JPH08213029A - Fuel electrode of solid electrolyte fuel cell - Google Patents

Fuel electrode of solid electrolyte fuel cell

Info

Publication number
JPH08213029A
JPH08213029A JP7041328A JP4132895A JPH08213029A JP H08213029 A JPH08213029 A JP H08213029A JP 7041328 A JP7041328 A JP 7041328A JP 4132895 A JP4132895 A JP 4132895A JP H08213029 A JPH08213029 A JP H08213029A
Authority
JP
Japan
Prior art keywords
solid electrolyte
fuel electrode
mixing ratio
nickel
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7041328A
Other languages
Japanese (ja)
Inventor
Masakatsu Nagata
雅克 永田
Mikiyuki Ono
幹幸 小野
Tsutomu Iwazawa
力 岩澤
Satoru Yamaoka
悟 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP7041328A priority Critical patent/JPH08213029A/en
Publication of JPH08213029A publication Critical patent/JPH08213029A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • H01M4/8642Gradient in composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE: To improve characteristics of a fuel electrode of a solid electrolyte fuel cell. CONSTITUTION: A fuel electrode 2 of a solid electrolyte fuel cell where the fuel electrode 2 and an air electrode are arranged by sandwiching solid electrolyte 1 mainly composed of zirconia, is formed as a film having a porous structure composed of a solid electrolyte material, a ceria material and nickel or a nickel oxide. The mixing ratio of solid electrolyte material is made large on the solid electrolyte 1 side, and the mixing ratio of nickel or nickel oxide is made large on the surface side of the fuel electrode 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、酸素イオン透過性の
ある固体電解質を介して酸化・還元反応を生じさせて起
電力を得る固体電解質型燃料電池に関し、特にその燃料
電極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell for producing an electromotive force by causing an oxidation / reduction reaction through a solid electrolyte having oxygen ion permeability, and more particularly to a fuel electrode thereof.

【0002】[0002]

【従来の技術】この種の燃料電池は、図4に模式的に示
すように、薄膜状の固体電解質1を挟んだ両側に、多孔
質膜である燃料電極2と空気電極3とを形成したもので
あり、燃料電極2側を流れる燃料ガス(水素ガス、一酸
化炭素ガス等)と空気電極3側を流れる酸素を含む気体
(例えば空気)中の酸素とが、固体電解質1を介して電
気化学的に反応することにより、各電極2,3を介して
起電力を得ることができる。
2. Description of the Related Art In this type of fuel cell, as schematically shown in FIG. 4, a fuel electrode 2 and an air electrode 3 which are porous membranes are formed on both sides sandwiching a thin film solid electrolyte 1. Fuel gas (hydrogen gas, carbon monoxide gas, etc.) flowing on the fuel electrode 2 side and oxygen in a gas containing oxygen (for example, air) flowing on the air electrode 3 side are electrically connected via the solid electrolyte 1. An electromotive force can be obtained through each electrode 2 and 3 by reacting chemically.

【0003】すなわち空気は空気電極3の内部を固体電
解質1の表面にまで拡散し、その空気に含まれる酸素が
イオン化して固体電解質1の内部を酸素イオンの濃度差
に起因して、燃料電極2側に移動する。また燃料電極2
側では、水素ガスが燃料電極2の内部を固体電解質1の
表面にまで拡散し、ここで固体電解質1を通って移動し
てきた酸素と反応する。このような水素と酸素との電気
化学的な反応により生じる起電力が各電極2,3を介し
て外部に取り出される。
That is, air diffuses inside the air electrode 3 to the surface of the solid electrolyte 1, and oxygen contained in the air is ionized, and the inside of the solid electrolyte 1 is caused by a difference in concentration of oxygen ions. Move to side 2. Also fuel electrode 2
On the side, hydrogen gas diffuses inside the fuel electrode 2 to the surface of the solid electrolyte 1 where it reacts with oxygen that has moved through the solid electrolyte 1. The electromotive force generated by such an electrochemical reaction between hydrogen and oxygen is extracted to the outside via the electrodes 2 and 3.

【0004】上記の反応は、固体電解質1の活性度が優
れる1000℃程度の高温度で行われるので、固体電解
質1としては、酸素イオン透過性に優れることは勿論、
高温安定性に優れ、かつ導電性がないなどの特性が要求
される。そのため従来では、イットリアやカルシアで安
定化したジルコニア(YSZあるいはCSZ)が固体電
解質として使用されている。
Since the above reaction is carried out at a high temperature of about 1000 ° C. at which the activity of the solid electrolyte 1 is excellent, the solid electrolyte 1 is, of course, excellent in oxygen ion permeability.
Properties such as excellent stability at high temperature and lack of conductivity are required. Therefore, conventionally, zirconia (YSZ or CSZ) stabilized with yttria or calcia is used as a solid electrolyte.

【0005】また、空気電極3は、強い酸化性雰囲気に
置かれるから、電子伝導度および酸素イオン伝導度が高
くかつ分極を生じにくいこと、あるいは固体電解質1と
の熱膨張率の差が小さいことなどのほかに、耐酸化性に
優れていることが要求される。そこで従来では、空気電
極3をペロブスカイト型ランタン系複合酸化物によって
形成している。
Further, since the air electrode 3 is placed in a strong oxidizing atmosphere, it has high electronic conductivity and oxygen ion conductivity and hardly causes polarization, or has a small difference in thermal expansion coefficient from the solid electrolyte 1. In addition to the above, it is required to have excellent oxidation resistance. Therefore, conventionally, the air electrode 3 is formed of a perovskite-type lanthanum-based composite oxide.

【0006】さらに、燃料電極2は、起電力を外部に取
り出すための電極であるから、電子伝導度が高くかつ分
極を生じにくいことのほかに、高温の還元雰囲気に曝さ
れるから、高温での安定性が要求され、また固体電解質
1との間の熱応力やこれに起因する剥離を防止するため
に、熱膨張率が固体電解質1の熱膨張率に近いことが望
まれる。そこで、これらの諸要求を満たすために、現
在、ニッケル(Ni )や酸化ニッケル(Ni O)のサー
メットや、重量割合にして4:6〜6:4のNi/YS
ZやNi O/YSZのサーメットを燃料電極として採用
している。ここで、Ni Oは高温の還元雰囲気に曝され
てNi になることにより、導電性を有するようになって
いる。
Further, since the fuel electrode 2 is an electrode for taking out an electromotive force to the outside, it has a high electron conductivity and hardly causes polarization, and is exposed to a high temperature reducing atmosphere. Stability is required, and in order to prevent thermal stress from the solid electrolyte 1 and peeling due to this, it is desirable that the coefficient of thermal expansion be close to that of the solid electrolyte 1. Therefore, in order to meet these requirements, at present, a cermet of nickel (Ni) or nickel oxide (NiO), or a weight ratio of Ni / YS of 4: 6 to 6: 4.
Z and Ni O / YSZ cermets are used as fuel electrodes. Here, NiO becomes conductive by being exposed to a high temperature reducing atmosphere to become Ni.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな固体電解質型燃料電池を長時間高温状態で使用して
いると、燃料電極2に焼結(シンタリング)が進行する
ことにより、Ni (融点約1450℃)が凝集してしま
う。この結果、この燃料電極の多孔質構造が次第に崩壊
して、この燃料電極2の燃料ガス透過性が低下し、ま
た、燃料電極2の電子伝導率も低下し、かつ電極の反応
面積が減少し分極抵抗が増大するという様々な問題があ
る。そこで最近では、固体電解質型燃料電池の燃料電極
として求められる条件をより満足させることができる燃
料電極の開発が望まれている。
However, when such a solid oxide fuel cell is used in a high temperature state for a long time, sintering (sintering) progresses on the fuel electrode 2 to cause Ni (melting point). (About 1450 ° C.) aggregates. As a result, the porous structure of the fuel electrode gradually collapses, the fuel gas permeability of the fuel electrode 2 decreases, the electron conductivity of the fuel electrode 2 also decreases, and the reaction area of the electrode decreases. There are various problems that the polarization resistance increases. Therefore, recently, there has been a demand for the development of a fuel electrode that can further satisfy the conditions required for a fuel electrode of a solid oxide fuel cell.

【0008】この発明は、上記の要望に応えるべくなさ
れたものであって、固体電解質型燃料電池の燃料電極の
特性を向上させることを目的とするものである。
The present invention has been made to meet the above-mentioned demands, and an object thereof is to improve the characteristics of the fuel electrode of a solid oxide fuel cell.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、この発明は、固体電解質型燃料電池の燃料電極に
セリア系材料を配したものである。具体的にいうと、請
求項1に記載した発明は、ジルコニアを主体とする固体
電解質を挟んで燃料電極と空気電極とを設けた固体電解
質型燃料電池の燃料電極において、ニッケルもしくは酸
化ニッケルの材料粉末に、Ce O2 ,(Ce O2 1-X
(Sm 2 3 X ,(Ce O2 1-X (La
2 3 X ,(Ce O2 1-X (Y2 3 X 等ののセ
リア系材料のうちいずれか一種以上を添加してなる混合
粉末材料によって、前記固体電解質の表面に多孔構造の
膜状に形成したことを特徴とするものである。
In order to achieve the above object, the present invention provides a ceria-based material for a fuel electrode of a solid oxide fuel cell. Specifically, according to the invention described in claim 1, in a fuel electrode of a solid oxide fuel cell in which a fuel electrode and an air electrode are provided with a solid electrolyte mainly composed of zirconia interposed therebetween, a nickel or nickel oxide material is used. CeO 2 , (Ce O 2 ) 1-X was added to the powder.
(Sm 2 O 3 ) X , (Ce O 2 ) 1-X (La
2 O 3 ) X , (Ce O 2 ) 1-X (Y 2 O 3 ) X and the like are mixed with a mixed powder material to which one or more kinds of ceria-based materials are added to form a porous material on the surface of the solid electrolyte. It is characterized in that it is formed into a film structure.

【0010】このとき、請求項2に記載した発明は、前
記混合材料の配合割合を、前記固体電解質側で前記ニッ
ケルもしくは酸化ニッケルの材料の混合比率が小さくか
つ前記セリア系材料の混合比率が大きくされ、順次前記
ニッケルもしくは酸化ニッケルの材料の混合比率が大き
くかつ前記セリア系材料の混合比率が小さくされるよう
に設定されて、傾斜化した多孔構造の膜に形成したこと
を特徴とするものである。
At this time, in the invention described in claim 2, the mixing ratio of the mixed material is such that the mixing ratio of the nickel or nickel oxide material is small and the mixing ratio of the ceria-based material is large on the solid electrolyte side. It is characterized in that a film having a graded porous structure is formed by sequentially setting the mixing ratio of the nickel or nickel oxide material to be large and the mixing ratio of the ceria-based material to be small. is there.

【0011】また、請求項3に記載した発明は、ジルコ
ニアを主体とする固体電解質を挟んで燃料電極と空気電
極とを設けた固体電解質型燃料電池の燃料電極におい
て、前記固体電解質材料とニッケルもしくは酸化ニッケ
ルとを混合した材料粉末に、Ce O2 ,(Ce O2
1-X (Sm 2 3 X ,(Ce O2 1-X (La
2 3 X ,(Ce O2 1-X (Y2 3 X 等ののセ
リア系材料のうちいずれか一種以上を添加してなる混合
粉末材料によって、、前記固体電解質の表面に多孔構造
の膜状に形成したことを特徴とするものである。
According to a third aspect of the present invention, in a fuel electrode of a solid oxide fuel cell having a fuel electrode and an air electrode sandwiching a solid electrolyte mainly composed of zirconia, the solid electrolyte material and nickel or the material powder obtained by mixing the nickel oxide, Ce O 2, (Ce O 2)
1-X (Sm 2 O 3 ) X , (Ce O 2 ) 1-X (La
2 O 3 ) X , (Ce O 2 ) 1-X (Y 2 O 3 ) X or the like is added to the surface of the solid electrolyte by a mixed powder material containing at least one of ceria-based materials. It is characterized by being formed into a film having a porous structure.

【0012】このとき、請求項4に記載した発明は、前
記混合材料の配合割合を、前記固体電解質側での該固体
電解質材料の混合比率が大きくかつニッケルもしくは酸
化ニッケルの混合比率が小さくされ、順次固体電解質材
料の混合比率が小さくかつニッケルもしくは酸化ニッケ
ルの混合比率が大きくされるように設定されて、傾斜化
した多孔構造の膜に形成したことを特徴とするものであ
る。
At this time, in the invention described in claim 4, the mixing ratio of the mixed material is set so that the mixing ratio of the solid electrolyte material on the solid electrolyte side is large and the mixing ratio of nickel or nickel oxide is small. It is characterized in that the film is formed into a film having a graded porous structure by setting the mixing ratio of the solid electrolyte material to be successively smaller and the mixing ratio of nickel or nickel oxide to be larger.

【0013】さらに、請求項5に記載した発明は、前記
混合材料の配合割合を、前記固体電解質側および燃料電
極の表面側で前記セリア系材料の混合比率が小さくさ
れ、燃料電極の厚さ方向の中央部分で前記セリア系材料
の混合比率が順次大きくされるように設定されて、傾斜
化した多孔構造の膜に形成したことを特徴とするもので
ある。
Further, in the invention described in claim 5, the mixing ratio of the mixed material is set such that the mixing ratio of the ceria-based material is reduced on the solid electrolyte side and the surface side of the fuel electrode, and The mixing ratio of the ceria-based material is set to be gradually increased in the central portion of the film, and the film is formed into a film having an inclined porous structure.

【0014】[0014]

【作用】セリア系材料は、酸素イオン透過性に優れてい
るため、セリア系材料とニッケルもしくは酸化ニッケル
とが接合し、かつ燃料ガスと接触する部分においても酸
化・還元反応が発生する。具体的にいうと、従来の構造
による電極反応は、固体電解質とニッケルもしくは酸化
ニッケルとの境界部分のみで行われていたが、請求項1
ないし請求項5に記載した燃料電極における電極反応
は、セリア系材料とニッケルとの境界部分においても行
われる。したがって、電極として反応する部分が拡大さ
れ、分極抵抗が増大せず、電極の特性が向上する。ま
た、セリア系材料は、融点(例えば、Ce O2 ならば2
600℃前後)が高いため、ニッケルの凝集を防止す
る。
Since the ceria-based material has excellent oxygen ion permeability, the oxidation / reduction reaction occurs even at the portion where the ceria-based material and nickel or nickel oxide are joined and contact with the fuel gas. Specifically, the electrode reaction according to the conventional structure was carried out only at the boundary portion between the solid electrolyte and nickel or nickel oxide.
The electrode reaction in the fuel electrode according to claim 5 is also performed in the boundary portion between the ceria-based material and nickel. Therefore, the portion that reacts as an electrode is enlarged, the polarization resistance is not increased, and the characteristics of the electrode are improved. Further, the ceria-based material has a melting point (for example, if CeO 2 is 2
(Around 600 ° C.) is high, which prevents nickel agglomeration.

【0015】特に、請求項2および請求項4および請求
項5に記載した燃料電極では、セリア系材料は、その線
膨張係数(例えば、Ce O2 ならば12.0×10-6
K)が、固体電解質材料の線膨張係数(例えば、YSZ
ならば10.5×10-6/K)とニッケルの線膨張係数
(16.0×10-6/K)との間に位置しているため、
固体電解質部分と電極部分との熱整合性を容易に整える
ことができ、燃料電極の剥離現象等が防止される。
Particularly, in the fuel electrode according to the second aspect, the fourth aspect and the fifth aspect, the ceria-based material has a linear expansion coefficient (for example, 12.0 × 10 -6 / Ce 2 for CeO 2).
K is the coefficient of linear expansion of the solid electrolyte material (for example, YSZ
If so, since it is located between 10.5 × 10 −6 / K) and the linear expansion coefficient of nickel (16.0 × 10 −6 / K),
The thermal matching between the solid electrolyte portion and the electrode portion can be easily adjusted, and the peeling phenomenon of the fuel electrode and the like can be prevented.

【0016】[0016]

【実施例】まず、請求項1に記載した発明の実施例を説
明する。この燃料電極は、ニッケル(Ni )とセリア系
材料例えば酸化セリウム(Ce O2 )との混合材料から
形成されている。このとき、Ni に替えて酸化ニッケル
(Ni O)も使用することができ、これは燃料電池の運
転中に還元されてNi となるため、導電性を備えて電極
として機能する。
First, an embodiment of the invention described in claim 1 will be described. This fuel electrode is made of a mixed material of nickel (Ni) and a ceria-based material, for example, cerium oxide (CeO 2 ). At this time, nickel oxide (NiO) can also be used in place of Ni, which is reduced to Ni during operation of the fuel cell, and thus has conductivity and functions as an electrode.

【0017】セリア系材料は、分極抵抗の増大防止やN
i の凝集防止あるいは電極の剥離現象の防止等により、
電極の特性を向上させるものであり、電極中に高分散状
態で存在している。このセリア系材料を含有する燃料電
極は、種々の方法で形成することができ、その例を示せ
ば以下のとおりである。
The ceria-based material prevents the increase of polarization resistance and N
By preventing the aggregation of i or the phenomenon of electrode peeling,
It improves the characteristics of the electrode and is present in the electrode in a highly dispersed state. The fuel electrode containing the ceria-based material can be formed by various methods, examples of which are as follows.

【0018】スラリー法について説明すると、粉末材料
として、Ni 粉末とCe O2 粉末との混合材料を用意
し、これに溶媒および助剤としてテレピネオール(特
級)とポリピニルブチラールとを加える。このように調
整した材料を撹拌・混合してスラリーとし、これを固体
電解質の表面にスクリーン印刷(塗布)して所定の厚さ
に形成する。ついで不活性ガス雰囲気で加熱して乾燥お
よび脱脂を行うとともに、さらに高温に加熱して多孔質
の燃料電極とすることができる。
Explaining the slurry method, a mixed material of Ni powder and CeO 2 powder is prepared as a powder material, and terpineol (special grade) and polypinyl butyral as a solvent and an auxiliary agent are added thereto. The materials thus adjusted are stirred and mixed to form a slurry, which is screen-printed (applied) on the surface of the solid electrolyte to form a predetermined thickness. Then, it can be heated in an inert gas atmosphere for drying and degreasing, and further heated to a high temperature to form a porous fuel electrode.

【0019】また溶射法について説明すると、それぞれ
粒径を約40μmに調整したNi 粉末とCe O2 粉末と
の混合材料を用意し、これを充分撹拌・混合した後にプ
ラズマ溶射あるいはアーク溶射もしくはフレーム溶射等
の適宜の方法で固体電解質の表面に溶射して多孔質の薄
膜状電極とすることができる。
Explaining the thermal spraying method, a mixed material of Ni powder and CeO 2 powder, each of which has a particle size adjusted to about 40 μm, is prepared and sufficiently stirred and mixed, and then plasma sprayed, arc sprayed or flame sprayed. A porous thin film electrode can be formed by spraying the surface of the solid electrolyte by an appropriate method such as.

【0020】このとき、請求項2に記載したように、N
i 粉末とCe O2 粉末との混合比率を燃料電極2の厚さ
方向で傾斜させるようにすると、安定化ジルコニア(Y
SZ)等からなる固体電解質層との熱整合性を良好にす
ることもでき、剥離現象やクラックの発生が防止され
る。
At this time, as described in claim 2, N
When the mixing ratio of the i powder and the CeO 2 powder is made to incline in the thickness direction of the fuel electrode 2, stabilized zirconia (Y
The thermal compatibility with the solid electrolyte layer made of SZ) or the like can be improved, and peeling phenomenon and cracks can be prevented.

【0021】つぎに、請求項3に記載した発明の実施例
を図1に基づいて説明する。図1に示す燃料電極2は、
ニッケル(Ni )と安定化ジルコニア(YSZ)とセリ
ア系材料例えば酸化セリウム(Ce O2 )との混合材料
から形成されている。このとき、Ni に替えて酸化ニッ
ケル(Ni O)も使用することができる。このセリア系
材料を含有する燃料電極は、上述したスラリー法や溶射
法に使用する材料粉末に、YSZ粉末を混合することに
より、容易に得ることができるが、別の例として、スラ
リー法と電気化学蒸着法(EVD法)とを組み合わせた
方法によっても形成することができる。
Next, an embodiment of the invention described in claim 3 will be described with reference to FIG. The fuel electrode 2 shown in FIG.
It is made of a mixed material of nickel (Ni), stabilized zirconia (YSZ), and a ceria-based material such as cerium oxide (CeO 2 ). At this time, nickel oxide (NiO) may be used instead of Ni. The fuel electrode containing this ceria-based material can be easily obtained by mixing YSZ powder with the material powder used in the above-mentioned slurry method or thermal spraying method. It can also be formed by a method in combination with a chemical vapor deposition method (EVD method).

【0022】この方法は、Ni 粉末とCe O2 粉末との
混合粉末を、テレピネオール(特級)とポリビニルブチ
ラールとを溶媒および助剤として撹拌・混合し、得られ
たスラリーを固体電解質1の表面に塗布し、不活性ガス
雰囲気で仮焼成を行い、その表面にYSZをEVD法に
より付着させる。この塗布および仮焼成ならびにEVD
法を繰り返し行って所定厚さの電極2を形成するもので
ある。
In this method, a mixed powder of Ni powder and CeO 2 powder is stirred and mixed with terpineol (special grade) and polyvinyl butyral as a solvent and an auxiliary agent, and the obtained slurry is applied to the surface of the solid electrolyte 1. It is applied and calcined in an inert gas atmosphere, and YSZ is attached to its surface by the EVD method. This coating and calcination and EVD
The method is repeated to form the electrode 2 having a predetermined thickness.

【0023】ここで、請求項4および請求項5に記載し
た発明の実施例を図2および図3に基づいて説明する。
この燃料電極2は、上記実施例におけるYSZ粉末とN
i 粉末とCe O2 粉末との混合比率を燃料電極2の厚さ
方向で傾斜させるようにしたものである。すなわち、固
体電解質1側にはYSZの混合比率を大きくし、燃料電
極2の表面側にはNi の混合比率を大きくしたものであ
る。
An embodiment of the invention described in claims 4 and 5 will now be described with reference to FIGS. 2 and 3.
This fuel electrode 2 is composed of YSZ powder and N in the above-mentioned embodiment.
The mixing ratio of the i powder and the CeO 2 powder is made to be inclined in the thickness direction of the fuel electrode 2. That is, the mixing ratio of YSZ is increased on the solid electrolyte 1 side, and the mixing ratio of Ni is increased on the surface side of the fuel electrode 2.

【0024】このとき、セリア系材料の比率は、固体電
解質1側および燃料電極2の表側ではやや小さく、その
中間部分ではやや大きくすることができる。例えば、燃
料電極2を図2に示すように固体電解質1側から、第1
層電極2a、第2層電極2b、第3層電極2c、第4層
電極2dとで構成した場合、これら4層2a,2b,2
c,2dにおけるそれぞれの材料の混合割合は、図2に
示すように構成される。
At this time, the ratio of the ceria-based material can be slightly small on the solid electrolyte 1 side and the front side of the fuel electrode 2, and can be slightly large on the intermediate portion. For example, as shown in FIG. 2, the fuel electrode 2 is changed from the solid electrolyte 1 side to the first
When it is composed of the layer electrode 2a, the second layer electrode 2b, the third layer electrode 2c, and the fourth layer electrode 2d, these four layers 2a, 2b, 2
The mixing ratios of the respective materials in c and 2d are configured as shown in FIG.

【0025】上記のように形成された傾斜機能付きの燃
料電極2では、固体電解質1と第1層電極2aとの間や
各層2a,2b,2c,2d間における熱膨張の割合の
差に起因する熱応力が小さくされているため、剥離現象
やクラックの発生が防止される。このとき、Ce O2
線膨張係数は、YSZとNi との線膨張係数の間に位置
しているため、この燃料電極2の形成が容易なものとな
っている。
In the fuel electrode 2 with a gradient function formed as described above, due to the difference in the rate of thermal expansion between the solid electrolyte 1 and the first layer electrode 2a and between the layers 2a, 2b, 2c and 2d. Since the thermal stress generated is small, the peeling phenomenon and the occurrence of cracks are prevented. At this time, the linear expansion coefficient of CeO 2 is located between the linear expansion coefficients of YSZ and Ni, so that the fuel electrode 2 can be easily formed.

【0026】具体的にいうと、この燃料電極2における
熱応力を、Ni とYSZとの混合材料からなる従来の燃
料電極を傾斜化して構成した場合における各層間の熱応
力と同等にする場合、この燃料電極2は従来の燃料電極
より少ない層で構成することができるので、生産性が向
上する。また逆に、この燃料電極2を、従来の傾斜燃料
電極の層数と同等に構成した場合、熱整合性がより高め
られることになる。
Specifically, when the thermal stress in the fuel electrode 2 is made equal to the thermal stress between the respective layers in the case where the conventional fuel electrode made of the mixed material of Ni and YSZ is configured to be inclined, Since the fuel electrode 2 can be composed of fewer layers than the conventional fuel electrode, the productivity is improved. On the contrary, when the fuel electrode 2 is configured to have the same number of layers as that of the conventional gradient fuel electrode, the thermal matching property is further enhanced.

【0027】また、この傾斜機能付きの燃料電極2で
は、固体電解質1側でのNi の量が減少しているためN
i の焼結が抑えられ、たとえNi が焼結しても、固体電
解質1の酸素イオン透過性をそれほど悪化させないた
め、固体電解質型燃料電池の固体電解質の経時的劣化が
防止され、すなわち寿命特性が向上する。
Further, in the fuel electrode 2 with the tilt function, the amount of Ni on the solid electrolyte 1 side is reduced, so N
The sintering of i is suppressed, and even if Ni is sintered, the oxygen ion permeability of the solid electrolyte 1 is not significantly deteriorated, so that the deterioration of the solid electrolyte of the solid oxide fuel cell with time is prevented, that is, the life characteristics. Is improved.

【0028】この傾斜機能付きの燃料電極2は、YSZ
とNi とCe O2 との混合比率を順次調節するように構
成されているが、請求項2に記載した発明のように、各
層2a,2b,2c,2dにおけるYSZの混合比率と
Ni の混合比率とを調節することにより、YSZに対す
るCe O2 の混合比率もしくはNi に対するCe O2
混合比率を決定して、この燃料電極2の熱整合性を良好
にすることもできる。
The fuel electrode 2 with the tilt function is YSZ.
The composition is such that the mixing ratio of Ni, Ce, and Ni and CeO 2 is sequentially adjusted. It is also possible to determine the mixing ratio of CeO 2 with respect to YSZ or the mixing ratio of CeO 2 with respect to Ni by adjusting the ratio to improve the thermal matching of the fuel electrode 2.

【0029】なお、上記実施例ではいずれも、固体電解
質材料としてYSZに代えてカルシア安定化ジルコニア
(CSZ)を使用することができ、またCe O2 に代え
て他のセリア系材料、具体的には(Ce O2 1-X (S
m 2 3 X ,(Ce O2 1-X (La 2 3 X
(Ce O2 1-X (Y2 3 X 等を使用することがで
きるのは勿論である。
In each of the above examples, calcia-stabilized zirconia (CSZ) can be used in place of YSZ as the solid electrolyte material, and other ceria-based materials, specifically CeO 2 , can be used. Is (Ce O 2 ) 1-X (S
m 2 O 3 ) X , (Ce O 2 ) 1-X (La 2 O 3 ) X ,
Of course, (Ce O 2 ) 1-X (Y 2 O 3 ) X and the like can be used.

【0030】[0030]

【発明の効果】以上説明したように、請求項1ないし請
求項5に記載された燃料電極によれば、ニッケルもしく
は酸化ニッケルとセリア系材料との接合部においても電
極反応が発生するため、電極の活性が良好にされ、分極
を低減することができる。
As described above, according to the fuel electrode described in any one of claims 1 to 5, the electrode reaction occurs even at the joint between nickel or nickel oxide and the ceria-based material, and therefore the electrode The activity of is improved and the polarization can be reduced.

【0031】また、セリア系材料は融点が高いため、ニ
ッケルの焼結・凝集が抑制もしくは防止される。その結
果、燃料電極の寿命特性が向上、すなわち固体電解質型
燃料電池の発電能力を長期間に亘って良好に維持するこ
とができる。
Further, since the ceria-based material has a high melting point, the sintering / aggregation of nickel is suppressed or prevented. As a result, the life characteristics of the fuel electrode are improved, that is, the power generation capacity of the solid oxide fuel cell can be favorably maintained for a long period of time.

【0032】特に、請求項2および請求項4および請求
項5に記載された発明によれば、剥離現象やクラックが
防止された燃料電極を容易に得ることができ、寿命特性
が向上した固体電解質型燃料電池を安価に提供すること
ができる。
In particular, according to the inventions described in claims 2 and 4 and 5, it is possible to easily obtain a fuel electrode in which peeling phenomenon and cracks are prevented, and a solid electrolyte having improved life characteristics. Type fuel cell can be provided at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項3に記載した発明にかかる燃料電極の一
例を模式的に示す断面図である。
FIG. 1 is a sectional view schematically showing an example of a fuel electrode according to the invention described in claim 3.

【図2】図1に示した燃料電極に傾斜機能を付加した一
例を模式的に示す断面図である。
FIG. 2 is a cross-sectional view schematically showing an example in which a tilt function is added to the fuel electrode shown in FIG.

【図3】図1に示した実施例における各種材料の混合割
合の一例を示す図表である。
FIG. 3 is a table showing an example of mixing ratios of various materials in the example shown in FIG.

【図4】固体電解質型燃料電池の原理的な構造を示す模
式的な断面図である。
FIG. 4 is a schematic cross-sectional view showing the principle structure of a solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

1…固体電解質、 2…燃料電極、 2a…第1層、
2b…第2層、 2c…第3層、 2d…第4層。
1 ... Solid electrolyte, 2 ... Fuel electrode, 2a ... 1st layer,
2b ... 2nd layer, 2c ... 3rd layer, 2d ... 4th layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山岡 悟 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoru Yamaoka 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ジルコニアを主体とする固体電解質を挟
んで燃料電極と空気電極とを設けた固体電解質型燃料電
池の燃料電極において、 ニッケルもしくは酸化ニッケルの材料粉末に下記のセリ
ア系材料のうちいずれか一種以上を添加してなる混合粉
末材料によって、前記固体電解質の表面に多孔構造の膜
状に形成したことを特徴とする固体電解質型燃料電池の
燃料電極。 セリア系材料:Ce O2 ,(Ce O2 1-X (M
2 3 X 、ただしMは希土類元素
1. A fuel electrode for a solid oxide fuel cell in which a fuel electrode and an air electrode are provided with a solid electrolyte mainly composed of zirconia sandwiched therebetween, and a nickel or nickel oxide material powder is added to one of the following ceria-based materials. A fuel electrode for a solid oxide fuel cell, characterized in that it is formed into a film having a porous structure on the surface of the solid electrolyte by using a mixed powder material containing one or more kinds thereof. Ceria-based material: Ce O 2 , (Ce O 2 ) 1-X (M
2 O 3 ) X , where M is a rare earth element
【請求項2】 前記混合材料の配合割合を、前記固体電
解質側で前記ニッケルもしくは酸化ニッケルの材料の混
合比率が小さくかつ前記セリア系材料の混合比率が大き
くされ、順次前記ニッケルもしくは酸化ニッケルの材料
の混合比率が大きくかつ前記セリア系材料の混合比率が
小さくされるように設定されて、傾斜化した多孔構造の
膜に形成したことを特徴とする請求項1に記載の固体電
解質型燃料電池の燃料電極。
2. The mixing ratio of the mixed material is such that the mixing ratio of the nickel or nickel oxide material is small and the mixing ratio of the ceria-based material is large on the solid electrolyte side, and the nickel or nickel oxide material is sequentially added. 2. The solid oxide fuel cell according to claim 1, wherein the mixed electrolyte of Ceria is set to be large and the mixing ratio of the ceria-based material is set to be small to form a film having a graded porous structure. Fuel electrode.
【請求項3】 ジルコニアを主体とする固体電解質を挟
んで燃料電極と空気電極とを設けた固体電解質型燃料電
池の燃料電極において、 前記固体電解質材料とニッケルもしくは酸化ニッケルと
を混合した材料粉末に下記のセリア系材料のうちいずれ
か一種以上を添加してなる混合粉末材料によって、前記
固体電解質の表面に多孔構造の膜状に形成したことを特
徴とする固体電解質型燃料電池の燃料電極。 セリア系材料:Ce O2 ,(Ce O2 1-X (M
2 3 X 、ただしMは希土類元素
3. A fuel electrode of a solid oxide fuel cell in which a fuel electrode and an air electrode are provided with a solid electrolyte containing zirconia as a main component sandwiched between the solid electrolyte material and nickel or nickel oxide. A fuel electrode for a solid oxide fuel cell, characterized in that it is formed into a film having a porous structure on the surface of the solid electrolyte by a mixed powder material obtained by adding one or more of the following ceria-based materials. Ceria-based material: Ce O 2 , (Ce O 2 ) 1-X (M
2 O 3 ) X , where M is a rare earth element
【請求項4】 前記混合材料の配合割合を、前記固体電
解質側での該固体電解質材料の混合比率が大きくかつニ
ッケルもしくは酸化ニッケルの混合比率が小さくされ、
順次固体電解質材料の混合比率が小さくかつニッケルも
しくは酸化ニッケルの混合比率が大きくされるように設
定されて、傾斜化した多孔構造の膜に形成したことを特
徴とする請求項3に記載の固体電解質型燃料電池の燃料
電極。
4. The mixing ratio of the mixed material is set so that the mixing ratio of the solid electrolyte material on the solid electrolyte side is large and the mixing ratio of nickel or nickel oxide is small.
The solid electrolyte according to claim 3, wherein the solid electrolyte material is formed into a film having a graded porous structure by setting the mixing ratio of the solid electrolyte material to be smaller and the mixing ratio of nickel or nickel oxide to be larger. Type fuel cell fuel electrode.
【請求項5】 前記混合材料の配合割合を、前記固体電
解質側および燃料電極の表面側で前記セリア系材料の混
合比率が小さくされ、燃料電極の厚さ方向の中央部分で
前記セリア系材料の混合比率が順次大きくされるように
設定されて、傾斜化した多孔構造の膜に形成したことを
特徴とする請求項3に記載の固体電解質型燃料電池の燃
料電極。
5. The mixing ratio of the mixed material is such that the mixing ratio of the ceria-based material is reduced on the solid electrolyte side and the surface side of the fuel electrode, and the mixing ratio of the ceria-based material is reduced in the central portion in the thickness direction of the fuel electrode. The fuel electrode for a solid oxide fuel cell according to claim 3, wherein the fuel electrode of the solid oxide fuel cell according to claim 3 is formed so that the mixing ratio is set to be gradually increased and the film is formed into a slanted porous structure.
JP7041328A 1995-02-06 1995-02-06 Fuel electrode of solid electrolyte fuel cell Pending JPH08213029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7041328A JPH08213029A (en) 1995-02-06 1995-02-06 Fuel electrode of solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7041328A JPH08213029A (en) 1995-02-06 1995-02-06 Fuel electrode of solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH08213029A true JPH08213029A (en) 1996-08-20

Family

ID=12605460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7041328A Pending JPH08213029A (en) 1995-02-06 1995-02-06 Fuel electrode of solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH08213029A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1016458C2 (en) * 2000-10-23 2002-05-01 Stichting En Onderzoek Ct Nede Anode assembly.
JP2003059523A (en) * 2001-08-14 2003-02-28 Nissan Motor Co Ltd Solid electrolyte fuel cell
WO2005045962A1 (en) * 2003-11-10 2005-05-19 Mitsubishi Materials Corporation Generation cell for solid electrolyte fuel cell
JP2005327512A (en) * 2004-05-12 2005-11-24 Nippon Shokubai Co Ltd Anode supporting base plate for solid oxide fuel cell and manufacturing method of the same
JP2006024545A (en) * 2003-11-10 2006-01-26 Mitsubishi Materials Corp Power generation cell for solid electrolyte fuel battery
JP2009518810A (en) * 2005-12-08 2009-05-07 シーメンス パワー ジェネレイション インコーポレイテッド Multistage concentration gradient fuel electrode and manufacturing method thereof
JP2010027457A (en) * 2008-07-22 2010-02-04 Mitsubishi Heavy Ind Ltd Power generation membrane of solid electrolyte fuel cell, and solid electrolyte fuel cell equipped with the same, as well as method of manufacturing power generation membrane of solid electrolyte fuel cell
JP2010177105A (en) * 2009-01-30 2010-08-12 Mitsubishi Heavy Ind Ltd Power generation film for solid electrolyte fuel cell, and solid electrolyte fuel cell with the same
JP2010267619A (en) * 2009-05-15 2010-11-25 National Taiwan Univ Of Science & Technology Solid oxide fuel cell (sofc) device having gradient interconnection part
WO2012133438A1 (en) * 2011-03-31 2012-10-04 独立行政法人産業技術総合研究所 Medium-to-low-temperature high-efficiency electrochemical cell and electrochemical reaction system comprising same
JP2015053162A (en) * 2013-09-06 2015-03-19 日本碍子株式会社 Fuel cell
WO2023195246A1 (en) * 2022-04-05 2023-10-12 日本碍子株式会社 Electrochemical cell
WO2023203875A1 (en) * 2022-04-18 2023-10-26 日本碍子株式会社 Electrochemical cell
WO2023203870A1 (en) * 2022-04-18 2023-10-26 日本碍子株式会社 Electrochemical cell
WO2024095998A1 (en) * 2022-10-31 2024-05-10 京セラ株式会社 Electrochemical cell, electrochemical cell device, module, and module-accommodating device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1016458C2 (en) * 2000-10-23 2002-05-01 Stichting En Onderzoek Ct Nede Anode assembly.
WO2002035634A1 (en) * 2000-10-23 2002-05-02 Stichting Energieonderzoek Centrum Nederland Anode assembly for an electrochemical cell
JP2003059523A (en) * 2001-08-14 2003-02-28 Nissan Motor Co Ltd Solid electrolyte fuel cell
WO2005045962A1 (en) * 2003-11-10 2005-05-19 Mitsubishi Materials Corporation Generation cell for solid electrolyte fuel cell
JP2006024545A (en) * 2003-11-10 2006-01-26 Mitsubishi Materials Corp Power generation cell for solid electrolyte fuel battery
JP2005327512A (en) * 2004-05-12 2005-11-24 Nippon Shokubai Co Ltd Anode supporting base plate for solid oxide fuel cell and manufacturing method of the same
JP2009518810A (en) * 2005-12-08 2009-05-07 シーメンス パワー ジェネレイション インコーポレイテッド Multistage concentration gradient fuel electrode and manufacturing method thereof
JP2010027457A (en) * 2008-07-22 2010-02-04 Mitsubishi Heavy Ind Ltd Power generation membrane of solid electrolyte fuel cell, and solid electrolyte fuel cell equipped with the same, as well as method of manufacturing power generation membrane of solid electrolyte fuel cell
JP2010177105A (en) * 2009-01-30 2010-08-12 Mitsubishi Heavy Ind Ltd Power generation film for solid electrolyte fuel cell, and solid electrolyte fuel cell with the same
JP2010267619A (en) * 2009-05-15 2010-11-25 National Taiwan Univ Of Science & Technology Solid oxide fuel cell (sofc) device having gradient interconnection part
WO2012133438A1 (en) * 2011-03-31 2012-10-04 独立行政法人産業技術総合研究所 Medium-to-low-temperature high-efficiency electrochemical cell and electrochemical reaction system comprising same
JP2015053162A (en) * 2013-09-06 2015-03-19 日本碍子株式会社 Fuel cell
WO2023195246A1 (en) * 2022-04-05 2023-10-12 日本碍子株式会社 Electrochemical cell
WO2023203875A1 (en) * 2022-04-18 2023-10-26 日本碍子株式会社 Electrochemical cell
WO2023203870A1 (en) * 2022-04-18 2023-10-26 日本碍子株式会社 Electrochemical cell
WO2024095998A1 (en) * 2022-10-31 2024-05-10 京セラ株式会社 Electrochemical cell, electrochemical cell device, module, and module-accommodating device

Similar Documents

Publication Publication Date Title
US6635376B2 (en) Solid oxide fuel cell having composition gradient between electrode and electrolyte
US5342705A (en) Monolithic fuel cell having a multilayer interconnect
US4582766A (en) High performance cermet electrodes
US4812329A (en) Method of making sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells
US4702971A (en) Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells
US20060024547A1 (en) Anode supported sofc with an electrode multifunctional layer
US6013386A (en) Solid oxide fuel cells with specific electrode layers
EP0196388A2 (en) Method of making electrodes
US8628892B2 (en) Solid oxide fuel cell and manufacturing method thereof
JPH08213029A (en) Fuel electrode of solid electrolyte fuel cell
EP1284519B1 (en) Solid electrolyte fuel cell and related manufacturing method
JP3599894B2 (en) Fuel electrode of solid oxide fuel cell
CN113394435A (en) Solid oxide fuel cell and method for manufacturing same
US20110189066A1 (en) Robust mixed conducting membrane structure
JP2003178769A (en) Thin film laminated body, its manufacturing method, and solid oxide type fuel cell using the same
CA2693894C (en) Cell materials variation in sofc stacks to address thermal gradients in all planes
JPH05151981A (en) Solid electrolyte fuel cell
JP7245036B2 (en) Fuel cell stack and manufacturing method thereof
EP3561928B1 (en) Cell, cell stack device, module and module housing device
US20100151353A1 (en) Method of producing a gas-tight solid electrolyte layer and solid electrolyte layer
JPH1074528A (en) Solid electrolyte fuel cell and its manufacture
JP3330198B2 (en) Solid oxide fuel cell
JP7330689B2 (en) Fuel cells and fuel cell stacks
JP2004355814A (en) Solid oxide fuel battery cell and its manufacturing method
JPH08273676A (en) Fuel electrode of solid lectrolyte fuel cell and its film forming method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040810