JPH0757746A - Electrode structure of solid electrolytic fuel cell - Google Patents

Electrode structure of solid electrolytic fuel cell

Info

Publication number
JPH0757746A
JPH0757746A JP5215132A JP21513293A JPH0757746A JP H0757746 A JPH0757746 A JP H0757746A JP 5215132 A JP5215132 A JP 5215132A JP 21513293 A JP21513293 A JP 21513293A JP H0757746 A JPH0757746 A JP H0757746A
Authority
JP
Japan
Prior art keywords
electrode
solid electrolyte
layer
fuel cell
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5215132A
Other languages
Japanese (ja)
Other versions
JP3330198B2 (en
Inventor
Tsutomu Iwazawa
力 岩澤
Mikiyuki Ono
幹幸 小野
Masakatsu Nagata
雅克 永田
Takenori Nakajima
武憲 中島
Satoru Yamaoka
悟 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP21513293A priority Critical patent/JP3330198B2/en
Publication of JPH0757746A publication Critical patent/JPH0757746A/en
Application granted granted Critical
Publication of JP3330198B2 publication Critical patent/JP3330198B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • H01M4/8642Gradient in composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve the power generation efficiency of a fuel cell by providing a structure satisfying various characteristics required for an electrode. CONSTITUTION:The part 21 on the solid electrolyte 10 side of a fuel electrode 20 formed on one surface of the solid electrolyte 10 is formed of a material having high oxygen ion conductivity, and a part 23 on the opposite side of the part 21 is formed of a material having high electron conductivity. Electrochemical reaction between oxygen and fuel gas is promoted in the part close to the solid electrolyte 10 and the power generation efficiency is increased, while the inner resistance of the electrode is reduced since the electron conductivity is high at the part 23 on the opposite side. The power generation efficiency is improved as the whole fuel cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、酸素イオン伝導度の
高い固体電解質を挟んで空気電極と燃料電極とを形成し
た固体電解質型燃料電池における電極の構造に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an electrode in a solid oxide fuel cell in which an air electrode and a fuel electrode are formed by sandwiching a solid electrolyte having high oxygen ion conductivity.

【0002】[0002]

【従来の技術】この種の燃料電池は、図4に模式的に示
すように、薄膜状の固体電解質1を挟んだ両側に、多孔
質膜である燃料電極2と空気電極3とを形成したもので
あり、燃料電極2側を流れる燃料ガス(例えば水素ガ
ス)と空気電極3側を流れる空気中の酸素とが、固体電
解質1を介して電気化学的に反応することにより、各電
極2,3を介して起電力を得ることができる。
2. Description of the Related Art In this type of fuel cell, as schematically shown in FIG. 4, a fuel electrode 2 and an air electrode 3 which are porous membranes are formed on both sides sandwiching a thin film solid electrolyte 1. The fuel gas (for example, hydrogen gas) flowing on the side of the fuel electrode 2 and oxygen in the air flowing on the side of the air electrode 3 react electrochemically via the solid electrolyte 1 so that each electrode 2, An electromotive force can be obtained via

【0003】すなわち空気は空気電極3の内部を固体電
解質1の表面にまで拡散し、その空気に含まれる酸素が
イオン化して固体電解質1の内部を燃料電極2側に移動
する。また燃料電極2側では、水素ガスが燃料電極2の
内部を固体電解質1の表面にまで拡散し、ここで固体電
解質1を通って移動してきた酸素と反応する。このよう
な水素と酸素との電気化学的な反応により生じる起電力
が各電極2,3を介して外部に取り出される。
That is, air diffuses inside the air electrode 3 to the surface of the solid electrolyte 1, and oxygen contained in the air is ionized and moves inside the solid electrolyte 1 to the fuel electrode 2 side. On the fuel electrode 2 side, hydrogen gas diffuses inside the fuel electrode 2 to the surface of the solid electrolyte 1, where it reacts with oxygen that has moved through the solid electrolyte 1. The electromotive force generated by such an electrochemical reaction between hydrogen and oxygen is extracted to the outside via the electrodes 2 and 3.

【0004】上記の反応は、固体電解質1の活性度が優
れる1000℃程度の高温度で行われるので、固体電解
質1としては、酸素イオン伝導度に優れることは勿論、
高温安定性に優れ、かつ導電性がないなどの特性が要求
される。そのため、従来、一般には、イットリアやカル
シアで安定化したジルコニア(YSZあるいはCSZ)
が固体電解質として使用されている。
Since the above reaction is carried out at a high temperature of about 1000 ° C. at which the activity of the solid electrolyte 1 is excellent, the solid electrolyte 1 is of course excellent in oxygen ion conductivity.
Properties such as excellent stability at high temperature and lack of conductivity are required. Therefore, conventionally, generally, zirconia stabilized by yttria or calcia (YSZ or CSZ)
Is used as a solid electrolyte.

【0005】また燃料電極2は、起電力を外部に取り出
すための電極であるから、電子伝導度が高くかつ分極を
生じにくいことのほかに、高温の還元雰囲気に曝される
から、高温での安定性が要求され、また固体電解質1と
の間の熱応力やそれに起因する剥離を防止するために、
熱膨張率が固体電解質1の熱膨張率に近いことが望まれ
る。従来、これらの諸要求を満たすために、NiO/Y
SZのサーメットを燃料電極として採用し、発電時の高
温還元雰囲気でNiOをNiに変化させている。
Further, since the fuel electrode 2 is an electrode for taking out an electromotive force to the outside, it has a high electron conductivity and hardly causes polarization, and is exposed to a high-temperature reducing atmosphere. Stability is required, and in order to prevent thermal stress from the solid electrolyte 1 and peeling due to it,
It is desired that the coefficient of thermal expansion be close to that of the solid electrolyte 1. Conventionally, in order to satisfy these requirements, NiO / Y
The SZ cermet is adopted as the fuel electrode, and NiO is changed to Ni in a high temperature reducing atmosphere during power generation.

【0006】さらに空気電極3は、強い酸化性雰囲気に
置かれるから、電子伝導度および酸素イオン伝導度が高
くかつ分極を生じにくいこと、あるいは固体電解質1と
の熱膨張率の差が小さいことなどのほかに、耐酸化性に
優れていることが要求される。そこで従来では、酸素電
極3をペロブスカイト型ランタン系複合酸化物によって
形成している。
Further, since the air electrode 3 is placed in a strong oxidizing atmosphere, it has high electron conductivity and oxygen ion conductivity and hardly causes polarization, or has a small difference in coefficient of thermal expansion from the solid electrolyte 1. Besides, it is required to have excellent oxidation resistance. Therefore, conventionally, the oxygen electrode 3 is formed of a perovskite-type lanthanum-based composite oxide.

【0007】[0007]

【発明が解決しようとする課題】上述したように燃料電
極や空気電極に要求される事項は単純ではなく、それぞ
れの電極に要求される諸事項のすべてを満足する材料
は、現在のところ発見されていない。そのため各電極に
は、上述した材料が採用されているのであるが、従来の
燃料電極および空気電極のそれぞれは、主に高温安定性
を主眼として選択された単一材料によって形成されてい
るから、電子伝導度や酸素イオン伝導度が必ずしも高く
なく、あるいは分極を生じ易いなど、発電能力の向上を
阻害する傾向を示す不都合があった。
As described above, the requirements for the fuel electrode and the air electrode are not simple, and materials satisfying all the requirements for each electrode have not been found at present. Not not. Therefore, the above-mentioned material is adopted for each electrode, but since each of the conventional fuel electrode and air electrode is formed of a single material mainly selected for high temperature stability, There is a disadvantage that the electron conductivity and the oxygen ion conductivity are not necessarily high, or that polarization easily occurs, which tends to hinder the improvement of the power generation capacity.

【0008】この発明は、上記の事情を背景としてなさ
れたもので、燃料電池の発電能力を向上させることので
きる電極の構造を提供することを目的とするものであ
る。
The present invention has been made in view of the above circumstances, and an object thereof is to provide an electrode structure capable of improving the power generation capacity of a fuel cell.

【0009】[0009]

【課題を解決するための手段】この発明は、上記の目的
を達成するために、固体電解質を挟んで空気電極と燃料
電極とが形成された固体電解質型燃料電池の電極構造に
おいて、前記空気電極と燃料電極との少なくとも一方の
電極が、その固体電解質側の部分を酸素イオン伝導度の
高い材料によって形成され、かつこの部分とは反対側の
部分を電子伝導度の高い材料によって形成されているこ
とを特徴とするものである。
In order to achieve the above object, the present invention provides an electrode structure of a solid oxide fuel cell in which an air electrode and a fuel electrode are formed with a solid electrolyte sandwiched between them. At least one of the fuel electrode and the fuel electrode has a portion on the solid electrolyte side made of a material having high oxygen ion conductivity, and a portion opposite to this portion made of a material having high electronic conductivity. It is characterized by that.

【0010】[0010]

【作用】この発明の電極の構造においては、固体電解質
に近い部分では、酸素イオン伝導度が高いから、空気中
の酸素のイオン化および酸素と燃料ガスとの反応が促進
される。またこれとは反対の部分では、導電性が高くな
るので、電極としての内部抵抗が低くなり、換言すれ
ば、内部損失が少なくなる。その結果、燃料電池の全体
としては、起電力の増大および内部損失の低下によって
発電能力が高くなる。
In the structure of the electrode of the present invention, the oxygen ion conductivity is high in the portion close to the solid electrolyte, so that the ionization of oxygen in the air and the reaction between oxygen and fuel gas are promoted. Further, in the portion opposite to this, since the conductivity becomes high, the internal resistance as an electrode becomes low, in other words, the internal loss becomes small. As a result, the power generation capacity of the fuel cell as a whole increases due to an increase in electromotive force and a decrease in internal loss.

【0011】[0011]

【実施例】つぎにこの発明を実施例に基づいて詳細に説
明する。図1はこの発明に係る燃料電極を模式的に示す
断面図であり、この燃料電極20は、YSZからなる薄
膜状の固体電解質10の一方の表面側に形成されてい
る。この燃料電極20は、その組成の相違から第1層な
いし第3層21,22,23の3層構造になっている。
すなわちこの燃料電極20は、YSZとPr Ox とSD
CとNiとの4種類の材料を主たる材料として形成され
ており、第1層21は、それらのうちYSZとPr Ox
とNiとを配合した組成であり、それらの割合は、YS
Zを最も多くし、Pr Ox を中程度の割合とし、さらに
Niを少量とした割合である。また第2層22は、YS
ZとSDCとNiとを配合した組成であり、これらを共
に、中程度の配合割合としたものである。さらに第3層
23は、第2層22と同様に、YSZとSDCとNiと
を配合した組成であり、それらの配合割合は、YSZを
少量とし、かつSDCを中程度の割合とし、さらにNi
の割合を最も多くした組成である。
EXAMPLES The present invention will now be described in detail based on examples. FIG. 1 is a cross-sectional view schematically showing a fuel electrode according to the present invention. This fuel electrode 20 is formed on one surface side of a thin film solid electrolyte 10 made of YSZ. The fuel electrode 20 has a three-layer structure of first to third layers 21, 22, and 23 due to the difference in composition.
That is, the fuel electrode 20 is composed of YSZ, PrOx and SD.
It is formed by mainly using four kinds of materials of C and Ni, and the first layer 21 has YSZ and PrOx among them.
And Ni are mixed, and their ratio is YS
Z is the largest, Pr Ox is a medium proportion, and Ni is a small proportion. The second layer 22 is made of YS.
It is a composition in which Z, SDC, and Ni are mixed, and both of them have a medium mixing ratio. Further, like the second layer 22, the third layer 23 has a composition in which YSZ, SDC, and Ni are blended, and the blending ratio thereof is such that YSZ is a small amount and SDC is a medium ratio.
Is the composition with the largest proportion of.

【0012】ここでSDCは、(Ce O2 0.8 (Sr
1.5 0.2 の化学式で示される材料であって、分極を
生じにくい(分極特性に優れ)、かつある程度の酸素イ
オン伝導度および電子伝導度を有する電極材料である。
したがって第1層21は、YSZの配合割合が多いこと
により、酸素イオン伝導度が高くなり、これに対してN
iの配合割合が少ないことにより、電子伝導度は低くな
る。またPr Ox は酸素活性が高く、これを中程度配合
してあることにより分極が抑制される。
Here, SDC is (Ce O 2 ) 0.8 (Sr
It is a material represented by the chemical formula of O 1.5 ) 0.2 , which is an electrode material that hardly causes polarization (excellent in polarization characteristics) and has oxygen ion conductivity and electronic conductivity to some extent.
Therefore, the first layer 21 has a high oxygen ion conductivity due to the high YSZ blending ratio.
Since the compounding ratio of i is small, the electron conductivity is low. Further, Pr Ox has a high oxygen activity, and its polarization is suppressed by mixing it in a medium amount.

【0013】これに対して第1層21とは反対側の第3
層23は、YSZの配合割合が少なく、かつNiの配合
割合が多いので、酸素イオン伝導度は低くなるが、電子
伝導度が高くなる。またSDCを中程度配合してあって
もNiの配合割合が多いことによりある程度、分極が生
じる。
On the other hand, the third layer on the side opposite to the first layer 21
Since the layer 23 has a low YSZ blending ratio and a high Ni blending ratio, it has a low oxygen ion conductivity but a high electron conductivity. Further, even if SDC is mixed in a medium amount, polarization occurs to some extent due to a large Ni compounding ratio.

【0014】これら第1層21および第3層23の中間
にある第2層22は、YSZおよびSDCならびにNi
のそれぞれが中程度の配合割合であるから、酸素イオン
伝導度と電子伝導度とは、第1層21と第3層23との
中間の特性を示す。またこの第2層22では、Niの配
合割合が中程度であるから、分極が抑制される。これら
第1層21ないし第3層の組成および各特性をまとめて
示せば、図2の(A)および(B)のとおりである。
The second layer 22 intermediate between the first layer 21 and the third layer 23 is made of YSZ and SDC and Ni.
Since each of these has a medium mixing ratio, the oxygen ion conductivity and the electron conductivity show intermediate characteristics between those of the first layer 21 and the third layer 23. In addition, in the second layer 22, since the mixing ratio of Ni is medium, polarization is suppressed. The compositions and characteristics of the first layer 21 to the third layer are collectively shown in FIGS. 2 (A) and 2 (B).

【0015】したがって上記の燃料電極20では、固体
電解質10に近い部分で酸素イオン伝導度が高いことに
より、酸素イオンと燃料ガス(水素ガス)との反応が促
進され、また濃度分極が抑制されるから、発電効率が高
くなる。またこの部分での電子伝導度が低いものの、こ
の第1層21より外側の第2層22および第3層23で
の電子伝導度が次第に高くなっているから、これらの部
分で燃料電極20の全体としての導電性を高めることが
でき、換言すれば、内部抵抗が低くなっている。さらに
固体電解質10に接触する第1層21が、固体電解質1
の素材であるYSZを多量に含んでいるから、その熱膨
張率が固体電解質10の熱膨張率と近似し、したがって
これら両者の間での熱応力の増大やそれに伴う剥離を未
然に防止することができる。
Therefore, in the above fuel electrode 20, since the oxygen ion conductivity is high in the portion close to the solid electrolyte 10, the reaction between oxygen ions and the fuel gas (hydrogen gas) is promoted and the concentration polarization is suppressed. Therefore, the power generation efficiency becomes high. Although the electron conductivity in this portion is low, the electron conductivity in the second layer 22 and the third layer 23 outside the first layer 21 is gradually increasing. The conductivity as a whole can be increased, in other words, the internal resistance is low. Further, the first layer 21 contacting the solid electrolyte 10 is the solid electrolyte 1
Since it contains a large amount of YSZ, which is the material of the above, its coefficient of thermal expansion is close to that of the solid electrolyte 10, and therefore an increase in thermal stress between these two and prevention of peeling accompanying it are prevented. You can

【0016】なお、上記の燃料電極20を形成する方法
としては、溶射法やスラリー法など従来知られているセ
ラミックによる成膜法を採用することができる。またそ
の第1層21の素材であるPr Ox や第2層22の素材
であるSDCは、Ni−PrOx やNi−SDCの形で
YSZと共に用いられ、サーメットを形成する。
As a method of forming the fuel electrode 20, a conventionally known film forming method using ceramics such as a thermal spraying method or a slurry method can be adopted. Further, PrOx which is the material of the first layer 21 and SDC which is the material of the second layer 22 are used together with YSZ in the form of Ni-PrOx or Ni-SDC to form a cermet.

【0017】つぎに空気電極にこの発明を適用した例に
ついて説明する。図3はこの発明に係る空気電極30を
模式的に示す断面図であり、この空気電極30は薄膜状
の固体電解質10の表面のうち燃料電極を形成した面と
は反対側の面に形成されている。そしてこの空気電極3
0は、固体電解質10に接する第1層31を(La 1-x
Sr x Mn O3 )によって形成し、その第1層31に重
ねた第2層32を(La 1-x Sr x Co O3 )によって
形成した構成である。
Next, an example in which the present invention is applied to an air electrode will be described. FIG. 3 is a cross-sectional view schematically showing the air electrode 30 according to the present invention. The air electrode 30 is formed on the surface of the thin film solid electrolyte 10 opposite to the surface on which the fuel electrode is formed. ing. And this air electrode 3
0 represents the first layer 31 in contact with the solid electrolyte 10 (La 1-x
Sr x Mn O 3 ) and the second layer 32, which is superposed on the first layer 31, is formed of (La 1-x Sr x Co O 3 ).

【0018】この第1層31を形成している(La 1-x
Sr x Mn O3 )は、空気電極として最も一般に使用さ
れている材料であり、したがって固体電解質10に接近
した部分では、酸素イオン伝導度が高くまた分極特性が
優れるから、酸素のイオン化を促進して発電効率を高く
することができる。この第1層31は電子伝導度が若干
劣るが、その上に形成してある第2層32が(La 1-x
Sr x Co O3 )を主剤とするものであるから、この第
2層32での電子伝導度が高くなり、したがって空気電
極30全体としての内部抵抗は低減される。また一方、
第1層31の熱膨張率が固体電解質10の熱膨張率と近
いから、両者の間の熱応力による剥離が抑制もしくは防
止される。
The first layer 31 is formed (La 1-x
Sr x Mn O 3 ) is the most commonly used material for the air electrode, and therefore has high oxygen ion conductivity and excellent polarization characteristics in the portion close to the solid electrolyte 10 and thus promotes the ionization of oxygen. Power generation efficiency can be improved. The electron conductivity of the first layer 31 is slightly inferior, but the second layer 32 formed thereon is (La 1 -x
Since the main component is Sr x Co O 3 ), the electron conductivity of the second layer 32 is high, and therefore the internal resistance of the air electrode 30 as a whole is reduced. On the other hand,
Since the coefficient of thermal expansion of the first layer 31 is close to the coefficient of thermal expansion of the solid electrolyte 10, separation due to thermal stress between the two is suppressed or prevented.

【0019】なお、この空気電極30を形成する方法と
しては、前述した燃料電極を形成する場合と同様に、溶
射法やスラリー法などの従来のセラミックによる成膜法
を採用することができる。
As a method for forming the air electrode 30, a conventional ceramic film forming method such as a thermal spraying method or a slurry method can be adopted as in the case of forming the fuel electrode described above.

【0020】以上、燃料電極20および空気電極30を
複数層の傾斜構造とした場合について説明したが、この
ような構造の電極は、それぞれ単独で発電効率の向上に
有効に作用するのであり、したがってこの発明では、い
ずれか一方の電極のみを上述した傾斜機能構造としても
良い。またこの上記の実施例では、燃料電極を3層構造
とした例について説明したが、この発明は上記の実施例
に限定されるものではないのであり、2層構造もしくは
4層以上の構造としても良く、また明確に区分される複
数層にせずに機能もしくは特性が連続的に変化する構造
としても良い。これは空気電極についても同様であっ
て、この発明の空気電極は、2層構造に限定されるもの
ではない。
The case where the fuel electrode 20 and the air electrode 30 have a multi-layered inclined structure has been described above. However, the electrodes having such a structure each independently work effectively to improve the power generation efficiency, and therefore, In the present invention, only one of the electrodes may have the functionally graded structure described above. Further, in the above-mentioned embodiment, an example in which the fuel electrode has a three-layer structure has been described, but the present invention is not limited to the above-mentioned embodiment, and may have a two-layer structure or a structure of four or more layers. It is also possible to have a structure in which the functions or characteristics are continuously changed without forming a plurality of layers that are clearly divided. The same applies to the air electrode, and the air electrode of the present invention is not limited to the two-layer structure.

【0021】[0021]

【発明の効果】以上説明したようにこの発明の電極構造
によれば、固体電解質に近い部分での組成とこれとは離
れた部分での組成を異ならせ、発電効率に直接的に関与
する酸素イオン伝導度と集電効率に関与する電子伝導度
とを共に高くできるので、固体電解質型燃料電池の全体
としての発電効率を従来になく向上させることができ
る。
As described above, according to the electrode structure of the present invention, the composition in the portion close to the solid electrolyte and the composition in the portion apart from the solid electrolyte are made different from each other, and oxygen directly related to power generation efficiency is obtained. Since both the ionic conductivity and the electronic conductivity that contributes to the current collection efficiency can be increased, the power generation efficiency of the solid oxide fuel cell as a whole can be improved as compared with the conventional case.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の係る燃料電極を模式的に示す部分断
面図である。
FIG. 1 is a partial sectional view schematically showing a fuel electrode according to the present invention.

【図2】その燃料電極の組成および特性をまとめて示す
図表である。
FIG. 2 is a chart summarizing the composition and characteristics of the fuel electrode.

【図3】この発明に係る空気電極を模式的に示す部分断
面図である。
FIG. 3 is a partial sectional view schematically showing an air electrode according to the present invention.

【図4】固体電解質型燃料電池の原理的な構造を模式的
な部分断面図である。
FIG. 4 is a schematic partial cross-sectional view showing the principle structure of a solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

10…固体電解質、 20…燃料電極、 21…第1
層、 22…第2層、23…第3層、 30…空気電
極、 31…第1層、 32…第2層。
10 ... Solid electrolyte, 20 ... Fuel electrode, 21 ... First
Layer, 22 ... 2nd layer, 23 ... 3rd layer, 30 ... Air electrode, 31 ... 1st layer, 32 ... 2nd layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 武憲 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 山岡 悟 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takenori Nakajima 1-5-1 Kiba, Koto-ku, Tokyo Fujikura Ltd. (72) Inventor Satoru Yamaoka 1-1-5 Kiba, Koto-ku, Tokyo Shareholders Inside Fujikura

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質を挟んで空気電極と燃料電極
とが形成された固体電解質型燃料電池の電極構造におい
て、 前記空気電極と燃料電極との少なくとも一方の電極が、
その固体電解質側の部分を酸素イオン伝導度の高い材料
によって形成され、かつこの部分とは反対側の部分を電
子伝導度の高い材料によって形成されていることを特徴
とする固体電解質型燃料電池の電極構造。
1. An electrode structure of a solid oxide fuel cell in which an air electrode and a fuel electrode are formed with a solid electrolyte sandwiched therebetween, wherein at least one of the air electrode and the fuel electrode is
The solid electrolyte fuel cell is characterized in that the portion on the solid electrolyte side is formed of a material having high oxygen ion conductivity, and the portion opposite to this portion is formed of a material having high electron conductivity. Electrode structure.
JP21513293A 1993-08-06 1993-08-06 Solid oxide fuel cell Expired - Lifetime JP3330198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21513293A JP3330198B2 (en) 1993-08-06 1993-08-06 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21513293A JP3330198B2 (en) 1993-08-06 1993-08-06 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH0757746A true JPH0757746A (en) 1995-03-03
JP3330198B2 JP3330198B2 (en) 2002-09-30

Family

ID=16667242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21513293A Expired - Lifetime JP3330198B2 (en) 1993-08-06 1993-08-06 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3330198B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002035634A1 (en) * 2000-10-23 2002-05-02 Stichting Energieonderzoek Centrum Nederland Anode assembly for an electrochemical cell
JP2010027457A (en) * 2008-07-22 2010-02-04 Mitsubishi Heavy Ind Ltd Power generation membrane of solid electrolyte fuel cell, and solid electrolyte fuel cell equipped with the same, as well as method of manufacturing power generation membrane of solid electrolyte fuel cell
JP2010177105A (en) * 2009-01-30 2010-08-12 Mitsubishi Heavy Ind Ltd Power generation film for solid electrolyte fuel cell, and solid electrolyte fuel cell with the same
WO2012133438A1 (en) * 2011-03-31 2012-10-04 独立行政法人産業技術総合研究所 Medium-to-low-temperature high-efficiency electrochemical cell and electrochemical reaction system comprising same
WO2023203870A1 (en) * 2022-04-18 2023-10-26 日本碍子株式会社 Electrochemical cell
WO2023203875A1 (en) * 2022-04-18 2023-10-26 日本碍子株式会社 Electrochemical cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002035634A1 (en) * 2000-10-23 2002-05-02 Stichting Energieonderzoek Centrum Nederland Anode assembly for an electrochemical cell
JP2010027457A (en) * 2008-07-22 2010-02-04 Mitsubishi Heavy Ind Ltd Power generation membrane of solid electrolyte fuel cell, and solid electrolyte fuel cell equipped with the same, as well as method of manufacturing power generation membrane of solid electrolyte fuel cell
JP2010177105A (en) * 2009-01-30 2010-08-12 Mitsubishi Heavy Ind Ltd Power generation film for solid electrolyte fuel cell, and solid electrolyte fuel cell with the same
WO2012133438A1 (en) * 2011-03-31 2012-10-04 独立行政法人産業技術総合研究所 Medium-to-low-temperature high-efficiency electrochemical cell and electrochemical reaction system comprising same
WO2023203870A1 (en) * 2022-04-18 2023-10-26 日本碍子株式会社 Electrochemical cell
WO2023203875A1 (en) * 2022-04-18 2023-10-26 日本碍子株式会社 Electrochemical cell

Also Published As

Publication number Publication date
JP3330198B2 (en) 2002-09-30

Similar Documents

Publication Publication Date Title
US6635376B2 (en) Solid oxide fuel cell having composition gradient between electrode and electrolyte
US20090291346A1 (en) Solid oxide reversible fuel cell with improved electrode composition
JPH04345762A (en) Gas separating film type fuel cell
JP2001273914A (en) Electrochemical device and accumulated electrochemical device
EP1284519B1 (en) Solid electrolyte fuel cell and related manufacturing method
RU2221315C2 (en) Ceramic fuel cell (alternatives)
US6887612B2 (en) Fuel cell
JPH06220676A (en) Solid electrolyte prepared by applying multilayer electrode
JPH08213029A (en) Fuel electrode of solid electrolyte fuel cell
JPH0757746A (en) Electrode structure of solid electrolytic fuel cell
Guan et al. Ceramic oxygen generators with thin‐film zirconia electrolytes
JPH0567473A (en) Solid electrolyte fuel cell
US11575137B2 (en) Fuel cell stack and manufacturing method of the same
US7754359B2 (en) Solid oxide fuel cell
JP2003263996A (en) Solid oxide fuel cell
JPH1074528A (en) Solid electrolyte fuel cell and its manufacture
JP2005235549A (en) Solid oxide fuel cell
US11251439B2 (en) Fuel cell and fuel cell stack
EP0639866B1 (en) Stable air electrode for high temperature solid oxide electrolyte electrochemical cells
JP2003263997A (en) Solid oxide fuel cell
JP2003272639A (en) Solid oxide fuel cell
JPH07109767B2 (en) Air electrode structure of solid electrolyte fuel cell
JPH07109768B2 (en) Air electrode structure of solid electrolyte fuel cell
JPH0982335A (en) Fuel electrode for high temperature solid electrolyte fuel cell
Zhou et al. Structure and bonding: solid oxide fuel cells

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070719

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8