11の厚さは500
μm であり、二枚のSiウエハ10,11 の表面は鏡面状態と
なっているが、これを重ね合わせてAr雰囲気中で850 ℃
に加熱してあるヒータの上に置き、1分間加熱して仮接
着させた後、1100℃で30分加熱すると二枚のSiウエハ1
0,11 は完全に接着したが、この貼り合わせ処理中にH
原子の拡散が生じ、Siウエハ11の中にあったH原子はSi
ウエハ10の裏面まで拡散した。
Therefore, if H atoms are introduced into the Si wafer to inactivate active impurity atoms, the peak intensity of infrared absorption of O atoms can be measured. Hereinafter, an example in which the H atom introduction method of the present invention is applied to this inactivation will be described. Example 1 (using hydrogenated amorphous Si, see FIG. 1) The Si wafer 7 used for measurement had a thickness of 500 μm and contained boron (B) atoms at a concentration of 10 19 atoms / cm 3. There is.
(A in the same figure) As a method for measuring the concentration of interstitial O contained in the Si wafer 7, monosilane (SiH 4 ) is used as a reaction gas with H 2 as a reaction gas, and the temperature is 400 ° C. at a vacuum degree of 0.1 to 1 torr. Hydrogenated amorphous on the front and back by the following plasma CVD method
The Si layer 8 was grown to a thickness of 5 μm. The hydrogenated amorphous Si layer 8 thus produced contains H atoms in an amount of about 10% of the total number of atoms, which is a sufficient amount to inactivate B atoms. Next, this sample in Ar atmosphere
After annealing at 400 ℃ for 40 hours to diffuse H atoms all over the Si wafer, it is slowly cooled to 100 ℃ to inactivate the acceptor. Quenched in 2 minutes. (The above B in the same figure) Next, the amorphous Si layer 8 was dissolved and removed by immersion in a mixed solution of hydrofluoric acid (HF) and nitric acid (HNO 3 ). (As shown in the same figure C) As a result of investigating the infrared absorption of the Si wafer 7 thus processed using an infrared spectrophotometer, the infrared absorption intensity of O atom is accurately measured without being affected by the impurity atom. We were able to. Example 2 (using poly-Si, see FIG. 2) The Si wafer 7 used for measurement has a thickness of 500 μm.
(A in the same figure) As a method for measuring the concentration of interstitial O contained in the Si wafer 7, the Si wafer is used at a vacuum degree of 0.1 to several torr using H 2 as a carrier and monosilane (SiH 4 ) as a reaction gas. 7
Polycarbonate is applied to the surface by the low pressure CVD method of heating at 550 to 650 ℃
Si9 was grown to a thickness of 0.5 μm. The poly-Si9 thus produced contains H atoms in an amount of several percent of the total number of atoms. Next, this sample was annealed at 900 ° C. for 90 minutes in an Ar atmosphere to diffuse H atoms all over the Si wafer, then gradually cooled to 450 ° C., and then cooled to room temperature.
As a result, deep impurity levels were inactivated due to the transition metal impurities that penetrated into the Si wafer as contamination during the semiconductor manufacturing process. (Above figure B) Next, the amorphous Si layer 8 was immersed in a mixed solution of HF and HNO 3.
Was removed by dissolution. As a result, it was possible to eliminate the adverse effect of the transition metal impurities on the electrical characteristics of the crystal. Example 3: (Using Si grown in H 2 atmosphere, see FIG. 3) The Si wafer 10 used for measurement has a thickness of 300 μm.
(A in the same figure above) Another Si wafer 11 grown in an H 2 atmosphere was bonded to this Si wafer 10. The thickness of the Si wafer 11 is 500
μm, and the surfaces of the two Si wafers 10 and 11 are mirror-like, but they are superposed and 850 ° C in Ar atmosphere.
After placing it on the heater that has been heated to 1 minute to temporarily bond it and then heat it at 1100 ° C for 30 minutes, two Si wafers 1
0 and 11 were completely bonded, but during this bonding process, H
Atomic diffusion occurs, and the H atoms in the Si wafer 11 become Si.
It has diffused to the back surface of the wafer 10.

【0016】次に、この試料を室温にまで冷却すること
により、半導体製造プロセス中に汚染としてSiウエハ中
に侵入した遷移金属不純物に起因する深い不純物準位の
不活性化が行なわれた。( 以上同図B)
Next, by cooling this sample to room temperature, a deep impurity level was inactivated due to a transition metal impurity that entered the Si wafer as a contaminant during the semiconductor manufacturing process. (Above figure B)

【0017】[0017]

【発明の効果】本発明の実施によりSiウエハにダメージ
を与えることなくH原子の導入を行なうことができる。
According to the present invention, H atoms can be introduced without damaging the Si wafer.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施法を示す断面図である。FIG. 1 is a cross-sectional view showing a method for carrying out the present invention.

【図2】 本発明の実施法を示す別の断面図である。FIG. 2 is another cross-sectional view showing a method for carrying out the present invention.

【図3】 本発明の実施法を示す更に別の断面図であ
る。
FIG. 3 is yet another cross-sectional view showing a method for carrying out the present invention.

【図4】 プラズマによるH原子の導入を示す構成図で
ある。
FIG. 4 is a configuration diagram showing introduction of H atoms by plasma.

【符号の説明】[Explanation of symbols]

1,7,10, 11 Siウエハ 8 水素化アモルファスSi層 9 ポリSi 1, 7, 10, 11 Si wafer 8 Hydrogenated amorphous Si layer 9 Poly Si

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板に対して行なう水素原子の
導入が、該シリコン基板に水素を含むシリコン層を接合
させ、加熱して行なうことを特徴とするシリコン基板へ
の水素原子の導入方法。
1. A method for introducing hydrogen atoms into a silicon substrate, wherein the introduction of hydrogen atoms into the silicon substrate is performed by bonding a silicon layer containing hydrogen to the silicon substrate and heating.
【請求項2】 前記水素を含むシリコンが、水素化アモ
ルファスシリコン,水素化ポリシリコンまたは水素雰囲
気中で成長させたシリコンの何れかであることを特徴と
する請求項1記載のシリコン基板への水素原子の導入方
法。
2. The hydrogen for the silicon substrate according to claim 1, wherein the silicon containing hydrogen is any one of hydrogenated amorphous silicon, hydrogenated polysilicon, and silicon grown in a hydrogen atmosphere. How to introduce atoms.
JP19983593A 1993-08-12 1993-08-12 Oxygen concentration measurement method for silicon substrate Expired - Fee Related JP3407345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19983593A JP3407345B2 (en) 1993-08-12 1993-08-12 Oxygen concentration measurement method for silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19983593A JP3407345B2 (en) 1993-08-12 1993-08-12 Oxygen concentration measurement method for silicon substrate

Publications (2)

Publication Number Publication Date
JPH0758049A true JPH0758049A (en) 1995-03-03
JP3407345B2 JP3407345B2 (en) 2003-05-19

Family

ID=16414438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19983593A Expired - Fee Related JP3407345B2 (en) 1993-08-12 1993-08-12 Oxygen concentration measurement method for silicon substrate

Country Status (1)

Country Link
JP (1) JP3407345B2 (en)

Also Published As

Publication number Publication date
JP3407345B2 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
JP3750526B2 (en) Silicon wafer manufacturing method and silicon wafer
US6958092B2 (en) Epitaxial silicon wafer with intrinsic gettering and a method for the preparation thereof
KR100745309B1 (en) Process for controlling denuded zone depth in an ideal oxygen precipitating silicon wafer
US20060075960A1 (en) Method for the preparation of a semiconductor substrate with a non-uniform distribution of stabilized oxygen precipitates
JP2004537161A (en) Control of thermal donor generation in high resistivity CZ silicon
US7537657B2 (en) Silicon wafer and process for producing it
JP2009515370A (en) Silicon wafer substrate with intrinsic gettering doped with arsenic and phosphorus
JP3381816B2 (en) Semiconductor substrate manufacturing method
KR20000057350A (en) Method for manufacturing semiconductor silicon epitaxial wafer and semiconductor device
JP2004503086A (en) Method and apparatus for manufacturing a silicon wafer having a denuded area
JP2007266125A (en) Silicon epitaxial wafer and manufacturing method therefor
JPS60119733A (en) Gettering method for heavy metal of silicon plate
JP3312553B2 (en) Method for producing silicon single crystal and silicon single crystal thin film
US6339016B1 (en) Method and apparatus for forming an epitaxial silicon wafer with a denuded zone
EP0973190A2 (en) Silicon wafer and method for producing it
JPH05308076A (en) Oxygen deposition method of silicon wafer
JP3116487B2 (en) Method for manufacturing semiconductor epitaxial substrate
WO2022158148A1 (en) Method for manufacturing epitaxial wafer
US4784964A (en) EPI defect reduction using rapid thermal annealing
JP3407345B2 (en) Oxygen concentration measurement method for silicon substrate
JPH10144698A (en) Silicon wafer and its manufacture
JP6540607B2 (en) Method of manufacturing bonded wafer and bonded wafer
WO2024009705A1 (en) Method for manufacturing epitaxial wafer
JP2019149471A (en) Evaluating method of gettering ability of semiconductor wafer and manufacturing method of semiconductor wafer using the same
KR100745312B1 (en) Control of thermal donor formation in high resistivity cz silicon

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees