JPH0757309B2 - Electrodialysis desalination method and device - Google Patents

Electrodialysis desalination method and device

Info

Publication number
JPH0757309B2
JPH0757309B2 JP62229750A JP22975087A JPH0757309B2 JP H0757309 B2 JPH0757309 B2 JP H0757309B2 JP 62229750 A JP62229750 A JP 62229750A JP 22975087 A JP22975087 A JP 22975087A JP H0757309 B2 JPH0757309 B2 JP H0757309B2
Authority
JP
Japan
Prior art keywords
electrodialysis
salt concentration
water
tanks
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62229750A
Other languages
Japanese (ja)
Other versions
JPS6475004A (en
Inventor
黒田  修
勝也 江原
燦吉 高橋
良太 土井
敏雄 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP62229750A priority Critical patent/JPH0757309B2/en
Publication of JPS6475004A publication Critical patent/JPS6475004A/en
Publication of JPH0757309B2 publication Critical patent/JPH0757309B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気透析法による淡水化方法及び前記方法の実
施に使用する装置に係わり、特に、変動する電力の利用
に適した淡水化方法及びそのための装置に係わる。
TECHNICAL FIELD The present invention relates to a desalination method by electrodialysis and an apparatus used for carrying out the method, and more particularly to a desalination method suitable for use of fluctuating electric power and It relates to a device therefor.

〔従来の技術〕[Conventional technology]

陽イオンに対して選択透過性を有する陽イオン交換膜と
陰イオンに対して選択透過性を有する陰イオン交換膜を
交互に繰返し平行に並べて膜間に多数の隔室を構成し、
各隔室に塩類水溶液を通じつつ膜群の両端から直流の電
流を通じると、イオンの電気泳動と膜の選択透過作用に
より隔室は一室置きに塩類濃度の低下する脱塩室と塩類
濃度の増加する濃縮室となる。脱塩室に海水等の塩水を
通じると淡水が得られる。
A cation exchange membrane having selective permeability for cations and an anion exchange membrane having selective permeability for anions are alternately and repeatedly arranged in parallel to form a large number of compartments between the membranes.
When a direct current is applied from both ends of the membrane group while passing a saline solution through each compartment, the compartment concentration decreases every other compartment due to ion electrophoresis and the selective permeation action of the membrane. Increased concentration room. Fresh water is obtained by passing salt water such as seawater through the desalination chamber.

以上の電気透析法による淡水化法(以下、電気透析淡水
化方法という)は、原水(海水など)の徐濁などの前
処理が容易である、膜の耐久性が大である、運転操
作圧が低く装置および運転操作が簡単であると、などの
特徴を有し、中小容量の淡水化装置に適する。近年、こ
の方法に関し、高温運転技術、新構造装置などの新技術
の開発が進み、顕著な性能向上が認められる。
The above desalination method using electrodialysis (hereinafter referred to as electrodialysis desalination method) is easy to pretreat raw water (seawater, etc.) such as turbidity, has a large membrane durability, and has a high operating pressure. It is suitable for medium and small capacity desalination equipment because of its low temperature and easy operation and operation. In recent years, with respect to this method, new technology such as high temperature operation technology and new structure device has been developed, and remarkable improvement in performance is recognized.

ところで、電気透析淡水化方法では動力として電力を使
用するが、変動電力を蓄電することなく利用して運転が
可能となれば著しいメリットが生じる。
By the way, in the electrodialysis desalination method, electric power is used as motive power, but if the variable electric power can be used for operation without being stored, a remarkable merit will occur.

例えば、エネルギー源の多様化、発現効率の向上および
エネルギー利用効率の向上などを目指して各種の燃料電
池の開発が精力的に進められている。本発電方式はオン
サイトでの使用が考えられており発電電力量と消費電力
量のマッチングが重要となる。特に電力系統の整備され
ていない地域において使用する場合には他の電源系統と
の連繋が不可能でこの問題は重要である。そこで、変動
する余剰電力を有効に利用できる電気透析淡水化方法及
びそれを実施できる装置(以下、電気透析淡水化装置と
いう)が実現すれば、発電装置の出力を最適な範囲に維
持した、電力/水併給システムが可能となる。
For example, various fuel cells have been vigorously developed with the aim of diversifying energy sources, improving expression efficiency, and improving energy use efficiency. Since this power generation method is considered to be used on-site, it is important to match the amount of power generation and power consumption. In particular, when used in an area where the electric power system is not developed, it is impossible to connect with other electric power systems, and this problem is important. Therefore, if an electrodialysis desalination method that can effectively use fluctuating surplus power and a device that can implement the method (hereinafter referred to as an electrodialysis desalination device) are realized, the power output of the power generation device is maintained in an optimum range. / A co-water supply system becomes possible.

また、最近はエネルギー源の多様化の観点から電源構成
に占める原子力発電や石炭火力発電(ベース負荷用)の
割合いが増加する傾向にある。一方、産業構造大および
生活様式の変化から電力需要の変動が顕著になってい
る。そこで電力供給能力と電力需要のギャップは益々大
きくなりつつある。そこでオフロード時の電力を利用し
て淡水を製造すれば電力負荷平準化の効果が生じる。と
ころで、余剰電力量は時刻、日間、週間、月間、季間な
どにより大きく変動しその有効な利用技術が必要とな
る。
Further, recently, from the viewpoint of diversification of energy sources, the proportion of nuclear power generation and coal-fired power generation (for base load) in the power source composition has been increasing. On the other hand, fluctuations in power demand have become noticeable due to changes in the industrial structure and lifestyle. Therefore, the gap between the power supply capacity and the power demand is increasing. Therefore, if off-road power is used to produce fresh water, the effect of power load leveling is produced. By the way, the amount of surplus electric power fluctuates greatly depending on the time of day, day, week, month, season, etc., and effective utilization technology is required.

以上の例からも明らかなように電気透析淡水化方法にお
いて変動電力の利用が可能となればその効果は非常に大
きいものがある。
As is clear from the above example, if the variable electric power can be used in the electrodialysis desalination method, its effect is very large.

電気透析淡水化方法で変動電力を利用するための提案と
しては、太陽電池の変動電力を利用する方法に関して単
一の電気透析槽を用い電池出力に応じて脱塩を段階的に
進める、特願昭59−178364号の方法がある。この方法は
大容量の電力を使用する大容量の淡水化装置への適用に
難点があり、蓄電池容量の低減に効果があるがその低減
の程度には限度がある。
As a proposal for using variable power in the electrodialysis desalination method, regarding the method of using variable power of the solar cell, a single electrodialysis tank is used to proceed with desalination stepwise according to the battery output. There is the method of Sho 59-178364. This method is difficult to apply to a large-capacity desalination apparatus that uses large-capacity electric power, and is effective in reducing the storage battery capacity, but the extent of the reduction is limited.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は、変動電力を(殆ど蓄電することなく)直接利
用することが可能な電気透析淡水化方法及び前記方法を
実施するための電気透析淡水化装置を提供することにあ
る。
It is an object of the present invention to provide an electrodialysis desalination method capable of directly using fluctuating power (without storing almost any electric power) and an electrodialysis desalination apparatus for carrying out the method.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は以下の方法及び装置により解決できる。 The above problems can be solved by the following method and device.

電気透析淡水化装置を複数の電気透析槽から構成す
る。
The electrodialysis desalination apparatus is composed of a plurality of electrodialysis tanks.

複数の電気透析槽をそれぞれ回分運転する。Operate multiple electrodialysis tanks in batches.

各電気透析槽では原水(例えば海水)を一挙に淡水
(例えば飲料水レベルの塩濃度)まで脱塩するのではな
く、原水を原水との淡水の(少なくとも一種の)中間の
塩濃度レベルまで脱塩し貯槽に貯える工程(高濃度運
転)と、中間塩濃度水を淡水まで脱塩する工程(低濃度
運転)により淡水を得る。
In each electrodialysis tank, raw water (eg, seawater) is not desalted all at once to fresh water (eg, drinking water level salt concentration), but raw water is desalted to an intermediate salt level (at least one type) between fresh water and raw water. Fresh water is obtained by a step of salting and storing in a storage tank (high-concentration operation) and a step of desalting intermediate salt-concentration water to fresh water (low-concentration operation).

同時に運転する複数の電気透析槽において高濃度運転
の数と低濃度運転の数の組合わせを選択することにより
装置全体としての電力消費量を変化させる。
By selecting a combination of the number of high-concentration operations and the number of low-concentration operations in a plurality of electrodialysis tanks operating at the same time, the power consumption of the entire apparatus is changed.

したっがって、本発明の電気透析淡水化方法は、複数の
電気透析槽から構成される電気透析淡水化装置におい
て、前記複数の電気透析槽をそれぞれ回分運転し、各電
気透析槽の回分運転にあたって、原水の塩濃度レベルと
目的とする淡水の塩濃度レベルとの間に、1乃至複数の
中間塩濃度レベルを設定し、原水を前記1乃至複数の中
間塩濃度レベルを経て目的とする淡水の塩濃度レベルに
至るまで、それぞれ、一つ下の塩濃度レベルに段階的に
順次脱塩する個別の工程を有し、同時に運転する電気透
析槽間において、前記各塩濃度レベルでの脱塩工程を行
う電気透析槽の比率を適宜選択することにより淡水化装
置全体としての電力消費量を所要の値に経時的に変化さ
せることを特徴とするものである。
Therefore, in the electrodialysis desalination method of the present invention, in the electrodialysis desalination apparatus including a plurality of electrodialysis tanks, the plurality of electrodialysis tanks are operated in batches, and the electrodialysis tanks are operated in batches. At this time, one to a plurality of intermediate salt concentration levels are set between the salt concentration level of the raw water and the salt concentration level of the target fresh water, and the raw water is passed through the one or more intermediate salt concentration levels to obtain the target fresh water. Each of the electrodialysis tanks has a separate step of sequentially desalting to the next lower salt concentration level, and the desalting at each salt concentration level is performed simultaneously between the electrodialyzers operating at the same time. The feature is that the power consumption of the entire desalination apparatus is changed to a required value over time by appropriately selecting the ratio of the electrodialysis tank in which the process is performed.

また、本発明の電気透析淡水化装置は、複数の電気透析
槽から構成される電気透析淡水化装置において、前記複
数の電気透析槽をそれぞれ回分運転する手段と、各電気
透析槽の回分運転によって、原水の塩濃度レベルと目的
とする淡水の塩濃度レベルとの間に設定された1乃至複
数の中間塩濃度レベルの塩濃度レベルにまで脱塩された
水をそれぞれ個別に蓄える1乃至複数個の中間濃度水貯
槽と、前記中間濃度水貯槽の水を前記電気透析槽の何れ
かに循環供給してさらに一段階下の塩濃度レベルへの脱
塩工程を行わしめる手段と、同時に運転する電気透析槽
間において、前記各塩濃度レベルでの脱塩工程を行う電
気透析槽の比率を適宜選択する手段とを有し、淡水化装
置全体としての電力消費量を所要の値に経時的に変化さ
せることを可能としたことを特徴とするものである。
Further, the electrodialysis desalination apparatus of the present invention is, in the electrodialysis desalination apparatus composed of a plurality of electrodialysis tanks, a means for operating each of the plurality of electrodialysis tanks in batch, and a batch operation of each electrodialysis tank. , 1 or more, each of which stores individually desalinated water up to one or more intermediate salt concentration levels set between the raw water salt concentration level and the target fresh water salt concentration level Of the intermediate-concentration water storage tank, means for circulatingly supplying the water of the intermediate-concentration water storage tank to any one of the electrodialysis tanks, and performing a desalting process to a salt concentration level one step lower, and an electric power source operating at the same time. Between the dialysis tanks, it has means for appropriately selecting the ratio of the electrodialysis tanks for performing the desalting step at each salt concentration level, and changes the power consumption of the entire desalination apparatus to a required value over time. It is possible to It is characterized in that the.

〔作 用〕 電気透析槽の電気抵抗は被処理水すなわち電気透析槽に
流通する塩水の塩濃度により変化する。第5図は、膜一
枚あたりの有効面積0.23m2、膜対数200対、膜間隔0.8mm
の電気透析槽で食塩を主成分とする塩類水溶液を常温で
脱塩処理して得た被処理水塩濃度(正確には電気透析槽
の入口と出口における塩濃度の対数平均値)と電気透析
槽電気抵抗との関係を示す。例えば海水(塩濃度3.5
%)を淡水(塩濃度0.04%)まで脱塩する場合、電気透
析槽電気抵抗は0.7Ωから16Ωまで大きく変化する。回
分運転法、すなわち被処理水を循環槽を介して電気透析
槽に何度も循環させて脱塩を行う方法では回分運転の初
期には電気透析槽を循環する液の塩濃度が高いため大き
な電流が流れ(大電力を消費し)時間の経過と共に脱塩
が進行して塩濃度が低下しこれに伴い電流が低下(電力
消費量が低下)する。そこで、電気透析槽では原水(例
えば海水)を一挙に淡水(例えば飲料水レベルの塩濃
度)まで脱塩するのではなく、原水を原水と淡水の(少
なくとも一種の)中間の濃度レベルまで脱塩(高濃度運
転)すればこの工程の電力消費量は大きくなり、生成し
た中間濃度水を淡水まで脱塩(低濃度運転)すればこの
工程の電力消費量は小さくなる。複数の電気透析槽の運
転において利用可能な電力量に応じて高濃度運転かもし
くは低濃度運転を選定すれば全体として電力消費量の広
範囲の調整が可能となる。すなわち、大電力の使用が可
能なときに高濃度運転を実施する電気透析槽の数を多く
し小電力しか使用できない場合には低濃度運転の電気透
析槽の数を多くする。以上の方法では変動電力を利用で
きると同時に運転を休止する電気透析槽が極力少なくで
きるため淡水化装置の稼動率を高く維持できる。
[Operation] The electric resistance of the electrodialysis tank changes depending on the concentration of the water to be treated, that is, the salt water flowing through the electrodialysis tank. Fig. 5 shows an effective area of 0.23 m 2 per membrane, the number of membrane pairs is 200, and the membrane spacing is 0.8 mm.
Salt solution (to be exact, the logarithmic mean value of the salt concentration at the inlet and outlet of the electrodialysis tank) and electrodialysis obtained by desalting an aqueous salt solution containing salt as the main component in the electrodialysis tank The relationship with the tank electrical resistance is shown. For example, seawater (salt concentration 3.5
%) To desalination to fresh water (salt concentration 0.04%), the electric resistance of the electrodialyzer changes greatly from 0.7Ω to 16Ω. In the batch operation method, that is, the method in which the water to be treated is repeatedly circulated to the electrodialysis tank through the circulation tank for desalination, the salt concentration of the liquid circulating in the electrodialysis tank is high at the beginning of the batch operation, which is large. An electric current flows (consumes a large amount of electric power), and with the passage of time, desalination proceeds, the salt concentration decreases, and the electric current decreases accordingly (electric power consumption decreases). Therefore, in an electrodialysis tank, raw water (eg, seawater) is not desalted all at once to fresh water (eg, salt concentration at the level of drinking water), but raw water is desalted to an intermediate concentration level (at least one) of raw water and fresh water. If (high-concentration operation) is performed, the power consumption of this step becomes large, and if the generated intermediate-concentration water is desalted to fresh water (low-concentration operation), the power consumption of this step becomes small. If high-concentration operation or low-concentration operation is selected according to the amount of electric power that can be used in the operation of a plurality of electrodialysis tanks, it is possible to adjust the electric power consumption in a wide range as a whole. That is, the number of electrodialysis tanks that perform high-concentration operation is increased when high power can be used, and the number of electrodialysis tanks that are low-concentration operation is increased when only small power can be used. In the above method, it is possible to use the variable power and at the same time reduce the number of electrodialysis tanks that are out of operation as much as possible, so that the operating rate of the desalination apparatus can be maintained high.

〔実施例〕〔Example〕

本発明の一実施例を第1,2,3図により説明する。本実施
例は、本発明の方法による、酸性電解質型メタノール−
空気燃料電池と電気透析淡水化装置の組合わせによる電
気と水の併給システムである。本システムの電力系統を
第2図により説明する。酸性電解質型メタノール−空気
燃料電池(以下メタノール燃料電池)1の直流電力は、
一部がインバーター2により用途に適した電圧の交流に
変換して負荷に供給される。前述のようにこの負荷は時
刻、日間、季間などにより変動する。負荷としては一般
家庭、工場、店舗、事務所、病院、ホテルなどの電気機
器が考えられるが、特に限定されるものではない。交流
電力の一部は、必要に応じてトランス4などにより適切
な電圧に調整して電気透析淡水化装置の交流負荷5(ポ
ンプなどの補機、制御・計装機器など)に供給される。
直流電力の他の一部は電気透析槽8に供給される。ま
た、直流電力の一部は、ポンプ起動時の急激な消費電力
変動、後述する発電量と負荷電力量のギャップを埋める
ために鉛蓄電池7を介して負荷に供給される。本システ
ムにおける電気透析淡水化装置の構成と機能を第1図に
より説明する。淡水化装置は複数の電気透析槽8、原水
槽9、各電気透析槽に対応した脱塩水循環槽10、中間濃
度水貯槽11、淡水貯槽12、ポンプ13などにより構成され
る。原水は必要に応じて除濁などの前処理を施された後
原水槽9に送られる。各電気透析槽8では直流電力を通
じつつ対応する循環槽10を介してポンプ13により塩水を
循環して脱塩を進める。この脱塩工程では、原水を原水
と淡水の中間の塩濃度レベルまで脱塩し中間濃度水貯槽
11に送る工程(高濃度運転)と、中間濃度水を淡水まで
脱塩し淡水貯槽12に送る工程(低濃度運転)の二種が可
能である。各電気透析槽ではこの両者からいずれかを選
択する。全ての電気透析槽で高濃度運転を選択した場合
を最大とし、逆に全てが低濃度運転を選択した場合を最
小とし、両工程の組合わせにより電力消費量が調節でき
る。以上の運転方法による電気透析槽の運転状態と電力
消費パターンの関係を第3図により説明する。第3図に
は、メタノール燃料電池で一定の電力を供給した場合
の、一日の各時刻において交流負荷に供給される(変
動)電力量と交流負荷の変動を吸収するかたちで電気透
析法淡水化装置で消費される電力量の関係、および電気
透析淡水化装置の各電気透析槽の選定した運転工程(高
濃度運転もしくは低濃度運転)を示した。例えば、0時
から6時までの交流負荷の電力消費量の小さい時刻には
5基の電気透析槽のうち4基が高濃度運転を残りの1基
が低濃度運転を選択して大電力を消費する。なお残る供
給電力量と消費電力量のギャップは鉛蓄電池への充放電
(この場合は充電)で調整する。
An embodiment of the present invention will be described with reference to FIGS. This example is based on the method of the present invention.
This is a combined electricity and water system that combines an air fuel cell and an electrodialysis desalination system. The power system of this system will be described with reference to FIG. The DC power of the acidic electrolyte type methanol-air fuel cell (hereinafter referred to as methanol fuel cell) 1 is
A part of the voltage is converted into an alternating current having a voltage suitable for the application by the inverter 2 and supplied to the load. As mentioned above, this load fluctuates depending on the time of day, day, and season. The load may be an electric device such as an ordinary household, factory, store, office, hospital, hotel, etc., but is not particularly limited. A part of the AC power is adjusted to an appropriate voltage by a transformer 4 or the like, if necessary, and supplied to an AC load 5 (auxiliary device such as pump, control / instrumentation device, etc.) of the electrodialysis desalination apparatus.
The other part of the DC power is supplied to the electrodialysis tank 8. Further, a part of the DC power is supplied to the load via the lead storage battery 7 in order to fill up a gap between the power generation amount and the load power amount, which will be described later, when the power consumption changes suddenly when the pump is started. The configuration and function of the electrodialysis desalination apparatus in this system will be described with reference to FIG. The desalination apparatus comprises a plurality of electrodialysis tanks 8, a raw water tank 9, a demineralized water circulation tank 10 corresponding to each electrodialysis tank, an intermediate concentration water storage tank 11, a fresh water storage tank 12, a pump 13, and the like. The raw water is sent to the raw water tank 9 after being subjected to a pretreatment such as turbidity if necessary. In each electrodialysis tank 8, the salt water is circulated by the pump 13 through the corresponding circulation tank 10 while the direct current power is supplied, and desalination is promoted. In this desalination process, the raw water is desalted to an intermediate salt concentration level between raw water and fresh water, and the intermediate concentration water storage tank
Two kinds are possible: a step of sending to 11 (high-concentration operation) and a step of desalting intermediate-concentration water to fresh water and sending it to the fresh water storage tank 12 (low-concentration operation). In each electrodialysis tank, either of them is selected. When the high-concentration operation is selected for all electrodialysis tanks, the maximum is selected, and when the low-concentration operation is selected for all electrodialysis tanks, the minimum is selected, and the power consumption can be adjusted by combining both steps. The relationship between the operating state of the electrodialysis tank and the power consumption pattern according to the above operating method will be described with reference to FIG. Fig. 3 shows the amount of electric power (variation) supplied to the AC load and the fluctuation of the AC load at each time of the day when constant power is supplied from the methanol fuel cell. The relationship between the amount of electric power consumed by the gasification device and the selected operation process (high concentration operation or low concentration operation) of each electrodialysis tank of the electrodialysis desalination device is shown. For example, from 0 o'clock to 6 o'clock at a time when the power consumption of the AC load is small, four of the five electrodialysis tanks select high-concentration operation and the remaining one selects low-concentration operation to output high power. Consume. The gap between the remaining power supply and power consumption is adjusted by charging / discharging (charging in this case) the lead storage battery.

7時から11時になり消費電力量が増加してくると2基が
高濃度運転を残りの3基が低濃度運転を選択し淡水化装
置での消費電力量を減じる。電力消費量がピークに達す
る19時から21時においては低濃度運転のみを選択しそれ
でも淡水化装置に供給できる電力量が不足する場合は運
転する電気透析槽の数を減ずる。一日を通しての電気透
析槽の稼動率は本実施例の場合95%以上に達する。すな
わち、高濃度運転と低濃度運転の選択による組合わせに
より電力変動の大部分は吸収できる。また電気透析槽は
回分運転されるため前述の如く各電気透析槽の消費電力
は経時的に変化する。これは各電気透析槽における回分
運転の開始のタイミングをずらせることにより淡水化装
置全体として平均化することができる。
When the power consumption increases from 7 o'clock to 11 o'clock, 2 units select high-concentration operation and the remaining 3 units select low-concentration operation to reduce the power consumption in the desalination system. From 19:00 to 21:00 when the power consumption peaks, only low-concentration operation is selected, and if the amount of power that can be supplied to the desalination device is still insufficient, the number of operated electrodialysis tanks is reduced. The operating rate of the electrodialysis tank throughout the day reaches 95% or more in this embodiment. That is, most of the power fluctuations can be absorbed by the combination of high-concentration operation and low-concentration operation. Further, since the electrodialysis tank is operated in batches, the power consumption of each electrodialysis tank changes with time as described above. This can be averaged for the entire desalination apparatus by shifting the timing of starting the batch operation in each electrodialysis tank.

以上はメタノール燃料電池を電源とした場合について述
べたが、各種の燃料電池、エンジン発電機、商用電源な
ど多様な電源を用いたシステムが成立することは言うま
でもない。商用電源を用いた場合には、余剰電力の生じ
る深夜から早朝にかけて高濃度運転要を多くして中間濃
度水を蓄えておき電力消費量の比較的多い昼間に低濃度
運転を多くして淡水を得て、電力消費量を平準化しつつ
淡水を得ることができる。
Although the case where the methanol fuel cell is used as the power source has been described above, it goes without saying that a system using various power sources such as various fuel cells, engine generators, and commercial power sources is established. When a commercial power source is used, high concentration operation is required from late night to early morning when excess power is generated to store intermediate concentration water, and low concentration operation is increased during the daytime when power consumption is relatively high to obtain fresh water. As a result, fresh water can be obtained while leveling the power consumption.

上記実施例では中間濃度水の種類を一種類としたが、こ
の種類を増やすことによりその効果を高めることができ
る。二種の中間濃度水を生成させる場合について電気透
析淡水化装置の構成と機能を第4図により説明する。第
4図の第1図との相違は中間濃度水貯槽として一次中間
濃度水貯槽11aと二次中間濃度水貯槽11bの二種を設けた
ことにりる。原水は必要に応じて除濁などの前処理を施
され後原水槽9に送られ、各電気透析槽8では直流電力
を通じつつ対応する循環槽10を介してポンプ13により塩
水を循環して脱塩が進められるのは第1図の場合と同様
である。脱塩工程には、原水を原水と淡水の中間のある
塩濃度レベルまで脱塩し一次中間濃度水貯槽11aに送る
工程(高濃度運転)と、一次中間濃度水を一次中間濃度
水と淡水の中間のある塩濃度レベルまで脱塩し二次中間
濃度水貯槽11bに送る工程(中間濃度運転)と二次中間
濃度水を淡水まで脱塩し淡水貯槽12に送る工程(低濃度
運転)の三種がある。電力消費量は、高濃度運転、中間
濃度運転、低濃度運転の順で減少する。各電気透析槽で
はこの三者からいずれかを選択する。以上の方法では、
電気透析槽における電力消費量選択の自由度がより増大
するため淡水化装置で使用可能な電力量と実際に消費す
る電力量とのマッチングがより精度よく行なえる。
Although the type of the intermediate concentration water is one in the above embodiment, the effect can be enhanced by increasing the number of types. The configuration and function of the electrodialysis desalination apparatus in the case of generating two types of intermediate concentration water will be described with reference to FIG. The difference between FIG. 4 and FIG. 1 is that two kinds of intermediate concentration water storage tanks, a primary intermediate concentration water storage tank 11a and a secondary intermediate concentration water storage tank 11b, are provided. If necessary, the raw water is subjected to pretreatment such as turbidity and then sent to the raw water tank 9, and in each electrodialysis tank 8, while circulating direct current, salt water is circulated by the pump 13 through the corresponding circulation tank 10 to remove the salt water. The progress of salt is the same as in the case of FIG. In the desalination process, the raw water is desalted to a salt concentration level between the raw water and fresh water and sent to the primary intermediate concentration water storage tank 11a (high concentration operation), and the primary intermediate concentration water is transferred to the primary intermediate concentration water and fresh water. Three types of processes: desalting to a certain intermediate salt concentration level and sending it to the secondary intermediate concentration water storage tank 11b (intermediate concentration operation), and desalting secondary intermediate concentration water to fresh water and sending it to the fresh water storage tank 12 (low concentration operation) There is. The power consumption decreases in the order of high concentration operation, intermediate concentration operation, and low concentration operation. For each electrodialysis tank, select one from the three. With the above method,
Since the degree of freedom in selecting the amount of power consumption in the electrodialysis tank is further increased, the amount of power that can be used in the desalination apparatus and the amount of power that is actually consumed can be matched more accurately.

本発明は、さらに太陽電池出力の有効利用にも応用でき
るものである。すなわち、 無尽蔵な太陽エネルギーを利用したクリーンな発電方式
として太陽電池の開発が進み、実用化が進みつつある。
太陽電池利用における最大の技術課題は、時刻、日間、
季間により変動する日射量により変動する電力を如何に
利用するかにある。通常は鉛蓄電池に蓄電する方法が採
用されるが、これが発電コストの増大の電力利用効率の
低下を招いている。本発明の方法は、太陽電池出力の利
用にも有効に対応できる。
The present invention is also applicable to effective use of solar cell output. In other words, solar cells have been developed and put into practical use as a clean power generation method using inexhaustible solar energy.
The biggest technical problem in using solar cells is time, day,
It is how to use the electric power that fluctuates according to the amount of solar radiation that fluctuates depending on the season. Usually, a method of storing electricity in a lead storage battery is adopted, but this causes an increase in power generation cost and a reduction in power use efficiency. The method of the present invention can effectively cope with the use of solar cell output.

第6図に太陽電池出力を使用した電気透析法淡水化シス
テムの電力系統と発電および電力消費量パターンを示
す。第6図において、太陽電池6の出力は一部がインバ
ータ2により交流に変換されて電気透析装置の補機等5
に供給され、他の一部は電気透析槽8に供給される。ま
た、太陽電池出力の一部は、発電量と消費電力量のギャ
ップを埋めるために鉛蓄電池を経て負荷に供給される。
また、第6図に6基の電気透析槽を一種の中間濃度水を
生成する方法すなわち高濃度運転と低濃度運転を選択す
る方法で運転した場合の発電および電力消費パターンを
示したが、各時刻において太陽電池出力と消費電力量は
かなり良く一致させることができ、蓄電に供される電力
量はかなり小さくできることが明らかである。
Fig. 6 shows the power system, power generation, and power consumption pattern of the electrodialysis desalination system using the solar cell output. In FIG. 6, a part of the output of the solar cell 6 is converted into an alternating current by the inverter 2, and the auxiliary device 5 of the electrodialysis device and the like 5
And part of the other is supplied to the electrodialysis tank 8. Further, a part of the solar cell output is supplied to the load via the lead storage battery in order to fill the gap between the power generation amount and the power consumption amount.
Further, FIG. 6 shows the power generation and power consumption patterns when the six electrodialysis tanks are operated by a method of generating a kind of intermediate concentration water, that is, a method of selecting high concentration operation and low concentration operation. It is clear that the solar cell output and the power consumption can be matched fairly well at the time, and the power supplied to the storage can be considerably reduced.

〔発明の効果〕〔The invention's effect〕

以上のように、本発明によれば、変動電力を殆ど蓄電す
ることなく直接利用して、かつ高い稼動率を維持しつ
つ、電気透析淡水化装置を運転することが可能となる。
また、メタノール燃料電池を初めとする各種燃料電池、
エンジン発電機、商用電源などを電力源とし、これらの
出力を最適な範囲に維持しつつ変動する余剰電力で造水
する、電力/水併給システムが実現する。
As described above, according to the present invention, it is possible to directly use the variable power with little storage and to operate the electrodialysis desalination apparatus while maintaining a high operating rate.
In addition, various fuel cells including methanol fuel cells,
An electric power / water combined supply system will be realized which uses an engine generator, a commercial power source, and the like as electric power sources, and maintains the output of these in an optimum range to produce fresh water with fluctuating surplus electric power.

【図面の簡単な説明】[Brief description of drawings]

第1図および第4図は電気透析淡水化装置のシステムフ
ロー、第2図は電力系統図、第3図は電気透析槽の運転
状態と電力消費パターンの関係、第5図は電気透析槽に
流通する塩水の塩濃度と電気透析槽電気抵抗の関係、第
6図は本発明によって電気透析槽を運転した場合の発電
および電力消費パターンである。 1……メタノール燃料電池、2……インバーター、3…
…交流負荷、4……トランス、5……電気透析装置補機
等、7……鉛蓄電池、8……電気透析槽、9……原水
槽、10……脱塩水循環槽、11……中間濃度水貯槽、12…
…淡水貯槽、13……ポンプ、21……メタノール燃料電池
発電電力、22……変換ロス、23……電気透析装置補機等
の電力、24……電気透析槽消費電力、24H……高濃度運
転消費電力、24L……低濃度運転消費電力、25……交流
負荷消費電力、26……蓄電池充電電力、27……蓄電池放
電電力。
1 and 4 are the system flow of the electrodialysis desalination apparatus, FIG. 2 is the power system diagram, FIG. 3 is the relationship between the operating state of the electrodialysis tank and the power consumption pattern, and FIG. 5 is the electrodialysis tank. The relationship between the salt concentration of the circulating salt water and the electric resistance of the electrodialysis tank, FIG. 6 is a power generation and power consumption pattern when the electrodialysis tank is operated according to the present invention. 1 ... Methanol fuel cell, 2 ... Inverter, 3 ...
... AC load, 4 ... Transformer, 5 ... Electrodialyzer auxiliary equipment, 7 ... Lead storage battery, 8 ... Electrodialysis tank, 9 ... Raw water tank, 10 ... Demineralized water circulation tank, 11 ... Intermediate Concentrated water storage tank, 12 ...
… Fresh water storage tank, 13 …… Pump, 21 …… Methanol fuel cell power generation, 22 …… Conversion loss, 23 …… Electric dialysis tank auxiliary power, 24 …… Electrodialysis tank power consumption, 24H …… High concentration Operating power consumption, 24L …… Low concentration operating power consumption, 25 …… AC load power consumption, 26 …… Storage battery charging power, 27 …… Storage battery discharging power.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 燦吉 茨城県日立市久慈町4026番地 日立製作所 株式会社日立研究所内 (72)発明者 土井 良太 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 小川 敏雄 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (56)参考文献 特開 昭60−168504(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukichi Takahashi 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi Ltd. (72) Ryota Doi 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Nitate Works Ltd. Hitachi Research Laboratory (72) Inventor Toshio Ogawa 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi, Ltd. (56) Reference JP-A-60-168504 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数の電気透析槽から構成される電気透析
淡水化装置において、前記複数の電気透析槽をそれぞれ
回分運転し、各電気透析槽の回分運転にあたって、原水
の塩濃度レベルと目的とする淡水の塩濃度レベルとの間
に、1乃至複数の中間塩濃度レベルを設定し、原水を前
記1乃至複数の中間塩濃度レベルを経て目的とする淡水
の塩濃度レベルに至るまで、それぞれ、一つ下の塩濃度
レベルに段階的に順次脱塩する個別の工程を有し、同時
に運転する電気透析槽間において、前記各塩濃度レベル
での脱塩工程を行う電気透析槽の比率を適宜選択するこ
とにより淡水化装置全体としての電力消費量を所要の値
に経時的に変化させることを特徴とする電気透析淡水化
方法。
1. An electrodialysis desalination apparatus comprising a plurality of electrodialysis tanks, wherein each of the plurality of electrodialysis tanks is operated in a batch operation, and when the electrodialysis tanks are operated in a batch operation, a salt concentration level of a raw water and an object are obtained. 1 to a plurality of intermediate salt concentration levels are set between the fresh water salt concentration levels, and the raw water passes through the 1 to a plurality of intermediate salt concentration levels to reach a desired fresh water salt concentration level, respectively. There is a separate step for sequentially desalting to one lower salt concentration level, and between the electrodialysis tanks operating at the same time, the ratio of the electrodialysis tank performing the desalting step at each salt concentration level is appropriately adjusted. An electrodialysis desalination method characterized in that the power consumption of the entire desalination apparatus is changed to a required value over time by selection.
【請求項2】複数の電気透析槽から構成される電気透析
淡水化装置において、前記複数の電気透析槽をそれぞれ
回分運転する手段と、各電気透析槽の回分運転によっ
て、原水の塩濃度レベルと目的とする淡水の塩濃度レベ
ルとの間に設定された1乃至複数の中間塩濃度レベルの
塩濃度レベルにまで脱塩された水をそれぞれ個別に蓄え
る1乃至複数個の中間濃度水貯槽と、前記中間濃度水貯
槽の水を前記電気透析槽の何れかに循環供給してさらに
一段階下の塩濃度レベルへの脱塩工程を行わしめる手段
と、同時に運転する電気透析槽間において、前記各塩濃
度レベルでの脱塩工程を行う電気透析槽の比率を適宜選
択する手段とを有し、淡水化装置全体としての電力消費
量を所要の値に経時的に変化させることを可能としたこ
とを特徴とする電気透析淡水化装置。
2. An electrodialysis desalination apparatus comprising a plurality of electrodialysis tanks, wherein means for operating the plurality of electrodialysis tanks in batches and salt concentration levels of raw water by batch operations in each electrodialysis tank 1 to a plurality of intermediate-concentration water storage tanks for individually storing water desalinated to a salt concentration level of 1 to a plurality of intermediate salt concentration levels set between the target fresh water salt concentration level, and Means for circulating the water in the intermediate concentration water storage tank to any one of the electrodialysis tanks to further carry out a desalting step to a salt concentration level one step lower, and between the electrodialysis tanks operating simultaneously, Having means for appropriately selecting the ratio of the electrodialysis tank that performs the desalting step at the salt concentration level, and enabling the power consumption of the entire desalination apparatus to be changed over time to a required value. Characterized by electricity析淡 hydration apparatus.
JP62229750A 1987-09-16 1987-09-16 Electrodialysis desalination method and device Expired - Lifetime JPH0757309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62229750A JPH0757309B2 (en) 1987-09-16 1987-09-16 Electrodialysis desalination method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62229750A JPH0757309B2 (en) 1987-09-16 1987-09-16 Electrodialysis desalination method and device

Publications (2)

Publication Number Publication Date
JPS6475004A JPS6475004A (en) 1989-03-20
JPH0757309B2 true JPH0757309B2 (en) 1995-06-21

Family

ID=16897098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62229750A Expired - Lifetime JPH0757309B2 (en) 1987-09-16 1987-09-16 Electrodialysis desalination method and device

Country Status (1)

Country Link
JP (1) JPH0757309B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4954926B2 (en) * 2008-03-18 2012-06-20 富士電機株式会社 Water treatment device and fuel cell power generation device
JP2014124593A (en) * 2012-12-27 2014-07-07 Hitachi Ltd Water supply management support system

Also Published As

Publication number Publication date
JPS6475004A (en) 1989-03-20

Similar Documents

Publication Publication Date Title
JP3793229B2 (en) Single and dual electrolytic cells for aqueous solution deionization and their arrangement
CN106877742B (en) Device integrating sea water desalination and stable power generation of unstable renewable energy
Jafary et al. Enhanced power generation and desalination rate in a novel quadruple microbial desalination cell with a single desalination chamber
CN211310967U (en) Electrodialysis sea water desalination system for solar energy coupling reverse electrodialysis power generation
JPH05101834A (en) Electric power storing device
KR101682064B1 (en) Independent power providing apparatus based on the salinity gradient
CN214400132U (en) System of clean energy sea water desalination coupling salt difference energy power generation facility
JP2008212871A (en) Pure water production method and apparatus
KR20150003060A (en) Hybrid system for accomplishing selectively electrodialysis reversal and reverse electrodialysis
CN109987682A (en) A kind of wide water temperature module of continuous electric desalination
CN112159902A (en) Electricity-water lithium extraction co-production system based on capacitance method
CN110436586B (en) High-purity water production device and method
TWI748318B (en) Water purifying apparatus and method of operating same
KR101596301B1 (en) Complex salinity gradient electric generating device
Wu et al. Hydrogen production from water electrolysis driven by the membrane voltage of a closed-loop reverse electrodialysis system integrating air-gap diffusion distillation technology
Mehrabian-Nejad et al. Application of PV and solar energy in water desalination system
CN109574326A (en) A kind of wind light mutual complementing formula electrodialytic desalination device
JPH0757309B2 (en) Electrodialysis desalination method and device
JPH07106350B2 (en) Operating method of electrodialysis desalination equipment
Singh Sustainable fuel cell integrated membrane desalination systems
JPS6359725B2 (en)
JP6384932B1 (en) Hydrogen / oxygen mixed gas production equipment
JP2001236981A (en) Water treatment system for fuel cell generator
ABO et al. Power generation performance of a pilot-scale reverse electrodialysis (RED) stack
Saleem et al. Pure water and energy production through an integrated electrochemical process